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Abstract

This paper analyzes oligopolistic markets with network externalities. Exploiting a minimal

complementarity structure on the model primitives that allows for pure network goods, we prove

existence of nontrivial fulfilled-expectations equilibrium. We formalize the concept of industry

viability, investigate its determinants, and show it improves with more firms in the market

and/or by technological progress. These results enlighten some conclusions from case studies

in the strategy literature. We also characterize the effects of market structure on industry

performance, which depart substantially from ordinary markets. The approach relies on lattice-

theoretic methods, supplemented with basic insights from nonsmooth analysis.
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1 Introduction

It has often been observed that the nature of competition is qualitatively different in network

industries. The presence of interlinkages in consumers’purchasing decisions induces demand-side

economies of scale that may strongly affect market behavior and performance. When such effects

prevail, be they of the snob or bandwagon type, purchase decisions are influenced by buyers’expec-

tations, leading to behavior not encompassed by traditional demand theory (Veblen [37]; Leibenstein

[22]). From an industrial organization perspective, these distinctive features raise new questions

and impose some methodological challenges. In their pioneering work on markets with network

effects, Katz and Shapiro [19] proposed the concept of fulfilled expectations Cournot equilibrium

(FECE), which was adopted by some of the early literature. This has led to a number of results

that distinguish network markets from ordinary ones.1

The purpose of the present paper is to provide a thorough theoretical investigation of markets

with homogeneous goods and network externalities. We consider oligopolistic competition amongst

firms in a market characterized by positive (direct) network effects when the products of the firms

are perfectly compatible, so that the relevant network is industry-wide. This is motivated by both

positive and normative considerations. In terms of the former, several important industries fit the

perfect compatibility framework, in particular those in the telecommunications sector, such as fax,

telephone, the Internet, but also many classical industries such as compact discs, fashion and enter-

tainment.2 More important are the normative grounds, which stem mainly from the critical problem

of industry take-off that new network goods are confronted with. A single (industry-wide) network

is a crucial element in surmounting the take-off hurdle, or at least in avoiding potentially long

delays before achieving success (Shapiro and Varian [31]). Indeed, the business strategy literature

has concluded, through a number of detailed case studies dealing with the emergence of particular

industries in the last thirty years, that interconnection amongst all the firms in a network industry

(i.e., a single network) is probably the most important ingredient for success in launching a new

1See Economides and Himmelberg [14], Economides [13], Shy [33] and Kwon [21]. In contrast, the earlier literature

in management science relied on dynamic models with no expectations, e.g., Oren and Smith [27] and Dhebar and

Oren [11]. See also Bensaid and Lesne [6] and Chen et. al. [10], among others.
2 In some industries, each customer may have in mind his own social network only, not the overall network, when

making a purchase decision, but we follow the literature in industrial organization in ignoring this distinction.
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network product (Rohlfs [29]). Thus a good understanding of the single network case will shed

quite some light on the incentives for compatibility faced by firms and consumers in the case of

firm-specific networks. We shall return to this key point several times below.

In contrast to the extant literature, this paper considers general demand functions with non-

separable network effects, a critical feature if one wishes to capture pure network goods (those

with no stand-alone value, such as most telecommunication products), and the so-called feature

of demand-side increasing returns (see Assumption A5). With pure network goods, the trivial

outcome of zero output is always a self-fulfilling equilibrium, since there will be no actual demand if

the market expectation is that there will be no eventual sales (in other words, nobody wishes to be

the only person around owning a phone, say). In view of this, the industry will fail to take off at all

if this is the only equilibrium, but might also end up coordinating on this worst possible outcome

when other equilibria are present. In a nutshell, this is the so-called industry viability problem,

a general treatment of which is the central concern of this paper. To this end, an important pre-

requisite is a good understanding of the issues of existence and multiplicity of FECE, which can

clearly discriminate between the trivial FECE and the non-trivial ones, in terms of meaningful

conditions imposed on primitives of the oligopoly model. Another aim of the paper is to provide an

extensive inquiry into the effects of market structure (or exogenous entry) on market performance.

Throughout, the paper takes a comparative perspective in that results are contrasted with their

Cournot counterparts, in an attempt to shed light on the distinctive features of network industries.

The underlying approach is to impart minimal complementarity structure to the model at hand,

which achieves the twin goals of ensuring the existence of a fulfilled expectations Cournot equilib-

rium while at the same time allowing clear-cut predictions on the comparative statics of market

performance with respect to the number of firms. The critical structure is imposed in the form of

two economically meaningful complementarity conditions on the primitives that guarantee the key

properties that, along a given firm’s best response, industry output increases in rivals’total output

as well as in the expected network size. In terms of methodology, the existence and comparative

statics parts rely on lattice-theoretic techniques, but these need to be supplemented by basic novel

insights from nonsmooth analysis, in particular for the viability analysis.3

3Relevant work includes Topkis [35], Vives [38], Milgrom and Roberts [25], Milgrom and Shannon [26], Echenique
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We next provide an overview of our findings, coupled with a literature review. While existence

of FECE follows from the monotonicity structure via a double application of Tarski’s fixed point

theorem, this is of limited interest, as the underlying equilibrium may a priori be the trivial one.

To complete the analysis, we derive two sets of conditions, each of which ensures the existence of

a non-trivial equilibrium. These conditions have clear economic interpretations; they amount to

requiring relatively strong network effects near the origin or away from the origin.

Although the model is static in nature, we construct an explicit learning dynamics, mapping

consumers’expectation of the network size to the corresponding Cournot equilibrium industry out-

puts. This tatonnement-type dynamics shall serve a dual purpose. It provides a natural theoretical

foundation for an equilibrium concept that might be viewed as too demanding in its implicit simul-

taneous determination of both firms’behavior and the correct size of the market. The dynamics

also serves as a convenient tool to analyze the viability of the industry. In fact, it has tacitly been

the basis of earlier informal discussions of the viability issue in the literature. Studies of telecom-

munications markets, such as Rohlfs [28] and Economides and Himmelberg [14], often suggest that

network industries typically have three equilibria. Under this natural dynamics, the two extreme

equilibria are stable in expectations and the middle equilibrium (usually called critical mass) is

unstable. The argument behind this structure is quite simple for pure network goods: If consumers’

initial expectation is below the critical mass, so that few buyers are expected to acquire the good,

then the good will be of little value to consumers and few of them will end up buying it. These low

sales in turn further depress consumers’expectations through the above dynamics, and the market

unravels towards the trivial (or no-trade) equilibrium, giving rise to a failure to take off for the

industry. However, if expectations are higher to start with and network effects are relatively strong,

higher equilibria will also be possible. This argument is often used to explain the start-up problem

in network industries, or the diffi culties faced by incumbent firms in attempting to generate enough

expectations to achieve critical mass. In this setting, due to increasing returns on the demand side

and to the need for expectations, multiple equilibria and path dependence (the notion that early

events can have significant long run effects) are the norm, rather than the exception.

An important aim of the present paper is to shed light on the role of market structure as a

[12], Amir [1], [3], Amir and Lambson [4], and Kwon [21].
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determinant of the viability of a network industry, a novel and fundamental issue that, surprisingly,

has not been addressed in the theoretical literature. We find that the presence of more firms in the

market always enhances industry viability, by lowering the critical mass needed to avoid the trivial

equilibrium. The same conclusion holds for exogenous technological progress. These two effects

provide a plausible explanation of several recorded failures and successes in attempts to launch new

network goods, as reported in some detail in other sections, in particular with regard to the history

of the fax industry. Indeed, Rohlfs [29] forcefully argues that interconnection between suppliers of

a network good is a critical feature that is at the heart of past successful new industry launches,

sometimes in conjunction with technological improvements.4 Rohlfs’detailed case studies provide

strong evidence for the policy relevance of our theoretical results on viability.

Regarding market performance, the basic structure leads to an industry output that increases

in the number of firms, n, as in standard Cournot competition. As this also implies an increase

in the equilibrium network size, market price need not decrease with more competition, i.e., quasi-

competitiveness need not hold here. The most drastic departure from standard oligopoly lies in the

effects of entry on per-firm profits. Whenever per-firm output and market price increase (decrease)

with n, per-firm profits increase (decrease) in n as well (see Economides [13]). The conclusion

that competition may increase each firm’s profit is quite provocative and leads to several important

implications, both from theoretical and policy-oriented perspectives. The effects of entry on social

welfare and consumer surplus also display some distinctive features relative to standard Cournot

competition. Demand-side economies of scale broaden the conditions under which social welfare

increases with more entry, but they may have the opposite effect on consumer surplus whenever

the marginal increase of price due to a higher network size increases with output. Our results

build on the perception already prevalent in the literature that standard results on the workings

of competition can easily be reversed in network industries. Since, for each dimension of market

performance, the conventional intuitive outcome and its opposite can both hold in robust ways, it is

highly desirable to arrive at a clear understanding of the respective specific market characteristics

4This conclusion does not apply to network industries that do not lend themselves to interconnection, due to a

variety of reasons, which may be connected to technological, industry-specific, geographic, linguistic, or other factors.

Examples include bank deposits (Matutes and Vives [24]), local clubs, national associations, etc.
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under which these two outcomes prevail.5

As a consequence, a number of policy issues will need revisiting in network industries, whenever

market characteristics are such that unconventional outcomes prevail. There is more scope for pro-

competitive cooperation or coordination by firms in network markets. There will be a pronounced

tendency towards less entry deterrence activities; a higher propensity for licensing, probably coupled

with lower royalty rates or licensing fees; less patenting or a relatively more permissive attitude

towards patent infringement by a firm’s rivals; and more joint ventures for research and development

towards common standards, improved product performance and lower production costs. Proper

reaction to these new incentives for coordinated action by market competitors might well require a

significant overhaul of existing antitrust policy (Shapiro [30]).

Another noteworthy aspect of this paper is that it offers three explicit examples with easy

closed-form solutions to illustrate in a simple way some of the key conclusions. In particular,

Example 1 captures with closed-form solutions most of the relevant features often associated with

the telecommunications industry in the literature, as well as our new results on viability.

The paper is organized as follows. Section 2 presents the model, the equilibrium concept and

the assumptions. Section 3 deals with existence of equilibrium. Section 4 formalizes the concept of

industry viability and its determinants. Section 5 analyzes market performance as a function of the

number of firms. Section 6 concludes, and section 7 contains all the proofs.

2 The Model

This section presents the standard oligopoly model with network effects along with the commonly

used equilibrium concept due to Katz and Shapiro [19]. We consider a static model to analyze

oligopolistic competition in industries with positive network effects, wherein consumers’willingness

to pay for the good is increasing in the number of agents acquiring the same good. The firms’

products are homogeneous and perfectly compatible with each other, so there is a single network

comprising the outputs of all firms in the industry.

5Boone [9] provides interesting insights into the diffi culties of deriving meaningful measures of competition in

regular industries. Our results will suggest that this task will be far more daunting in network industries.
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2.1 The Model and the Solution Concept

The market consists of n identical firms, with cost function C (·), facing the same inverse demand

function P (Z, S), where Z denotes the aggregate output in the market and S represents the expected

size of the network. Postulating that each consumer buys at most one unit of the good, S also stands

for the expected number of people acquiring the good.

For a given S, a firm’s profit function is π (x, y, S) = xP (x+ y, S)−C (x), where x is the firm’s

output level, and y is the joint output of the other (n− 1) firms. Its reaction correspondence is

x (y, S) = arg max {π (x, y, S) : x ≥ 0} . (1)

Each firm chooses its output level to maximize its profits under the assumptions that (i) con-

sumers’expectations about the size of the network, S, is given; and (ii) the output level of the other

firms, y, is fixed. Alternatively, we may think of the firm as choosing total output Z = x+ y, given

the other firms’cumulative output, y, and the expected size of the network, S, in which case, with

π̃ (Z, y, S) = (Z − y)P (Z, S)− C (Z − y), its reaction correspondence is

Z (y, S) = arg max {π̃ (Z, y, S) : Z ≥ y} . (2)

Consistency requires Z (y, S) = x (y, S) + y.

At equilibrium, all relevant quantities x, y, Z and π will be indexed by the underlying number

of firms n, e.g., we shall denote by Zn the equilibrium industry output corresponding to n firms in

the market, and xin the equilibrium output of firm i. When clear from the context, we will avoid

the subindex i in the latter variable.

An equilibrium in this game is a vector (x1n, x2n, ..., xnn) that satisfies the following conditions

1. xin ∈ arg max{xP (x+
∑

j 6=i xjn, S)− C (x) : x ≥ 0}; and

2.
∑

i xin = S.

Katz and Shapiro [19] called this concept a "Fulfilled Expectations Cournot Equilibrium (or

FECE)". It requires that both consumers and firms correctly predict the market outcome, so that

their beliefs are confirmed in equilibrium. While strategic in their choice of outputs in the usual

Cournot sense, firms are "network-size taking" in their perceived inability to directly influence
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customers’expectations of market size. One plausible justification for this is that firms are unable

to credibly commit to output levels that customers could observe and reliably use in formulating

expectations about network size (Katz and Shapiro [19]). Naturally, the plausibility of the FECE

concept increases with the number of firms present in the market.

Viewing S as an inverse demand shift variable, the first line (or Condition 1 above) just describes

the equilibrium in standard Cournot competition with exogenously fixed S. Let the corresponding

industry output Cournot equilibrium be denoted Qn (S), a multi-valued mapping in general (since

no uniqueness of Cournot equilibrium will be assumed). Adding condition 2, an aggregate output

Zn ∈ Qn (S) constitutes a FECE industry output if it confirms the expected level of sales (or

network size) that generated it, i.e., has Zn = S. Thus, if we graph Qn (S) as a function of S,

the FECE industry outputs coincide with the fixed points, or the points where this correspondence

crosses the 45◦ line. This idea will play a key role in both the existence proof and the viability

analysis.

An alternative, fully game-theoretic, interpretation of this equilibrium notion is in the context

of a two-stage game, wherein a market maker (or a regulator) announces an expected network size

S in the first stage, and firms compete in Cournot fashion facing inverse demand P (Z, S) in the

second stage. If the market maker’s objective function is to minimize |S −Qn (S)|, then to any

subgame-perfect equilibrium of this game corresponds a FECE of the Cournot market with network

externalities, and vice-versa. This simple conceptualization of the FECE solution also provides one

natural approach for arriving at a FECE with the participation of a market maker, and in case of

multiple equilibria, also for selecting a particular FECE.6

The FECE concept has a dual nature: It consists of the conjunction of a standard Cournot

equilibrium and a rational expectations requirement. (The latter is not related in any way to uncer-

tainty but rather to the determination of the true final demand that will prevail in the economy.)

As it pins down both firms’strategic behavior in the market and the coordination of expectations

as to the right market size, all in one stroke within a static model, one might feel that this solution

concept is excessively ambitious.7 In other words, it attempts to compress an intrinsically dynamic

6We shall briefly return to this point in the Conclusion to argue that the U.S. government-sponsored launch of the

Internet fits this regulation-based description of the model.
7At the same time, this concept treats consumers in a reduced-form manner as being fully nonstrategic.

8



succession of building blocks into a static representation. Partly to address this natural critique, a

theoretical foundation for FECE is provided in the form of a simple myopic learning dynamics that

converges to any Cournot-stable FECE from a suitable basin of attraction.8 This dynamics is also

intended as a natural vehicle for investigating the important issue of industry viability.

This dual nature also implies that FECE is more appropriately classified not as a purely non-

cooperative solution concept, but rather as one capturing co-opetition (Brandenburg and Nalebuff

[8]). The familiar inter-firm rivalrous relationship inherent in Cournot competition is intertwined

with an inter-firm partnership in terms of jointly creating suffi ciently high expectations for the in-

dustry prospects and building up a large common network of consumers. The overall outcome is

an intricate and interesting case of co-opetition, which is unambiguously confirmed by the results

below on industry viability and on the effects of increased competition on firms’well-being. In fact,

the congruence between the main results of this paper and some central case studies for the business

strategy literature provides important real world evidence in support of FECE as a suitable static

solution concept for network industries.

An alternative solution concept has been proposed for environments where firms possess the abil-

ity to make credible commitments to output levels. In such cases, standard Cournot equilibrium

with inverse demand P (Z,Z) would be a more appropriate concept. A direct comparison between

these two concepts appears in Katz and Shapiro [19], who find that firms’market behavior is more

aggressive, leading to a higher industry output than under the FECE concept, an intuitive outcome.

Ultimately, the issue as to which of these concepts is more appropriate for network industries is an

empirical matter, and the answer is likely to vary according to industry characteristics, in partic-

ular those relating to firms’ability to credibly commit (observability conditions, firm reputation,

government participation, marketing and public awareness of the product, etc.).

2.2 The Basic Assumptions

We list the assumptions used in this paper, starting with a set of standard ones, followed by

more substantive conditions. Whenever well-defined, we denote the maximal and minimal points of

8Some studies provide truly dynamic models of single-network competition amongst firms, which may also be

viewed as foundations for the present paper (e.g., Dhebar and Oren [11] and Bensaid and Lesne [6]).
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a set by an upper and a lower bar, respectively. Thus, for instance, Zn and Zn are the highest and

lowest industry equilibrium outputs (i.e., fixed points of Qn (S)) with n firms in the market.

Denote by W (Z, S) ,
∫ Z
0 P (t, S) dt− nC (Z/n) the Marshallian social welfare when aggregate

output is Z, all firms produce the same quantity and the expected size of the network is S. Similarly,

consumer surplus is CS (Z, S) ,
∫ Z
0 P (t, S) dt− ZP (Z, S).

The standard assumptions are

(A1) P (., .) is twice continuously differentiable, P1 (Z, S) < 0 and P2 (Z, S) > 0.

(A2) C (.) is twice continuously differentiable and increasing, and C(0) = 0.

(A3) xi ≤ K, for each firm i.

These are all commonly used assumptions, including P2 (Z, S) > 0, which reflects positive net-

work effects, or the property that consumers’willingness to pay increases in the expected number

of people who will buy the good. A3 imposes capacity constraints on the firms, a convenient way

to force compact output sets in a setting where firms may otherwise wish to produce unbounded

output levels. No results rely in any way on K taking on any particular set of values.

We allow for the possibility that P (Z, 0) ≡ 0, which characterizes pure network goods, or those

with no stand-alone value, such as most telecommunications devices (telephone, fax, and e-mail).

We also allow for mixed network goods, or those with strictly positive stand-alone value, for which

P (Z, 0) > 0, such as various types of software, fashion goods, and entertainment goods and services.

The next two assumptions form the key complementarity structure of the model.

(A4) ∆1 (Z, y, S) , −P1 (Z, S) + C ′′ (Z − y) > 0 on ϕ1 , {(Z, y, S) : Z ≥ y, y ≥ 0, S ≥ 0}.

(A5) ∆2 (Z, S) , P (Z, S)P12 (Z, S)−P1 (Z, S)P2 (Z, S) > 0 on ϕ2 , {(Z, y, S) : Z ≥ y, y ≥ 0, S ≥ 0}.

In terms of the model structure, A4 guarantees that the profit function π̃ (Z, y, S) has strictly

increasing differences in (Z, y), so Z (y, S) increases in y, or a firm’s best-response has slopes greater

than −1 in other firms’quantity for fixed S.9 Likewise, A5 ensures that log π̃ (Z, y, S) has strict

increasing differences in (Z;S), so that Z (y, S) increases in S.10

9Also see Hoernig [18] for an extension to differentiated-goods industries.
10All the lattice-theoretic notions and general results used in this paper are covered in Topkis [36] or Vives [39].
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In terms of economic interpretation, A4 allows for limited scale economies in production, and

has been justified in detail in Amir and Lambson [4]. Although our analysis does incorporate this

generality on the production side, we shall not stress this point when discussing our conclusions so

as to keep focus on the demand side features of the model.

The novel assumption here is A5, which has the precise economic interpretation that the elastic-

ity of demand increases in the expected network size S.11 In his pioneering study of the elementary

microeconomic foundations of interdependent demands, Leibenstein [22] suggested that demand is

more elastic in network markets than in ordinary markets because individual reactions to price

changes are followed by additional reactions, in the same direction, to each other’s change in con-

sumption. Within the present simple, static representation of demand for a good with network

effects, A5 may be viewed as a way to formalize the cumulative outcome of these mutually reinforc-

ing effects on aggregate demand via self-fulfilling expectations of the network size. Another plausible

interpretation of A5 is that it provides a natural way to model the concept of demand-side scale

economies that is often postulated as a characteristic of network industries: Higher expectations of

ultimate market size increase consumers’willingness to pay and make demand more elastic.

A5 also embodies a key respect in which the present paper departs from the extant static

literature, much of which deals with the case of additively separable network effects, defined by12

P (Z, S) = p(Z) + g(S) (3)

While this specification clearly satisfies the condition in A5, it automatically excludes the case of

pure network goods (characterized by P (Z, 0) = 0 for all Z, which is incompatible with (3)), for

which the role of expectations is often critical, making industry viability a crucial issue. Since this

issue is central to the focus of the present paper, we cannot adopt the simplifying assumption of

separable network effects.

On the other hand, the case of multiplicative network effects, defined by P (Z, S) = p(Z)g(S),

a specification that can in particular capture pure network goods (whenever g satisfies g(0) = 0),

11The price elasticity of demand is −
(
∂P (Z,S)

∂Z
Z

P (Z,S)

)−1
= −

(
Z ∂ logP (Z,S)

∂Z

)−1
, which is increasing in S if and only

if logP (Z, S) has increasing differences in (Z, S) (Topkis [36], p. 66).
12See Katz and Shapiro [19], Economides and Himmelberg [14] and Economides [13] among others.
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also satisfies A5 as a limit case (i.e., with equality for all Z and S).13 This multiplicative form

captures situations where a higher expected network size keeps the elasticity of demand invariant,

thus generating a pure upward shift in demand. As an example of this, consider the inverse demand

P (Z, S) = S/Zα, α > 0.

3 Existence of Equilibrium

In this section we provide a general equilibrium existence result, exploiting the minimal monotonic

structure of the model reflected in A4-A5. As the trivial (zero-output) equilibrium is often part of

the equilibrium set, we derive a second result that relies on additional conditions to guarantee the

existence of a non-trivial equilibrium, i.e., one with strictly positive industry output. Under these

extra conditions, the market has some chance to emerge at equilibrium.

We begin with the central monotonicity result, which is a direct consequence of A4 and A5.

Lemma 1 Every selection of the best-response correspondence Z (y, S) increases in both y and S.

This lemma leads to an abstract existence result for symmetric equilibrium, along with the fact

that the same assumptions preclude the possibility of asymmetric equilibria.

Theorem 2 For each n ∈ N , the Cournot oligopoly with network effects has (at least) one sym-

metric equilibrium and no asymmetric equilibria.

The monotonicity structure behind the existence theorem will also drive other results of this

paper, many of which have a comparative statics flavor. Comparing A1-A5 with the assumptions

in standard Cournot oligopoly, the only extra requirement is that the price elasticity of demand

increases with the network size, A5, taking P2 (Z, S) > 0 as a natural property of network markets.

Recall that Qn (S) denotes the industry output equilibrium correspondence of standard Cournot

competition (with exogenous S), with n firms in the market. In Section 2 we observed that a fixed

point of Qn (S) constitutes a FECE. Conditions A1-A4 guarantee that Qn (S) is non-empty using

13The strict inequality in A5 is purely for convenience, and our conclusions are all valid with a weak inequality

instead. The main implication of the latter assumption is that only the extemal selections of the argmax Z (y, S), as

opposed to all the selections, will be increasing in S.
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the results of Amir and Lambson [4]. Then the added benefit of A5 is that the extremal selections

of Qn (S), Qn (S) and Q
n

(S), increase in S, so that the existence of FECE follows via Tarski’s

Theorem applied to Qn (S) or Q
n

(S). This idea also plays a key role in the proof of existence of a

non-trivial equilibrium below.

It is well-known that in network markets, the trivial (zero output) outcome is often an equilib-

rium. This arises when the network good has little stand-alone value, i.e., P (Z, 0) is small. Given

any such good, if end users believe no one else will acquire it, then the good will have no value, and

the trivial outcome will necessarily be part of the equilibrium set. Telecommunications industries,

such as fax, phone and e-mail, typically exhibit this characteristic.

In such markets, Theorem 2 is not of much interest since the underlying equilibrium may a

priori be the trivial one. To complete the analysis, we give a simple characterization of the trivial

equilibrium and then add extra assumptions to guarantee the existence of a non-trivial one.

Lemma 3 The trivial outcome is an equilibrium if and only if xP (x, 0) ≤ C (x) for all x ∈ [0,K] .

This lemma simply says that the trivial outcome is part of the equilibrium set if and only if,

when the common expectation (amongst firms and consumers) about the size of the network is zero,

and a firm believes the other firms will produce no output, the best it can do under the required

condition is to produce zero as well. Clearly, for pure network goods, this result always holds.

To provide conditions for the existence of a non-trivial equilibrium, we use a fictitious objective

function that achieves its maximum at a Cournot equilibrium industry output level, for given S, as

shown in Bergstrom and Varian [?] for standard Cournot oligopoly.14 Define

Π (Z, S) , n− 1

n

[∫ Z

0
P (t, S) dt− nC (Z/n)

]
+

1

n
[ZP (Z, S)− nC (Z/n)] . (4)

For given S, this function is just a weighted average of welfare and industry profits, with respective

weights 1
n and

n−1
n , which may be viewed as a fictitious objective function for Cournot oligopoly.

Theorem 4 A non-trivial equilibrium exists if at least one of the following is satisfied
14Their simple proof just compared the first order conditions of the two problems, as their setting implied unique

solutions for both. Lemma 16 in Section 7 shows that any argmax of Π is a symmetric Cournot equilibrium in our

more general setting. This conversion of a game to a maximization problem is crucial to the proof of Theorem 4(iii).

A similar result appeared earlier in Spence [34].
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(i) 0 /∈ Qn (0), i.e., zero is not an equilibrium output (or xP (x, 0) > C (x) for some x ∈ [0,K]);

(ii) 0 ∈ Qn (0), P (0, 0) = C ′(0) and P1 (0, 0) + P2 (0, 0) > [−P1 (0, 0) + C ′′(0)]/n; or

(iii) 0 ∈ Qn (0), C ′′ (.) ≥ 0 and P (Z, S) + Z
nP1 (Z, S) ≥ C ′(Z/n) for some S and all Z ≤ S.

Theorem 2 guarantees equilibrium existence. Hence, if zero is not part of the equilibrium set,

there must be an equilibrium with a strictly positive industry output, and Theorem 4(i) follows.

This applies only to network goods with suffi ciently high stand-alone value (cf. Lemma 3), e.g.,

specific computer software, some fashion goods, web sites, etc.

The extra requirements in Theorem 4(ii) guarantee that, although Qn (0) = 0, Qn (S) starts

above the 45◦ line near zero, i.e., Q′n (0) > 1. The existence of a non-trivial equilibrium follows

as the extremal selections of Qn (S) increase in S. Formally, this derives from applying Tarski’s

Theorem to any of the extremal selections of Qn (S) for S ∈ [ε, nK], and some ε > 0 small enough.

Observe that, ceteris paribus, the condition of Part (ii) is more likely to hold with a stronger network

effect around the origin (as captured by P2 (0, 0)), or with a higher number of firms in the market.

In fact, by A4, the condition requires that P1 (0, 0) + P2 (0, 0) > 0.

The main condition in Theorem 4(iii) has a clear economic meaning: There must be some

network size S such that, along a symmetric path for firms, a firm’s marginal revenue exceeds

marginal cost for all Z ≤ S. As this amounts to Π1 (Z, S) ≥ 0, the same interpretation using

marginal revenue also holds for the planner’s problem. It follows that the argmax Qn (S) of Π (Z, S)

is above the 45◦ line at the given S. Then a non-trivial equilibrium exists by Tarski’s Theorem

applied to Qn (.) mapping [S, nK] to itself.15 The economic interpretation of this condition is also

that network effects must be suffi ciently strong, but for some S > 0, and/or the number of firms in

the market must be large enough. Indeed, taking the derivative of the LHS of condition (iii) with

respect to S yields P2 (Z, S)+ Z
nP12 (Z, S). Assuming this to be strictly positive and large is related

to requiring that A5 hold in a strong sense (i.e., with suffi cient slack), which would boil down to

requiring that the price elasticity of demand be suffi ciently responsive to the network size.16 This

15This condition is stronger than what is actually needed, which is that Π (Z′, S) ≥ Π (Z, S) for some S, some

Z′ ≥ S and all Z ≤ S. We prefer to use the stronger condition due to its more transparent economic interpretation.
16We could use the condition P2 (Z, S) + ZP12 (Z, S) > 0 in lieu of A5 throughout the paper. This would make π̃

supermodular instead of having the single-crossing condition in (Z;S), thus yielding the same conclusions.
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is a plausible measure of the strength of network effects.

In a nutshell, the existence of a non-trivial equilibrium is guaranteed if the stand alone value

of the good is high. Otherwise it depends in a crucial way on the strength of the network effect

around the origin (as captured by P2 (0, 0)) as well as away from the origin, and on the number of

firms in the market.

The proof of Theorem 4 uses the following intermediate result, which also plays a key role in

the viability analysis (Section 4).

Lemma 5 If 0 ∈ Qn (0), then Qn (0) = 0, i.e., Qn (0) is single-valued. If in addition P (0, 0) =

C ′(0), then Q′n (0) exists, is also single-valued and right-continuous at 0, and

Q′n (0) =
−nP2(0, 0)

(n+ 1)P1(0, 0)− C ′′(0)
. (5)

If the trivial equilibrium is not interior, i.e., if P (0, 0) < C ′(0), then Qn (0) = 0 and Q′n (0) = 0.

Thus, though Qn (.) is a correspondence, when 0 is part of the equilibrium set, Qn (.) is single-

valued at the origin. If in addition the trivial equilibrium satisfies the first order condition for a

maximum, i.e., P (0, 0) = C ′(0), then the slope of this correspondence at 0 is given by (5).17

Multiple equilibria in markets with network effects are more of a norm than an exception. They

are due to the positive feedback associated with expectations: If consumers believe the good will

not succeed, it will usually fail. On the contrary, if they expect it to succeed, it usually will. By

assuming P (Z, S) is log-concave in Z, one obtains uniqueness of Cournot equilibrium for each S, so

Qn (.) is single-valued and continuous. With network effects, much stronger conditions are required

for uniqueness of FECE, as a single-valued Qn (.) can cross the 45◦ line several times. Since our

methodology easily handles multiple equilibria, there is no need to impose the overly restrictive

uniqueness conditions.

17Lemma 5 reflects the extent to which the standard argument of (the smooth version of) the Implicit Function

Theorem can be carried over to a setting in which the usual assumption of strict concavity of the objective is replaced

by a supermodularity condition (so the argmax is an increasing correspondence as opposed to a differentiable function).
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Figure 1: Viability and basin of attraction of the trivial equilibrium

4 Industry Viability

Building directly on the results on the existence of non-trivial equilibrium, this section provides

an extensive treatment of industry viability, via a formalization of expectations dynamics and the

associated stability analysis of the multiple FECE, in particular of the trivial one. This dynamics

maybe viewed as a natural extension of standard Cournot dynamics, which integrates iterative ex-

pectations in the usual myopic setting. As such, it constitutes an elementary theoretical foundation

for the FECE concept. We then derive insightful novel results on the effects of exogenously changing

market structure and technological progress on the viability of an industry.

4.1 A Natural Dynamics for the FECE Concept

Many studies suggest that Figure 1 reflects the structure of specific telecommunications indus-

tries. The underlying game there displays three possible equilibria, the trivial equilibrium, a middle

unstable equilibrium (usually called critical mass, CM), and a high stable equilibrium. The intu-

ition behind this configuration is quite simple: If all the consumers expect that no one will acquire

the good, then the good has no value and no one will end up buying it, resulting in the zero equi-

librium output for the industry. However, if expectations are high enough to start with, another,

non-trivial, equilibrium will prevail.
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Whenever the trivial equilibrium is locally stable in expectations (as in Figure 1), the market will

never emerge if the initial expected network size is too low to start with. Under such conditions, even

if the industry does get going, Cournot equilibrium on the basis of small expectations cannot lead

firms to produce enough output to generate prospects beyond the critical mass, and the industry

will unravel through a declining process towards the trivial equilibrium. In view of the equilibrium

concept adopted here, the incumbent firms are simply unable to influence these expectations to

circumvent this diffi culty. This argument is commonly invoked to capture the start-up problem

that frequently arises in these markets, as a "chicken and egg" dilemma. Oren and Smith [27] offer

an early discussion of this phenomenon in electronic communications markets.

The dynamic process underlying this analysis can be formalized through the following expecta-

tions/network size recursion, starting from any initial S0 ≥ 0,

Sk = Qn (Sk−1) , k ≥ 1 (6)

where Qn denotes the maximal selection of Qn. The analysis that follows is also valid for the

minimal selection Q
n
, and most results work for any monotonic selection of Qn.

This process thus begins with an initial expectation S0, then postulates that firms react by

engaging in Cournot competition with demand P (Z, S0), leading to an industry output Qn (S0).

The latter will in turn determine consumers’expectation S1 = Qn (S0), and the process repeats

indefinitely. This yields a sequential adjustment course in which consumers and firms behave my-

opically with respect to the size of the network. Taking a single-valued selection of Qn(.) amounts

to selecting one particular Cournot equilibrium for each given S. Under this dynamic process, the

trivial equilibrium is stable if there is a right neighborhood V of 0 such that for all S0 in V, the

orbit Sk = Qn (Sk−1)→ 0 as k →∞.18

When zero is an equilibrium, let Vn denote its basin of attraction when there are n firms in the

market, i.e., the set of values of S0 for which the trivial equilibrium is the limit of (6).

Remark 1. In view of Lemma 5, when zero is a FECE, Qn(.) is continuously differentiable at 0.

Therefore, assuming henceforth that this derivative is (generically) not equal to 1, it follows that

zero is an isolated fixed-point (for a formal proof, see, e.g., Granas and Dugundji [17], pp. 326-327).

18The notions of stability used here are the standard ones applied to the one-dimensional dynamic system (6).
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Since in addition Qn(S) is increasing in S, Vn is an interval.

Define the critical mass (CM) as the smallest initial expectation such that for all S0 > CM ,

the orbit given by (6) converges to a nonzero FECE.19 In other words, CM = supVn, so Vn can be

of the form [0, CM ] or [0, CM). The trivial equilibrium is globally stable, locally (but non-globally)

stable, or unstable according as Vn = [0, nK], Vn  [0, nK], or Vn = φ, or equivalently according as

CM = nK, nK > CM > 0, or CM = 0.

4.2 Industry Viability and its Determinants

We begin by formalizing the concept of viability used in this paper, illustrated in Figure 2.

Definition 1 An industry is (i) uniformly viable if zero output is either not part of the equilibrium

set or it is an unstable equilibrium; (ii) conditionally viable if zero output is a locally (but non-

globally) stable equilibrium; and (iii) nonviable if zero output is a globally stable equilibrium.

In other words, an industry is (i) uniformly viable if the dynamic process (6) converges to a non-

trivial equilibrium from any initial expectation S0 about the size of the network, (ii) conditionally

viable if the same convergence takes place from high enough S0, and (iii) nonviable if (6) always

converges to 0. It is intuitive that the maximal (minimal) selection of Qn (.) is the most (least)

favorable for the viability of the industry.

The next result provides suffi cient conditions for the three possible viability outcomes, by directly

linking them with the suffi cient conditions for a nontrivial equilibrium provided in Theorem 4 (the

proof is omitted due to its similarity with that of Theorem 4).

Proposition 6 An industry is (i) uniformly viable if either Theorem 4(i) or (ii) holds; (ii) condi-

tionally viable if Theorem 4(iii) holds; and (iii) nonviable if and only if zero output is the unique

equilibrium.

19Such orbits always converge by the Monotone Convergence Theorem, since Qn(·) is increasing. This limit FECE

will always be a fixed point of the correspondence Qn(·) since the latter is upper hemi-continuous (see the proof of

Lemma 5 in Section 7), but may fail to be a fixed point of the selection Qn (·) in some cases where CM is not a point

of continuity of Qn (·). This definition captures the essence of critical mass in this context, and is a suitable extension

of the usual definition of CM to this more general setting where discontinuities are induced by multiple equilibria.
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Figure 2: Industry viability

Thus, just like the existence of nontrivial equilibrium, viability depends in a crucial way on

the stand alone-value of the good, on the strength of the network effects at the early start of the

industry, on the strength of network effects away from the origin (i.e., after the build-up of some

consumer base), as well as on the number of firms in the market. Last but not least, viability

depends on the initial expectations level S0. For nonviable industries, the latter dependence is only

transient and the dynamics is actually of an ergodic nature, with the death of the industry being

the ultimate outcome. A similar conclusion holds for uniformly viable industries in case of a unique

non-trivial equilibrium; otherwise, S0 determines which non-trivial equilibrium the industry will

converge to.

In the most interesting scenario as captured by Proposition 6(ii), whenever the stand alone

value is low and network effects are weak near the origin but strong away from it, the industry

is conditionally viable, so the location of the initial expectations level S0 relative to the critical

mass emerges as the critical determinant of actual viability. This constitutes an extreme form of

path dependence due to the all-or-nothing character of the final outcome: Historic factors (or early

events) matter greatly for the ultimate fate of the industry. Such path dependence is commonly

19



associated with increasing returns in diverse contexts in economics (e.g., Arthur [5]). Here the

increasing returns property lies in the demand-side externalities (Assumption A5), when these are

strong enough as implied by the conditions in Proposition 6.

These results shed light on a commonly observed strategy that firms in network industries often

follow as a way to create a stand alone value thereby inducing uniform viability: The bundling

of multiple functions in one product, with at least one of them ensuring a positive stand alone

value. Thus later fax machines often include a copier; and Blu-ray discs enable storage, recording,

rewriting and playback of high-definition video, along with compatibility with CDs and DVDs.

These super-products are far less vulnerable to the start up problem than pure network goods.

In order to derive some useful comparative statics of viability, we shall need to compare two

different situations for the same industry. To this end, a simple option is to think of the size of the

basin of attraction of zero as an inverse measure of industry viability.20

Definition 2 The viability of an industry increases if the critical mass (CM) decreases.

The next result, a central finding of this paper, captures the effects of two key determinants

of industry viability. Here, exogenous technological progress (or process R&D) is modeled as a

decrease in α for the cost function αC(.).

Theorem 7 With more firms in the market and/or technological progress, i.e., as n increases

and/or α decreases, (i) Qn (.) shifts up; and (ii) the viability of an industry increases.

Thus, market structure may play a critical role in industry viability: Having more firms around

implies a lower critical mass would be needed to launch a given industry.21 The underlying intuition

is intimately connected to the FECE concept. Consider the natural question: If S0 happens to be

below the critical mass, what prevents the existing firms from attempting to act as if there were more

of them by producing a higher output level in an effort to influence consumers’expectations of the

20Recall that viability (and thus CM) depends on the equilibrium selection under which the industry operates. The

selections Qn and Qn
correspond to the most and least optimistic scenarios in terms of viability. Nevertheless, one

implication of Lemma 5 is that an industry is uniformly viable according to Qn if and only if it is according to Qn
.

21When CM is a fixed point of Qn, the result of Part (ii) corresponds to the Correspondence Principle (Echenique

[12]). However, Theorem 7 does not make any such assumption about CM . We thus provide a novel and simple proof

that works even when CM is not a point of continuity of Qn.
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network size upwards? In a context where the appropriate solution concept is FECE, firms cannot

commit to their desired output levels in a credible way, and, likewise, attempting to inflate their

number by committing to a higher output would also not be credible, i.e., it would not constitute

behavior compatible with the FECE concept.

That technological progress also lowers the critical mass that would be needed to launch an

industry is more in line with standard intuition from ordinary markets.

In industries with multiple firms having their own versions of the same general good, this theorem

provides a clear explanation as to why firms often settle for full compatibility between their products,

instead of incompatibility. Their objective is to generate a single industry network that would be

viable, when separate networks with one firm each would not be. The business strategy literature

offers many case studies that can be instructively reviewed through the lens of the present results

on viability, as we now argue.

Several notable failures at product launch by well-established firms confirm that the take off

problem is a serious real-world concern for network industries. These flops include Picturephone

by AT&T in the 1970s, digital compact cassettes by Philips and Matsushita in the 1980s, digital

audiotapes by Sony in Japan in the late 1980s, early e-mail systems in the 1980s, and minidiscs,

among other products. Rohlfs [29] identifies the failure to "interconnect" or develop one unified

network of consumers as a critical ingredient behind most of these flops.

One well known success story is the case of Sony and Philips, two fierce competitors that jointly

developed one industry standard for compact discs in the 1980s, and licensed the standard to other

entrants on favorable terms. This led to an exemplary launch of their common standard (Shapiro

[30]; Rohlfs [29]), despite the need to displace the existing inferior technology of LP records.

This comparative statics result can also shed some light on well known dynamic episodes of

multiple attempts at product launch and market formation. The most instructive example is the

fax industry, which took nearly one and a half centuries beyond the discovery of the initial technology

in the 1840s to achieve true take off (Rohlfs [29]). After a number of false starts with firm-specific

networks, it took several technological improvements of the fax machine and a significant drop in

production costs for the industry to achieve true take off in the 1980s.22 In particular, a critical

22These technological improvements include the speed of transmission and the suppression of noxious smells, quality
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event in the evolution of this industry is the agreement achieved only in 1979 by the major firms to

"interconnect" or to make their machines fully compatible, thus resulting in one very large network

of users. This case study also indirectly provides some support for the relevance of FECE as a

solution concept in network industries. Each subset of firms initially running a separate network

failed to break out of its own small consumer base, which suggests that these firms were unable

to have a decisive influence on the pessimistic expectations of their specific consumer base. Only

upon interconnection or (agreement on a common standard) were there suffi ciently many firms in

one overall network to take advantage of the positive feedback effects and break through the initial

stalemate. Thus in this illuminating story, the conjunction of the two factors described in Theorem

7 was needed to achieve long run viability.

Remark 2. Using insights from Theorems 4 and 7, two important threshold numbers of firms can

be derived, those at which an industry undergoes a qualitative change in terms of viability. The first

would cause the industry to switch from being nonviable to conditionally viable, and the second

from the latter to uniformly viable, thus eliminating the risk of failed take off. Similar remarks on

the effects of technological progress can be derived. This is left to the reader.

On the other hand, if P1 (0, 0) + P2 (0, 0) ≤ 0, having more firms in the market can improve the

viability of an industry but the industry can never attain uniform viability for any n! Indeed, it

follows from Lemma 5 that in this case, one always hasQ′n (0) < 1 for all n, so that 0 is a locally stable

equilibrium for all n. This result is not surprising in light of the established intuitive link between

industry viability and the strength of network effects, as the condition P1 (0, 0)+P2 (0, 0) ≤ 0 clearly

stands for weak network externalities near 0.

The next example illustrates various aspects of the effects of n on viability in Theorem 7.

Example 1. Let P (Z, S) = exp
(
− 2Z
exp(1−1/S)

)
and assume no production costs.

Each firm’s reaction function is x (y, S) = (1/2) exp(1− 1/S). Hence, Cournot industry output

given S is given by the function

Qn (S) = (n/2) exp(1− 1/S)

upgrades that cannot be accounted for in the present model, other than as upward shifts in the demand function.
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Figure 3: Viability and market structure

Setting Qn (S) = S for n = 1, 2, 3, 4, the FECE industry outputs are easily calculated as

Z1 = {0} , Z2 = {0, 1} , Z3 = {0, 0.457, 2.882} and Z4 = {0, 0.373, 4.311} .

The graphs of the functions Qn (S) for n = 1, 2, 3, 4 are shown in Figure 3.

Here, the trivial equilibrium is stable for all values of n, at least locally. With monopoly (n = 1),

the trivial equilibrium is the only one, so the industry is nonviable. With one extra firm, a nontrivial

equilibrium appears and the industry becomes conditionally viable but only barely, since Qn (.) is

tangent to the 45◦ line. This is a knife-edge (non-generic) situation where the stable (high output)

equilibrium coincides with the unstable (low output) equilibrium, and with the critical mass. In

this case, as one firm alone would simply be unable to achieve industry take-off, an incumbent

monopolist would welcome one extra firm into the market as a matter of survival. Due to the

knife-edge equilibrium, a monopolist might even opt for encouraging two other firms to enter, even

though its profit can be seen to be lower with two competitors than with just one.23 For any number

of firms beyond three, the equilibrium set includes three points; the two extremal ones are stable

23 Indeed, in a richer model (possibly including uncertainty), depending on the size of the critical mass and on their

risk attitude, the firms might welcome entry beyond the threshold number n̂ that allows the industry to exit the

nonviable state. This would shrink the critical mass, and thus would increase the probability of reaching the high

steady state if the initial expectations level S0 is viewed as a random variable.
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and the intermediate one is unstable. This is the first example with closed-form solutions of the

three-equilibrium constellation that is often portrayed as typical of many network industries.

It is easily verified that at the largest equilibrium per-firm profit decreases as n increases beyond

2 firms. So, of all possible market structures, the lowest per-firm profit is achieved by monopoly

(zero profit) and the highest by duopoly, an outcome with no counterpart in ordinary markets. In

addition, due to the non-emergence of the industry, monopoly is clearly the worse scenario out of

all possible market structures for firms, consumers and thus society as well, but not because of the

usual deadweight loss, but something far worse for all: The non-emergence of the industry!

This example is also instructive as to the co-opetitive nature of the FECE concept. Indeed, the

cooperative aspect dominates the competitive aspect (in the strong sense of survival) when less than

two firms are present in the market. With more than two firms, a higher number of firms carries

the advantage of higher prospects for industry take-off (due to a lower critical mass), but it reduces

per-firm profit. Thus, in the latter case, we uncover here another novel feature in network markets:

That per firm profit alone is an insuffi cient indicator of firms "well-being", since it does not take

into account the possibility of failure in take-off. Rather, a two dimensional index is needed for

firms to be able to unambiguously rank different prospects.

Clearly, Qn (.) shifts up as n increases. As n increases beyond duopoly, viability increases since

the basin of attraction of the zero equilibrium contracts, but uniformly viability is never attained

as P1(0, 0) + P2(0, 0) = 0, in conformity with Remark 2 above.

Finally, this example may also be invoked to illustrate the use of Theorem 4 in proving existence

of a nontrivial equilibrium. The main condition in Theorem 4(iii) is easily shown to boil down to

n exp(1− 1/S) ≥ 2S for some S,

which cannot hold for n = 1 but always holds for n ≥ 2. Hence, in light of the above closed-form

computations, we can conclude that for this example, the condition in Theorem 4(iii) turns out to

be a necessary and suffi cient condition for existence of a nontrivial equilibrium.‖
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5 Number of Firms and Market Performance

This section studies the effects of market structure (or exogenous entry) on the equilibrium

industry output, market price, per-firm output and profits, consumer surplus and social welfare.

Amir and Lambson [4] and Amir [3] address similar questions for standard Cournot competition, and

show that scale economies lead to counterintuitive results. This section shows that, under network

effects, similar (and additional) reversals are typically much easier to come by, and that they can

be generated solely by demand-side externalities instead of production scale economies. We provide

suffi cient conditions (or at least closed-form examples) for these counterintuitive outcomes.

The analysis that follows refers specifically to the largest equilibrium FECE, with outputs de-

noted by Zn and xn, throughout. All the results in this section also apply to the smallest equilibrium,

although these are trivial conclusions whenever the zero outcome is that equilibrium.

The new assumptions we invoke below depend on the signs of the functions (with domain [0, nK])

∆3(Z) = P1 (Z,Z) + P2 (Z,Z) and

∆4(Z) =
[
P (Z,Z)− C ′ (Z/n)

]
[P11 (Z,Z) + P12 (Z,Z)]− P1 (Z,Z) [P1 (Z,Z) + P2 (Z,Z)] .

∆3(Z) evaluates the total effect on market price of changing aggregate output along the fulfilled

expectation path. We will provide some insight on ∆4(Z) later. In what follows, let In = [Zn, Zn+1].

The first result relates entry to equilibrium industry output and market price.

Theorem 8 At the extremal equilibria

(i) aggregate output satisfies Zn+1 ≥ Zn; and

(ii) Pn+1 ≥ Pn if ∆3(.) ≥ 0 on In, and Pn+1 ≤ Pn if ∆3(.) ≤ 0 on In.

That industry output increases with n is also true in standard Cournot competition [Amir and

Lambson [4], Theorem 2.2(b)]. In the latter case this implies that market price decreases after new

entry. As captured by Theorem 8(ii), the effect of entry on market price is ambiguous when network

effects prevail. The reason is that when industry output increases firms must set the price low enough

to attract the marginal consumer, but when more buyers join the network, consumers’willingness

to pay increases. Thus the overall effect of entry on price depends on how strong the output effect
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is relative to the network effect. As a consequence, the so-called property of quasi-competitiveness

need not be hold here, in contrast to the standard Cournot game.

The next result deals with the effects of entry on per-firm outputs, and is important in terms

of its implications on the performance of the industry (on profits and welfare). In what follows,

interior equilibrium means Zn, Zn+1 < nK.

Lemma 9 At an interior equilibrium, per-firm outputs are such that

(i) xn+1 ≥ xn if ∆4(.) ≥ 0 on In; and

(ii) xn+1 ≤ xn if ∆4(.) ≤ 0 on In.

In short, this result means that the scope for the business-stealing effect, which is nearly universal

in standard Cournot oligopoly, is quite a bit narrower in the presence of network externalities. On

the other hand, the scope for the opposite, or business-enhancing, effect is much broader here.

To shed light on this comment (and the meaning of ∆4(.)), assume no cost of production for

simplicity, so that ∆4(.) ≥ 0 reduces to

[P (Z,Z)P12 (Z,Z)− P1 (Z,Z)P2 (Z,Z)] +
[
P (Z,Z)P11 (Z,Z)− P 21 (Z,Z)

]
≥ 0. (7)

The first term is positive by A5, and log-convexity of P (Z, S) in Z would make the second one

positive as well. Thus, log-convexity is a suffi cient (but not necessary) condition for the extremal

selections of per-firm equilibrium output to increase after new entry whenever marginal costs are

zero. [Amir and Lambson (2000), Theorem 2.3] requires log-convexity to guarantee the same result

for standard Cournot competition. Thus, network effects facilitate this unusual outcome.

Based on Theorem 8 and Lemma 9, the following result deals with the effects of entry on per-firm

equilibrium profits. Recall that in standard Cournot oligopoly, the only part of the conventional

wisdom about the effects of competition that is universally valid is that per-firm profits decline

with the number of competitors (Amir and Lambson [4] and Amir [3]). We now show that in the

presence of network effects, this result can be easily reversed.

Theorem 10 At an interior equilibrium, per-firm profits are such that

(i) πn+1 ≥ πn if ∆3(.) ≥ 0 and ∆4(.) ≥ 0 on In; and
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(ii) πn+1 ≤ πn if ∆3(.) ≤ 0 and ∆4(.) ≤ 0 on In.

The first result provides suffi cient conditions for the firms in the market to prefer entry by new

firms. It generalizes a result in Economides [13], based on a more specific formulation (also see

Katz and Shapiro [19]). While at first surprising, this result has a simple intuition. As seen above,

with strong network effects, the output increase in response to entry also shifts the inverse demand

function up, thus pushing for a price increase. If the overall effect on the market price is positive

and each firm increases own output, then the incumbent firms in the market are better-off with

entry. So, again, strong network effects can overturn the usual competitive effect of entry.

A natural question arises when profits increase in n. Why can’t the existing firms attempt to

act as if there were more of them in order to each get higher profits at equilibrium? Since they

would do so by producing a higher output level in an effort to influence consumers’expectations

of the network size upwards, the answer is the same as for the start-up problem: The tacit lack of

commitment power on the part of the firms, which is at the heart of the FECE concept.

These departures from standard Cournot competition reinforce the perception suggested by the

viability results that FECE is a co-opetitive, rather than a purely non-cooperative, equilibrium

concept (Brandenburg and Nalebuff [8]). Firms work together to build a common network base,

and then compete with each other in serving it. Thus more firms can be helpful or detrimental to

a firm, depending on the relative strengths of the network and the business-stealing effects.

Under conditions often imposed in the related literature, no second order effects on P , or

P11 (Z,Z) + P12 (Z,Z) = 0, ∆3(.) ≥ 0 (∆3(.) ≤ 0) suffi ces for per-firm output and profits to

increase (decrease) with entry.24

This result identifies industry characteristics that make firms benefit from further entry by

competitors. Both conditions in Theorem 10(i) can be interpreted in large part as saying that

network effects must be strong enough. Recall that (7) is more likely to hold when A5 holds with

suffi cient slack, which means that price elasticity increases fast enough in the network size.

The next example highlights the implications of Theorem 10.

24P11 (Z,Z) + P12 (Z,Z) = 0 is satisfied if, for example, P (Z, S) = h (S)− kZ with h(.) an increasing function (as

in Example 2), or P (Z, S) = f (S − Z) with f (.) increasing.
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Example 2. Consider a Cournot oligopoly with no production costs and

P (Z, S) = max {a+ bSα − Z, 0} with a ≥ 0, b > 0 and α ∈ (0, 1) .

The reaction function of any given firm is x̃ (y, S) = max {(a+ bSα − y) /2, 0} . (Here we assume

K is large enough.) From the first order condition, the symmetric equilibrium industry output is

implicitly defined by −Zn (1 + n) + na+ nbZαn = 0.

Setting a = 10, b = 5 and α = 4/5, per-firm equilibrium profits for different values of n are

π1 ≈ 14, 561 < π2 ≈ 49, 255 < π3 ≈ 67, 316 < π4 ≈ 70, 676

π5 ≈ 67, 288 > π6 ≈ 61, 520 > π7 ≈ 55, 301 > π8 ≈ 49, 404 > ... > π21 ≈ 14, 444.

When the number of firms is small, n = 1, 2, or 3, incumbent firms will be better off if an

extra firm enters the market. In particular, a monopolist would prefer to have a few competitors.

However, when n ≥ 4, firms would be worse-off upon further entry.

Consider a hypothetical situation where per-firm entry costs are 14, 443. Then a single firm in

the market would barely make a positive profit, and potential entrants might decide to stay out if

they based their assessment on standard oligopoly settings (due to profits just covering entry costs).

Yet, the market could actually accommodate a full 21 firms at the unique free entry equilibrium! ‖

The last result describes the effects of entry on consumer surplus and social welfare (here, A (.)

denotes average cost, defined as usual by A (x) = C(x)/x and A(0) = C ′(0)).

Theorem 11 At the highest equilibrium output

(i) CSn+1 ≥ CSn if ∆3(.) ≤ 0 on In or P12 (Z, S) ≤ 0 for all Z, S; and

(ii) Wn+1 ≥Wn if P
(
Z,Zn+1

)
− P

(
Z,Zn

)
≥ A (xn+1)−A (xn) for all Z, or xn+1 ≥ xn.

In thinking about social and consumer welfare throughout, it is useful to keep in mind that since

P2 (Z, S) > 0 and Zn+1 ≥ Zn by Theorem 8(i), the inverse demand shifts up as the number of firms

increases, i.e., P
(
., Zn+1

)
≥ P

(
., Zn

)
. Hence, the area under the inverse demand changes through

two effects: The shift in the demand curve and the change in the equilibrium output.
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As a consequence of the so-called property of quasi-competitiveness (price falls with the number

of firms), which under similar conditions holds in the standard Cournot game, the first condition in

Theorem 11(i) is always satisfied in the absence of network effects. The condition P12 ≤ 0, which

is consistent with A5, is always satisfied in the widely used cases of additively and multiplicatively

separable inverse demand, so consumer surplus is well-behaved in much of the extant literature.

In contrast, Example 3 (below) shows that consumer surplus can decrease with entry in network

industries, even in a global sense. Katz and Shapiro [19] explain why this unusual effect might

occur here: If the network externality is strong for the marginal consumer, then the increment in

sales generated by the larger number of firms in the market, will increase willingness to pay for the

product above that of the average consumer. As a consequence, the firms will be able to raise the

market price by more than the increase in the average consumer’s willingness to pay for the product

and consumer surplus will fall.

The left hand side of the first condition in Theorem 11(ii) is always positive. So Theorem 11(ii)

identifies two suffi cient conditions for welfare to increase: Either one has decreasing or constant

returns to scale (A (.) is increasing) and decreasing per-firm output, or one has per-firm output

increasing in n. Network effects play a key role in inducing these two conditions. First, they

facilitate the demand shift and the increase in total output, which makes the first condition more

likely to hold. As seen earlier, they also weaken the business-stealing effect, thereby easing the

conditions under which per-firm output increases in n. Therefore, the effects of entry on welfare

conform quite closely to standard intuition, and it would take a combination of strong economies

of scale and weak network effects to reverse this result.

To recapitulate, while the scope for per-firm profits and consumer surplus to respond in a

counter-intuitive way to entry is non-existent in standard Cournot (under the present assumptions),

it is fairly broad under network effects. On the other hand, the usual result on social welfare is

much harder to reverse for network industries.

Example 3 shows an interesting case in which both social welfare and industry profits increase

with entry, but consumer surplus decreases, with all these effects holding globally.

Example 3. Consider an industry with zero costs and inverse demand function P (Z, S) = max{a−
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Z/S3, 0} with a,K > 1. The reaction function of a firm is then

x (y, S) =

 max
{(
aS3 − y

)
/2, 0

}
if
(
aS3 − y

)
/2 < K

K if
(
aS3 − y

)
/2 ≥ K

.

Upon calculation, we find three FECE, with industry outputs: Zn =
{

0,
√

(n+ 1) /(na), nK
}
.We

restrict consideration below to the highest equilibrium, Zn = nK.

From a simple computation, consumer surplus is CSn = 1/ (2nK), assuming a ≥ 1/ (nK)2.

Hence consumer surplus globally decreases in n. This result is possible as the two suffi cient

conditions in Theorem 11(i) are violated, i.e., industry price Pn = a − 1/n2K2 increases in n

and P12 (Z, S) = 3/S4 > 0. Note that price globally increases here as network effects clearly domi-

nate the effect of the law of demand, i.e., P1 (Z,Z) + P2 (Z,Z) = 2/Z3 > 0.

Per-firm profit is πn = K[a−1/ (nK)2], which globally increases in n! Despite consumer surplus

and profit behaving in counter-intuitive fashion, corresponding social welfareWn = anK−1/ (2nK)

globally increases in n, in line with intuition and Theorem 11(ii).

Hence, an unusual outcome prevails here, which is a full reversal with respect to conventional

wisdom from non-network markets. The most preferred market structure is monopoly from the

consumers’standpoint, and each firm would prefer to have as many rivals as possible in the industry!

In addition, the interest of society is fully aligned with that of the firms, not consumers. ‖

6 Concluding Remarks

This paper has provided a thorough theoretical analysis of a static model of oligopolistic compe-

tition with non-additive network effects. A minimal complementarity structure on the model leads

to industry output increasing in the rivals’output that a firm faces and in the expected network

size, thus yielding in one broad stroke existence of symmetric equilibrium as well as some key char-

acterization results with a comparative statics flavor. The so-called start up problem is extensively

investigated, in terms of basic properties of the market primitives, and the strength of network ef-

fects. In particular, industry viability, a key concept in network markets for which we provide novel

theoretical foundations, is shown to be enhanced by higher numbers of competitors in the market

as well as by technological progress. The central feature here is a simple learning/adjustment dy-
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namics that also serves as a theoretical foundation for the solution concept of fulfilled expectations

Cournot equilibrium. We elaborate in some detail on the natural tendency for multiple equilibria,

path dependence, and the importance of initial market expectations, features that emerge due to

the presence of demand-side increasing returns driven by non-additive network effects.

As to the effects of market structure, suffi cient conditions are derived for each dimension of mar-

ket performance to increase or decrease with more competition. The tendency for counterintuitive

effects, which is extensively characterized, is much stronger than in ordinary markets. Most notably,

price and per-firm profits can both increase with the number of firms, with the latter effect having

no counterpart in ordinary markets even under scale economies (Amir and Lambson [4]). Along

with the need, often critical, for firms to join hands to successfully launch new network products,

these results underscore the co-opetitive nature of the FECE concept: Firms are partners in setting

expectations and building consumer base, but (business-stealing) competitors in serving that base.

Several instructive examples with closed-form solutions are constructed, one of which reflects

exactly the prototypical three-equilibrium configuration that is broadly thought to capture the

essence of the viability issue through expectation dynamics in telecommunications industries.

In terms of policy implications, by identifying precise and tight conditions for the various pos-

sible effects to hold, our results provide solid theoretical foundations for some well-known policy

prescriptions that need revisiting for network markets (Shapiro [30]). The main departure from

ordinary markets is the emergence of a start up problem, with potentially serious consequences for

both firms and society. A successful launch of a new product with a small stand-alone value depends

on various factors, including the usual ones, such as intrinsic quality, production costs, reputational

aspects, and government participation. In addition, as the case studies reported in the business

strategy literature confirm, interconnection amongst competitors or agreement on compatibility is

quite often a critical determinant of success (Shapiro and Varian [31] and Rohlfs [29]). The results

on viability provide a solid theoretical grounding to lend insight to the lessons on the start up

problem gleaned from these case studies, in ways that apply to both successes and failures. One

implication for product development is that, as a way out of the start up trap, firms ought to bundle

multiple functions in network products, in order to ensure a suffi cient stand alone value.

Our results on market performance also largely confirm Rohlfs [29]’s clear-cut conclusion that
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interconnection is most often a win-win proposition for both firms and society.25 When the effects

of more competition can lead to multiple reversals of conventional intuition, the usual trade-offs

between consumer surplus and producer surplus are no longer the norm, and many pillars of con-

ventional wisdom about suitable public policy for such industries need re-examining. The presence

of network effects might have unusual implications on firms’attitudes towards intellectual property

rights and entry deterrence. Firms in possession of patents will have a much higher than usual

incentive to engage in licensing to their rivals on rather generous terms (Shepard [32]; Shapiro [30]).

Pooling of patents held by different firms is also to be expected. In terms of antitrust implications,

various forms of pro-competitive cooperation amongst direct rivals should be allowed or even en-

couraged. This is particularly true concerning the often diffi cult and costly process of establishing

a common standard needed for a new network industry to succeed.

In terms of public policy, government participation in network industry start ups can be crucial

due to the major role it can play in terms of influencing market expectations (the S0 variable)

upwards. In addition, the interconnection process can raise such thorny and complex issues for the

private actors that a positive coordinating role for government agencies often arises. Even initial

subsidies might play a very constructive role. In one of his most instructive case studies, Rohlfs [29]

reports that the unprecedented success of the ultimate network industry —the Internet —is largely

due to the direct role played by the U.S. government via its DoD and NSF temporary subsidy

programs, in terms of ensuring global interconnection.26 Rohlfs’detailed account of this glorious

episode of government intervention suggests that, without it, interconnection for the Internet —

something usually taken for granted —could easily have failed or been substantially delayed.

The present analysis paves the way for further promising research in a number of interesting

directions, including (i) the role of marketing in the start up problem, (ii) the scope for divisional-

ization in network industries in terms of both start up and profit incentives of firms, and (iii) the

comparison with the case where firms possess commitment power in setting output levels.

25The one exception to this recommendation that he points out arises in industries wherein one firm has a substantial

first-mover advantage, typically achieved by being substantially ahead of rivals in offering a new product.
26 Interestingly, this real life regulation scenario fits the two-stage game with a market maker proposed in Section 2

as a purely game-theoretic foundation for FECE.

32



7 Proofs

This section provides the proofs for all the results of the paper, and also contains the statements

and proofs of some useful intermediate results not given in the body of the paper.

The proof of Lemma 1 calls for an intermediate result.

Lemma 12 π̃ (Z, y, S) has the strict single-crossing property in (Z;S) .

Proof of Lemma 12: First note that ∆2 (Z, y, S) > 0 if and only if ∂2 logP (Z, S) /∂Z∂S > 0.

We show that this condition implies that π̃ (Z, y, S) has the strict single-crossing property in (Z;S),

i.e., that for any Z > Z ′ and S > S′,

π̃
(
Z, y, S′

)
≥ π̃

(
Z ′, y, S′

)
=⇒ π̃ (Z, y, S) > π̃

(
Z ′, y, S

)
. (8)

Since ∂2 logP (Z, S) /∂Z∂S > 0, logP (Z, S)− logP (Z ′, S) > logP (Z, S′)− logP (Z ′, S′), or

P (Z, S) /P
(
Z ′, S

)
> P

(
Z, S′

)
/P
(
Z ′, S′

)
. (9)

The left hand side of (8) can be rewritten as

(Z − y)P
(
Z, S′

)
− C (Z − y) ≥

(
Z ′ − y

)
P
(
Z ′, S′

)
− C

(
Z ′ − y

)
. (10)

Combining (9) and (10), we get

(Z − y)P (Z, S)P
(
Z ′, S′

)
/P
(
Z ′, S

)
− C (Z − y) >

(
Z ′ − y

)
P
(
Z ′, S′

)
− C

(
Z ′ − y

)
. (11)

Multiplying both sides of (11) by P (Z ′, S) /P (Z ′, S′) we obtain

(Z − y)P (Z, S)− P (Z ′, S)

P (Z ′, S′)
C (Z − y) >

(
Z ′ − y

)
P
(
Z ′, S

)
− P (Z ′, S)

P (Z ′, S′)
C
(
Z ′ − y

)
. (12)

By A1, P (Z ′, S) /P (Z ′, S′) > 1 and, by A2, C (Z − y) ≥ C (Z ′ − y) . Thus, (12) implies

(Z − y)P (Z, S)− C (Z − y) >
(
Z ′ − y

)
P
(
Z ′, S

)
− C

(
Z ′ − y

)
, (13)

which is just the right hand side of (8). Hence, (8) holds.�

Proof of Lemma 1: Since ∂2π̃ (Z, y, S) /∂Z∂y = ∆1(Z, y, S) > 0, by A4, the maximand in (2)

has strictly increasing differences in (Z, y). Furthermore, the feasible correspondence [y, y +K]
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is ascending in y.27 Then, by Topkis’s theorem (Topkis [35]), every selection from the argmax of

π̃ (Z, y, S), Z (y, S), increases in y.

By Lemma 12, π̃ (Z, y, S) has the strict single-crossing property in (Z;S). In addition, the

feasible correspondence [y, y +K] does not depend on S. Then, by Milgrom and Shannon [26],

every selection from the argmax of π̃ (Z, y, S), Z (y, S), is also increasing in S.�

Proof of Theorem 2: The proof proceeds in two steps. First, for each fixed S, consider the

mapping BS , a normalized cumulative best-response (Amir and Lambson [?])

BS : [0, (n− 1)K] −→ [0, (n− 1)K]

y −→ n− 1

n
Z ′

where Z ′ = x′ + y denotes a best-response output level by a firm to a joint output y by the other

(n − 1) firms, given S. It is readily verified that the (set-valued) range of BS is as given, i.e., if

Z ′ ∈ [y, y + K] and y ∈ [0, (n − 1)K], then [(n− 1)/n]Z ′ ∈ [0, (n − 1)K], and that a fixed point

of BS is a symmetric Cournot equilibrium, and vice versa. By Lemma 1, every selection of BS (y)

increases in y. By Tarski’s fixed point theorem (Tarski [?]), BS has a fixed point.

From [Amir and Lambson [?], Theorem 2.1], we know that no asymmetric equilibria exists.

The second step is to show that Qn(S), the set of Cournot equilibrium industry outputs when

inverse demand is P (·, S), has fixed points. To this end, by Topkis’s Theorem and A5, every

selection from the argmax of π̃ (Z, y, S), Z (y, S) or [n/(n− 1)]BS(y), is increasing in S. Hence, by

[Milgrom and Roberts [25], Theorem 6], the extremal fixed points of BS(y), i.e., yn(S) and yn(S),

are increasing in S. Since Qn (S) = [n/(n− 1)]BS [(yn(S)] and Q
n

(S) = [n/(n− 1)]BS [y
n
(S)], the

extremal selections of the correspondence Qn : [0, nK] −→ [0, nK] are both increasing in S. Then,

by Tarski’s fixed point theorem, Qn, say, has a fixed point, which is easily seen to be a FECE.�

Proof of Lemma 3: By definition, an industry output of 0 is a FECE if 0 ∈ x̃ (0, 0). This holds

if and only if π (0, 0, 0) ≥ π (x, 0, 0) ∀x ∈ [0,K], i.e., 0 ≥ xP (x, 0)− C (x), ∀x ∈ [0,K] .�

The proof of Theorem 4 calls for several intermediate results. We first state a non-smooth

version of the Implicit Function Theorem for increasing selections of Qn (·). We then show that

when 0 is part of the equilibrium set, Qn (S) is single-valued and right-differentiable at S = 0.
27Notice that with capacity constraints Z (y, S) = arg max {π̃ (Z, y, S) : y +K ≥ Z ≥ y} .
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Lemma 13 Let Q̃n be an increasing selection of Qn (S). Then Q̃n (S) is differentiable for almost

all S, and, if Q̃n (S) ∈ (0, nK) for S > 0, its slope is given by (here, Q̃n stands for Q̃n (S))

∂Q̃n (S)

∂S
= − nP2(Q̃n, S) + Q̃nP12(Q̃n, S)

(n+ 1)P1(Q̃n, S) + Q̃nP11(Q̃n, S)− C ′′(Q̃n/n)
. (14)

Proof of Lemma 13: If Q̃n (S) is interior, it satisfies the first order condition (upon multiplying

by n and writing Q̃n for Q̃n (S))

nP (Q̃n, S) + Q̃nP1(Q̃n, S)− nC ′(Q̃n/n) = 0. (15)

Since Q̃n (S) is increasing, it is differentiable almost everywhere (w.r.t. Lebesgue measure).

Hence, differentiating both sides of (15) with respect to S on a subset of full Lebesgue measure and

collecting terms, we get that for almost all S, (14) holds (since the derivatives on the RHS of (14)

all exist from our smoothness assumptions).�

Proof of Lemma 5: We first show that if 0 ∈ Qn (0), then 0 = Qn (0), i.e., Qn (0) is a singleton.

By Lemma 3 we know that 0 ∈ Qn (0) if and only if

xP (x, 0) ≤ C (x) for all x ∈ [0,K] . (16)

By A1, (16) implies that xP (x+ y, 0) < C (x) for all x, y > 0. In other words, 0 is a (strictly)

dominant strategy in the standard Cournot game with S = 0. Hence Qn (0) is single-valued and

Qn (0) = 0.

It is convenient to divide the rest of the proof into two separate cases.

Case 1. P (0, 0) = C ′(0). Then the trivial outcome is an interior equilibrium. To show (5), take

any sequence Sk ↓ 0 such that Q̃n is differentiable at Sk for all k (this is possible since the set of

points of differentiability of an increasing function is a set of full Lebesgue measure, and thus a dense

subset of the domain). In addition, since Q̃n is increasing, it admits left and right limits at every

point, so limk→∞ Q̃n(Sk) exists. Treating S as a parameter and invoking the upper hemi-continuity

(u.h.c) of the equilibrium correspondence for the Cournot game (see, e.g., Fudenberg and Tirole

[16]), we conclude that Qn(.) is u.h.c.. Hence, limk→∞ Q̃n(Sk) ∈ Qn (0) = {0}, so that by the earlier

part of this proof, limk→∞ Q̃n(Sk) = 0.
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Now consider (14) with S = Sk. By Assumption A1 and the fact that limk→∞ Q̃n(Sk) = 0,

the right-hand side of (14) is right-continuous in S at 0. Taking limits as k −→ ∞, it follows

that limk→∞ ∂Q̃n (Sk) /∂S exists and is equal to the RHS of (5). Since this argument is clearly

independent of the sequence (Sk) chosen (out of the subset of full Lebesgue measure of the domain

[0, nK]), we conclude that ∂Q̃n (S) /∂S
∣∣∣
S=0

exists, is continuous at 0, and given by (5).

Next observe that this entire argument for Q̃n (·) is also valid for the two selections Qn (·) and

Qn (·), since these are both increasing. Hence, ∂Qn (S) /∂S
∣∣
S=0

= ∂Q
n

(S) /∂S
∣∣∣
S=0

, with both

being equal to the RHS of (5). A moment’s reflexion will reveal that max{∂Qn (S) /∂S|S=0} =

∂Qn (S) /∂S
∣∣
S=0

andmin{∂Qn (S) /∂S|S=0} = ∂Q
n

(S) /∂S
∣∣∣
S=0

. Hencemax{∂Qn (S) /∂S|S=0} =

min{∂Qn (S) /∂S|S=0}. It follows that, for the entire correspondence Qn (·), ∂Qn (S) /∂S|S=0 exists

(in the sense of being single-valued), is continuous and given by the RHS of (5).

Case 2. P (0, 0) < C ′(0). Then the trivial equilibrium is not interior. By A1, P (0, S) < C ′(0)

for S suffi ciently small, so Qn (S) = 0 for all such S. It follows that Q′n (S) = 0 for S small enough.�

We next show that any argmax of the fictitious objective Π (Z, S) is an element of Qn (S) .

Lemma 14 Assume A1-A5 are satisfied and C (.) is convex. Given any n ∈ N and S ∈ [0, nK], if

Z∗ ∈ arg max {Π (Z, S) : 0 ≤ Z ≤ nK} then Z∗ ∈ Qn (S) .

Proof of Lemma 14: We show that if Z∗ is an argmax of Π (Z, S), then Z∗ is the industry output

of a symmetric Cournot equilibrium with exogenous S. Let Z∗ = x∗ + y∗, with x∗ = Z∗/n and

y∗ = (n− 1)x∗, and consider Z ′ = x′ + y∗, with x′ ∈ [0,K] . Then x′ denotes a firm’s possible

deviation from its equilibrium output x∗. We show this unilateral deviation is never profitable.

Since Z∗ is a maximizer of Π (Z, S) , then Π (Z∗, S) ≥ Π (Z ′, S), which is equivalent to say

n− 1

n

∫ x∗+y∗

0
P (t, S) dt+ x∗P (x∗ + y∗, S)− nC (x∗) ≥

(n− 1)

n

∫ x′+y∗

0
P (t, S) dt+

(x′ + y∗)

n
P
(
x′ + y∗, S

)
− nC

(
x′ + y∗

n

)
. (17)
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Then we have

x∗P (x∗ + y∗, S)− C (x∗) ≥ n− 1

n

∫ x′+y∗

0
P (t, S) dt+

(x′ + y∗)

n
P
(
x′ + y∗, S

)
−nC

(
x′ + y∗

n

)
− n− 1

n

∫ x∗+y∗

0
P (t, S) dt+ (n− 1)C (x∗)

≥ n− 1

n

∫ x′+y∗

x∗+y∗
P (t, S) dt+

(x′ + y∗)

n
P
(
x′ + y∗, S

)
− C

(
x′
)

≥ (n− 1) (x′ − x∗)
n

P
(
x′ + y∗, S

)
+

(x′ + y∗)

n
P
(
x′ + y∗, S

)
− C

(
x′
)

= x′P
(
x′ + y∗, S

)
− C

(
x′
)
.

The first inequality follows from (17), after rearranging terms. The second one holds as we assumed

C (.) is convex (and y∗ = (n− 1)x∗), and the last one by A1, P1 (Z, S) < 0. Since x′ is arbitrary,

this argument shows that x∗ is a symmetric Cournot equilibrium.�

Proof of Theorem 4: Part (i) holds because if the trivial outcome (zero output) is not part of the

equilibrium set, then Theorem 2 guarantees there is a FECE with strictly positive industry output.

The proofs of Parts (ii) and (iii) both depend on the following argument. By the proof of

Theorem 2, the maximal and minimal selections of Qn (S), Qn (S) and Q
n

(S), increase in S.

Assume, for the moment, there exists an S′ ∈ (0, nK] such that Qn (S′) ≥ S′. If we restrict

attention to the values of S in [S′, nK], it follows that Qn (S) ∈ [S′, nK] because Qn (.) is increasing

and Qn (S′) ≥ S′. Therefore, for all S ∈ [S′, nK], Qn (S) is an increasing function that maps [S′, nK]

into itself. Hence, by Tarski’s fixed point theorem (Tarski [?]), there is an S′ ≤ S′′ ≤ nK such that

Qn (S′′) = S′′. Since this condition implies Qn (S′′) is a strictly positive FECE, the existence of a

nontrivial equilibrium reduces to showing there is at least one S ∈ (0, nK] for which Qn (S) ≥ S.

To prove Part (ii), we show Q′n (0) > 1. By Lemma 5, Q′n (0) > 1 if

P1 (0, 0) + P2 (0, 0) > [−P1 (0, 0) + C ′′(0)]/n.

Then the existence of a nontrivial FECE follows by the argument in the previous paragraph, as

Lemma 5 and the property Q′n (0) > 1, imply there exists a small ε > 0 for which Qn (ε) > ε. This

completes the proof of Part (ii).

The condition in Part (iii) guarantees there is some S ∈ (0, nK] and some Z ′ ≥ S for which

Π (Z ′, S) ≥ Π (Z, S) for all Z ≤ S. As a consequence, the largest argmax of Π (Z, S) must be larger
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than S. Call this argmax Z ′′. Our proof follows because Z ′′ ∈ Qn (S), by Lemma 14, and this

ensures there is an S ∈ (0, nK] for which an element of Qn (S) is higher than S.�

Proof of Theorem 7: We will prove the result for a change in n, using the selection Qn (S), or

any other increasing selection. The proof for α, being almost identical, is omitted.

(i) The fact that Qn (·) shifts up as n increases follows from [Amir and Lambson [4], Theorem

2.2(b)], which shows that the largest Cournot equilibrium output increases in n. The proof here

consists of applying this result at every exogenously given S.

(ii) Let n′ > n, and CM ′ and CM denote the critical masses corresponding to Qn′ (S) and

Qn (S), respectively. Pick any S0 > CM . By definition of CM , we know that the orbit Sk =

Qn (Sk−1) starting from the given S0 is a bounded monotonic sequence. Hence, by the Monotone

Convergence Theorem, there is some S∞ > 0 such that {Sk} ↑ S∞, with S∞ being a FECE industry

output of the n-firm problem. From the same S0 > CM , the orbit S′k = Qn′(S
′
k−1) is also bounded

and monotonic, so there is some S′∞ such that {S′k} ↑ S′∞, with S′∞ being a FECE industry output

of the n′-firm problem. Since Qn′(·) ≥ Qn(·), we have S′∞ ≥ S∞ > 0. To recapitulate, we have

shown that

for any S0 > CM, we have {S′k} ↑ S′∞ > 0. (18)

Since CM ′ is by definition the smallest initial expectation satisfying (18), then CM ′ ≤ CM .�

Proof of Theorem 8: The mapping BS(.), defined in the proof of Theorem 2, increases in n.

Hence, by [Milgrom and Roberts [25], Theorem 6], the extremal fixed points of BS(y), i.e., yn(S)

and yn(S), are increasing in n, for each given S.

By Lemma 12, every selection from the argmax of π̃ (Z, y, S), Z (y, S) or [n/(n− 1)]BS(y),

increases in y. Then the extremal selections of the correspondence Qn : [0, nK] −→ [0, nK] ,

Qn (S) = [n/(n− 1)]BS [yn (S)] and Q
n

(S) = [n/(n− 1)]BS [y
n

(S)], are both increasing in n.

Hence, again by [Milgrom and Roberts [25], Theorem 6], the extremal fixed points of Qn, Zn and

Zn, increase in n. This shows Part (i).

Part (ii) follows directly from the previous claim since dP (Z,Z) /dZ = ∆3 (Z) .�

Proof of Theorem 9: At any interior equilibrium xn must satisfy the first order condition

P (Zn, Zn) + xnP1 (Zn, Zn)− C ′ (xn) = 0. (19)
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Differentiating (19) with respect to n and rearranging terms we get

dxn
dn

=
{P1 (Zn, Zn) + P2 (Zn, Zn) + xn [P11 (Zn, Zn) + P12 (Zn, Zn)]}

−P1 (Zn, Zn) + C ′′ (xn)

dZn
dn

. (20)

Substituting in (20) xn by [C ′ (Zn/n)− P (Zn, Zn)] /P1 (Zn, Zn) , and rearranging terms, we get

dxn
dn

=
−1

P1 (Zn, Zn)

∆4 (Zn)

−P1 (Zn, Zn) + C ′′ (xn)

dZn
dn

. (21)

It follows from A1, A4 and Theorem 8(i) that
dxn
dn

has the same sign as ∆4(Z) on In.�

Proof of Theorem 10: Consider the following inequalities

πn+1 = xn+1P
(
xn+1 + yn+1, Zn+1

)
− C (xn+1)

≥ xnP
(
xn + yn+1, Zn+1

)
− C (xn)

≥ xnP
(
xn+1 + yn+1, Zn+1

)
− C (xn)

≥ xnP
(
xn + yn, Zn

)
− C (xn) = πn.

The first inequality follows by the Cournot equilibrium property. The second one is from xn+1 ≥ xn
(see Lemma 9) and A1. The third inequality holds as our assumptions imply P

(
Zn+1, Zn+1

)
≥

P
(
Zn, Zn

)
. Therefore, πn+1 ≥ πn. This shows Part (i). We omit the proof of Part (ii) as it is

almost identical to the last one.�

Proof of Theorem 11: The first claim in Part (i) follows directly from Theorem 8.

The following steps prove the suffi ciency of the second condition

CSn+1 − CSn =

∫ Zn+1

0

[
P
(
t, Zn+1

)
− P

(
Zn+1, Zn+1

)]
dt−

∫ Zn

0

[
P
(
t, Zn

)
− P

(
Zn, Zn

)]
dt

≥
∫ Zn

0

[
P
(
t, Zn+1

)
− P

(
Zn+1, Zn+1

)]
dt−

∫ Zn

0

[
P
(
t, Zn

)
− P

(
Zn, Zn

)]
dt

= Zn
[
P
(
Zn, Zn

)
− P

(
Zn+1, Zn

)]
−
∫ Zn

0

{[
P
(
Zn+1, Zn+1

)
− P

(
Zn+1, Zn

)]
−
[
P
(
t, Zn+1

)
− P

(
t, Zn

)]}
dt

≥ Zn
[
P
(
Zn, Zn

)
− P

(
Zn+1, Zn

)]
≥ 0.

The first inequality follows directly from P1 (Z, S) < 0 and Theorem 8(i). The next step is obtained

from the previous one by adding and subtracting
∫ Zn
0 P

(
Zn+1, Zn

)
dt, and rearranging terms. To
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justify the second inequality notice that P12 (Z, S) ≤ 0 is suffi cient for∫ Zn

0

[
P
(
t, Zn+1

)
− P

(
t, Zn

)]
dt ≥

∫ Zn

0

[
P
(
Zn+1, Zn+1

)
− P

(
Zn+1, Zn

)]
dt.

Our last step is true since P1 (Z, S) < 0.

Hence, P12 (Z, S) ≤ 0 ∀Z, S ∈ [0, nK] is suffi cient for CSn+1 − CSn ≥ 0, or CSn+1 ≥ CSn.

To prove the first claim of Part (ii) consider

Wn+1 −Wn =

∫ Zn+1

0
P
(
t, Zn+1

)
dt− Zn+1A (xn+1)−

[∫ Zn

0
P
(
t, Zn

)
dt− ZnA (xn)

]

≥
∫ Zn

0
P
(
t, Zn+1

)
dt− ZnA (xn+1)−

[∫ Zn

0
P
(
t, Zn

)
dt− ZnA (xn)

]
≥ 0.

The first inequality follows because P
(
t, Zn+1

)
−A (xn+1) ≥ 0 for all t ≤ Zn+1, and Zn+1 ≥ Zn by

Theorem 8(i). The second inequality holds by the assumed conditions.

To show the suffi ciency of the second condition let us define Vn (x, S) =
∫ nx
0 P (t, S) dt−nC (x) .

Notice Vn (x, S) is concave in x since n [nP1 (nx, S)− C ′′ (x)] < 0 by both A1 and A4. In addition,∫ Zn+1

0
P
(
t, Zn+1

)
dt =

∫ nxn+1

0
P
(
t, Zn+1

)
dt+

∫ Zn+1

nxn+1

P
(
t, Zn+1

)
dt

≥
∫ nxn+1

0
P
(
t, Zn+1

)
dt+ xn+1P

(
Zn+1, Zn+1

)
(22)

where the inequality follows by A1. Next, consider the following steps

Wn+1 −Wn =

∫ (n+1)xn+1

0
P
(
t, Zn+1

)
dt− (n+ 1)C (xn+1)−

[∫ nxn

0
P
(
t, Zn

)
dt− nC (xn)

]
≥ πn+1 +

∫ nxn+1

0
P
(
t, Zn+1

)
dt− nC (xn+1)−

[∫ nxn

0
P
(
t, Zn+1

)
dt− nC (xn)

]
= πn+1 + Vn

(
xn+1, Zn+1

)
− Vn

(
xn, Zn+1

)
≥ πn+1 +

[
∂Vn

(
xn+1, Zn+1

)
/∂x

]
(xn+1 − xn)

= πn+1 + n
[
P
(
nxn+1, Zn+1

)
− C ′ (xn+1)

]
(xn+1 − xn)

≥ πn+1 + n
[
P
(
(n+ 1)xn+1, Zn+1

)
− C ′ (xn+1)

]
(xn+1 − xn) ≥ 0.

The first inequality follows from inequality (22), A1 and Theorem 8(i), and the second one by the

concavity of Vn (x, S) in x. The third inequality holds by A1 and because we assumed xn+1 ≥ xn,

and the last one by the Cournot property.�
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