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Abstract

In this paper we present an analytically solvable model of the credit
market with heterogeneous and interacting firms and banks. The econ-
omy is modelled as a network, a theoretical structure which is particu-
larly suitable to represent the interactions among different agents. In
this credit network firms interact directly with banks and, indirectly,
among themselves. The main novelty is the use of the master equa-
tion to perform the aggregation over a population of heterogeneous
firms and to describe the endogenous evolution of the network. The
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asymptotic solution of the master equation provides a system of cou-
pled equations which governs the dynamics of growth and fluctuations
of the aggregate output and the network degree.

Keywords: heterogeneity, financial fragility, master equation, interac-
tion, dynamic aggregation.

JEL classification: E1, E6

1 Introduction

The mainstream approach, as it is formalised in the DSGE (dynamic stochas-
tic general equilibrium) models, is based on the process of intertemporal
maximization of utility in the market clearing context of the standard com-
petitive equilibrium theory. It is built upon the representative agent (RA)
framework, which rules out direct interactions among agents by assumption.
Its fundamental hypotheses trivially lead to conclusions that there can be no
inefficiencies and any pathology in general1.

In short, the RA framework of the DSGE models adopts the most ex-
treme form of conceptual reductionism in which macroeconomics and the
financial network is reduced to the behaviour of an individual agent2. The
deep understanding of the interplay between the micro and macro levels is
ruled out, as well as any “pathological” problems, such as coordination fail-
ure. The RA in economics is tantamount to stating that “macroeconomics
equals microeconomics”.

We believe that a change of focus is necessary: an appropriate micro-
foundation should consider the interaction at the agent based level. This is
feasible if the economy is represented by a framework with heterogeneous
agents. The development of sound micro-founded models should also involve

1There are attempts of reconciling the empirical evidence with the mainstream model
by introducing various imperfections. Unfortunately, small departures from the perfect
information hypothesis have been shown to undermine most of the key propositions of the
standard competitive model (Greenwald and Stiglitz, 1986).

2In natural sciences, the notion of reductionism is much more limited since it amounts
to represent the nature of macro-phenomena by analysing the constitutive elements, whose
interaction allows for emergent phenomena, i.e. characteristics that are not present in the
single element.
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the links among agents in a networked economy. This approach can provide
better insights on how a crisis emerges from the microeconomic interaction
and how it propagates in the economic system.

The literature provided, up to now, two different tools for dealing with
interaction and heterogeneity: game theory and computational economics
(CE). In the game theory framework, each agent takes into account the be-
haviour of every other, which is supposed to be known. But a complete
network populated by rational and fully informed agents would require infi-
nite computational ability, which is beyond any plausible assumption. On the
other hand, there has been a strong development of CE models, populated by
interacting and boundedly rational agents. In these models, macro outcomes
are very sensitive to different configurations of the parameters. Furthermore,
the relationship between results and initial conditions is undefined, not to
mention the issue of the trade-off between tractability and realism.

The idea of this paper is neither to ignore interactions between agents, nor
to get hopelessly mired in complicated details by trying to model those in-
teractions in their completeness, but rather to strike for some middle ground
in which the consequences of interconnectedness can be at least crudely as-
sessed. To achieve this, we start with a “minimal” model of the economy as a
credit network, in which firms interact directly with banks. Rather than sim-
ulating these interactions, we represent them by means of probabilities, and
derive equations describing the evolution of the network and how its struc-
ture changes with time. The equations we derive provide some qualitative
insights into the systemic fragility of the credit network.

The results of the present paper are based on the solution algorithms
proposed by Di Guilmi et al. (2012) and are here presented without the full
detail of the derivation. The complete demonstrations are available upon
request. The remainder of the paper is structured as follows: section 2
presents the general hypotheses of the model, introducing firms and banks;
section 3 illustrates the solution of the model dynamics; section 4 interprets
the results and proposes some policy implications; section 5 offers some final
remarks.

2 The model

This section introduces the main hypotheses about the structure of the
model, concerning the firms, the banks and their match on the credit market.

3



2.1 The firms sector

The productive sector is modelled along the lines of Delli Gatti et al. (2010).
Each firm sets the optimal quantity of output on the basis of its financial
condition, according to the following rule

Qf,t = αAβ
f,t (1)

where α > 0 and β ∈ (0, 1) are constant parameters and A is the net worth of
firm f . As shown in Greenwald and Stiglitz (1993), equation (1) comes from
a profit maximisation problem, when bankruptcy is costly and the probability
of default is inversely related to the net worth. For the sake of simplicity all
firms are assumed to have the same linear production function, defined as

Qf,t = (1/̟)Nf,t, (2)

where Q is the physical output, N is the quantity of labour and ̟ > 0 is the
inverse of labour productivity, assumed to be a constant parameter. From
(1) and (2) it follows that Nf,t = ̟αAβ

f,t. The wage bill W is

Wf,t = wNf,t (3)

where the nominal wage w is constant and uniform across firms.
Firms do not know in advance the quantity of goods that will be de-

manded and this can produce uncertainty about the final price. For this
reason, following Greenwald and Stiglitz (1993), we model the selling price
for each firm uf as a stochastic variable coming from a uniform distribution,
defined in the interval [umin; umax].

Because of imperfect information there is a hierarchy in the sources of
firms financing, from internal to external finance. The firms that can finance
their whole wage bill with internal resources are defined as self financing

(SF), while the others are non self financing (NSF). The latter ones resort
to the credit market as, by assumption, they are completely rationed on the
equity market. The demand for credit for a NSF firm is given by

Df,t = Wf,t − Af,t, (4)

while Df,t = 0 for SF firms. Firms’ profits πf,t are defined as

πf,t = uf,tQf,t −Wf,t − rf,tDf,t, (5)
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where r is the rate of interest. The net worth of firms is the sum of past
profits:

Af,t+1 = Af,t + πf,t (6)

If A < 0 the firm goes bankrupt and it is replaced by a new one, such that
the total number of firms is constant in time.

2.2 The banking sector

A bank can lend to different firms and sets unilaterally the interest rate for
each of them. In particular the bank b asks to the firm f an interest rate
which is inversely related to the financial soundness of borrower and lender,
according to the formula

rfb,t = a

[

A−a
b,t +

(
Df,t

Af,t

)a]

= a
[
A−a

b,t + vaf,t
]

(7)

where a > 0, Ab,t is the bank’s net worth and vf,t is the firm leverage ratio.
The dependence on Ab,t represents the fact that, for a bank, the lower is its

equity, the higher is its probability of default. Consequently, the owners of the
bank’s capital will demand a premium for risk which is inversely proportional
to its internal financial resources. As a consequence, a higher net worth
means a lower premium paid by the bank to investors and allows the bank to
charge a lower interest rate to customers (Gambacorta, 2008). The second
factor in the interest rate formula, (vf,t)

a, quantifies the higher risk premium
requested by the bank to highly-leveraged firms.

This formula analytically devices the mechanism described by Stiglitz and
Greenwald (2003, 145): “The high rate of bankruptcy is a cause of the high

interest rate as much as a consequence of it”. This is because the demise of
one or more firms generates bad debt for the lender and, thus, brings about
a deterioration in its financial conditions (a lower Ab,t). As a consequence,
the bank will raise the interest rates, worsening the positions of its customers
and, possibly, leading to the bankruptcy of some of them. The new bad debt
has further negative impact on the financial soundness of the lender in a
downward spiral.

The profits of the bank b are given by

πb,t =
∑

f

(1 + rfb,t)D
f
b,t, (8)
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where Df
b,t is the credit supplied by the bank b to the firm f . The bank net

worth is computed as

Ab,t+1 = Ab,t + πb,t − BDb,t (9)

where BD is the bad debt, which is the debt that cannot be paid back due
to the bankruptcy of borrowers. If Ab,t < 0, the bank goes bankrupt, and it
is replaced by a new one. Thus, also the number of banks is constant.

2.3 Partner selection and network evolution

A NSF firm signs a one-period credit contract with one bank. In order to
capture the fact that firms have limited information about the credit market,
at each point in time a NSF firm can demand for credit only to a subset of
banks. If we indicate with B the total number of banks in the economy,
the number of banks that are “visible” to a firm is given by ⌊mB⌋, where
m ∈ (0, 1] is a parameter constant across firms and in time. The subset of
banks for each firm is randomly selected at each period. Hence every firm
possibly surveys a different pool of banks every period.

The firm sorts the banks in its randomly selected pool according to the
proposed interest rates and then sends a signal to the bank which offers the
lowest interest rate, demanding for credit.

Credit rationing can arise as the banks must comply with a regulatory
framework. In particular, the monetary authority determines an adequacy
ratio along the lines of the Basel II accord. Consequently, the total lending
of the bank b, denoted by Lb,t, must be lower than Θ̄Ab,t, where Θ̄ ≥ 1 is a
constant parameter. Let us define

L̄b,t = Ab,tΘ̄ (10)

as the limit for lending that the bank b can supply.
In order to select how many and which requests for credit will be satisfied,

the bank adopts a prudential criterion. It first sorts the potential customers
in ascending order of leverage ratios v. Then it considers the demand for
credit starting from the firm with the lowest v and accepts their demand as
long as condition (10) is satisfied.

When a firm is refused credit from a bank, it sends a signal to the bank
which follows in its list, that is a bank who offers a higher interest rate. If all
the banks in the firm’s pool decline to supply credit, the firm must reduce
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its production in order to meet its financial constraint. It can pay salaries
only with its internal resources, and, accordingly, the quantity produced by
a fully credit rationed firm is equal to qf,t = Af,t/(w̟).

The structure of the network is represented by a series of islands, or
cliques: each island is composed by the lending bank and its borrowing
firms. The composition and the number of cliques vary from a period to
another. The composition changes as a NSF firms can become SF (therefore
not connected to any bank) or change its lender. The number of cliques
is variable as a bank can have no customers at a given time (and so not
be included in the network) and been chosen by one or more firms in the
following period (forming a clique).

3 Solution of the model

This section introduces and applies the analytical techniques for the solution
of the model. We have already partitioned the population of firms into
two groups: SF and NSF. The evolution of the density for the number of
agents belonging to a particular cluster can be modelled by means of the
master equation (ME). The ME is a differential equation which describes the
variation of the probability of observing a certain number of agents in a given
group; it can be solved under asymptotic conditions. In this treatment, the
final outcome of the solution is a system of equations which describes the
evolution of the network and the degree distribution. To this aim we first
need to quantify the number of NSF firms, as they compose the network,
and then use this result to study the evolution of the network. We set up
two master equations:

• the first one (NSF-ME) to describe the evolution of the number of NSF
firms; the solution of this ME will be plugged in

• the second one (K-ME) which models the dynamics of the degree and,
through further passages, makes possible the identification of the degree
distribution.

One of the novelties is in that the first ME is nested into the second to model
the dependence between the two.

In the first subsection the NSF-ME is introduced and solved. It is worth
noticing that the transition rates for this ME are endogenous and dependent
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upon the financial conditions of firms. The second subsection presents the
K-ME and its solution.

3.1 Stochastic evolution of firms

The evolution of two different groups of firms is modelled along the lines
of Di Guilmi et al. (2010), who study an analogous problem using a ME to
model the dynamics of the densities of different groups of firms. The ME is a
function of the transition probabilities for the agents to move between the two
groups. In this model, each firm has a different transition probability, which
is dependent on its financial condition (the equity A) and on the price shock
u. In order to make the problem analytically tractable we need to quantify an
average probability for each of the two transitions. Therefore we identify two
representative firms, one SF and one NSF by taking the average net worth,
indicated respectively by A0 for SF and A1 for NSF firms. This reduction in
the degrees of freedom of the problem is defined as mean-field approximation

in statistical mechanics. From these two values we can compute the targeted
productions, the costs and the financial needs for the two average firms by
using equations (1)-(4).

3.1.1 The transition rates and the NSF-ME

The probability ι for a NSF firm f to become SF depends on the capacity of
the firm of having at time t − 1 a profit large enough to pay the salary bill
at time t. This condition can be expressed as

Af,t−1 + πf,t−1 ≥Wf,t,

which, using equation (5), becomes

Af,t−1 + uf,t−1Qf,t−1 −Wf,t−1 − rf,t−1Df,t−1 ≥Wf,t. (11)

The only exogenous variable in (11) is the price uf and thus it is convenient
to specify the probability of switching as a function of it. In particular, since
the distribution of u is known, it is possible to quantify the minimum price
threshold above which the NSF firm can obtain a profit sufficient to become
SF. We denote this threshold with ū. Rearranging equation (11) and using
the subscript 1 for the mean-field variables of the representative NSF firm,
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we can write

u1,t−1 ≥
W1,t +W1,t−1 + r1D1,t−1 − A1,t−1

Q1,t−1
= ūt. (12)

Using the uniform probability function of u, we can write ι as

ιt = 1− F (ūt) = 1− ūt − umin

umax − umin
. (13)

In the same fashion, we can specify the condition for the mean-field SF firm
to become NSF as

A0,t−1 + u0,t−1Q0,t−1 −W0,t−1 < W0,t, (14)

which can be written as follows

u0,t−1 <
W0,t +W0,t−1 −A0,t−1

Q0,t−1
= ut, (15)

Where u is the upper threshold of the price shock. Denoting with ζ the prob-
ability of becoming NSF and making use of the known uniform probability
function of u, we can write

ζt = F (ut) =
ut − umin

umax − umin
. (16)

In order to obtain the transition rates, the transition probabilities need to
be conditioned on the probability of being NSF or SF. In particular, the
probability to find a firm belonging to one particular group is higher the
larger is the size of that group. This fact can be modelled by means of the
two following environmental externality functions

ψ1,t = ψ1

(
N1,t−ϑ

N

)

=
b1 + b(N1,t − ϑ)

N ,

ψ0,t = ψ0

(
N1,t

N

)

=
b0 + b[N − (N1,t + ϑ)]

N ,
(17)

where b > 0, b1 > −bN1, b0 > −b(N − N1), ϑ = {0, 1} is the observed
variation in N1 and ψ1 and ψ0 are constants. Accordingly the transition
rates β and γ are given by the following homogeneous functions

Nβt

(
N1,t − ϑ

N

)

= Nζt

[
b1 + b(N1,t − ϑ)

N

] [
N − (N1,t − ϑ)

N

]

,

Nδt

(
N1,t + ϑ

N

)

= Nιt

{
b0 + b[N − (N1,t + ϑ)]

N

}(
N1,t + ϑ

N

)

. (18)
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The NSF-ME is a differential equation which quantifies the variation in
the probability to observe a given number of NSF firms N1,t. It is given by
the probability of observing N1,t + 1 or N1,t − 1 and having a transition of
one firm, respectively, out from or in the NSF condition, less the probability
of already having a number N1,t of NSF firms and observing any transition.
Consequently, we have

dPt(N1,t)

dt
= [βt(N1,t − 1)Pt(N1,t − 1) + δt(N1,t + 1)Pt(N1,t + 1)]

︸ ︷︷ ︸

inflow probabilities

+

− [(βt(N1,t) + δt(N1,t))Pt(N1,t)]
︸ ︷︷ ︸

outflow probabilities

. (19)

3.1.2 ME solution and dynamics of the proportions of firms

The solution algorithm involves three main steps:

1. split the state variable N1 in two components:

• the drift (φ), which is the expected value of n1 = N1/N ;

• the spread (ǫ), which quantifies the aggregate fluctuations around
the drift.
Accordingly, the state variable is re-formulated in the following
way (Aoki, 1996):

N1,t = Nφt +
√
Nǫt; (20)

2. expand in Taylor’s series the modified master equation;

3. equate the terms with the same order of power for N .

This process yields an ordinary differential equation, known as macroscopic
equation, which describes the dynamics of the trend, and a stochastic partial
differential equation, known as Fokker-Planck equation, which describes the
dynamics of the density R of the fluctuations (see Aoki, 1996; van Kampen,
1992). Hence, the final solution is given by the mean-field system of coupled
equations

{

φ̇ = ∆t(φ) = βt(φ)− δt(φ) = ρtφ− ρtφ
2

∂tRt(ǫ) = −∂φ∆t(φ)∂ǫ(ǫRt(ǫ)) +
1
2
Σt(φ)∂

2
ǫRt(ǫ)

(21)

where ρt = b(ζt − ιt) and Σt(φ) = βt(φ) + δt(φ).
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The first of the (21) is a logistic equation with two equilibrium points:
φ∗ = {0, 1}. The system approaches the two boundaries without hitting
them. Indeed, the quadratic term −ρtφ2 acts as a break with increasing
intensity as φt approaches one of the equilibrium points. Both equations
depend on the transition rates and, therefore, on the average financial con-
ditions of the firms.

Following van Kampen (1992), we substitute the formulation of the tran-
sition rates (18) into (21) and integrate the resulting expression. The final
solution, with the trend dynamics φ and the distribution probability for the
fluctuation component ǫ, can be written as







φ(t) =
[

1 +
(

1
φ0

− 1
)

exp (−ρtt)
]
−1

,

ǫ(t)
i.i.d→ N (µǫ,t, σ

2
ǫ , t) s.t.

µǫ,t = 〈ǫ0〉 e∆′

t(φ)

σǫ2,t = 〈ǫ2e〉 (1− e2∆
′

t(φ)t),

(22)

with φ0 ∈ [0, 1) and 〈ǫ2e〉 = −Σt(φ)/(2∆
′

t(φ)).
By using the mean-field values of the average production of the firms

in the two groups Q1 and Q0, it is possible to obtain the trend and the
fluctuations of the aggregate output, as for equation (20). The total output
can be expressed as

Qt = N1,tQ1,t + (N −N1,t)Q0,t =
= N{[φt +N−1/2ǫt]Q1,t + [1− φt −N−1/2ǫt]Q0,t} =
= N{Q0,t − [φt +N−1/2ǫt][Q0,t −Q1,t]}.

(23)

It is possible to show that Q1 < Q0, therefore the dynamics of trend and
fluctuations of aggregate production are dependent upon φ and ǫ in system
(22).

3.2 Stochastic evolution of the network: K-ME

In this section we develop the ME for the network degree. The NSF-ME is
nested into the K-ME; to the best of our knowledge, this method has never
been developed before. The problem is analysed by studying the evolution of
the probability for two firms to be financed by the same bank. This (indirect)
connection between two firms defines an (indirect) link in the network. The
solution algorithm makes use of the concept of giant component, which is the
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node with the highest number of connection. In this model, it represents the
bank which has the largest number of customers3.

As done for the NSF-ME, in the same fashion we split the state variable
in the trend and fluctuations components. The volume of NSF firms Nl that
are borrowers from a bank with degree Kl is assumed to be given by

Nl,t = N1,t[Klφl,t +
√

Klǫl,t], (24)

where φl is the expected value and ǫl is the fluctuations component. Equa-
tion (24) shows a direct correlation between N1 and the expected number of
borrowers for a bank. It can be rearranged and written in intensive form as

nl,t =
Nl,t

N1,t
= Klφl,t +

√

Klǫl,t. (25)

3.2.1 The transition rates and the K-ME

The transition probabilities in this setting concern the creation or destruction
of a link between two firms. We introduce the variable ω and set ωi,j = 1,
if there is a link between the two firms i and j (they share the same bank),
and ωi,j = 0 otherwise. Accordingly, the creation and destruction rates are
equal to, respectively,

P(ωt+1,i,j = 1|ωt,i,j = 0) = ζ,
P(ωt+1,i,j = 0|ωt,i,j = 1) = ι.

(26)

Analogously to the NSF-ME case, two externality functions need to be de-
fined in order to quantify the transition rates. These functions are assumed
to be dependent on the size of the giant component. In particular, the mar-
ket share of the largest bank (the giant component) is given by γt = St/N1,t,
where St is the number of its customers. Due to the interest rate formula
in equation (7), the size of the giant component impacts on the morphology
of the network by exerting a gravitational effect. The larger is a bank, the
higher is its capacity to attract new borrowers by offering a lower interest
rate. Thus, the greater is the giant component, the more it attracts firms
and, consequently, the smaller are the chances of an inflow of firms into an-
other component of the network. Accordingly, the externality function ψ1,l,t

3In the solution algorithm, without loss of generality, we consider it as an exogenous
stochastic random variable.
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for the inflows into a generic component (bank) is assumed to be an inverse
function of γt and kl = K−1

l . Symmetrically, the outflow externality function
ψ0,l,t is a direct function of the two quantities. The externality functions can
be specified as follows

ψ1,l,t = exp(p21(1− γt)(φ
0
l /kl)), (27)

ψ0,l,t = exp(p21γt(φ
0
l /kl)), (28)

where p1 is the firm-bank matching probability4. Consequently the formula-
tions of the transition rates are the following

βt(nl,t − ϑρl,t) = λl,t[1− (nl,t − ϑρl,t)] ,
δt(nl,t + ϑρl,t) = µl,t[nl,t + ϑρl,t],

(30)

where λl,t = ζψ1,l,t and µl,t = ιψ0,l,t. The term ±ϑρl,t introduces a correction
to take into account that the number of firms in this case is variable, being
represented by the NSF firms. In section 3.1, the total population of firm is
constant and equal to N ; for the network dynamics we need to consider only
the firms who enter the credit market, whose number comes from the solution
of the NSF-ME. In particular, we indicate with ϑ the observed variation in
nl,t and ρl,t = ρ(Kl,t, N1,t).

The K-ME describes the evolution of the probability distribution for the
degree in each level. It can be expressed as

dPt(nl,t)

dt
= βt(nl,t − 1)Pt(nl,t − 1) + δt(nl,t + 1)Pt(nl,t + 1)

︸ ︷︷ ︸

inflow probability

−

(βt(nl,t) + δt(nl,t))Pt(nl,t)
︸ ︷︷ ︸

outflow probability

.
(31)

4This probability can be quantified as the product of the probability for a bank to be
in a firm’s pool, m, and the probability of being chosen by the firm. The latter should be
different for each bank, as it is dependent on Θ̄ and Ab. Since the probability of matching
needs to be defined at the mean-field level, we express it as function only of Θ̄ and write
it as: 1− exp(−cΘ̄), with c > 0. Accordingly, p1 is given by

p1(Θ̄) = m
[
1− exp(−cΘ̄)

]
. (29)

As a consequence, the probability for two firms to be connected to the same bank is p2
1
.
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3.2.2 ME solution: dynamics of the degree and degree distribu-

tion

In order to solve (31), we adopt the same methodology used for the NSF-ME.
Also in this case, the final solution is a system analogous to (21). Splitting
the state variable as in (24) and following the steps of the solution algorithm
defined in subsection 3.1.2, we obtain the following equation for the trend

φl,t = (φ0
l − φ∗

l ) exp {−ρl,t [λl,t + µl,t] t}+ φ∗

l (32)

where
φ∗

l = [1 + µl,t/λl,t]
−1 (33)

is the steady state value of the degree.
Finally, the Fokker-Planck equation provides a Gaussian law for the fluc-

tuations about the expected l-th degree level with mean µǫl,t = 〈ǫ0l 〉 exp(−ρl,t∆′

t(φl)t)
and variance σ2

ǫ,l,t = 〈ǫ∗2l 〉 [1 − exp(2ρl,t∆
′

t(φl))t], where ǫ
∗2
l is the stationary

value of fluctuations in the l-th degree level and ǫ0l is the initial condition.
The trend equation and the distribution of fluctuations can be used to

compute the degree distribution and its evolution in time. If we define a vec-
tor of possible initial starting points φ0 for the average degree, there will be
a different trajectory for each starting point according to the dynamics de-
scribed by equation (32). Consequently, at each point in time, the empirical
distribution of the degree is obtained by the different values of φ generated
by the different trajectories.

4 Results

The systems of equations that compose the solution illustrate the role that
the levels of indebtedness and concentration play in shaping the dynamics
of the network evolution. The description of the network by means of the
ME makes possible an analytical representation of the concept of too big to

fail (proxied by the giant component) and too interconnected to fail (the
degree). The model is also able to endogenously generate a dynamics for the
proportion of NSF and SF firms, and consequently, of aggregate production.
These dynamics affect the size and the evolution of the network.
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4.1 Interpretation

The analytical solution of the model describes the effects of the interaction
among agents in the system. Indeed, the dynamics of the degree is modelled
as dependent on the interaction among firms through the banking system.
In particular, the solution shows how the interaction can cause coordina-
tion failures; as a consequence, the system oscillates between different steady
states. The transition from an equilibrium point to another can be origi-
nated by avalanches of bankruptcies of firms and banks when the level of
concentration becomes critical.

In order to identify the effects of the level of concentration on the market
structure, we need to study the effect of the size of the giant component on
the equilibrium solution. We can substitute equations (30) into (32) and take
the derivative with respect to γ. It can be demonstrated that this derivative
is always positive. As a consequence, both the value of the degree during the
adjustment and its steady value positively depend on the size of the giant
component. The variance of the fluctuations of the degree is directly pro-
portional to its steady state value and, therefore, to the giant component.
Consequently, a market with a relatively high level of concentration (large
giant component and large degree) will display a higher volatility, due to
the expected larger fluctuations in the average degree. Therefore, the de-
gree distribution will appear as platycurtik. Since in the model the degree
distribution is a proxy of the size distribution of banks, this implies larger
instability, due to the possibility of rapid and deep modifications in the mar-
ket structure. This analytical result is confirmed by the numerical analysis
of the model5 as shown by figure 1.

In respect of the aggregate output of the economy, the solution shows
that instability in the credit market structure brings about higher volatility
in output. An increase in the number of NSF firms has a negative effect on
aggregate output, as shown by equation (23), and brings about an increase
in the average degree, as for equation (24). Moreover, due to the solution
equations, a largerN1 causes a larger volatility in output due to equation (23);
in the same way, the bigger is the average degree, the larger is the variance of
its fluctuations. Accordingly, there is a positive correlation between variance

5Computer simulations of the model with full degree of heterogeneity for banks and
firms have been performed in order to provide some insights on the dynamics generated
by the behavioural rules of agents. It is worth stressing that, in our study, numerical
simulations are used just as a test of the analytical outcomes.
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of the degree and variance of output.
With regard to the dynamics of the network, the increasing concentration

follows the growth of the economy: as firms and banks profit, interest rates
decrease due to the accumulation of internal finance. Sounder banks are able
to attract customers and grow faster. This virtuous cycle can lead to the
emergence of a big bank which controls the biggest share of the credit market
(represented by the giant component). This builds the set-up for the subse-
quent crisis, according to a pattern analogous to the one envisaged by Minsky
(1982): during a boom credit becomes cheaper and firms are led to increase
their production, as they accumulate profits. This growth increases the con-
centration in the credit market and makes firms and banks more vulnerable to
negative shocks. Indeed, the presence of a big bank can have a destabilising
effect on the system through the variance of the distribution of the fluctua-
tions of the degree. Every bank is potentially subject to large shocks, which
consequently impact on the conditions of credit for firms through equation
(7); as a consequence, borrowers can experience substantial variation in the
cost of debt and, in the case of a significant negative shock, become insol-
vent, worsening the conditions of other banks and eventually spiralling down
the whole system. The network economy displays an endogenous cyclical
behaviour, in which the tendency to concentration heightens the probability
for the system to be hit by systemic financial distress (figures 2 and 3).

4.2 Policy implications

Despite the fact that the representation of the credit market is simplified,
the model captures the basic features of a credit network economy, such
as the emergence of nodes with systemic relevance and the possibility of
crises through propagation effects, when these nodes are in financial distress
(De Masi et al., 2010).

The model provides all the measures of systemic risk measures identified
by the European Central Bank: (i) the degree of connectivity; (ii) the de-
gree of concentration; (iii) the size of exposures. Furthermore it analytically
describes their dynamics and highlights the causal relationship among them.
For these reasons, the framework can be helpful for a preliminary assessment
of a stabilisation policy.

The main policy tool embedded in the model is the adequacy ratio re-
quirement Θ̄. By handling this parameter, the policy maker can influence
the dynamics of the model and reduce the probability of a systemic collapse
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through different channels. The capital requirement directly influences the
structure of the market in two ways. On the one hand, a reduction in Θ̄
defines a ceiling for the size of the giant component, diminishing the chances
of the emergence of a big bank. As detailed in subsection 4.1, a smaller giant
component reduces the variance of the distribution of fluctuations of the de-
gree. The final effect is a smaller chance of large and sudden modifications in
the market structure and a higher stability. On the other hand, the average
degree (and thus the average size of banks) is directly proportional6 to Θ.
This effect is amplified by the fact that a smaller Θ̄ is also likely to increase
the competition in the credit market, lowering the interest rate spread among
banks. The ultimate outcome is therefore a higher dispersion in the market
and no big banks. Hence, the model illustrates that the size limit is also a
limit on the interconnectivity, linking the concepts of too big to fail and too

interconnected to fail. The introduction of a capital requirement allows the
policy maker to shape the network topology and the market structure.

The parameter Θ̄ indirectly affects the probability of bankruptcy for firms.
In fact, with stricter lending limits for banks, a firm with high leverage ratio
is likely to be credit rationed, due to the banks’ selection process, and thus to
reduce its production and financial needs, consequently lowering its chances
of bankruptcy.

At the micro level, Θ̄ indirectly influences the transition rates. A lower
lending limit will bring about, on average, smaller interest rates, through
equation (7), as only the NSF firms with the lowest debt ratio will be fi-
nanced. The threshold ū in (12) will be lower, increasing the probability for
a NSF firms to become SF. This chain of effects is particularly relevant as
it allows the policy maker to influence the path of evolution of the system
between different equilibriums. Indeed the economic policy, by influencing
the transition rates, can impact on the dynamics described by the first of the
(22). In this way, it can drive the proportion of NSF between the two limits
0 and 1 in order to set the economy on the preferred equilibrium path. The
impact of the variations in Θ̄ in the numerical simulations are illustrated by
figure 4.

Summarising, with reference to the three measures of systemic risk, the
model shows that the capital requirement threshold influences: (i) the degree
of connectivity, as it impacts on the average degree of network; (ii) the degree
of concentration, as it directly determines the maximum size of banks and,

6See equation (29).
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indirectly, their average size; (iii) the level of exposures, by imposing a limit
to lending. The solution of the model makes possible a quantitative and
qualitative analysis of the impact of such a policy on the average degree, on
the shape of the degree distribution and on the resilience of the credit market
structure.

Through the stabilization of the credit market, policy makers can also
influence the dynamics of production. An increase in the probability for
NSF firms to become SF brings about a lower number of NSF firms in steady
state and, consequently, a lower variance of the fluctuation component ǫ in
equation (22). Equation (23) demonstrates that it causes a higher level and a
smoother dynamics for aggregate output. Indeed, as the dynamics of output
is dependent on the density of NSF firms, a lower variance of this density is
accompanied by a smaller variance of output.

5 Concluding remarks

In this paper we propose a technique for the analytical solution for models
with heterogeneous and interacting agents and apply it to a credit network
model. In particular, we describe the dynamics of the behaviour of the agents
by means of two MEs, one nested into the other. Their asymptotic solutions
yield the trend and fluctuations of the two state variables: the proportion of
NSF firms and the network degree.

The solution identifies some emerging properties of a credit network. We
find that rising economic output, and the consequent increase in the overall
wealth of firms, turns out to be proportional to how much the loans in the
system come to be concentrated among a few banks. In network terms, this
concentration can be measured by the average degree for banks. There is a
natural tendency for this quantity to rise as the economy expands and banks
and firms profit. This rise in concentration is potentially destabilising for
the system: the failure of a single bank can bring trouble to a large number
of firms, which pass it on to other banks, leading to further failures, in a
downward spiral. Cascades of failures put financial pressure on all firms,
raising the costs of borrowing and slowing down the economy.

The model is able to endogenously generate feedback between economic
growth and rising interconnectedness which leads to cycles of booms and
busts. The solution of the model highlights the causal links among micro,
meso and macro-variables. In this perspective, the present work provides
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a starting point for the development of more refined models of the credit
network in order to test possible stabilisation policies.
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Figure 1: Variance of the degree and of the output. Monte Carlo simulation
(correlation: 0.62).

Figure 2: Giant component and average lending of bankrupted banks. Single
simulation (correlation in Monte Carlo simulations: 0.71).
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Figure 3: Banks bankruptcy ratio and aggregate output.

Figure 4: Average proportion of SF firms, output, degree and giant compo-
nent for different values of θ. Monte Carlo simulation.
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1 Master equation modelling: general set-up

and solution

This section introduces and develops the general solution for the master equa-
tion. The method will be then applied to study the dynamics of the number
of NSF firms (section 2) and the network structure (section 3). We refer to
the economic model with complete heterogeneity as the agent based model
(ABM). The approach presented here can be considered as an analytical
stochastic approximation to the numerical results of the ABM, obtained by
means of computer simulation. The ABM is set up with its own microscopic
behavioural rules, and it is used here as the scientist uses the laboratory.
That is, from the one hand, the simulations are performed to visualise the
macroscopic results that will be investigated in a phenomenological way by
means of statistical mechanics tools. On the other hand, the outcomes of the
analytical solution can be compared with the simulation results to test its
accuracy.
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1.1 Elementary notions

Let us consider a system SN made of N ≫ 1 heterogeneous interacting agents
(HIAs) and set X to be a macroscopic random quantity changing its values
through time t ∈ T over a state space Λ ⊂ Q. In other words we define the
following stochastic process

χ = {X(t) : Ω→ Λ, t ∈ T} (1)

Now consider that Ω = {ωj : j ≤M}. It follows that X(ω, t) ∈ Λ ∀ω ∈ Ω.
Without loss of generality we can assume that Ω = {ω0, ω1} where ω1 is our
state of interest and ω0 can represent every other state the HIAs can belong
to.
According to this representation {X1(t) = X(ω1, t)}t∈T is a random trajec-
tory on Λ: as such it can yield different values (i.e. realizations). Let us
assume that

X1 = min
t∈T
{X(ω1, t)} ∈ Λ : X1 = minΛ (2)

and suppose that X1(t) moves from one level to another with jumps of con-
stant size which can be evaluated by the following variation

|X1(t+∆t)−X1(t)| = r(∆t) = r : ∆t = fixed (3)

This allows us to provide a representation for Λ

Λ = {X1 + hr : h = 0, 1, . . . , H} (4)

so the boundaries of Λ are
{

(X1 = mint Λ) ≤ X1(t) ≤ (X1 = maxt Λ)
X1 ≤ X1(t) ≤ X1 = Hr +X1

(5)

By assumption we consider Λ to be mechanically invariant, i.e. constant
through time, therefore X1 and X1 exist and are constant as well.
Let us now define a counting measure v : Ω→ {Nj : j ≤ N} such that

Nj = v(ωj) ∈ [0, N ] :
N∑

j

= N (6)

therefore (Ω, v) is termed countable space. It is therefore easy to see that

nj = Nj/N ∈ [0, 1] (7)
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defines an empirical probability measure so let us endow Ω with a probability
measure P. On the other hand observe that Xj(t) and Nj(t) are macroscopic
extensive observables for the system SN so (7) and

{
x1 = X1(t)/N ∈ [x1, x1] s.t.

x1 = X1(t)/N , x1 = X1/N : X1 = Hr +X1

(8)

are both intensive representations of Nj(t) and Xj(t) respectively. Micro
interactions are not observable but it is possible to write that, for each agent
i of the system at every time t,

(i ∈ ω0|t→ i ∈ ω1|t+∆t) ; (i ∈ ω0|t+∆t← i ∈ ω1|t) (9)

Since we now concentrate our attention on ω1 ∈ Ω we can say that

{
ω0 → ω1 is an inflow w.r.t. ω1

ω0 ← ω1 is an outflow w.r.t. ω1
(10)

Since Ω is endowed with a probability measure let us define1

ψ1,t = Pt(i ∈ ω1) ∧ ψ0,t = Pt(i ∈ ω0) (11)

as the state external influence probabilities. They can depend on time or
being assumed constant: they can be stated a priori or they can depend on
an external model as well as on the external environment. This is why they
are termed externality functions by Aoki. If we then consider

Pt(i ∈ ω0 → i ∈ ω0) = ζt ∧ Pt(i ∈ ω0 ← i ∈ ω0) = ιt (12)

to be, respectively, the probabilities for an inflow and an outflow w.r.t. ω1,
then we can define the following

{
λt = ψ1,tζt birth rate
µt = ψ0,tιt death rate

(13)

These results are valid for every macroscopic quantity X we can measure on
the system SN , therefore it applies to Nj(t) too. The stochastic process χ
defined in (1) is a jump Markov process with jumps’ size defined by (3).

1Except for βt, δt, ∆t, Σt, Pt and Qt, which are endogenously specified functions of
the drifting trajectory m and the fluctuations about it s, as concerning a given quantity
x we write x(t) when it autonomously depends on time while xt means that time is an
indexing parameter determined by an exogenous event.
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1.2 Transitory mechanics: state space, transition rates

and ME

Let us now introduce two instrumental constants θ and ϑ, defined as follows

ϑ = |θ| : θ = −1, 0,+1 (14)

Now consider that

X1(t) = Xh : Xh = X1 + hr ∈ Λ (15)

is a generic realization of X1(t) = X(ω1, t). Therefore, if we fix a value Xh

we can observe the following events

X(ω1, t±∆t) = Xh ± ϑr = Xh + θr ∈ Λ (16)

W.r.t. the state Xh ∈ Λ, we can observe gains (inflows) and losses (out-
flows) of magnitude r, which is precisely the allowed size of the jumps for the
stochastic process. Figure 1 provides a graphical representation of the model.
The quantity Xh is the realization value of the stochastic process X(ω1, t) on

Figure 1: Representation of the stochastic transitory mechanics.

the state space Λ, that is: under the same environmental and internal condi-
tions the process will provide X(ω1, t) = Xh. The quantity Xh is considered
as a target state but we also consider what happens in its neighbourhood:
this is the meaning of Xh ± ϑr ∈ Λ. W.r.t. Xh we can have inflows (gains)
and outflows (losses) as if we were gaining or loosing a fraction (or portion
of volume) of the involved macroscopic extensive but transferable quantity
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X . But an inflow or a gain can happen by means of a birth (death) from a
lower (upper) level; similarly an outflow or a loss can happen with a death
(birth) to a lower (upper) level. If the single agent i moves from ω0 to ω1 or
vice-versa, brings its own portion of the total quantity X : to allow this we
have to consider transferable quantities.
All these variations are due to unobserved microscopic interactions. We
model this multiplicity of latent interactions of agents living on Ω in terms
of transition rates on Λ. This representation is defined as mean-field inter-
action, a kind of indirect interaction at a meso-level, which is defined as an
intermediate level of aggregation between the micro-level of ABM and the
macro-level. Di Guilmi et al. (2012) explain this aspect in terms of N − ℓ
complexity for ABM, M − ℓ complexity for mesoscopic modelling and 1− ℓ
for RA modelling.
The transition rates are defined as transition probabilities per (vanishing)
reference unit of time. By using (14) we represent them as follows

wt(Xh±(1−ϑ)r|Xh±ϑr) =
{
wt(Xh ± r|Xh) : ϑ = 0 ⇒ outflows
wt(Xh|Xh ± r) : ϑ = 1 ⇒ inflows

(17)

Therefore, ϑ identifies outflows or losses and inflows or gains. Both in-
outflows can happen by means of births and deaths. The birth transition

rates can be expressed as

βt(Xh − ϑr) =
{

βt(Xh) = wt(Xh + r|Xh) : ϑ = 0 ⇒ out-birth
βt(Xh − r) = wt(Xh|Xh − r) : ϑ = 1 ⇒ in-birth

(18)

In the same fashion, the death transition rates can be written as

δt(Xh + ϑr) =

{
δt(Xh) = wt(Xh − r|Xh) : ϑ = 0 ⇒ out-death
δt(Xh + r) = wt(Xh|Xh + r) : ϑ = 1 ⇒ in-death

(19)

Then we can represent state probabilities as follows

Pt(Xh ± ϑr) = Pt (X(ω1, t) = Xh ± ϑr ∈ Λ) (20)

where the state space Λ has been defined in (4) and X(ω1, t) = X1(t) for
ω1 ∈ Ω. By observing that

Xh = X1, X1 + r, . . . , X1 + hr, . . . (X1 +Hr = X1) ∈ Λ (21)

we can set up the following master equation (ME from here on) w.r.t. our
state of interest Xh

dPt(Xh)

dt
= [βt(Xh − r)Pt(Xh − r) + δt(Xh + r)Pt(Xh + r)]

︸ ︷︷ ︸

inflow probabilities

+

− [(βt(Xh) + δt(Xh))Pt(Xh)]
︸ ︷︷ ︸

outflow probabilities

(22)
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with the following boundary conditions

{
dPt(X1

)

dt
= δt(X1 + r)Pt(X1 + r)− βt(X1)Pt(X1)

dPt(X1)
dt

= βt(X1 − r)Pt(X1 − r)− δt(X1)Pt(X1)
(23)

Finally we observe that in the transitory mechanics, the stayers, i.e. those
which do not change state from Xh, do not play any role. The master equa-
tion (22) is a balance equation between in-out probability flows and it dy-
namically describes the evolution of the probability density function for the
random quantity X over the state space. Indeed, (22) is a differential equa-
tion driving the dynamics of Pt([X(ω1, t) = X1(t)] = Xh) on Λ. Once it
has been solved, this equation evaluates which is the probability of finding a
portion Xh of the quantity X due to agents in state ω1: in this respect the
ME is a way to operate stochastic aggregation with HIAs.

1.3 Phenomenological model and the solvable ME

According to Aoki (1996, 2002); Aoki and Yoshikawa (2006) and van Kampen
(1992), if we are confident that the quantity X has a unimodal distribution
peaked about its expected value, a common and very suitable phenomeno-
logical model reads as

X(ω1, t) + θr = N 〈X(ω1, t)/N〉+
√
Ns(t) + θr (24)

We considerX(ω1, t) = Xh to be fixed. Therefore, we specify the phenomeno-
logical model as follows2







Xh + θr = Nm+
√
Ns+ θr s.t.

(i) N = |SN | (ii) m = 〈Xh/N〉
(iii) s = (Xh −Nm)N−1/2

i.i.d.→ Fs(µs, σ
2
s )

(25)

From (25) it follows that

Xh + θr = Nm+
√
Ns+ θr ⇒ Xh + θr

N
= m+

1√
N

(

s+
θr√
N

)

(26)

so we can define

m(θ) = m+
1√
N
s(θ) : s(θ) = s+

θr√
N

(27)

2The constant θ has been defined in eq. (14).
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According to (20) and (24) we can also observe that

Pt(X(ω1, t)) = Qt(s(t)) (28)

is always possible to be set since, according to (25-iii), we can write

s(t) = (X(ω1, t)−Nm(t))N−1/2 (29)

Therefore,
dPt(X(ω1, t))

dt
=
∂Qt(s(t))

∂t
+
ds(t)

dt

∂Qt(s(t))

∂s
(30)

and, for the fixed state realization X(ω1, t) = Xh, it follows that
3

ds

dt
= −
√
N
dm

dt
(31)

As a conseqence, the l.h.s. of the ME (22) reads as

dPt(Xh)

dt
=
∂Qt(s)

∂t
−
√
N
dm

dt

∂Qt(s)

∂s
(32)

As usual in this stream of modelling, time is rescaled as follows

t = f(N)τ : f(N) = N ⇒ [t] 6= [τ ] (33)

for an arbitrary function f() such that

dt = f(N)dτ ⇒ dt = Ndτ iff f(N) = N (34)

Since f(N) = N , it must be that [t] 6= [τ ]. By using (33) and (34), the (32)
reads as

1

N

dPt(Xh)

dt
=

1

N

∂Qt(s)

∂t
− 1√

N

dm

dt

∂Qt(s)

∂s
(35)

Following Aoki, the transition rates in (18) and (19) need to be specified as
homogeneous functions w.r.t. a system size parameter, which in our case is
N = |SN | ≫ 1. Thus, by using (27) and (14) we have

βt(Xh−ϑr) = Nβt

(
Xh − ϑr

N

)

= Nβt

(

m+
1√
N

(

s− ϑr√
N

))

= Nβt(m(−ϑ))

(36)

3Even though Xh is fixed, fluctuations (i.e. volatility) about the value of this state are
not fixed, rather they vary through time according to the probability distribution Qt(s).
These fluctuations are due to the unobservable multiplicity of interactions of HIAs in the
state ω1 and their transitions on Ω. Fluctuations are the macroscopic effect of microscopic
interactions. Therefore, they are endogenous to the macroscopic model. Moreover, they
are an emergent property of the system whose probability distribution will be estimated.
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δt(Xh+ϑr) = Nδt

(
Xh + ϑr

N

)

= Nδt

(

m+
1√
N

(

s+
ϑr√
N

))

= Nδt(m(+ϑ))

(37)
In the same way we rewrite the state probabilities (20)

Pt(Xh±ϑr) = Pt(Nm+
√
Ns±ϑr) = Pt

(

Nm+
√
N

(

s± ϑr√
N

))

= Qt(s(±ϑ))

(38)
which is in accordance with (28). By using (36) and (37) we can now rewrite
the ME in (22) where the l.h.s is now coherent with (35), that is

1

N

dPt(Xh)

dt
=

[
βt(m(−))Qt(s(−)) + δt(m(+))Qt(s(+))

]
+

−
[
(βt(m(0)) + δt(m(0)))Qt(s(0))

]
(39)

where m(±ϑ) is given by (27) according to (14). We set

Σt(m(0)) = βt(m(0)) + δt(m(0)) (40)

and
∆t(m(0)) = βt(m(0))− δt(m(0)) (41)

Equation (39) can be reformulated in the following way.

{
1
N

∂Qt(s)
∂t
− 1
√

N
dm
dt

∂Qt(s)
∂s

=
[
βt(m(−))Qt(s(−)) + δt(m(+))Qt(s(+))

]
−
[
Σt(m(0))Qt(s(0))

] (42)

which is the solvable formulation of the ME.

1.4 Asymptotic expansion solution method

This section presents Aoki’s method for the solution of ME. Its principle is
rather simple even if algebraically heavy. It consists in expanding with Taylor
polynomials both the transition rates about m and the density about s in
the ME (42). To let the reader comprehend the technique we here develop all
the needed calculations by introducing a suitable formalism which reduces
the length of the expression. First of all, let us define a new instrumental
constant to represent the system size parameter

ηp/2 = N−p/2 → 0+ ∀p ≥ 1 iff N := |SN | → +∞ (43)

Taylor expansion terms for a generic function (x) 7→ f(x) ∈ C∞ are given by
powers of the displacement of the state variable x about the target value x0,
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that is (x−x0)p/p! for p ≥ 0. Therefore, as regarding transition rates in (42)
we can summarize these polynomial’s terms as follows







(m(±ϑ)−m)p

p!
=

[(

m+ 1
√

N
s(±ϑ)

)

−m
]p

1
p!
=

(s(±ϑ)/N
1/2)p

p!
=

N−p/2

p!

(

s± ϑr
√

N

)p

= ηp/2
p!

(
s± η1/2ϑr

)p (44)

Then, indicating with f(x)(p) the p-th order derivative of f , we have the
following Taylor’s polynomials for transition rates about m

βt(m(−)) =
∑

p≥0

ηp/2

p!

(
s - η1/2r

)p
β
(p)
t (m) ϑ = 1 θ = −1 (45)

δt(m(+)) =
∑

p≥0

ηp/2

p!

(
s + η1/2r

)p
δ
(p)
t (m) ϑ = 1 θ = +1 (46)

Σt(m(0)) =
∑

p≥0

ηp/2

p!
(s)pΣ

(p)
t (m) ϑ = 0 θ = 0 (47)

where signs are highlighted in boxes. In the same way, the density of fluctu-
ations about s are expanded as follows

(s(±ϑ) − s)p
p!

=

[(

s± ϑr√
N

)

− s
]p

1

p!
=

(±ϑr/N1/2)p

p!
=

(±η1/2ϑr)p
p!

(48)

and the density is

Qt(s(±)) =
∑

p≥0

(±η1/2r)p
p!

Q
(p)
t (s) if ϑ = 1 or Qt(s) if ϑ = 0 (49)
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By plugging eq.s (43)-(49) into (42) with p ≤ 2 and setting ∂
(p)
x = (∂/∂x)p

and ẋ = dx/dt we have4

η∂tQt −
√
ηṁ∂sQt

︸ ︷︷ ︸

MElhs

=

{ [
βt +

√
η(s -

√
ηr)β ′t +

η
2
(s -
√
ηr)2β ′′t

]
×

[

Qt -
√
ηrQ′t +

ηr2

2
Q′′t

]

}

︸ ︷︷ ︸

CB1:−ϑ=−1⇔θ=−1

+

{ [
δt +
√
η(s +

√
ηr)δ′t +

η
2
(s +

√
ηr)2δ′′t

]
×

[

Qt +
√
ηrQ′t +

ηr2

2
Q′′t

]

}

︸ ︷︷ ︸

CB2:+ϑ=1⇔θ=1

+

−
{ [

Σt +
√
ηsΣ′t +

η
2
s2Σ′′t

]
×Qt

}

︸ ︷︷ ︸

CB3:ϑ=0⇔θ=0

(50)

If we now develop the products in curly brackets, we get the following 21
terms

=







βtQt −√ηrβtQ′t + ηr2

2
βtQ

′′

t+√
η(s−√ηr)β ′tQt − ηr(s−√ηr)β ′tQ′t + η3/2r2

2
(s−√ηr)β ′tQ′′t

η
2
(s−√ηr)2β ′′tQt − η3/2

2
r(s−√ηr)2β ′′tQ′t + η2r2

4
(s−√ηr)2β ′′tQ′′t







CB1

+







δtQt +
√
ηrδtQ

′

t +
ηr2

2
δtQ

′′

t+√
η(s+

√
ηr)δ′tQt + ηr(s+

√
ηr)δ′tQ

′

t +
η3/2r2

2
(s+

√
ηr)δ′tQ

′′

t
η
2
(s+

√
ηr)2δ′′tQt +

η3/2

2
r(s+

√
ηr)2δ′′tQ

′

t +
η2r2

4
(s+

√
ηr)2δ′′tQ

′′

t







CB2

+

−
{

ΣtQt +
√
ηsΣ′tQt +

η
2
s2Σ′′tQt

}

CB3

4In eq. (50) the CB#s indicate curly brackets and specifications about the values
of the instrumental constants defined in eq. (14) are provided for clarity of exposition.
Moreover, in boxes we highlighted changes in signs and suppress variables in transition
rates, evaluated at m, and the density, evaluated at s. The reader not interested in the
following algebraic calculations can skip them and go to eq. (51).
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Computing all the involved products and then collecting terms according
with the orders of power of the term ηr, we obtain

=
{
(βt + δt − Σt)Qt

}

CB(i)
+

√
η
{
r(δt − βt)Q′t +

[
(s−√ηr)β ′t + (s+

√
ηr)δ′t

]
Qt − sΣ′tQt

}

CB(ii)
+

η

{
r2

2
(βt + δt)Q

′′

t − r
[
(s−√ηr)β ′t − (s+

√
ηr)δ′t

]
Q′t+

1
2

[
(s−√ηr)2β ′′t + (s+

√
ηr)2δ′′t − s2Σ′′t

]
Qt

}

CB(iii)

+

η3/2

2

{
r2

[
(s−√ηr)2β ′t + (s+

√
ηr)2δ′t

]
Q′′t+

r
[
(s+

√
ηr)2δ′′t − (s−√ηr)2β ′′t

]
Q′t

}

CB(iv)

+

η2

4

{
r2

[
(s−√ηr)2β ′′t + (s+

√
ηr)2δ′′t

]
Q′′t

}

CB(v)

Observing that

1. Σ
(p)
t = β

(p)
t + δ

(p)
t ∀p ≥ 0 due to eq. (40),

2. ∆
(p)
t = β

(p)
t − δ(p)t ∀p ≥ 0 due to eq. (41) and

3. η3/2

2
= 1

2
√

N3
, η2

4
= 1

4N2 → 0+ faster than N → +∞

we can see that CB(i), CB(iv) and CB(v) can be set equal to zero. Ac-
cordingly, only CB(ii) and CB(iii) are considered. The development of the
calculation yields

=
√
η
{
−r∆tQ

′

t + s(β ′t + δ′t − Σ′t)Qt +
√
ηr(δ′t − β ′t)Qt

}
+

η







r2

2
ΣtQ

′′

t + r [s(δ′t − β ′t)]Qt +
√
ηr2(δ′t + β ′t)Q

′

t+
s2

2
(β ′′t + δ′′t − Σ′′t )Qt +

√
ηrs(δ′′t − β ′′t )Qt +

ηr2

2
(β ′′t + δ′′t )Qt






=

√
η
{
−r∆tQ

′

t −
√
ηr∆′tQt

}
+

η
{

r2

2
ΣtQ

′′

t − rs∆′tQ′t +
√
ηr2Σ′tQ

′

t −
√
ηrs∆′′tQt +

ηr2

2
Σ′′tQt

}

=

{

−√ηr∆tQ
′

t − ηr∆′tQt + η r2

2
ΣtQ

′′

t − ηrs∆′tQ′t+
+
[

η3/2r2Σ′tQ
′

t − η3/2rs∆′′tQt +
η2r2

2
Σ′′tQt

]

}

The term in square brackets can be ignored since η3/2 → 0+ very fast as the
system size N grows. As a consequence, we have that the l.h.s. of the above

11



expression can be formulated as

= −√ηr∆tQ
′

t − ηr∆′t(Qt + sQ′t) + η
r2

2
ΣtQ

′′

t

By observing that ∂s(sQt) = Qt + sQ′t we conclude that (51) reads as

η∂tQt −
√
ηṁ∂sQt = −

√
ηr∆tQ

′

t − η
[

r∆′t∂s(sQt)−
r2

2
ΣtQ

′′

t

]

(51)

where Q
(p)
t = ∂psQt and ∆′t = ∂m∆t. Therefore we can now apply the poly-

nomial identity principle and split the ME (51) in two equations comparing
terms with powers of η of the same order

{
ṁ = r∆t(m)

∂tQt(s) = −r∂m∆t(m)∂s(sQt(s)) +
r2

2
Σt(m)∂2sQt(s)

(52)

The jumps size r is constant and can be set equal to 1 without loss of gen-
erality.

1.4.1 Macroscopic equation equilibrium solution

The first equation involved in system (52) is an ODE and it is called the
macroscopic equation, or macroeconomic equation in Aoki’s works. It does
not depend on the second equation of the system to which it is coupled with,
so we can define the following Cauchy problem

ṁ = r(βt(m)− δt(m)) : m(0) = m0 (53)

It admits an equilibrium solution

ṁ = 0⇒ β(m∗) = δ(m∗) (54)

which means that, at the equilibrium, births and deaths perfectly balance
each other. Therefore, inflows and outflows, or gains and losses, balance as
well.

1.4.2 Fokker-Planck equation stationary solution

The second equation is a Fokker-Planck (FP) equation, a partial differential
equation of the second order of the parabolic type. It is a diffusion equa-
tion with a linear first order term. This equation drives the dynamics of
the density of the fluctuations, around the drifting trajectory, due to those

12



unobservable microscopic interactions of the HIAs on the state space. Let us
rewrite it as

∂tQt(s) = −r∂m∆t(m)∂s(sQt(s)) +
r2

2
Σt(m)∂2sQt(s) (55)

and then collect ∂s as follows

∂tQt(s) = −∂s
{

r∂m∆t(m)(sQt(s))−
r2

2
Σt(m)∂sQt(s)

}

= −∂sSt(s) (56)

in order to get the continuity equation form

∂tQt(s) + ∂sSt(s) = 0 : St(s) = r∂m∆t(m)(sQt(s))−
r2

2
Σt(m)∂sQt(s) (57)

being St(s) the so called current of probability.
The stationarity condition is

St(s) = const.⇔ ∂tQt(s) = 0⇔ ∂tQt(s) = 0⇔ lim
t→+∞

Qt(s) = const. (58)

By using the previous two equations we get

∆′sQ =
r

2
Σ∂sQ

where ∆′ = ∂m∆(m), Σ = Σ(m) and Q = Q(s),

2
s

r

∆′(m)

Σ(m)
=
∂ logQ(s)

∂s

By direct integration w.r.t. s, we have

lnQ = K1 +
s2

r

∆′

Σ

being K1 the usual integration constant. So we can conclude that

Q(s) = K exp

{
s2

r

∆′(m)

Σ(m)

}

(59)

which looks like a Gaussian distribution. As a consequence, the general
solution is Gaussian too. The normalizing constant K must be estimated in
order for Q(s) to properly represent a probability distribution.
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Due to Gaussianity Q(s) is symmetric w.r.t. to its expected value µs in-

troduced in (25-iii) when saying that s
i.i.d.→ Fs(µs, σ

2
s ), where we now know

that Fs has a Gaussian shape. Accordingly, the normalizing condition can
be written as

{ ∫ +M

−M
Q(s)ds = K

∫ +M

−M
e−s

2R(m)ds = 1 s.t.

−R(m) = ∆′(m)
rΣ(m)

, M →∞ (60)

It then follows that, by assuming 〈s〉 = 05

∫ +M

−M

e−s
2Rds = 2

∫ +M

0

e−s
2Rds =

2√
R

∫ +M

0

e−s
2Rd(
√
Rs)

By using u =
√
Rs we than have

2√
R

∫ +
√

RM

0

e−u
2

du =

√
π

R
Erf(
√
RM)

where

Erf(x) =

∫ x

0

e−t
2

dt⇒ lim
x→+∞

Erf(x) = 1

is the well known error function. Therefore, according to the normalizing
condition (60) we conclude that

K =

√

R

π
(61)

and so the stationary solution of the FP equation reads as

{

Q(s) =
√

R(m)
π

exp {−s2R(m)} : R(m) = −∆′(m)
rΣ(m)

∆′(m) = β ′(m)− δ′(m) , Σ(m) = β(m) + δ(m)
(62)

1.4.3 General solution of the FP equation

The FP equation (55) can be partially solved without specifying the transi-
tion rates. To this aim it can be rewritten by using the following substitutions

{
D0

t (s) = r∆′t(m)s = d0(r)s : d0(r) = r∆′t(m)
D1

t (s) = r2Σt(m) = d1(r) : d1(r) = r2Σt(m)
(63)

5It is possible since s are the fluctuations about the expected trajectory, see the fol-
lowing eq. (76). Moreover, assuming the symmetry w.r.t. to 〈s〉 = µs the integral can be
evaluated on [0,+M ] and then doubling the result: note that M is arbitrarily large.
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where d0(r) is the drift coefficient (not to be confused with the drifting tra-
jectory φ(t) coming from the macroscopic equation and the spread about this
path) and d1(r) the diffusion coefficient: they are constant w.r.t. s on the
plane (s, t) and they, in general, are dependent on jumps’ size r. Therefore
we have

{
∂tQt(s) = −∂s[D0

t (s)Qt(s)] +
1
2
∂2s [D

1
t (s)Qt(s)]

= −∂s
(

d0(r)sQt(s)− d1(r)
2
∂sQt(s)

)

= −∂sS(s) (64)

which is exactly eq. (56). The stationary condition (58) gives6

d0(r)sQt(s) =
d1(r)

2
Q′t(s) (65)

As the stationary solution of the FP equation is Gaussian, the same holds
true for its general solution, so we can here provide this inferential result

s = (X1(t)−Nm(t))N−1/2
i.i.d.→ N (µs(t), σ

2
s(t)) (66)

which qualifies the distribution Fs(µs, σ
2
s) provided in the phenomenological

model (25). We only need the first two moments (the mean and the variance),
along time. They can be obtained by computing the derivative in the FP
equation (55) as follows

∂tQt = −d0(r)Qt − d0(r)sQ′t +
d1(r)

2
Q′′t (67)

and the plug it into the following expression

〈
sk
〉
=

∫

skQt(s)ds⇒ ∂t
〈
sk
〉
=

∫

sk∂tQt(s)ds : k = 1, 2 (68)

as suggested by van Kampen (1992).
First of all let us set k = 1 to find






∂t 〈s〉 =
∫
s∂tQtds

= −d0(r)
∫
sQtds− d0(r)

∫
s2Q′tds+

d1(r)
2

∫
sQ′′t ds

= −d0(r) 〈s〉 − d0(r)(s2Qt − 2
∫
sQtds) +

d1(r)
2

(sQ′t −
∫
Q′tds)

= d0(r) 〈s〉 − s(d0(r)sQt − d1(r)
2
Q′t) + k0

= d0(r) 〈s〉+ k0

(69)

6In general this gives D0

t
(s)Qt(s) = 1/2∂s(D

1

t
(s))Qt(s) + 1/2D1

t
(s)Q′

t
(s), but since

D1
t (s) = d1(r) it follows that ∂s(D

1
t )(s) = 0.

15



by using the stationary condition (65). Moreover, since7

k0 = −
∫

Q′tds = −Qt(s)⇒ k0 = 0 (70)

therefore we have that

∂t 〈s〉 = d0(r) 〈s〉 = −r∆′t(m) 〈s〉 (71)

which is a differential equation whose solution will provide µs(t), transition
rates involved in ∆′t(m) are specified according to (41), as we show below.
In the same way we set k = 2 in eq. (68) and compute






∂t 〈s2〉 = −
∫
s2Qtds− d0(r)

∫
s3Q′tds+

d1(r)
2

∫
s2Q′′t ds

= −d0(r) 〈s2〉 − d0(r)(s3Qt + 3
∫
s2Qtds) +

d1(r)
2

(s2Q′t − 2
∫
sQ′tds)

= 2d0(r) 〈s2〉 − s2(d0(r)sQt − d1(r)
2
Q′t)− d1(r)

∫
sQ′tds

= 2d0(r) 〈s2〉 − d1(r)(sQt −
∫
Qtds)

= 2d0(r) 〈s2〉 − d1(r)k1
(72)

by using again the stationary condition (65). Therefore, by observing that

k1 = (sQt −
∫

Qtds) = −1 (73)

we conclude that

∂t
〈
s2
〉
= 2d0(r)

〈
s2
〉
+ d1(r) = −2rs∆′t(m)

〈
s2
〉
+ r2Σt(m) (74)

which is a differential equation for the second moment.
In order to proceed further, the following system of coupled8 differential
equations needs to be solved

{
∂t 〈s〉 = d0(r) 〈s〉 : d0(r) = −r∆′t(m)
∂t 〈s2〉 = 2d0(r) 〈s2〉+ d1(r) : d1(r) = r2Σt(m)

(75)

This system yields a fundamental result. The transition rates enter the distri-
bution of spreading fluctuations about the drifting trajectory. Therefore, be-
ing transition rates the mean-field interaction functions of the HIAs, spread-
ing fluctuations are really described as due to those unobservable microscopic
interactions and transitions on Ω which macroscopic effects project onto Λ.

7Being s a continuous random variable, the value of the density at every point is
Qt(s) = 0.

8The coupling of eq. (71) and eq. (74) is due to m involved in the coefficients d0(r)
and d1(r), defined in (63).
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Let us now solve the system (75). First of all we integrate the equation
for the first moment, i.e. the mean:

∂t 〈s〉 = d0(r) 〈s〉 : 〈s(0)〉 = 〈s0〉 ⇒ 〈s〉 = 〈s0〉 ed0(r)t = µs(t) (76)

As regards the second moment we have
{

∂t 〈s2〉 = 2d0(r) 〈s2〉+ d1(r) : 〈s(0)2〉 = 〈s20〉
⇒ 〈s2〉 = 〈s2e〉+ (〈s20〉 − 〈s2e〉)e2d0(r)t : 〈s2e〉 = − d1(r)

2d0(r)

(77)

Now let us compute the variance by using the above results






≪ s≫= 〈s2〉 − 〈s〉2 = 〈s2e〉+ (〈s20〉 − 〈s2e〉)e2d0(r)t − 〈s0〉2 e2d0(r)t
= 〈s2e〉 (1− e2d0(r)t) + (〈s20〉 − 〈s0〉2)e2d0(r)t s.t. 〈s20〉 = 〈s0〉2
= 〈s2e〉 (1− e2d0(r)t) = σ2

s (t)

(78)

Note that if we set 〈s0〉 = 0 then µs(t) = 0 and σ2
s(t) = 〈s2〉. Therefore, by

using (63) we have
{

µs(t) = 〈s0〉 exp (−r∆′t(m)t)

σ2
s(t) = 〈s2e〉 [1− exp (2r∆′t(m)t)] : 〈s2e〉 = − r

2
Σt(m)
∆′

t(m)

(79)

and due the Gaussianity, we have that

Qt(s) =
1

√

2πσ2
t (t)

exp

{

−(s− µs(t))
2

2σ2
s (t)

}

(80)

Equation (80) is therefore a functional rather than a function, indeed we
only know that µs(t) and σ

2
s(t) are functions of transition rates in ∆′t(m) and

Σt(m), both depending on the solution of the macroscopic equation.

1.4.4 Final inferential result: aggregate dynamics

Transition rates specifications are needed in order to derive a general solution
to a specific problem. We involve the phenomenological model (24) and
(25) to give the aggregate stochastic trajectory dynamics of the underlying
stochastic process X1(t) = X(ω1, t) on the state space Λ we started with.







X1(t) = Nm(t) +
√
Ns(t) s.t.

ṁ = ∆t(m) = βt(m)− δt(m) : m(0) = m0 ⇒ m(t) = m(m0, t)

s(t)
i.i.d.→ N (µs(t), σ

2
s (t)) ≡ Qt(s) where

µs(t) = 〈s0〉 exp(r∆′t(m)) and

σ2
s(t) = 〈s2e〉 [1− exp (2r∆′s(m))] : 〈s2e〉 = − r

2
Σt(m)
∆′

t(m)

(81)
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It is worth noticing that

1. ∆′t(m) < 0 is a sufficient condition for the model to be consistent;

2. the size of jumps r is involved in the aggregate model.

Hence, once the ME has been set up and transition rates have been specified,
the solution is completely given by eq. (81) as regards the aggregate state
variable. From eqs. (30) and (35) we have that

{
∂tPt(X1(t)) ≡ ∂tQt(s) + ṡ∂sQt(s)
η∂tPt(Xh) = η∂tQt(s)−√ηṁ∂sQt(s)

(82)

It is now possible to provide an expression for the r.h.s. of the ME which,
once integrated w.r.t. time, provides the final solution to the original ME
(22), that is

Pt(Xh) = Qt(s)−
√
η

∫

ṁ∂sQt(s)dt (83)

Equation (83), according to the phenomenological model (25) and (81), eval-
uates the probability of finding a fraction Xh of X1(t) in a state of Λ at time
t ∈ T.

2 The NSF-ME

2.1 Transitory mechanics, phenomenological model and

ME

The NSF-ME concerns the dynamics of the NSF population which will de-
termine the credit market network. The state space for these firms is Ω =
{ω0, ω1} where f ∈ ω1 means that the firm is NSF, while f ∈ ω0 stands for
SF. Accordingly, we have

N1(t) = #
{
f ∈ FB

t

}
, N0(t) = N −N1(t) = #

{
f ∈ F − FB

t

}
(84)

being N the constant number of firms in the system. This means that the
ABM is the DGP (data generating process) of the two stochastic processes
in eq. (84). We define the state space Λ for N1(t) as done in eq.s (2)-(4) by
observing that

N 1 = min
t
{N1(t)} ∧ N1 = max

t
{N1(t)} (85)

Then consider that a realization is
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N1(t) = Nh ∈ Λ = {N 1 + hr : h ≤ H ∈ N, N1 = 0} (86)

therefore

(N1 = 0) ≤ Nh = [N1 + hr] ≤ N1 = (N1 +Hr = N) : r = 1 (87)

It is worth stressing that r = 1 follows from that N 1, Nh, N 1, h and N
are all natural numbers: this is one of the reasons why in literature unitary
jumps are involved.9 We consider {N1(t) : t ∈ T} a jump Markov process
and that the variation

|N1(t+∆t)−N1(t)| = r = 1 : ∆t fixed (88)

is the size of the jump as in eq. (3). In this section we explicitly define
transition rates for the NSF-ME by using the theory developed in the model.
Let us begin with birth transition rates. According to eq. (86) and by using
eq. (18) with X1(t) = N1(t) we have

βt(Nh − ϑ) =
{

βt(Nh) = wt(Nh + 1|Nh) : ϑ = 0
βt(Nh − 1) = wt(Nh|Nh − 1) : ϑ = 1

(89)

Since N is constant βt(N1(t)) depends on how many agents belong to ω0 ∈
Ω (how many SF firms are in the system), that is N − N1(t) being Nh a
realization of N1(t).
Only firms in ω1 ∈ Ω will be involved in the network, indeed only NSF firms
ask for credit. Therefore, ω1 is our state of interest and Nh performs as the
state variable on Λ to evaluate this volume of firms. Two environmental
externality function are introduced in order to estimate the probability for a
firm to be NSF or SF. For the first this function is defined as

ψ1,t = ψ1

(
N1(t)

N

)

(90)

After that we introduce the probability for the transition event10

P(ω0 ⇀ ω1) = ζt (91)

Let us write

βt(Nh − ϑ) = λt(N − (Nh − ϑ)) s.t. λt = ζtψ1,t (92)

9Other reasons concern the specific nature of particles and the time for transitions to
happen. A treatment of these aspects goes far beyond the aims of this paper, hence we
lefts them for further developments.

10See eq. (12). The variables ζt and ιt are defined by eq.s (13) and (16) in the paper.
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The function λ(t) is said the birth rate and it can be constant w.r.t. time in
simpler situations. The externality function is then defined to be

ψ1,t = ψ1

(
N1

N

)

|N1(t)=Nh
=
b1 + bNh

N
(93)

and, as obvious, b1 > −bNh in order for ψ1 to make sense. Therefore we
can write

βt(Nh − ϑ) = ζt

(
b1 + b(Nh − ϑ)

N

)

(N − (Nh − ϑ)) (94)

which, by the usual homogeneity assumption, provides

Nβt

(
Nh − ϑ
N

)

= Nζt

(
b1 + b(Nh − ϑ)

N

)(
N − (Nh − ϑ)

N

)

(95)

This formalization of βt(Nh − ϑ) has been inspired by Aoki and Yoshikawa
(2006) and Alfarano et al. (2005) and it is interesting to observe that

1. [N − (Nh−ϑ)] is linear with Nh and it can be seen as the resistance to
transition from ω0 to ω1;

2. (Nh−ϑ)[N − (Nh−ϑ)] is quadratic, therefore non-linear, with Nh and
it can be seen as a frictional growth of NSF firms.

As previously remarked, ϑ = 0 indicates outflows while ϑ = 1 refers to inflow
births according to eq. (17). Consider now that N1(t) follows a phenomeno-
logical model as the one in eq. (24) and (25) by setting Xh = Nh. Therefore,
by using eq. (36) we have

βt(Nh − ϑ) = Nβt(φ(−ϑ)) (96)

being φ(−ϑ) defined according to eq. (27) with r = 1 and setting m = φ.
By using eq. (19) the death transition rates can be defined as

δt(Nh + ϑ) =

{
δt(Nh) = wt(Nh − 1|Nh) : ϑ = 0

δt(Nh − 1) = wt(Nh|Nh + 1) : ϑ = 1
(97)

Being N constant δt(N1(t)) depends on how many agents we have in ω1 ∈ Ω,
that is how many non-self financing firms we have or, differently put, it
depends on how many agents do not belong to ω0 ∈ Ω.
Actually f ∈ ω0 is a positive state for a firm, and we hope the volume of SF
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firms to be as higher as possible according to environmental externalities, so
we introduce11

ψ0,t = ψ0

(
N1(t)

N

)

(98)

The probability for a SF firm to become NSF is defined as12

P(ω0 ↽ ω1) = ιt (99)

Now we write

δt(Nh + ϑ) = µt(Nh + ϑ) s.t. µ(t) = ιtψ0(t) (100)

where µt is said the death rate function opposite to λt.
The externality function is defined as

ψ0,t = ψ0

(
Nh

N

)

|N1(t)=Nh
=
b0 + b(N − (Nh + ϑ))

N
(101)

where b0 > −b(N −Nh) in order for ψ0,t to make sense, therefore we can
write

δt(Nh + ϑ) = ιt

(
b0 + b(N − (Nh + ϑ))

N

)

(Nh + ϑ) (102)

so, by using homogeneity as previously done, we have

Nδt

(
Nh + ϑ

N

)

= Nιt

(
b0 + b(N − (Nh + ϑ))

N

)(
Nh + ϑ

N

)

(103)

therefore we observe that

1. (Nh + ϑ) is linear with Nh and it represents resistance to transition
from ω1 to ω0;

2. (Nh+ϑ)[N−(Nh+ϑ)] is quadratic, therefore non-linear, and it mimics
a controlled growth with some friction for the volume of SF firms.

Since ϑ = 0 and ϑ = 1 refer to outflow and inflow respectively, according
to eq. (19), and since N1(t) follows the phenomenological model of eq. (24)
and (25), we can now involve eq. (37) to write

δt(Nh + ϑ) = Nδt(φ(+ϑ)) (104)

11See eq. (11) and footnote 1.
12See eq. (12) and eq. (91). Note that ιt, as well as ζt, is a random variable due to

stochastic shock on prices, therefore these are exogenous time indexed quantities.
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being φ(+ϑ) defined in eq. (27) with r = 1 and m = φ.
The phenomenological model (25) can be explicitly formulated with r = 1,
m = φ and s = ǫ in the following way







Nh + θ = Nφ+
√
Nǫ+ θ : θ = −1, 0,+1 s.t.

(i) N = |SN | (ii) φ = 〈Nh/N〉
(iii) ǫ = (Nh −Nφ)N−1/2 i.i.d.→ Fǫ(µǫ, σ

2
ǫ )

(105)

We now are able to write the ME, which will be solved as in section 1.4.1
{

η∂tQt(ǫ)− ηφ̇∂ǫQt(ǫ) =[
βt(φ(−))Qt(ǫ(−)) + δt(φ(+))Qt(ǫ(+))

]
−

[
Σt(φ(0))Qt(ǫ(0))

] (106)

where ǫ(±ϑ) follows eq. (27) and η
p/2 : p = 1, 2 as defined in eq. (43).

2.2 Macroscopic equation: equilibrium and general so-

lution

As shown in section 1.4.1, by means of eq. (53) with r = 1 we obtain

φ̇ = ∆t(φ) = βt(φ)− δt(φ) : φ(0) = φ0 (107)

Thus, we need an expression for βt(φ) and δt(φ), which are the intensive form
representation of transition rates. According to eq. (96) we have

βt(Nh − ϑ) = Nβt(φ(−ϑ)) : φ(−ϑ) = φ+
√
η(ǫ−√ηϑ) , η = N−1 (108)

By using (95) with ϑ = 0, η = N−1 and Nh = Nφ+
√
Nǫ we can write

{

βt(φ+
√
ηǫ) = ζt

{[
ηb1 + b(φ+

√
ηǫ)

] [
1− (φ+

√
ηǫ)

]}
⇒

⇒ βt(φ+
√
ηǫ)

√
η→0+→ βt(φ) = ζtbφ(1− φ)⇒ b > 0

(109)

In the same way we derive a formulation for δt(φ) by using eq. (104)

δt(Nh + ϑ) = Nδt(φ(+ϑ)) : φ(+ϑ) = φ+
√
η(ǫ+

√
ηϑ) , η = N−1 (110)

so, by using (103) with ϑ = 0, η = N−1 and Nh = Nφ+
√
Nǫ we have

{

δ(φ+
√
ηǫ) = ιt

{[
ηb0 + b(1− (φ+

√
ηǫ))

]
(φ+

√
ηǫ)

}
⇒

⇒ δt(φ+
√
ηǫ)

√
η→0+→ δt(φ) = ιtbφ(1− φ)⇒ b > 0

(111)

and we finally make explicit the macroscopic equation as follows

φ̇ = ρtφ(1− φ) : ρt = b(ζt − ιt) , φ(0) = φ0 , b > 0 (112)

With regards to the time varying coefficient ρt defining the growth factor
ρt = b(ζt − ιt), it is worth stressing that:
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1. in order for the FP equilibrium solution in eq. (62) to make sense, it
must be that ∆′(φ∗) < 0, therefore b(ζt − ιt)(1 − 2φ∗) < 0 with b > 0
by the nature of transition rates, hence







{ρt = b(ζt − ιt) < 0 : b > 0} ⇒
{ζt < ιt ⇔ P (ω0 ↽ ω1) > P (ω0 ⇀ ω1)}

⇒ φ(t)
t→+∞→ φ∗ = 0+

{ρt = b(ζt − ιt) > 0 : b > 0} ⇒
{ζt > ιt ⇔ P (ω0 ↽ ω1) < P (ω0 ⇀ ω1)}

⇒ φ(t)
t→+∞→ φ∗ = 1−

(113)

2. the growth factor ρt is negative (positive) when the price shock makes
more probable the NSF (SF) state when φ∗ < 1/2 (φ∗ > 1/2) which
implies φ∗ = 0+ (φ∗ = 1−);

3. note that the same shock on prices at time t+h and t+k induces ρt+h =
ρt+k but its effect on the trajectory φ(t) is different. It depends on how
far the system is from the equilibrium and on which the equilibrium it
is approaching.

The general solution of the macroscopic equation φ̇ = ρtφ(1− φ) with its
initial condition φ(0) = φ0, that is a Cauchy problem, is

φ(t) =
1

1 +
(

1
φ0

− 1
)

exp [−ρtt]
∈ (0, 1) : φ(0) = φ0 ∈ (0, 1) (114)

The sign of ρt = b(ζt− ιt) drives the dynamics. If ζt and ιt would be constant
eq. (114) would provide the usual deterministic logistic trajectory:

• φ(t) = ϑ ∀t ∈ T iff φ(0) = ϑ, linear-constant on the equilibria φ∗ ∈
{0; 1};

• φ(t) ∈ (0, 1) ∀t ∈ T iff φ(0) ∈ (0, 1), with the S -shaped curve depending
on the initial condition: increasing iff φ0 ∈ (0.5, 1) or decreasing iff
φ0 ∈ (0, 0.5).

The probabilities ζt and ιt are time indexed shock price probabilities, there-
fore they influence the trajectory of φ(t) of the NSF share of firms. As a
consequence, φ(t) can be exogenously perturbed about a logistic paths under
exogenous environmental shocks as shown in figure 2.
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Figure 2: Macroeconomic equation solution: the perturbed drifting trajec-
tory. NSF are N1(t) = Nφ(t). Left panel: φ0 = 0.25, ζ = 0.65, ι = 0.55,
b = 0.025 and N = 500. Right panel: φ0 = 0.75, ζ = 0.65, ι = 0.55, b = 0.025
and N = 500.
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The drifting trajectory which solves the macroeconomic equation enters tran-
sition rates as follows






Σt(φ) = βt(φ) + δt(φ) = b(ζt + ιt)φ(1− φ) > 0

∆(φ) = βt(φ)− δt(φ) = b(ζt − ιt)φ(1− φ)
{
> 0⇒ ζt > ιt
< 0⇒ ζt < ιt






⇒ b > 0

(115)
Moreover, given that ∆′t(φ) < 0 must hold true in order for the FP equation
to make sense we also have

∆′t(φ) = b(ζt − ιt)(1− 2φ) < 0⇒
{
ρt > 0 ∧ φ0 ∈ (0.5, 1)
ρt < 0 ∧ φ0 ∈ (0, 0.5)

(116)

Finally, observing that the only constant to be set is the initial condition
φ0, depending on its value probabilities ζt and ιt can assume every value but
they must satisfy ∆′t(φ) < 0 with b > 0, therefore the extreme scenarios are

{

0 < φ0 < 0.5 , ζt < ιt ⇒ φ(t)
t→+∞→ 0+ No NSF, only SF

0.5 < φ0 < 1 , ζt > ιt ⇒ φ(t)
t→+∞→ 1− No SF, only NSF

(117)

2.3 Fokker-Planck equation: stationary and general

solution

According to eq.s (106), (109) and (111), the FP (55) reads as

∂tQt(ǫ) = −∂φ∆t(φ)∂ǫ(ǫQt(ǫ)) +
1

2
Σt(φ)∂

2
ǫQt(ǫ) (118)

As long as we have two equilibria at φ∗0 = 0 and φ∗1 = 1 it follows that







∆t(φ
∗

i ) = βt(φ
∗

i )− δt(φ∗i ) = ρtφ
∗

i (1− φ∗i ) : ρt = b(ζt − ιt)
∆′t(φ

∗

i ) = ρt(1− 2φ∗i )
Σt(φ

∗

i ) = βt(φ
∗

i ) + δt(φ
∗

i ) = ξtφ
∗

i (1− φ∗i ) : ξt = b(ζt + ιt)

φ∗i = θi =

{
0 iff i = 0
1 iff i = 1

(119)
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therefore the stationary13 solution (59) now reads as

Q(ǫ) = Ki exp

{

ǫ2
ρt
ξt

1− 2φ∗i
φ∗i (1− φ∗i )

}

= Ki exp

{

ǫ2
(
ζt − ιt
ζt + ιt

)(
1− 2φ∗i
φ∗i (1− φ∗i )

)}

(120)
Now we observe that

1− 2φ∗i
φ∗i (1− φ∗i )

=

{
+∞ iff i = 0⇒ φ∗0 = 0
−∞ iff i = 1⇒ φ∗1 = 1

(121)

This shows that the stationarity condition to the Fokker-Planck equation
at the eqilibria of the macroscopic equation does not make sense: indeed, as
concerning the state variable, it means that all the firms are (N)SF steadily,
hence no transition is allowed. However, these two limiting cases, although
not impossible, are almost unlikely to be found. The system can approach
an economy condition with all SF or NSF firms but this event is not so likely
to happen when financial fragility really matters.
According to this, the stationarity of the Fokker-Planck equation is to be
analyzed along the drifting path trajectory according to eq.s (62) which reads
as

Q(ǫ) =

√

−1

π

∆′(φ)

Σ(φ)
exp

{

−ǫ2∆
′(φ)

Σ(φ)

}

(122)

In order for (122) to make sense it must hold that

∆′(φ)

Σ(φ)
< 0⇔

(
ζt − ιt
ζt + ιt

)(
1− 2φ

φ(1− φ)

)

< 0 (123)

as discussed in (116) and (117) with φ given in (114). The general solution
of (118) can be derived by following van Kampen (1992) as shown in section
1.4.3. The functional form must be Gaussian since the stationary solution
is Gaussian. As a consequence, only the first two moments are needed. By
computing derivatives, according to (67), the FP equation (118) becomes

∂tQt(ǫ) = −∆′tQt(ǫ)−∆′tǫQ
′

t +
1

2
ΣtQ

′′

t (124)

13Being a stationary solution time references are not necessary. Nevertheless they appear
in ρt and ξt, as well as in their components, because these are random variables for which
time is nothing but an index, they do not depend properly on time. Even though we
consider to be very far from t0, and state variables become stationary, random shocks still
continue to be generated by the DGP, which is the ABM: this is why time enters ρt and
ξt.
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By using eqs. (63) with φ instead of m and r = 1, we get the following
system {

∂t 〈ǫ〉 = d0 〈ǫ〉 : d0 = ∆′t(φ)
∂t 〈ǫ2〉 = 2d0 〈ǫ2〉+ d1 : d1 = Σt(φ)

(125)

which is equivalent to the generic case (75). The solution of the ODE for the
first moment is given by (76) which now reads as

〈ǫ〉 = 〈ǫ0〉 ed0t = µǫ(t) (126)

and by using (77) we get the solution of the ODE for the second moment,
that is

〈
ǫ2
〉
=

〈
ǫ2e
〉
+ (

〈
ǫ20
〉
−
〈
ǫ2e
〉
)e2d0t :

〈
ǫ2e
〉
= − d1

2d0
(127)

The variance defined in eq. (78) now becomes

≪ ǫ≫=
〈
ǫ2e
〉
(1− e2d0t) = σ2

ǫ (t) (128)

Accordingly, the density for spreading fluctuations follows the Gaussian law

Qt(ǫ) =
1

√

2πσ2
ǫ (t)

exp

[

−(ǫ− µǫ(t))
2

2σ2
ǫ (t)

]

(129)
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2.4 NSF stochastic dynamics

Summarising all the results obtained so far, we can conclude that







N1(t) = Nφ(t) +
√
Nǫ(t) s.t.

φ(t) =
[

1 +
(

1
φ0

− 1
)

exp (−ρtt)
]
−1

: φ0 ∈ [0, 1)

ǫ(t)
i.i.d→ N (µǫ(t), σ

2
ǫ (t)) where







µǫ(t) = 〈ǫ0〉 exp (−∆′t(φ)t)
σ2
ǫ (t) = 〈ǫ2e〉 [1− exp (2∆′t(φ)t)] : 〈ǫ2e〉 = − Σt(φ)

2∆′

t(φ)

Qt(ǫ) =
1√

2πσ2
ǫ (t)

exp
[

− (ǫ−µǫ(t))2

2σ2
ǫ (t)

]

and

{
∆′t(φ) = β ′t(t)− δ′t(φ) = ρt(1− 2φ(t))
Σt(φ) = βt(t) + δt(φ) = ξtφ(t)(1− φ(t)) with

{
ρt = b(ζt − ιt)
ξt = b(ζt + ιt) being

{
βt(φ) = ζtbφ(1− φ)
δt(φ) = ιtbφ(1− φ) where

ζt, ιt > 0 are exogenously driven by shocks on prices ut and
b > 0 is the only free parameter

(130)

It is important to observe that the model makes sense if and only if

{
Σt(φ) = ξbφ(1− φ) > 0 : ξt = b(ζt + ιt) , b > 0
∆′t(φ) = ρt(1− 2φ) < 0 : ρ : t = b(ζt − ιt) , b > 0

(131)

Indeed, the first of (131) must hold because Σt(φ) = βt(φ)+δt(φ), where βt(φ)
and δt(φ) are the transition rates (i.e. non negative transition probabilities
per vanishing reference unit of time). As a consequence, Σt(φ) > 0: if Σt(φ) ≤
0 then (120) does not make sense because R(φ) is indefinite. The second
of (131) must hold because ∆′t(φ)/Σt(φ) < 0 is essential. The condition
∆′t(φ) < 0 is fundamental as already highlighted with reference to and eq.
(116). As a consequence, if an inflow into NSF is more probable than an
outflow, when the NSF are dominant in the long run, they will cover the
largest share of firms. On the other hand, if a outflows from NSF is more
probable than an inflow, when the SF are dominant, the NSF will tend to
extinguish. The possible patterns of evolution are displayed in figure 3
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Figure 3: Four different solutions depending on the initial conditions on φ0

and on probabilities ζt and ιt.

3 The K-ME

3.1 Definitions

Let FB
t = {fi : i ≤ F ∈ N} be the set of |FB

t | NSF firms and Bt = {bj : j ≤ B ∈ N}
a set of B = |Bt| banks. A NSF firm and a bank can give rise to three kinds
of relationship14

1. credit demand link from FB
t to Bt

δ : FB
t ⊗ Bt → {0, 1} s.t. (f, b) 7→ δ(f, b) =

{
1⇔ f ⇀ b

0⇔ otherwise
(132)

2. credit supply link from Bt to FB
t

σ : FB
t ⊗ Bt → {0, 1} s.t. (f, b) 7→ σ(f, b) =

{
1⇔ f ↽ b

0⇔ otherwise
(133)

3. credit contract link between Bt and FB
t

λ : FB
t ⊗ Bt → {0, 1} s.t. (f, b) 7→ λ(f, b) =

{
1⇔ f ⇀ b ∧ f ↽ b

0⇔ otherwise
(134)

14With ⊗ we indicate the interaction between the two sets.
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The number of banks actively involved in the credit market, i.e. lending
credit to NSF firms is Kt = |Bt| = B̄t being BB

t =
⋃

fi∈FB
t
Bfi,t ⊆ Bt. Each

component is a clique and its cardinality N b
1(t) evaluates either the order

of the clique and the degree of each client of a lender, that is Ki = K(fi)
being fi a node in a sub-network Gb,t of Gt. Therefore, Ki = N b

1(t) for every
firm borrowing from the b-th lender. The degree distribution is also the
distribution of the cliqueness of the network Gt. Moreover, the degree itself
is a random variable taking values on a set of Kt natural numbers, being Kt

the number of components in the network: degree’s values range from 0 to
St, being St ∈ [1, N1(t)] the number of nodes of the giant component.

Ki =

{
K(fi) = K ∈ [0, St] : St ∈ [1, N1(t)]

P (K, t) = Pt(K) :
∑

K∈[0,St]
Pt(K) = 1

(135)

3.2 Transitory mechanics, phenomenological model and

ME

Consider a NSF firm f ∈ FB
t with degree Kt(f) at time t: Kt(f) represents

a random trajectory indexed by time over a certain state space

ΛK,t = {K(l, t) = l ≤ St ∈ [0, N1(t)]} (136)

made of St+1 discrete levels of degree between 0 and St. But, St ∈ [0, N1(t)] is
the size of the giant component. It can change through time depending on the
number of NSF firms in the graph Gt = G(FB

t ). It depends on the NSF-ME
solution in eq. (130). Moreover, from the NSF-ME solution, N1(t) ∈ [0, N).
This means that, from the one hand ΛK,t is not mechanically invariant15 and,
from the other hand, it is nevertheless ascribable to a mechanically invariant
state space by considering its maximal extension: since N1(t) ∈ [0, N) ⇒
N1(t) ∈ [0, N − 1] it follows that St ∈ [0, N1(t)]⇒ St ∈ [0, N − 1], therefore

ΛK = {Kl = l ∈ [0, N − 1]} (137)

is the mechanically invariant state space and it is made of N discrete levels of
degree. For what concerns the general ME modelling of section 1 this means
that eq. (5) reads as

[0 ≤ K(l, t) = min
t

ΛK,t] ≤ K(l, t) ≤ [K(l, t) = max
t

ΛK,t = St] (138)

The N1(t) NSF firms distribute on ΛK according to Gt = G(FB
t ) which

is made of Kt ≤ N non empty isolate clique-components (i.e. islands),

15An object is here said to be mechanically invariant if it is constant w.r.t. time.
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therefore only Kt ≤ N levels can be occupied. An occupation number is
N l(t) = KlCl(t) which means that

N l(t) = #
{
Kt(f) = Kl ∈ ΛK : f ∈ FB

t

}
⊆ [0, N − 1] (139)

that is the number of NSF firms with degree Kl = l: the occupation number
for the l-th degree level among the N possible ones. According to this we
can define a configuration as

N(t) =
({
N l(t) = KlCl(t) : Kl = l ∈ ΛK

})
: ΛK = [0, N − 1] (140)

which is a vector of occupation numbers: only Kt ≤ N of them are non zero,
those concerning the levels of degree occupied by NSF firms in Gt = G(FB

t ).
If we then divide each occupation number by the number of NSF firms we
get

n(t) =

({

nl(t) =
N l(t)

N1(t)
∈ [0, 1] : l ∈ ΛK = [0, N − 1]

})

(141)

which evaluates the density of NSF firms in the l-th level of the degree or,
if you prefer, the degree distribution: indeed nl(t) is the share of the N1(t)
NSF firms with degree Kl = l.
Our problem is now to provide a model for N l(t) or nl(t) = N l(t)/N1(t) to
develop a K-ME for the density of the degree. The definition of a component
is

Gb,t =
{
f ∈ F b

t : λ(f, b) = 1, b ∈ BB
t ⊆ Bt

}
⊆ Gt : |Gb,t| = N b

1(t) (142)

Among the Kt ≤ N non empty components consider Gb,t to be the one of
interest. The dimension of the component also evaluates the degree of each
node in it, that is, according to eq. (142), N b

1(t) = |Gb,t| = Kl ∈ ΛK .
The dimension of a component can change through time because of firms
transitions within the network, but it can happen due to updates from/to
the external environment as well as (see figure 4).

To represent this mechanism we define two types of transitions within the
network:

• death transitions from Gb,t: X→b = # {f ∈ Gb,t → f ∈ Gb′,t+∆t} for which
we have N b

1(t) = Kl → N b
1(t+∆t) = Kl′ being l

′ = l −X→b ;

• birth transitions to Gb,t+∆t: X
←

b = # {f ∈ Gb′,t → f ∈ Gb,t+∆t} for which
we have N b

1(t) = Kl → N b
1(t+∆t) = Kl′ being l

′ = l +X←b ;
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Figure 4: Transition within the network and updates from/to the external
environment.

Similarly we define two kinds of updates:

• pure deaths from Gb,t: X↑b = # {f ∈ Gb,t → f /∈ Gt+∆t} for which we

have N b
1(t) = Kl → N b

1(t+∆t) = Kl′ being l
′ = l −X↑b ;

• pure births into Gb,t+∆t: X
↓

b = # {f /∈ Gt → f ∈ Gb,t+∆t} for which we

have N b
1(t) = Kl → N b

1(t+∆t) = Kl′ being l
′ = l +X↓b ;

According to these four sources of variation we define the following demo-
graphic law

N b
1(t) = Kl → N b

1(t+∆t) = Kl′ = Kl + ϕnat
b (t) + ϕmig

b (t)

where ϕnat
b (t) = X↓b − X↑b is the natural balance and ϕmig

b (t) = X←b − X→b
the migratory balance, therefore the variation of the b-th sub-system is

|N b
1(t+∆t)−N b

1(t)| = |ϕnat
b (t) + ϕmig

b (t)| = |ϕtot
b (t)| 6= const : ∆t fixed

This quantity cannot be constant16, neither through time nor across compo-
nents since the volume of firms N1(t) in the credit network always updates,
even when ϕmig

b (t) = 0. This means that the size of the jumps of the com-
ponent’s dimension changes and this configures the degree of a component
as a stochastic process. In any case, if the problem is to specify a model
for N l(t) it does not matter what happens within each single component

16In the case of NSF-ME we were allowed to put the variation as constant, see eq. (88).
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since elementary constituents of sub-systems (i.e. firms in components) are
perfectly indistinguishable. What really matters to our aim is the number
components Cl(t) in the Kl degree level on the state space ΛK .
Since Cl(t) is the number of components in the Kl degree level, and since its
value changes according to the dynamics of the volume of N1(t) elementary
constituents of the credit system, a phenomenological representation for it
can be written as

Cl(t) = N1(t)[φl(t) +
√

η1(t)ǫ̂l(t)] : η1(t)N1(t) = 1 (143)

Each component in Kl is also a l-clique, being Kl = l ∈ ΛK . Therefore,
to evaluate the number of firms in the l-th degree level we can consider the
following phenomenological model

N l(t) = KlCl(t) = KlN1(t)[φl(t) +
√

η1(t)ǫ̂l(t)] : η1(t)N1(t) = 1 (144)

In both phenomenological representations ǫ̂l(t) is unknown, but we can as-
sume that

ǫ̂l(t) =

√

N1(t)

Kl
ǫl(t) (145)

to get
N l(t) = N1(t)[Klφl(t) +

√

Klǫl(t)] (146)

from which we have

nl(t) =
N l(t)

N1(t)
= Klφl(t) +

√

Klǫl(t) ∈ [0, 1] (147)

Eq. (146) is the phenomenological model for the share of nodes in the
Kl degree level: the sequence of these shares defines the degree distribution
as in eq. (141). With this phenomenological model we develop the K-ME:
the (sub-)system size parameter here is fixed to Kl. Moreover, note that in
eq. (144) the solution of the NSF-ME enters the degree distribution model
according to eq. (143). Therefore, setting up a K-ME for the state variable
nl(t) in eq. (147) will involve the NSF-ME solution. This means that the
NSF-ME is nested into the K-ME.

A component changes its degree level if at least one firm enters or exits
within a small but fixed interval of time ∆t → 0+. So we allow for unitary
jumps on ΛK . From eq. (147), the phenomenological model for nl(t) concerns
an intensive quantity, indeed nl(t) ∈ [0, 1] is the fraction of NSF firms in the
network belonging to theKl-th degree level. The (sub-)system size parameter
is now constant being Kl ∈ ΛK . We also know that jumps are allowed
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and, by assumption, one component at time changes its degree level. As a
consequence, the size of the jump for the state variable nl(t) is represented
in intensive form as ρl,t = ρ(Kl, N1(t)). There could be at most N = |ΛK |
components as well as N degree levels. Therefore we can define







nl(t)± ϑρl,t = Klφl(t) +
√
Klǫl(t)± ϑρl(t) s.t.

ρl(t) = ρ(Kl, N1(t))
φl(t) = 〈nl(t)kl〉 ∈ [0, kl] : klKl = 1

ǫl(t) = (nl(t)−Klφl(t))K
−1/2
l

i.i.d→ Fǫl(µǫl(t), σ
2
ǫl
(t))

(148)

This phenomenological model is estimated by following eq.s (24) and (25),
where ϑ has been defined in eq. (14).
Since, by definition, nl(t) ∈ [0, 1] then φl(t) ∈ [0, kl] being kl = 1/Kl. Hence
we observe that







nl(t) = 0⇒ Klφl(t) = −
√
Klǫl(t)⇒ φl(t) = −

√
klǫl(t)⇒

〈φl(t)〉 = 0 i.f.f. 〈ǫl〉 = 0
nl(t) = 1⇒ Klφl(t) = 1−√Klǫl(t)⇒ φl(t) = kl −

√
klǫl(t)⇒

〈φl(t)〉 = kl i.f.f. 〈ǫl〉 = 0

(149)

Therefore, since now, we can conclude that the fluctuations should have zero
mean, that is

µǫl(t) = 〈ǫl(t)〉 = 0 (150)

This model coupled with eq.s (147), (146), (144) and (143) defines the com-
plete model for the degree.

Now we specify transition rates according to the general set-up developed
in section 1 by considering that transition rates are transition probabilities
per (vanishing) reference unit of time and that they can be conceived as
functions of three elements:

• probabilities for transition events to happen, see eq. (12);

• environment effects’ or externality functions, see eq. (11);

• volumes of units in states.

A generic representation of the a-priori probabilities for transition events
has been introduced in section 1.1 in eq. (12). In the present context they
concern the creation and destruction of a link since a transition event, from
a component of level Kl to another one, happens with links’ creation or
destruction. Hence, as concerning Cl(t), a transition event is a jump on a
higher/lower degree level and, due to this, transitions can be expressed in
terms of probabilities. Define t′ = t + ∆t and consider that between t and
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t′ a link between two firms can be created either if firms were linked or not,
modifying the number of firms in a given degree level. On the other hand,
a link destruction can happen if and only if two firms were linked at time
t, and this modifies the cardinality of the degree level too. To make things
as simple as possible we consider these probabilities to be constant through
time independently of the way the link is created or destroyed.

P(at
′

i,j = 1|ati,j = 0) = ζ ∧ P(at
′

i,j = 0|ati,j = 1) = ι (151)

We will call these probabilities as link creation and destruction rates respec-
tively.

In every network Gt there is one giant component17 GSs,t with dimension

St
i.i.d→ U([0, N − 1]). The giant component covers a fraction γt = St/N1(t) of

nodes in the network and it represents the group of firms which are linked
to the bank s ∈ BB

t which has the largest number of clients. The dimension
of the giant component is an information concerning reliability and conve-
nience of the bank: this can induce an emulative behaviour among firms
when choosing the bank to be linked to. This also means that the size of
the giant component could modify the morphology of the network by exert-
ing an attractive force18. Consider than that the more γt → 1− the more
(1− γt)→ 0+: a firm tied to the giant component should have a low proba-
bility of abandoning it, while a firm tied to another component should have a
high probability to leave its component to be tied with the giant one. There-
fore, the presence of the giant component indirectly influences the process
of creation and destruction of links. That is, the giant component GSs,t has
a gravitational effect on the others Gb,t. Therefore, the higher γt the more a
firm should be tempted to leave its component Gb,t to enter GSs,t, and the less
it should be tempted to leave GSs,t to go to another bank if the firm belongs
to the giant component. The influence of the giant component in the cre-
ation/destruction of links will be introduced in transition rates according to
the externality functions ψ0,t and ψ1,t introduced in section 1.1, see eq. (11).
Let us define them more precisely.

If we consider a component Gb,t to be the component of interest, an inflow
from another component or an outflow to another component are influenced
by the presence of the giant one. We introduce ψ1,l,t for the inflows and ψ0,l,t

17There can be more one giant component but, in this case, they must have the same
dimension. In what follows we consider only the case of one giant component.

18Actually every bank exerts to some extent this force but the giant component’s one
is the strongest. We consider only this one for simplicity of exposition of this innovative
stream of modelling, leaving more complex structures to further developments.
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for the outflows into/from a degree level Kl = l ∈ ΛK ; both functions must
reflect the gravitational influence of the giant component size γt relatively to
the degree level Kl, which evaluates also the component size of firms with
degree Kl. As obvious, St/N1(t) = γt ≥ max {Kl/N1} in order for a compo-
nent to be the giant one.
As concerning the inflows, we consider the case of a ψ1,l,t which reacts in-
versely w.r.t. γt and directly to Kl, that is inversely to kl = K−1l .
On the contrary, concerning the outflows, the greater the giant component
the more a firm is tempted to match with the giant component, increasing the
possibility of an outflow. But this effect should be more intense at low degree
levels. Therefore we want ψ0,l,t to react directly w.r.t γt and inversely w.r.t.
Kl, that is inversely to kl = K−1l . Hence we guess the following externality
functions

ψ1,l,t = exp(π2
1(1− γt)(φ0

l /kl)) ∧ ψ0,l,t = exp(π2
1γt(φ

0
l /kl)) (152)

where π1 is the firm-bank matching probability19. These externality functions
change with time but they apply equivalently to every component.
Now, according to the general set-up, we can define birth and death rates as
done in eq. (13)

λl,t = ψ1,l,tζ birth rate ∧ µl,t = ψ0,l,tι death rate (153)

The last factor that is needed in order to specify the transition rates is the
volume of agents in states. As regarding birth transition rate we consider
that it depends on how many agents are not in the state of interest, that
is 1 − nl(t), while the death transition rate depends on how many agent we
have in the state of interest, nl(t). Then, by using eq. (18) we now have that
the implicit form of the birth transition rate is

βt(nl(t)− ϑρl,t) =
{

βt(nl(t)) = wt(nl(t) + ρl,t|nl(t)) : ϑ = 0 outflow
βt(nl(t)− ρl,t) = wt(nl(t)|nl(t)− ρl,t) : ϑ = 1 inflow

(154)
By using the birth rate function we have

βt(nl(t)−ϑρl,t) = λl,t[1−(nl(t)−ϑρl,t)] : λl,t = ζ exp(π2
1(1−γt)φ0

l /kl) (155)

19The probability π1 is indicated by p1 in the paper. The function φ0

l
evaluates the

initial condition for the macroscopic equation (173): indeed, not only high/low degree
levels matter but also how much they are populated. Moreover, we used π2

1 instead of π1

this is the matching probability between a firm and a bank, therefore π2

1
is the expected

probability for two firms to be linked (i.e indirectly interact - mean field interaction) one
another.
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In the same way we provide the implicit death transition rate form

δt(nl(t) + ϑρl,t) =

{
δt(nl(t)) = wt(nl(t)− ρl,t|nl(t)) : ϑ = 0 outflow

δt(nl(t) + ρl,t) = wt(nl(t)|nl(t) + ρl,t) : ϑ = 1 inflow
(156)

By using the death rate function we have

δt(nl(t) + ϑρl,t) = µl,t[nl(t) + ϑρl,t)] : µl,t = ι exp(π2
1γtφ

0
l /kl) (157)

We now have a complete specification of transition rates so we can involve
them in methods developed in section 1.3 and 1.4 to solve the K-ME.

By using eq. (26) and (27) in eq. (148), setting Xh = ml as a fixed
realization of the stochastic process nl(t), m = φl and s = ǫl we can write
the l.h.s. of the K-ME as follows

1

Kl

dPt(nl)

dt
=

1

Kl

∂Qt(ǫl)

∂t
− 1√

Kl

dφl

dt

∂Qt(ǫl)

∂ǫl
(158)

as was done in eq. (35) since, according to eq. (148), we can always write
Pt(nl(t)) = Qt(ǫl(t)), as done in eq. (28) or (38). By using eq. (155) and
(157) we see that transition rates are homogeneous functions w.r.t. to the
(sub) system size parameter Kl, therefore eq.s (36)-(38) still hold true and
can be rewritten as

βt(nl − ϑρl,t) = Klβt(φl,(−ϑ)) (159)

δt(nl + ϑρl,t) = Klδt(φl,(+ϑ)) (160)

Pt(nl ± ϑρl,t) = Qt(ǫl,(±ϑ)) (161)

where φl,(±ϑ) and ǫl,(±ϑ) follow eq. (27) and read as

φl,(±ϑ) = φl +
√

klǫl,(±ϑ) : ǫl,(±ϑ) = ǫl ± ϑρl(t)kl (162)

since
nl(t)± ϑρl,t

Kl
= φl +

√

klǫl ± ϑρl,tkl : klKl = 1 (163)

Therefore, the K-ME to be solved follows eq. (42) and reads as







1
Kl

∂Qt(ǫl)
∂t
− 1
√

Kl

dφl

dt
∂Qt(ǫl)

∂ǫl
=

[
βt(φl,(−))Qt(ǫl,(−)) + δt(φl,(+))Qt(ǫl,(+))

]
+

−
[
Σt(φl,(0))Qt(ǫl,(0))

]
(164)
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where Σt(φl,(0)) is defined in eq. (40) and its companion ∆t(φl,(0)) follows eq.
(41).
As explained in section 1.4, by developing expansions of transition rates
about φl and of the density about ǫl we can have the usual system of coupled
equations

{

φ̇l = ρl,t∆t(φl) = ρl, t (βt(φl)− δt(φl))

∂tQt(ǫl) = −ρl,t∆′t(φl)∂ǫl(ǫlQt(ǫl)) +
ρ2l,t
2
Σt(φl)∂

2
ǫl
Qt(ǫl)

(165)

with the macroscopic equation (first line) for the drifting trajectory and the
Fokker-Planck equation (second line) for the density of fluctuations about
this trajectory. The solution of the system (165) provides the solution to
our problem, as stated in (81), by involving also the solution of the NSF-ME
given in eq. (130). In the following sections we provide the solution of this
system of coupled equation as shown in section 1.4.

3.3 Macroscopic equation: equilibrium and general so-

lution

This subsection presents the solution of the macroscopic equation for the
drifting trajectory following steps of section 1.4.1. Instead of r we here use
ρl,t = ρ(Kl, N1(t)) since it is not dependent on time but on N1(t), already
determined by the NSF-ME solution which does not depend on the K-ME.
Hence we have

φ̇l = ρl,t∆t(φl) = ρl,t[βt(φl)− δt(φl)] : φl(0) = φ0
l (166)

By using eq. (155) and (159) we have

Klβt

(
nl − ϑρl,t

Kl

)

= Klζe
π2

1
(1−γt)φ0

l /kl
1− (nl − ϑρl,t)

Kl
= Klβt(φb,(−)) (167)

By using eq. (157) and (160) we have

Klδt

(
nl + ϑρl,t

Kl

)

= Klιe
π2

1
γtφ0

l /kl
nl + ϑρl,t

Kl
= Klδt(φl,(+)) (168)

Set ϑ = 0, kl = K−1l and since nl = Klφl +
√
Klǫl we have

{
βt(φl +

√
klǫl) = ζeπ

2

1
(1−γt)φ0

l /kl[1− (φl +
√
klǫl)]⇒

βt(φl) = ζeπ
2

1
(1−γt)φ0

l /kl(1− φl)
(169)
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and {
δt(φl +

√
ρlǫl) = ιeπ

2

1
γtφ0

l /kl(φl +
√
klǫl)⇒

δt(φl) = ιeπ
2

1
γtφ0

l /klφl : ρl → 0+
(170)

hence

Σt(φl) = βt(φl) + δt(φl) = ζeπ
2

1
(1−γt)φ0

l /kl −
(

ζeπ
2

1
(1−γt)φ0

l /kl − ιeπ1γt
)

φl (171)

∆t(φl) = βt(φl)− δt(φl) = ζeπ
2

1
(1−γt)φ0

l /kl −
(

ζeπ1(1−γt)φ0

l /kl + ιeπ
2

1
γtφ0

l /kl
)

φl

(172)
Therefore the macroscopic equation (166) reads as

φ̇l = ρl,tζe
π2

1
(1−γt)φ0

l /kl − ρl,t
(

ζeπ
2

1
(1−γt)φ0

l /kl + ιeπ
2

1
γtφ0

l /kl
)

φl : φl(0) = φ0
l

(173)
which is a first order linear ODE with exogenously and stochastically per-
turbed coefficients. Indeed γt is given by

γt =
St

N1(t)
∈ [0, 1] :

{

St
i.i.d→ U([0, N1(t)])

N1(t) = Nφ(t) +
√
Nǫ(t) NSF-ME solution

(174)

As already discussed in section 2.2, the stochastic coefficients are not involved
in time derivatives since, as shown by eq. (174), St is exogenous while N1(t) is
known at each point in time: time is just an indexing parameter. Therefore,
by using eq. (153) the general solution of eq. (173) reads as

φl(t) = (φ0
l − φ∗l ) exp {−ρl,t [λl,t + µl,t] t}+ φ∗l (175)

where

φ̇l = 0⇒ φ∗l =

[

1 +
µl,t

λl,t

]
−1

(176)

is the equilibrium solution.

3.4 Fokker-Planck equation: stationary and general

solution

The second equation of system (165) is

∂tQt(ǫl) = −ρl,t∆′t(φl)∂ǫl(ǫlQt(ǫl)) +
ρ2l,t
2
Σt(φl)∂

2
ǫl
Qt(ǫl) (177)
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which is a FP equation for the density Qt(ǫl) of spreading fluctuations about
the drifting trajectory φl of eq. (175). The FP equation (177) is a second
order stochastic partial differential equation of parabolic type and, according
to eq. (172), it involves a drift coefficient which reads as

∆′t(φl) = −
(

ζeπ
2

1
(1−γt)φ0

l /kl + ιeπ
2

1
γtφ0

l /kl
)

(178)

and a diffusion coefficient which, according to eq. (171), reads as

Σt(φl) = ζeπ
2

1
(1−γt)φ0

l /kl + ιeπ
2

1
γtφ0

l /kl −
(

ζeπ
2

1
(1−γt)φ0

l /kl − ιeπ2

1
γtφ0

l /kl
)

φl (179)

The drift coefficient is therefore constant with respect to φl while the diffusion
coefficient depends on φl.
As in section 1.4.2, the stationary solution takes the form of eq. (62)







Q(ǫl) = K exp
{

− ǫ2l
ρl,t
R(φl)

}

s.t.

K =
√

R(φl)
π

: R(φl) = − ∆′(φl)
ρl,tΣ(φl)

> 0
(180)

where π ∼= 3.14, π1 is the firm-bank matching probability. The general
solution follows the procedure detailed in section 1.4.3. As known, in order
for the model to make sense, the condition R(φl) > 0 is sufficient, therefore
we need to determine the values of the involved quantities for which it holds
true. Since







R(φ∗l ) = − ∆′

t(φl)

ρl,tΣt(φl)

ζeπ
2
1
(1−γt)φ

0

l /kl+ιeπ
2
1
γtφ

0

l /kl

ρl,t

{

ζeπ1(1−γt)−

(

ζe
π2
1
(1−γt)φ

0

l
/kl−ιe

π2
1
γtφ

0

l
/kl

)(

1+ ι
ζ
e
−π2

1
(1−2γt)φ

0

l
/kl

)

−1
} > 0 (181)

The condition is satisfied if and only if the denominator is positive: after
some algebra, it is possible to show that this condition is always satisfied

R(φl) > 0 ∀ ζ, ι, π1, γt, ρl,t ∈ (0, 1] (182)

According to eq. (182), the model makes sense if a giant component of at
least two nodes exists and link creation/destruction rates are positive, indeed
π1 and ρl,t are strictly positive.
In order to develop the general solution we follow section 1.4.3. According
to eq.s (63)-(66), the FP equation (177) reads as

∂tQt(ǫl) = −ρl,t∆′t(φl)Qt(ǫl)−∆′tǫlQ
′

t(ǫl) +
ρ2l,t
2
Σt(φl)Q

′′

t (ǫl) (183)
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By using eq. (63) with m = φl and s = ǫl we get

{
∂t 〈ǫl〉 = d0 〈ǫl〉 : d0 = ρl,t∆

′

t(φl)
∂t 〈ǫ2l 〉 = 2d0 〈ǫ2l 〉+ d1 : d1 = ρ2l,tΣ(φl)

(184)

as done in eq. (75) and which provides the dynamic system of the first two
moments of random fluctuations about the drifting trajectory. Therefore we
have

{

µǫl(t) = 〈ǫ0l 〉 exp(−ρl,t∆′t(φl)t)

σ2
ǫl
(t) = 〈ǫ∗2l 〉 [1− exp(2ρl,t∆

′

t(φl))t] : 〈ǫ∗2l 〉 = −
ρl,tΣt(φl)

2∆′

t(φl)

(185)

which leads us to the general solution

Qt(ǫl) =
1

√

2πσ2
ǫl
(t)

exp

[

−(ǫl − µǫl(t))
2

2σ2
ǫl
(t)

]

: µǫl(t) = 0; due to eq. (150)

(186)
as implied by (80).

3.5 K stochastic dynamics

Now we have all we need to write the final inferential result. Following section
1.4.4 we can easily provide the final result for the quantity nl(t) in eq. (147),
according to the phenomenological model in eq. (148), by specifying all the
needed component of eq. (81) including the results found concerning the last
macroscopic and FP equations.
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





nl(t) =
N l(t)
N1(t)

= Klφl(t) +
√
Klǫl(t) ∈ (0, 1) s.t.

N1(t) solves the NSF-ME
φl(t) = (φ0

l − φ∗l ) exp [−ρl,t (λl,t + µl,t) t] + φ∗l ∈ (0, kl) : klKl = 1 with

φ0
l ∈ (0, kl) φ∗l =

[

1 +
µl,t

λl,t

]
−1

∈ (0, kl) and

ǫl(t)
i.i.d→ N (µǫl(t), σ

2
ǫl
(t)) where







µǫl(t) = 〈ǫ0l 〉 exp(−ρl,t∆′t(φl)t) : 〈ǫ0l 〉 = 0

σ2
ǫl
(t) = 〈ǫ∗2l 〉 [1− exp(2ρl,t∆

′

t(φl))t] : 〈ǫ∗2l 〉 = −
ρl,t
2

Σt(φl)
∆′

t(φl)

Qt(ǫl) =
1√

2πσ2
ǫl
(t)

exp
[

− (ǫl−µǫl
(t))2

2σǫl
(t)

]

and

{
∆′t(φl) = ∂φl

(βt(φl)− δt(φl))
Σt(φl) = βt(φl) + δt(φl) being

{
βt(φl) = λl,t(1− φl)
δt(φl) = µl,tφl where

{
λl,t = ζψ1,l,t : ψ1,l,t = eπ

2

1
(1−γt)φ0

l /kl

µl,t = ιψ0,l,t : ψ0,l,t = eπ
2

1
γtφ0

l /kl where

γt =
St

N1(t)
∈ [0, 1] :

{

St
i.i.d→ U([0, N1(t)])

N1(t) = Nφ(t) +
√
Nǫ(t) NSF-ME solution

being ρl,t =

√
(

kl
N1(t)

)3

.

(187)
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