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1. Introduction

The bulk of the theory of markets, both in its general and its partial equilibrium formulations,

has been developed under the widespread presumption of decreasing or constant returns to

scale in production. Yet few economists would dispute the prevalence of scale economies in

many real-life industries, encompassing old economy sectors such as transportation, manu-

facturing and public utilities all the way to many new economy sectors such as software and

internet-related business. In fact, most economists would probably support the view that

the importance of scale economies in the overall economy is likely to continue to grow in the

years to come. The failure of economic theory to integrate this key dimension of production

processes to an adequate extent is thus probably due to methodological bias or limitations,

rather than to a perceived lack of real-life relevance.

While partial equilibrium theory has been more successful in integrating increasing re-

turns, the associated literature nevertheless reflects quite a few limitations. Most studies

dealing with increasing returns belong to the literature on natural monopoly and contestable

markets, a theory with rather limited real-life relevance (Spence, 1983). This literature pre-

ceded the game-theoretic paradigm in industrial organization. Within the latter, most of

the research on Cournot and Bertrand competition assumes nonincreasing returns to scale.

In both these two paradigms, scale economies typically appear in the form of a fixed-cost

in production1 , and not in the form of declining marginal cost. In short, the present pa-

per is an attempt to partially fill this gap, by providing a thorough and general theoretical

analysis of Cournot markets under a varying number of firms and different types of returns

to scale in production, including declining marginal cost. The prevalence of the latter in

manufacturung industries has been documented in several empirical studies.2

There has been a rich and insightful debate in industrial organization about the welfare

(Bain, 1956) and profitability (Mueller, 1986) effects of increasing the number of firms in an

industry. While many empirical aspects of this fundamental issue remain partly unsettled,

the basic compromise at work is well-known, though still a source of major controversy both

among academics and antitrust practitioners. On the one hand, conventional intuition —
1 This is probably due to the relative ease of dealing with this form of scale economies via the standard
methodology using first-order conditions.
2 See e.g. Friedlaender et al (1983) for automobile production and Ramey (1989) for different industries
(metals, machinery and electrical equipment). Diewert and Wales (1987) estimate a cost function for manu-
facturing that turns out to be concave at all sample points. Ramey (1991) invokes declining marginal cost as
a possible explanation for the excess volatility of production relative to sales, observed in many industries.
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sometimes wrongly — holds that increasing the number of firms reduces monopoly power

and allows closer approximation of the competitive ideal. On the other hand, increasing the

number of firms may result in reduced ability to take advantage of scale economies.3

The welfare implications of market structure have been prominent in the early beginning

of the field. The unquestioned view then was that barriers to entry are responsible for

the presence of imperfect competition, which in turn results in sizable welfare losses. The

belief that public policy must correct for this imperfection by removing barriers to entry and

possibly subsidizing entry had dominated the profession and persisted until quite recently.

Perceptive work by von Weiszacker (1980), Perry (1984), Mankiw and Whinston (1986) and

Suzumura and Kiyono (1987) demonstrated that this view was fundamentally ill-founded by

proving that free entry results in an excessive number of firms relative to a social optimum.

The present paper offers a thorough theoretical investigation of the effects on industry

profits, social welfare and price-cost margins of exogenously increasing the number of firms

in a Cournot industry composed of identical firms under different assumptions on the cost

function. The analysis is both simple and rigorous, and fully takes into account the issues

of existence and multiplicity of (pure-strategy) Cournot equilibria under the same sets of

tight assumptions that allow for a fairly complete characterization of the properties of these

equilibria. An extensive older literature deals with the effects of the number of firms on

industry price and output levels, e.g. Ruffin (1971), Novshek (1980) and Seade (1980)4 .Yet,

to the best of our knowledge, no systematic theoretical analysis of industry profits, social

welfare or price-cost margins has been conducted with an exogenous number of firms.

An important aspect of the paper, from a methodological viewpoint, is its reliance on the

new lattice-theoretic comparative statics approach. We build directly on Amir and Lambson

(2000) who use this same framework to analyse price and output effects. They derive two

main results. The first one is that industry price falls (increases) with the number of firms

if a firm’s residual inverse demand declines faster (slower) than its marginal cost, globally.5

This is the so-called property of quasi-competitiveness (quasi-anticompetitiveness). Strong
3 Once the existence of the trade-off between the benefits of competition and the cost-savings of production
scale is established, the main issues become largely empirical. Indeed, the empirical literature on the subject
is extensive, though outdated by now. Several studies in Goldschmid, Mann and Weston (1974) provide
empirical evidence and a general debate on this controversial issue.
4 See also Hahn (1962), McManus (1962), Frank (1973), and Okuguchi (1973) among others.
5 This sharp intuition behind our conclusions is only possible with the lattice-theoretic approach. In pre-
vious work, other method-imposed assumptions, such as concave profits and decreasing marginal revenue,
prevented such simple and clear-cut economic interpretations based only on critical assumptions.
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scale economies are required for demand to decline slower than marginal cost, and lead to

the counterintuitive outcome on price. The second result is that per-firm profit falls with

the number of firms in both cases.

For industry performance comparisons (Section 4), the quasi-competitive case has two

clear-cut welfare results that are independent of the nature of returns to scale: welfare

increases in the number of firms whenever per-firm output does, and in case of multiple

equilibria, the maximal output equilibrium is the social-welfare maximizing equilibrium. The

latter result vindicates the supremacy of consumer welfare over producer welfare. Otherwise,

this case gives rise to two subcases, depending on the returns to scale in production. In the

presence of economies of scale, industry profits are shown to globally decline with the number

of firms, while social welfare is generally not monotonic. More precisely, we argue that the

slightest amount of scale economies leads to welfare being decreasing at sufficiently high

numbers of firms. Inversely, under diseconomies of scale, social welfare is globally increasing

in the number of firms, while industry profits exhibit a tendency to initially increase in

the number of firms (treated as a real number), starting at monopoly level. (Whether this

tendency leads to duopoly, say, having higher total profit than monopoly depends on the

magnitude of the returns). As an important corollary of the two monotonicity results above,

under constant returns to scale, both conventional beliefs indeed hold: Industry profits fall

and social welfare increases with the number of firms. As to price-cost margins, they always

decrease in the number of firms6 except when demand is strictly concave and costs strictly

convex, in which case it is shown by counter-example that price-cost margins may actually

increase with more firms in the market.

For the quasi-anticompetitive case, monopoly always leads to the highest possible indus-

try profits, with this being the only clear result on industry profits. On the other hand,

social welfare and price-cost margins unambiguously decrease in the number of firms. In this

case, there are strong enough scale economies to overcome all other considerations.

A complementary methodological feature is our reliance on tight illustrative examples.

These serve a dual purpose. First, they confirm that the given sufficient conditions are, in

some sense, critical to the resulting conclusions. Second, they illustrate in a more accessible

manner the interaction between the various effects at work in the comparative statics at hand.
6 There is extensive empirical evidence spanning a long period of time, essentially confirming the intuitive
behavior of price-cost margins: See Bresnahan (1989) for an account.
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In particular, we present a Main Example (Section 3) which is a blueprint for the entire paper,

in that most effects of interest can be captured by varying the Example parameters. This

example can serve as a pedagogical tool to convey the main ideas of the paper in a simple

and intuitive framework to undergraduate students or policy practitioners.

Our conclusions provide a precise theoretical foundation for intuitive beliefs about the

need for a trade-off between the benefits of fostering increased competition and the abil-

ity of firms to exploit scale economies. The conclusions shed some light on some classical

results in partial equilibrium analysis. It is well-known (Ruffin, 1973) that, under quasi-

competitiveness, Cournot equilibria converge to perfectly competitive equilibria when aver-

age cost is nondecreasing, and that this same convergence fails when average cost is nonin-

creasing. Our results show that welfare is monotonically increasing in the former case (thus

converging to first-best welfare), but not in the latter.

The results presented here may also be invoked to illuminate a number of important

public policy debates: See Section 5 where selected important applications of our results are

presented. The first of these addresses the extensive use made by antitrust authorities of

the Herfindahl-Hirschman index of concentration under the presumption that the Index is a

good inverse measure of social welfare. Recent theoretical work showed that with a constant

number of firms, any output transfers across firms that leave price unchanged must cause

the Index and social welfare to move in the same direction, Farrell and Shapiro (1990) and

Salant and Shaffer (1999). We complement this insight by the observation that with scale

economies — no matter how small— both the Index and welfare decrease with the number of

firms, when the latter is larger than a threshhold level, which may be equal to one.

The next point identifies the Cournot model in the quasi-anticompetitive case as an

appropriate framework for modelling the old concept of destructive competition. Indeed,

there is an excellent match between the theoretical predictions of the model in that case and

the stylised facts commonly associated with destructive competition (Sharkey, 1982).

The final point proposes to define natural (unregulated) monopoly as an industry where

the socially optimal number of firms is one, as opposed to the old definition of (regulated)

natural monopoly based on the inability to improve on costs by subdividing production,

a purely production-based criterion. This new definition clearly balances the market and

production sides, and is more appropriate in the absence of regulation and contestability.

All these applications emphasize the role of scale economies in engendering a trade-off
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between the market effect and the production efficiency effect. They convey the sense that

our simple results form a pre-requisite for a thorough understanding of the issues at hand.

2. The Model

The fundamental industry performance issues under investigation can be described as follows:

How do industry profit, social welfare and price-cost margins vary with the exogenously given

number of firms in the industry? We consider these fundamental questions in the framework

of equilibrium comparative statics, the exogenous parameter being the integer number of

firms. We begin with the basic notation.

Let P : R+ → R+ be the inverse demand function, C : R+ → R+ the (common) cost

function, A : R+ → R+ the average cost function, and n the number of firms in the industry.

Let x denote the output of the firm under consideration, y the total output for the other

(n − 1) firms, and z the cumulative industry output, i.e., z = x + y. At equilibrium, these
quantities will be indexed by the underlying number of firms n. We explicitly deal with the

(possible) nonuniqueness of Cournot equilibria by considering extremal equilibria. Denote

the maximal and minimal points of any equilibrium set by an upper and a lower bar, respec-

tively. Thus, for instance, zn and zn are the highest and lowest total equilibrium outputs,

with corresponding equilibrium prices p
n
and pn, respectively. Performing comparative sta-

tics on equilibrium sets will consist of predicting the direction of change of these extremal

elements as the parameter n varies.

The profit function of the firm under consideration is

Π (x, y) = xP (x+ y)− C (x) .

Alternatively, one may think of the firm as choosing total output z = x+ y, given the other

firms’ cumulative output y, in which case its profit is given by

eΠ (z, y) = Π (z − y, y) = (z − y)P (z)− C (z − y) .
Let 4 (z, y) denote the cross-partial derivative of eΠ with respect to z and y, i.e.,

4 (z, y) , −P 0
(z) + C

00
(z − y) .

Both eΠ and 4 are defined on (the lattice) ϕ ∧
= {(z, y) : y ≥ 0, z ≥ y}. A firm’s reaction cor-

respondence is defined by r(y) , argmax {Π (x, y) : x ≥ 0} . The Marshallian social welfare
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when each of n firms produces x is Vn(x) ,
R nx
0
P (t)dt− nC(x). Equilibrium per-firm profit

and social welfare will be denoted respectively by (the sets) πn and Wn.

The following Standard Assumptions are in effect throughout the paper:

(A1) P (·) is continuously differentiable and P 0
(·) < 0.

(A2) C (·) is twice continuously differentiable on (0,∞) and C 0
(·) > 0.

(A3) There exists bx > 0 such that P (x) Q A(x) for all x R bx.
Although convenient, the smoothness assumptions are by no means necessary for our main

results. (A3) simply guarantees that that a firm’s reaction curve eventually coincides with

the horizontal axis, so that a firm’s effective outputs, and thus all Cournot equilibrium

outputs, are bounded by some constant, say K , for all n.

The qualitative nature of most of our results hinges entirely on the global sign of ∆, so

that we will distinguish two main cases: ∆ > 0 and ∆ < 0. When ∆ > 0 globally, there

will be two subcases of interest depending on the returns to scale. This division is already

apparent in the upcoming example, which may serve as a blueprint for the entire paper.

3. Returns to Scale, Concentration and Industry Performance:
The Main Example

We now consider a simple example that provides an excellent and thorough overview of most

of the results derived in this paper.7 As a parameter capturing the returns to scale is varied,

the example can fit the two major cases of analysis of the general model: ∆ < 0 and ∆ > 0.

In the latter case, the example can also capture the two subcases of interest: economies or

diseconomies of scale. In addition, this example will also be invoked later on to gain further

insight into the tightness of the conditions behind our general results.

Let the inverse demand be linear and the cost function be quadratic, i.e.,

P (z) = a− bz and C(x) = cx+ dx2

with the assumptions throughout that a > c > 0 , b > 0 , b+ d > 0 and ad + bc > 0 (these

guarantee marginal cost and cost are positive at all per-firm Cournot equilibrium outputs.)

Since A(x) = c + dx, returns to scale are increasing (decreasing) if d < (>)0. Thus d is
7 This example would be very appropriate for the purpose of presenting in a very elementary framework the
essentials of the analysis to undergraduate students or to economic practitioners.
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our returns to scale parameter, key to many results below. Furthermore

∆ = −P 0
(z) + C

00
(z − y) = b+ 2d R 0 if d R −b/2

The (linear) reaction function is r(y) = a−c−by
2(b+d)

. Thus for any number of firms n there

is always a unique symmetric Cournot equilibrium. Omitting some lengthy calculations

(including solving for the symmetric Cournot equilibrium via r[(n − 1)xn] = xn ), this

equilibrium has per-firm output and profit, and social welfare given respectively by

xn =
a− c

b(n+ 1) + 2d
, πn =

(b+ d)(a− c)2
[b(n+ 1) + 2d]2

, Wn =
n[b(n+ 2) + 2d)](a− c)2

2[b(n+ 1) + 2d]2

Furthermore, if d > −b/2 (or ∆ > 0), the slope of the reaction curve is larger than −1 and
the symmetric equilibrium is the unique equilibrium. It is also globally stable in the sense

that best-reply Cournot dynamics converges to this equilibrium, from any initial outputs.

On the other hand, if d < −b/2 (or ∆ < 0), the slope of the reaction curve is smaller

than −1, so that r(y) decreases steeply and is equal to 0 when y ≥ (a− c)/b . Consequently,
there are several other Cournot equilibria, all of which can be characterized as follows.

With n being the total number of firms in the industry, if any m firms (with m < n)

produce the output xm each, and the remaining n−m firms produce nothing, the resulting

output configuration is clearly a Cournot equilibrium8 . For the n-firm oligopoly, the unique

symmetric equilibrium (with all firms active) is unstable in the sense that best-reply Cournot

dynamics diverge away from it (Seade, 1980).

It can be verified via simple calculation that

(i) per-firm output xn is always decreasing in n (cf. Proposition 1b).

(ii) industry output zn = nxn is increasing in n if d > −b/2 (or ∆ > 0) and decreasing in n
if d < −b/2 (or ∆ < 0) (cf. Propositions 1a and 2a)9 .
(iii) per-firm profit πn is always decreasing in n (cf. Propositions 1d and 2a).

(iv) price-cost margins mn , P (zn)− C 0(xn) decrease in n (cf. Propositions 9 and 13.)
It remains to analyse the effects of n on industry profits and social welfare. It is convenient

8 To see this, observe that r(mxm) = 0, since mxm ≥ (a − c)/b, as can be easily checked. In particular,
if any one firm produces the optimal monopoly output x1 = (a − c)/(b + 2d), and all the others produce
nothing, we have a Cournot equilibrium. This follows from r(x1) = 0 since x1 ≥ (a− c)/b and x1 = r(0).
Given the linearity of the reaction curve, this is easy to see graphically (see d’Aspremont et al, 2000)
9 The intuition behind the counter-intuitive case ∆ < 0 is that with more competition, each firm lowers
output drastically since r0(y) < −1, thereby moving up its steeply declining average cost curve. The resulting
efficiency loss is large enough to overcome the downward pressure on price engendered by the increase in
competition. The increase in average cost is passed on to consumers via a higher price.
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here to treat n as a real variable. For industry profits, we have (with details left out)

∂(nπn)

∂n
T 0 if and only if n S 1 + 2d/b. (1)

Here, there are two separate cases of interest:

(i) d < 0 : Then industry profits always decrease with the number of firms, with in particular

monopoly having the largest industry profit (cf. Proposition 3.)

(ii) d > 0 : Then en = 1 + 2d/b maximizes industry profits, which thus increase in n when
n < en and decrease in n when n > en, starting from any given n. Observe that if d/b < 1/2,

then 1 < en < 2. Hence, in particular, if en = 1 (i.e. monopoly is the market structure that
maximizes total profits), industry profits would be globally decreasing in n. But if d is large

enough, i.e., if there are sufficiently high diseconomies of scale, industry profits will be rising

in n initially, all the way to en which may be a large number of firms, but industry profits
always eventually decrease in n, i.e. for n > en (cf. Proposition 4).
For social welfare, one can easily verify that

∂Wn

∂n
T 0 if and only if nbd T −(b+ d)(b+ 2d). (2)

Again, there are two separate cases of interest:

(a) ∆ < 0 iff d < −b/2: Welfare always decreases with n (cf. Proposition 11.)
(b) ∆ > 0 iff d > −b/2: Here, there are two different subcases of interest.
(i) d > 0 : Welfare always increases in n (cf. Proposition 6.)

(ii) −b/2 < d < 0: Welfare is maximized at n∗ = −(b+ d)(b+ 2d)/bd , increases in n for
n < n∗ and decreases in n for n > n∗ (cf. Proposition 8). Observe that this statement is true

no matter how close d is to 0 (from below)! In other words, the slightest presence of scale

economies causes welfare to be eventually declining in n (i.e. for sufficiently large values of

n). The parameters of this example can be chosen to make n∗ equal any desired value from

1 on, while satisfying all the underlying constraints here. Thus, in particular, monopoly is

the welfare-maximizing market structure if bd ≤ −(b+ d)(b+ 2d), with the latter condition
always holding when d < −b/2 (or ∆ < 0), and never holding if d > 0.
The overall economic intuition can now be stated concisely and precisely since the main

results hinge mainly on the sign of ∆ = −P 0 + C 00, and sometimes also on the returns
to scale. For industry price, there are two effects at work, a market or competition effect

captured by the term −P 0, and a production or scale effect captured by C 00. The market
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effect always pushes in the intuitive direction that price falls with the number of firms. The

scale effect goes in the same direction if and only if costs are convex. When costs are concave,

the overall outcome on price is determined by the relative strengths of the two conflicting

effects. Per-firm profit always behave in the intuitive way.

For industry profits, the market effect pushes in the intuitive direction if and only if

industry price is well-behaved (i.e. ∆ > 0). The production effect works in the intuitive

direction if scale economies are present. When the two effects are antagonistic, the outcome

depends on the relative strengths again.

Viewed as the sum of consumer and producer surpluses, social welfare can be discussed

on the basis of the previous assessments. Thus, with ∆ > 0 and diseconomies of scale,

consumer surplus increases with n, overcoming a possible decrease in producer surplus (the

latter effect being ambiguous). With ∆ < 0, strong scale economies are necessarily present,

and both surpluses decrease wth n. Finally, with ∆ > 0 and economies of scale, consumer

surplus moves up and producer surplus down, with an ambiguous net effect.

In conclusion, this example provides a microcosm for the entire paper. In the remainder,

we present a generalization of the insights illustrated so far, preserving another key role for

this example in testing the tightness of the sufficient conditions given for our various results.

4. A General Cournot Analysis of Industry Performance

This section contains the general analysis of the interplay between market structure and

returns to scale in determining industry performance as reflected in total profits, social

welfare and price-cost margins. This amounts to comparing Cournot equilibria along these

characteristics as the number of firms varies. In an attempt to gain the broadest possible

understanding of the issues involved, we provide a series of minimally sufficient conditions for

our conclusions, combined with tight complementary examples to shed further light on the

relationship between assumptions and conclusions. The proofs combine analytical simplicity

with generality. Methodologically, we make use of the lattice-theoretic comparative statics

approach.10 This allows for very general conclusions relying only on critical assumptions,

thereby leading to clean and tight economic interpretations of the conclusions, as well as

analytical rigor. In the present context, the usual arguments in favor of this approach
10We invoke the general results of Topkis (1978), Vives (1990) and Milgrom and Roberts (1990, 1994). For
the stochastic case, see Athey (2002). More specific to Cournot oligopoly, we build on the results of Amir
(1996) and Amir and Lambson (2000). See also McManus (1962) and Roberts and Sonnenschein (1976).
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become even more pertinent, as the parameter of interest, the number of firms, is an integer:

See Example 4 for a key point on this.11

While the condition ∆ > 0 is familiar in Cournot theory at least since Hahn (1962), it

has typically been used in conjunction with many other assumptions, such as some form of

concavity of each firm’s profit in own output, decreasing marginal revenue, etc...The latter

assumptions interfere with a good intuitive understanding of the economic forces at work,

as they are also made for the case ∆ < 0. As shown below, there is a very natural division

of the results here, and it depends only on the global sign of ∆. The latter has a very simple

and appealing interpretation: ∆ > 0 (∆ < 0) means that price, or residual inverse demand,

decreases faster (slower) than marginal cost. Since P
0
< 0, it is clear that the convexity of

C implies 4 > 0 on ϕ. Likewise, strong concavity of C is required for ∆ < 0. As seen in the

Main Example (when −b/2 < d < 0), ∆ > 0 can hold globally even when the cost function
is everywhere concave, an important subcase of analysis in this paper.

4.1 Equilibrium Price and Outputs

The results of this subsection have been proved in Amir and Lambson (2000). They are

stated here without proof, and used in the sequel in looking at industry profit, social welfare

and price-cost margins. In the Appendix, a graphical illustration of the need for the new

comparative statics is presented, with the conclusion that only extremal equilibria can be

unambiguously compared as the number of firms varies.12 For any variable of interest, the

maximal (minimal) value will always be denoted by an upper (lower) bar.

Proposition 1 Let 4 (z, y) > 0 on ϕ. For any y1 ≥ y2, r1 ∈ r(y1), r2 ∈ r(y2), there
holds r1 − r2 ≥ y1 − y2. For each n, there exists at least one symmetric equilibrium and no
asymmetric equilibria. For the extremal equilibria,
(a) Industry output zn is nondecreasing in n, and hence price pn is nonincreasing in n.
(b) xn is nonincreasing [nondecreasing] in n if logP is concave [convex and C(·) ≡ 0].
(c) The total rivals’ output yn , (n− 1)xn is nondecreasing in n.
(d) The corresponding equilibrium profit πn is nonincreasing in n.

Thus the Cournot model is quasi-competitive here (Part (a)). The fundamentally needed

assumption is the supermodularity of eΠ on ϕ, which is equivalent to ∂2eΠ/∂z∂y = ∆ > 0.
11The traditional method based on the Implicit Function Theorem can provide insight for special cases,
but is ill-suited for a general analysis. The main reason is that it rests on superfluous assumptions (such
as concavity and equilibrium uniqueness) that are needed in all the otherwise mutually exclusive cases of
analysis, thus preventing a clear intuition behind the results. Also, in the context at hand, as the parameter
of interest is an integer, there are other serious drawbacks: See Example 4 here and de Meza (1985).
12For unstable equilibria (in the sense of best-reply Cournot dynamics), the price comparative statics is
counter-intuitive (as seen in the Appendix), and this will carry through to other results.
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This implies that the line segment joining any two points on the graph of the reaction

correspondence r of a firm must have a slope ≥ −1, so that, in response to an increase in
rivals’ output, a firm can never contract its output by more than this increase. In particular,

this precludes downward jumps for r (while allowing for upward jumps).13

The other case is characterized by the assumption 4 (z, y) < 0, implying that r has all
its slopes ≤ −1: As rivals’ joint output is increased, a firm optimally reacts by contracting

its output so much that the resulting total output decreases. Hence, r is strongly decreasing,

so that the results of Novshek (1985) and Amir (1996) guarantee the existence of a Cournot

equilibrium.14 However, existence of a symmetric equilibrium is not guaranteed for all n

without the additional (and otherwise unnecessary) assumption of quasi-concavity of Π(·, y).

Proposition 2 Assume 4 (z, y) < 0 on ϕ and quasi-concavity of Π(·, y) for every y. Then,
for any y1 ≥ y2, r1 ∈ r(y1), r2 ∈ r(y2), there holds r1 − r2 ≥ y1 − y2. Furthermore,
(a) There is a unique symmetric equilibrium, and it satisfies: xn, zn and πn are nonincreasing
in n. Hence pn is nondecreasing in n. Rivals’ output yn , (n− 1)xn is nondecreasing in n.
(b) For any m such that 1 ≤ m < n, the following is an equilibrium for the n-firm oligopoly:
Each of any m firms produces xm while the remaining (n −m) firms produce nothing. All
these Cournot equilibria are invariant in n, in that all entering firms would produce zero.
(c) No other Cournot equilibrium (than those of Parts (a) and (b)) can exist.

Due to the fact that asymmetric equilibria involve a symmetric equilibrium among the

active subset of firms and to their invariance in n, attention will be limited throughout

w.l.o.g. to symmetric equilibria for the case 4 < 0.

When quasi-concavity of the profit function in own output is needed, it is desirable to

derive it from properties of the primitives of the model. We show in the Appendix that a

sufficient condition is that [P (x+ y)− A(x)]−1 is convex in x for each fixed y ≥ 0.

4.2 Industry Profits, Social Welfare and Price-Cost Margins

Here, the effects of an exogenous change in the number of firms on industry profits, social

welfare and price-cost margins are investigated. While not standard in industrial organi-

zation, our proofs combine generality with simplicity. As before, we continue to focus on

the two extremal Cournot equilibria for all our results, and to separate the analysis of our

comparative-equilibria results into two cases, according to the global sign of ∆.
13This property was used by McManus (1962) and Roberts and Sonnenschein (1976) to establish the existence
of symmetric Cournot equilibrium under convex costs. Also see Amir (1996) and Amir and Lambson (2000).
14However, there is no guarantee a priori that this includes more than the monopoly equilibrium (which
always exists), as described in Part (b) of Proposition 2.
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4.2.1 The Case ∆ > 0

Recall that∆ > 0 globally is consistent with both globally increasing and decreasing returns.

We begin with the effects on industry profits. Our first result essentially says that industry

profit is globally nonincreasing in n under scale economies, defined by nonincreasing A(·).

Proposition 3 Let ∆ > 0 on ϕ. For the extremal equilibria, nπn ≥ (n + 1)πn+1 for any
given n if A(n+1

n
xn+1) ≤ A(xn+1).

Proof. Let xn be an extremal Cournot equilibrium per-firm output, and consider

πn = xn {P (nxn)− A(xn)}
≥ n+1

n
xn+1

©
P
£
n+1
n
xn+1 + (n− 1)xn

¤− A(n+1
n
xn+1)

ª
≥ n+1

n
xn+1

©
P
£
n+1
n
xn+1 + (n− 1)n+1n xn+1

¤− A(n+1
n
xn+1)

ª
= n+1

n
xn+1

©
P [(n+ 1)xn+1]− A(n+1n xn+1)

ª
≥ n+1

n
xn+1 {P [(n+ 1)xn+1]−A(xn+1)}

= n+1
n
πn+1

where the first inequality follows from the Cournot equilibrium property, the second from

the facts that P is decreasing and nxn ≤ (n + 1)xn+1 since ∆ > 0, and the third from the

assumption A(n+1
n
xn+1) ≤ A(xn+1). Multiplying across by n gives the conclusion.

Since per-firm profit πn always falls with n, Proposition 3 asks whether πn falls fast

enough to have nπn ≥ (n + 1)πn+1. In interpreting the proposition, it is convenient to

separate the overall effect of an increase in the number of firms on industry profits into two

distinct parts, as suggested by the above proof. The market or total revenue effect, which

may be isolated by setting A0 = 0, always pushes in the intuitive direction that industry

profits must fall. On the other hand, the production or efficiency effect goes in the same

direction if and only if scale economies are present.15

The proof of the result also makes it clear that the conclusion follows when both the

market and the production efficiency effects push in the same direction, which suggests the

condition on average cost is sufficient but not necessary. It is natural then to ask how critical

this assumption is for this conclusion. Treating the number of firms as a real number, the
15By contrast, an n-firm cartel always has higher optimal profit than the total n-firm oligopoly profit, since
the cartel, with access to n plants, always has the option of producing nxn at a cost at most equal to the
total cost of the n-firm oligopoly. There is thus an obvious difference between a monopoly (with access to
one plant) and a cartel composed of n identical firms. For a discussion of why a monopolist may not simply
reproduce plants to get around diseconomies of scale, see e.g. Baumol, Panzar and Willig (1982).
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following argument provides a simple but interesting insight: Monopoly is never the profit

maximizing market structure under increasing average cost.

Proposition 4 if A0(·) > 0, industry profit increases from monopoly level as the number of
firms is increased slightly beyond n = 1.

Proof. With z denoting industry output, industry profit is given by Πn(z) = z[P (z) −
A(z/n)]. Since for fixed z, Πn(z) is increasing in n if A0 > 0, the result follows from the

envelope theorem16 , as monopoly profit π1 = maxz Π1(z).

Observe that this need not mean that duopoly has higher profit than monopoly, as

industry profit may peak between n = 1 and n = 2, with either π1 or 2π2 as the highest

value. This point is illustrated in the Main Example where, for d < b/2, industry profits

may well be globally decreasing in the number of firms, and are certainly decreasing in n

for n ≥ 2 (see (1)). Nonetheless, the point made here is important as it shows that the

slightest amount of decreasing returns pushes toward industry profits that are increasing

in the number of firms. Whether this effect actually succeeds in preventing industry profit

from being globally decreasing in the integer number of firms depends on the strength of

the increasing returns, as suggested by the Main Example. Indeed, from (1), a sufficient

condition for industry profit not to be globally decreasing in n is d > −b/2.
We now turn to the welfare analysis. It can easily be shown that xn is the Pareto-

dominant equilibrium for the firms (i.e. leads to the largest producer surplus) while xn

is the Pareto-preferred equilibrium for the consumers (i.e. leads to the largest consumer

surplus). It is then of interest to know whether the Cournot equilibria are ranked according

to the Marshallian measure of social welfare. In other words, is one of the two surpluses

always dominant? The next result settles this question in favor of consumer surplus.

Proposition 5 Let ∆ > 0, and xn and x0n denote two distinct equilibrium per-firm outputs
with corresponding social welfare levels Wn and W 0

n. If xn < x
0
n, then Wn < W

0
n. Hence, xn

is the social welfare maximizer among all equilibrium per-firm outputs.

Proof. Since ∆ > 0 or P 0(z) − C 00(z − y) < 0 on ϕ ∧
= {(z, y) : y ≥ 0, z ≥ y}, the function

Un(z) ,
R z
0
P (t)dt− nC(z/n) is strictly concave in z, since U 00n(z) = P 0(z)− 1

n
C 00(z/n) < 0.

16Heuristically, treating n as a real variable, it is easily shown that
h
d(nπn)
dn

i
n=1

= x1A
0(x1) > 0.
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Now, consider

W 0
n −Wn =

R z0n
0
P (t)dt− nC(z0n/n)− [

R zn
0
P (t)dt− nC(zn/n)]

= Un(z
0
n)− Un(zn)

> U 0(z0n)(z
0
n − zn) , since U is strictly concave and z0n > zn.

= [P (z0n)− C 0(z0n/n)]n(x0n − xn)
≥ 0, since x0n > xn and P (z0n) ≥ C 0(z0n/n).

The second part of the lemma follows from the first as xn = largest equilibrium output.

As Proposition 1 shows, the case ∆ > 0 is consistent with both xn being decreasing or

increasing. The implications of these two possibilities on social welfare are quite different,

as reflected in the next result. Also, if the demand function does not satisfy either condi-

tion (log-concavity or log-convexity) from Proposition 1(b), then xn will generally not be

monotonic in n. The next result gives sufficient conditions for nondecreasing social welfare.

Proposition 6 Let ∆ > 0 on ϕ. For any n, at an extremal equilibrium, Wn+1 ≥ Wn for a
given n if either one of the following holds: (i) A(xn+1) ≤ A(xn), or (ii) xn ≤ xn+1.

Proof. For an extremal equilibrium, to prove Part (i), consider:

Wn+1 −Wn =
©R zn+1

0
P (t)dt− zn+1A(xn+1)

ª− ©R zn
0
P (t)dt− znA(xn)

ª
=
R zn+1
zn

P (t)dt− zn+1A(xn+1) + znA(xn)
≥ (zn+1 − zn)P (zn+1)− zn+1A(xn+1) + znA(xn)
= zn+1 [P (zn+1)− A(xn+1)]− zn [P (zn+1)− A(xn)]
≥ zn+1 [P (zn+1)−A(xn+1)]− zn [P (zn+1)−A(xn+1)]
= (zn+1 − zn) [P (zn+1)− A(xn+1)] ≥ 0,

where the first inequality follows from the fact that P (·) is decreasing, the second from the

assumption A(xn) ≥ A(xn+1), while the last follows from the facts that zn+1 ≥ zn (since

∆ > 0) and P (zn+1) ≥ A(xn+1) .
To prove Part (ii), we begin with two preliminary observations. First, the function

Vn(x) ,
R nx
0
P (t)dt−nC(x) is concave in x for each n since V 00n (x) = n[nP 0(nx)−C 00(x)] < 0,

as a result of ∆ > 0. Second, since zn+1 = (n+ 1)xn+1 and P is decreasing,Z zn+1

0

P (t)dt =

Z nxn+1

0

P (t)dt+

Z zn+1

nxn+1

P (t)dt ≥
Z nxn+1

0

P (t)dt+ xn+1P (zn+1). (3)

Now, consider,
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Wn+1 −Wn =
©R zn+1

0
P (t)dt− (n+ 1)C(xn+1)

ª− ©R zn
0
P (t)dt− nC(xn)

ª
≥ xn+1P (zn+1)− C(xn+1) +

©R nxn+1
0

P (t)dt− nC(xn+1)
ª− ©R nxn

0
P (t)dt− nC(xn)

ª
= πn+1 + Vn(xn+1)− Vn(xn)
≥ πn+1 + V 0n(xn+1)(xn+1 − xn)
= πn+1 + n[P (nxn+1)− C 0

(xn+1)](xn+1 − xn) ≥ 0,
where the first inequality follows from (3), the second from the concavity of Vn in x, and the

last from the facts that P (nxn+1) ≥ P [(n+ 1)xn+1] ≥ C 0
(xn+1) and xn+1 ≥ xn.

Since price falls with the number of firms here, consumer surplus always increases. How-

ever, producer surplus may a priori move either way. So the proposition identifies two suffi-

cient conditions (diseconomies of scale and decreasing per-firm output, or increasing per-firm

output) implying that total profit will never decrease enough to overcome the increase in

consumer welfare and result in lower social welfare.17

Propositions 3 and 6, taken together, imply that conventional wisdom fully prevails for

the case of constant returns to scale, which is widely invoked in industrial organization.

Corollary 7 With linear cost, C(x) = cx, at an extremal equilibrium, nπn is nonincreasing
in n and social welfare Wn is nondecreasing in n, for all n.

Proof. This follows directly from Propositions 3 and 6, as average cost is constant.

In the presence of scale economies, it is well-known that Cournot equilibria do not con-

verge to perfectly competitive outcomes, with the latter being ill-defined then. It is thus of

interest to shed light on the behavior of the social welfare function when n <∞.
Proposition 8 Assume ∆ > 0 and uniform scale economies prevail (i.e. A0(·) ≤ −α < 0,
for some α > 0). Then social welfare is maximized by some finite number of firms, or
n∗ , argmax{Wn : n ≥ 1} <∞.

Proof. Since the reaction correspondence r is ultimately decreasing under our standard

assumptions here (in particular A3; see Amir, 1996), it follows that xn is decreasing in n for

large enough n. For such values of n, consider (with zn ≤ zn+1 here, since ∆ > 0):

Wn −Wn+1 =

½Z zn

0

P (t)dt− znA(xn)
¾
−
½Z zn+1

0

P (t)dt− zn+1A(xn+1)
¾

17An alternative way to think of this result is as follows. Due to the increase in industry output, the sum of
consumer surplus and industry revenue (i.e. total benefit or the total area under the inverse demand up to
the equilibrium output) always increases with the number of firms. On the other hand, industry costs may
go either way. In this perspective, Proposition 6 identifies conditions ensuring that industry costs will never
increase enough to cause social welfare to overall decrease, in spite of the increase in total benefit.
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=

Z zn

zn+1

P (t)dt− znA(xn) + zn+1A(xn+1)
> (zn − zn+1)P (zn)− znA(xn) + zn+1A(xn+1) + [zn+1A(xn)− zn+1A(xn)]
= zn [P (zn)−A(xn)]− zn+1 [P (zn)− A(xn)] + zn+1[A(xn+1)− A(xn)]
≥ (zn − zn+1) [P (zn)−A(xn)] + αzn+1(xn − xn+1)
= zn+1(xn − xn+1)

½
α− zn+1 − zn

zn+1 (xn − xn+1) [P (zn)−A(xn)]
¾

(4)

where the first inequality follows from the fact that P (·) is strictly decreasing, the second
from the assumptions of uniform scale economies and xn ≥ xn+1.
We now show that the bracketed term in (4) converges to α (or the second term converges

to 0) as n→∞. A well-known argument based on the first-order condition (see Ruffin, 1971)
shows that P (zn) − A(xn) → 0, zn → Q (some constant), and xn → 0. Since xn → 0 and

nxn → Q , we know that xn → 0 at the rate of 1/n. It follows that zn+1−zn
xn−xn+1 → 1, so that the

second term in (4) converges to 0. Hence, for n sufficiently large, the bracketed term in (4)

is > 0 (i.e. arbitrarily close to α), so that Wn > Wn+1, implying the conclusion.

While the fact that the socially optimal number of firms is typically finite in the presence

of fixed costs is well-known, Proposition 8 is nonetheless somewhat surprising as it relies

only on the slightest level of decreasing marginal cost. Recall, as seen in the Main Example,

that n∗ may well be equal to 1, or any other number.

The next example shows that if A0 ≤ 0 but A0(0) = 0, Wn may be globally increasing in

n, so that n∗ =∞. Hence, the assumption A0(0) > 0 in Proposition 8 is crucially needed:18
Example 2. Let P (z) = 2− z and C(x) = x− 0.1x3/3.
Since C 0(x) ≥ 0 if and only if x ≤ √

10, we will restrict consideration to output levels

in [0,
√
10]. We have A(x) = 1 − .1x2/3, so that A0(0) = 0 and A0(x) < 0 for all x < √30.

There is a unique Cournot equilibrium with xn = 5[n + 1−
p
(n+ 1)2 − .4]. In particular,

x1 = 7, x2 = .337, so that with one or two firms, we are outside the range [0,
√
10] of valid

outputs (note that this poses no problem as we are only interested in large n here.) On the

other hand, outputs are within [0,
√
10] from n = 3 onwards. Indeed, x3 = .252, x4 = .2, ...

It can be numerically verified that Wn is globally increasing in n.19

18The Main Example also shows that any (uniform) level of scale economies, i.e. the smallest (in absolute
value) d < 0, the conclusion that social welfare globally increases with the number of firms would fail as
shown by (8): See Point (b)(ii) just below (8).
19It is tedious but straightforward to verify that

Wn = 5n(n+1−
q
(n+ 1)2 − .4)−12.5n2(n+1−

q
(n+ 1)2 − .4)2+4.1667n(n+1−

q
(n+ 1)2 − .4)3.
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We next turn to the comparative statics of price-cost margins mn , P (zn) − C 0(xn),
often regarded as the most adequate measure of industry competitiveness. Inspection of the

first-order condition for a Cournot equilibrium reveals that mn → 0 as n → ∞, irrespec-
tive of whether the equilibrium converges to perfect competition. The next result provides

alternative sharp sufficient conditions under which this convergence is monotone.

Proposition 9 Let ∆ > 0. Then for the extremal equilibria,mn+1 ≤ mn for all n, if any
one of these conditions holds:
(a) xn+1 ≥ xn.
(b) C is concave on [xn+1, xn].
(c) P is convex on [zn, zn+1] and xn+1 ≤ xn.

Proof. The first-order condition for a Cournot equilibrium can be written as

mn = P (zn)− C 0(xn) = −xnP 0(zn)

By the mean value theorem, there exist ez ∈ [zn, zn+1] and ex between xn+1 and xn such that
mn+1 −mn = P (zn+1)− P (zn)− [C 0(xn+1)− C 0(xn)] (5)

= P 0(ez)(zn+1 − zn)− C 00(ex)(xn+1 − xn).
From Propositions 1(c), yn+1 − yn = zn+1 − xn+1 − zn + xn ≥ 0. Hence,

zn+1 − zn ≥ xn+1 − xn. (6)

The rest of the proof proceeds separately for the three cases.

(a) Using (6) in (5), we have

mn+1 −mn ≤ [P 0(ez)− C 00(ex)](xn+1 − xn)
≤ 0 since xn+1 ≥ xn and P 0(ez)− C 00(ex) < 0 (since ∆ > 0).

(b) Since C is concave on [ xn+1, xn], C 00(ex) ≤ 0. Then using (6) in (5), we have
mn+1 −mn ≤ [P 0(ez)− C 00(ex)](zn+1 − zn) (7)

≤ 0 since ∆ > 0 and zn+1 ≥ zn.

(c) From the first-order conditions, we have

mn+1 −mn = xnP
0(zn)− xn+1P 0(zn+1)

= xnP
0(zn)− xnP 0(zn+1) + xnP 0(zn+1)− xn+1P 0(zn+1)

= xn[P
0(zn)− P 0(zn+1)] + P 0(zn+1)(xn − xn+1)

≤ 0 since xn ≥ xn+1 and P 0(zn) ≤ P 0(zn+1) by convexity of P.
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This completes the proof20 of Proposition 9.

This result leaves the issue open when C is strictly convex on [xn+1, xn] and P is strictly

concave on [zn, zn+1]. The following counter-example, where the latter properties hold

globally, shows that the price-cost margin is then not globally decreasing in n.21

Example 3. Let P (z) = a− z2 and C(x) = 2x2.
Then a firm’s profit function is Π (x, y) = x[1 − (x + y)2] − 2x2. The first-order condition
can be reduced to n(n + 2)x2n + 4xn − 1 = 0. The unique (and symmetric) equilibrium is

xn =
1

n(n+2)
[−2 +p4 + n(n+ 2)], and the price-cost margin is mn = 1− x2n − 4xn.

It is easy to check that mn increases in n for n < 5 and then decreases in n for n ≥ 5

(specifically, m1 = .09 267,m2 = .13397, m3 = . 148 38,m4 = .15047, m5 = .147 1,m6 < m5,

etc...) This example is robust to changes in demand and cost parameters.

The intuition behind this counter-intuitive outcome is easy to grasp: As n increases from

a small value and thus a relatively low total output but high per-firm output, price falls

slowly due to the concavity of P (·) while marginal cost falls (convex C) relatively slower.
The net effect then may well be an increasing price-cost margin for small values of n.

4.2.2 The case ∆ < 0

Strong economies of scale are necessary for ∆ to be globally negative. One feature that is

known to give rise to economies of scale is the presence of (avoidable) fixed-costs. Without

these, one needs a strongly concave cost function for ∆ < 0 to be possible.

As existence of a symmetric equilibrium with all firms active is not guaranteed for all n,

there are two meaningful ways to proceed. One is to assume quasi-concavity of each profit

function in own output and restore existence. The other is to view the comparative statics

results as holding for those n’s for which a symmetric equilibrium exists. We elect the former

and stress that the quasi-concavity assumption is needed only for existence.

The only general result on industry profit we can offer here vindicates the conventional

wisdom only about monopoly.

Proposition 10 Let ∆ < 0 on ϕ and Π(x, y) be quasi-concave in x for each y. Industry
profit is highest under a monopoly than under any other market structure: π1 ≥ nπn, ∀n.
20The proof makes clear once more that signing ∆ is the appropriate assumption for investigating changes
in price-cost margins, in addition to separating the issues of existence and uniqueness of equilibrium and the
price comparative statics into natural mutually exclusive cases.
21This case is the only one for which price-cost margins behave in a counter-intuitive way, as will be seen in
the next subsection. Recall that in the Main Example, price-cost margins are decreasing in n in all cases.
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Proof. Since the cost function is concave (hence subadditive), a single firm has the option

of producing the n-firm total Cournot output zn = nxn at a cost no higher than that of the

n-firm oligopoly (i.e. C(nxn) ≤ nC(xn)) for any n. The conclusion then follows.
While no counterexample could be found to establish that nπn is not always decreasing

in n, the following argument suggests the conjecture might be false. Total cost is easily seen

to increase in n here, but the revenue part moves in the ”counterintuitive direction”.22

The welfare comparative statics is unambiguous here, due to the strong scale economies:

With more firms, output per firm is strongly reduced, resulting in a drastic increase in

average cost. This efficiency loss overcomes any other countervailing considerations.

Proposition 11 Assume ∆ < 0 on ϕ and Π(x, y) is quasi-concave in x for each y. Then at
the unique symmetric equilibrium, social welfare Wn is nonincreasing in n, for all n.

Proof. Consider (with zn ≥ zn+1 here, since ∆ < 0):

Wn −Wn+1 =
©R zn

0
P (t)dt− znA(xn)

ª− ©R zn+1
0

P (t)dt− zn+1A(xn+1)
ª

=
R zn
zn+1

P (t)dt− znA(xn) + zn+1A(xn+1)
≥ (zn − zn+1)P (zn)− znA(xn) + zn+1A(xn+1)
= zn [P (zn)−A(xn)]− zn+1 [P (zn)−A(xn+1)]
≥ zn [P (zn)− A(xn)]− zn+1 [P (zn)− A(xn)]
= (zn − zn+1) [P (zn)− A(xn)] ≥ 0

where the first inequality follows from the fact that P (·) is decreasing, the second from the

facts that xn ≥ xn+1 and A(·) is nonincreasing (the latter follows since ∆ < 0 requires

concavity of C), and the last from the fact that zn ≥ zn+1(since ∆ < 0).
Since price increases with the number of firms here (Proposition 2a), consumer surplus

decreases. Also, as average cost and equilibrium per-firm output both decline rapidly, equi-

librium total production costs increase rapidly with the number of firms here. Hence, even if

total profits go up, the increase will never be sufficient (recall also that per-firm profit goes

down) to overcome the fall in consumer surplus.

Corollary 12 Assume ∆ < 0 on ϕ and Π(x, y) is quasi-concave in x for each y. Monopoly
leads to the highest producer surplus and to the highest consumer surplus levels.
22Indeed, if it were possible to have nxn ≥ (n + 1)xn+1 while C ≡ 0 (which we know is impossible since

C ≡ 0 clearly implies ∆ > 0), we would have Πn+1 = xn+1P [(n+ 1)xn+1] ≥ nxn
n+1P

³
nxn
n+1 + nxn+1

´
≥

nxn
n+1P

³
nxn
n+1 + n

nxn
n+1

´
= nxn

n+1P (nxn) =
nΠn
n+1 , where the first inequality is from the Cournot equilibrium

property and the second from the facts that P is decreasing and nxn ≥ (n + 1)xn+1. It would then follow
that (n+ 1)Πn+1 ≥ nΠn: Industry profit would be increasing in the number of firms!

19



Proof. The two statements follow respectively from Propositions 10 and 2a.

As to price-cost margins, they always decline with competition in the case at hand.

Proposition 13 Let ∆ < 0. Then for any n, we have mn+1 ≤ mn.

Proof. Since C 00(ex) ≤ 0 is implied by ∆ < 0, (7) holds here, so
mn+1 −mn ≤ [P 0(ez)− C 00(ex)](zn+1 − zn)

≤ 0 since ∆ < 0 and zn+1 ≤ zn.

The intuition is simple. With strong scale economies, having more firms in the market raises

both a firm’s marginal cost and the market price, with the former being the more dominant

effect as a firm’s output is drastically cut down. The overall effect is that margins fall.

In view of the counterintuitive nature of some results in the case ∆ < 0, it is natural

to ask whether they have any predictive value in describing imperfect competition in real-

world markets.23 Experimental evidence suggests that unique (stable) Cournot equilibria

are good predictors of actual behavior (Holt, 1986). By contrast, Cox and Walker (1998)

report that in a symmetric Cournot game with three equilibria, a symmetric unstable one

and two boundary or monopoly equilibria (cf. Proposition 2), laboratory behavior reflected

no regular patterns of play that would support any equilibrium. Rather, play seemed to

proceed along irregular cycles around the three equilibria, with the players continuously

exhibiting large swings in output levels, conveying a clear sense of unstable behavior.

None of the Nash equilibrium refinements for one-shot games, such as perfection, proper-

ness, Kohlberg-Mertens’s (1986) strategic stability, can discard Cournot-unstable equilibria,

although some evolutionary learning processes might. Furthermore, regardless of stability

properties, symmetric Cournot equilibria often emerge as focal (Schelling, 1960.)

4.2.3 Hybrid Cases

In view of the level of generality of our conclusions, the fact that the entire analysis rests

essentially on one easily checked condition on the global sign of∆ is a remarkable feature. On

the other hand, there are many demand-cost combinations of interest for which ∆ changes

signs on its domain: Hybrid cases. For these, Cournot equilibria will generally not behave

in the globally monotonic ways uncovered here. The issue of existence also needs separate
23Further discussion about this case is provided in Section 5 where the characteristics of the Cournot equilibria
here are identified with the old concept of destructive competition, among other applications.
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attention then. De Meza (1985) provides an interesting counterexample highlighting the

differences between local and global comparative statics, and also showing that treating n

as a real variable in the present context and signing dpn/dn can lead to truly misleading

results. His example shows that it is crucial that ∆ have a uniform sign globally for the

present analysis, thus further vindicating the lattice-theoretic approach.

In spite of the nonmonotonic behavior of the equilibria, some of the insights we developed

can still be useful here. We offer two related examples. The first is a simpler alternative to

De Meza’s example that does not require a piece-wise definition of the profit function and

thus satisfies the smoothness conditions made in the literature.

Example 4. Let P (z) = 1
z+0.9

and C(x) = 1
2
log(x+ 1).

Then ∆(z, y) = 1
(z+0.9)2

− 1
2(z−y+1)2 > 0 iff y < . 414x+ . 514 . Hence, 4 changes signs on

ϕ so that our results do not apply. The profit function Π(x, y) =
x

x+ y + 0.9
− 1
2
log (x+ 1)

is quasi-concave in x, ∀y. The first-order condition is (x + 1)(y + .9) = 1
2
(x + y + .9)2

and the reaction curve is r(y) = 1
10

p
20y + 99− 100y2. The equilibrium output is xn =

1
10(n2−2n+2)

¡
n− 1 +√100n2 − 200n+ 199¢. In particular, x2 = . 755 34 and x3 = . 486 77,

so that z2 = 1. 510 7 and z3 = 1. 460 3. Hence p2 < p3.

Also r0(y) = (1− 10y) /p20y + 99− 100y2 and r0(x2) = −. 867 62 > −1, so the duopoly
point lies within the quasi-competitive part (the border between the two regions is reached

at y = . 807 11, i.e. r0(. 807 11) = −1). The triopoly point lies outside the quasi-competitive
part since y3 = 2x3 = . 973 54 > . 807 11.24 A local analysis based on signing dpn/dn as

adopted in the classical literature on the subject would then lead to the conclusion that

[dpn/dn]n=2 < 0. This may be thought of as correct as n goes from 2 to 2. 141 4 firms, but

not for n > 2. 141 4 (this is the fictitious number of firms en for which yen = . 807 11.) Hence,
such an analysis25 cannot be the basis for a comparison of z2 and z3 (or p2 and p3.)

This example illustrates the inadequacy of a local analysis to address the issues at hand.

It clearly shows that in order to attain an unambiguous comparative statics conclusion

between n and n + 1, the intersections of the reaction curve with the lines y/(n − 1) and
y/(n− 2) must both lie within a region where ∆ keeps the same sign.

The last example has social welfare maximized by monopoly when ∆ is not globally < 0.
24In other words, it may be checked that ∆(z2, y2) = .0098 > 0 while ∆(z3, y3) = −.04 67 < 0.
25Our findings may also be phrased in terms of Cournot stability as in Seade (1980). The duopoly point is
stable so that a local analysis would predict, incorrectly, that p2 > p3. The triopoly point is not stable. The
reasoning here is the same as in De Meza (1985), which compares monopoly with duopoly.
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Example 5. Let P (z) = 1
z+1

and C(x) = 1
2
log(x+ 1).

Here4 (z, y) changes signs on ϕ and Π(x, y) = x

x+ y + 1
− 1
2
log (x+ 1) is quasi-concave

in x, for fixed y. The reaction curve is r(y) =
p
1− y2, and the unique Cournot equilibrium

is given by xn = 1√
n2−2n+2 . Simple calculations show that while xn and nπn are decreasing

in n for all n, zn and thus pn are not monotonic in n.

Social welfare is given by Wn = log(
n√

n2−2n+2 + 1) − n
2
log( 1√

n2−2n+2 + 1). In particular,

W1 =
1
2
ln 2 ' . 34657, and W2 = log

¡√
2 + 1

¢− log ¡1
2

√
2 + 1

¢ ' . 34657, so that W2 = W1.

Then Wn decreases monotonically from n = 2 onwards. Thus26 , n∗ = {1, 2}: A social

planner would be indifferent between monopoly and duopoly as the optimal choice!

5. On some Theoretical and Policy Implications

The results presented here lie at the heart of the modern theory of industrial organization

and can, to some extent, illuminate a number of past as well as present theoretical issues

and public policy debates. In particular, we relate our findings to the relationship between

Cournot outcomes and perfect competition, the welfare content of the Herfindahl index,

destructive competition and natural monopoly. Surprisingly, the latter two notions have not

been linked with Cournot theory in the past. We attempt to fill this gap below.27

5.1 Relationship to Perfect Competition

Ruffin (1971) showed that if the number of firms is increased with fixed demand,28 Cournot

equilibria converge to the perfectly competitive equilibrium under global diseconomies of

scale, but not under global economies of scale. Our conclusions shed some light on this

result by indicating that (i) in the former case, equilibrium welfare converges monotonically

to first-best welfare, and (ii) in the latter case, although industry profits and per-firm output

both monotonically converge to zero, welfare does not increase to first-best welfare, due to

firms producing at increasing (and in the limit, maximal) average cost. Here first-best welfare

would involve one firm producing the entire output and pricing at marginal cost.29 Thus our
26Viewing n as a real variable, Wn is single-peaked in n and achieves its maximum at n ' 1.36.
27Other applications can be discussed as well, including efficiency aspects of merger policy, the concentra-
tion/profitability debate, and entry regulation. With an exogenous number of firms, the latter topic is
covered in detail Mankiw and Whinston (1986) and Suzumura and Kiyono (1987). Our results also shed
light on their main result, that free entry leads to excessive entry relative to a planner’s solution.
28See Novshek (1980) for the other approach, where demand is replicated.
29The planner’s objective is then max{R nx

0
P (t)dt − nC(x) : n ≥ 1, x ≥ 0}. The first-order conditions are

P (nx) = C 0(x) and xP (nx) = C(x). These imply that marginal and average cost are equal, as is well-known
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results fill an important gap in the foundations of partial-equilibrium perfect competition.

5.2 The Herfindahl Concentration Index and Welfare

The Herfindahl-Hirschman Index (or HHI) of industry concentration, defined as a (normal-

ized) sum of the squares of the firms’ market shares, is the most often used quantitative

assessment of industry concentration. In particular, the value of the HHI constitutes the

primary indicator for antitrust authorities of market power and of the likelihood of overt

or tacit collusion in a given market. The HHI is also one of the main elements of the 1982

Merger Guidelines in determining whether a proposed merger is to be allowed.30

Underlying the extensive reliance of economic law on this measure is a fundamental

belief that social welfare and the HHI are always inversely related (see e.g. Dansby and

Willig, 1979). Yet, this belief has recently been challenged by theoretical studies based

on the Cournot model. Farrell and Shapiro (1990) establish that, with a fixed number of

(nonidentical) firms, whenever industry output is unchanged folowing individual firm output

changes, social welfare and the HHI must change in the same direction. Salant and Shaffer

(1999) provide further insight into this result in the case of constant unit costs by showing

that both welfare and the HHI increase if and only the variance of the unit costs increases

in a mean-preserving way. Also see Daughety (1990).

The present paper sheds some further light on this issue by considering the effects of

changing the number of firms instead. Given the symmetry assumption, the HHI with n

firms here is clearly given by (a constant factor of) 1/n. Hence, the HHI decreases if and

only if the number of firms increases. On the other hand, our results indicate that in the

presence of scale economies (with A0 < 0), social welfare decreases if the number of firms

exceeds some socially optimal level n∗. Thus, both the HHI and welfare decrease whenever

n increases beyond n∗. In particular, in industries where n∗ = 1, the two measures would

always produce conflicting prescriptions as the number of firms increases.

This conclusion clearly suggests that the HHI should be augmented by some measure

of economies of scale in the industry that would allow appropriate balancing between the

legitimate fears of market power and the desire for production efficiency.

for a first-best solution. In particular, the first-best number of firms is then 1 if A0 < 0 and ∞ if A0 > 0.
30For some historical backround on these Guidelines and an exchange of views among experts, see the
Symposium in the Journal of Economic Perspectives, vol. 1, 1987.
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5.3 Destructive Competition

Destructive competition was a recurrent theme in older case and empirical studies of regu-

lated industries, particularly those in the transportation sector such as railroad and trucking

(see Sharkey (1982) for a historical account). It is typically associated with a combination

of industry characteristics, such as strong economies of scale (often due to large fixed costs),

large productive capacity, relatively easy entry, and ill-guided government subsidies. The

symptoms of destructive competition in such industries include high levels of market in-

stability, excessive capacity and widespread price discrimination, often leading to frequent

changes in regulatory regimes, including entry regulation.

Sharkey (1982) develops a cooperative game-theoretic approach to model destructive

competition, defining industry stability by the nonemptiness of the core. The results here

suggest a simple and natural alternative within the noncooperative paradigm: In the abs-

cence of any regulatory interference, destructive competition can be fruitfully modelled by

Cournot competition under the assumption that ∆ is globally negative. Indeed, increases

in competition from any pre-existing level, including in particular monopoly, result in lower

consumer welfare, per-firm profit and social welfare. Thus higher competition is unambigu-

ously detrimental to all economic agents, with even unregulated monopoly emerging as the

best among market outcomes. Furthermore, and more strikingly, some aspects of reported

market instability in industries thought to have undergone phases of destructive competition

may be instructively linked to the indeterminacy in the number of active firms and the un-

stable nature of the Cournot equilibria (in the sense of divergence of best-reply dynamics),

both of which are characteristics of the case ∆ globally negative (see Section 4.4.)

5.4 Natural Monopoly

Following various attempts, Baumol, Panzar andWillig (1982) provided the final definition of

natural monopoly: An industry with a subadditive cost function. This is the least restrictive

property of a cost function that captures the notion that any amount of final output is

cheaper to produce by one firm, or, in other words, subdividing production cannot possibly

save on costs. This definition completely ignores the demand side of the market, which is

justified in light of two special features that were dominant in the economic scene two decades

ago. The first, reflecting the prevalent public policy view of the times, is that monopolies

are to be regulated anyway, so that market conduct is not really an issue, leaving production
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efficiency as the primary concern. The second, a theoretical belief, is that if an industry

has a downward-sloping average cost curve and the market is contestable, the only stable

configuration will involve a single firm pricing at average cost, resulting in zero profits.

Subsequently, a near-conscensus emerged, recognizing the limited real-life validity of

contestable markets31 , and a wave of deregulation originating in the US and the UK swept

through the industrialized world. In view of the need to incorporate the demand side of

the market now in a revised definition of natural monopoly, the analysis of the present

paper suggests an obvious alternative: An unregulated monopoly is natural if social welfare

Wn is maximized by n∗ = 1. According to our results, this would require scale economies

of sufficient magnitude over the relevant range, but not necessarily that ∆ be globally < 0.

Recall that theMain Example shows that n∗ can be equal to 1 for an industry for which∆ > 0

globally. This definition is clearly more restrictive than the old one32 , as it incorporates the

market or demand side of the industry. In other words, it strikes a socially optimal balance

between the detrimental effects of concentration and the cost-saving effects of size.

A natural n∗-firm oligopoly can be analogously defined by n∗ = argmaxnWn. If ∆ < 0,

Proposition 11 implies that n∗ must necessarily be equal to 1. However n∗ > 1 is compatible

with∆ > 0 globally, and with∆ not having a uniform sign on all its domain (cf. Example 4).
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6. Appendix

Here, we provide a sufficient condition for quasi-concave profits.33

Let y , P−1[C 0(0)] or P (y) = [C 0(0)] = A(0) by l’Hospital’s rule. Thus y is the rivals’ total
output that equates price and average cost when the responding firm produces 0.

Proposition A. Let [P (x + y) − A(x)]−1 be convex in x ∈ U(y) , {x : P (x + y) > A(x)}
for each y ∈ [0, y]. Then (i) Π(x, y) is strictly quasi-concave in x ∈ U(y) for fixed y ∈ [0, y],
and (ii) r is a continuous function satisfying r(y) > 0 for y ∈ [0, y) and r(y) = 0 for y ≥ y.

Proof. We prove Part (i) by contradiction. If strict quasi-concavity fails, there exists

λ ∈ (0, 1), y ∈ [0, y] and x, x0 ∈ U(y) such that

x[P (x+ y)−A(x)] ≥ [λx+ (1− λ)x0]{P [λx+ (1− λ)x0 + y]−A[λx+ (1− λ)x0]} and

x0[P (x0 + y)− A(x0)] ≥ [λx+ (1− λ)x0]{P [λx+ (1− λ)x0 + y]− A[λx+ (1− λ)x0]}

Rewriting the two inequalities (one of which is actually strict),

x

P [λx+ (1− λ)x0 + y]− A[λx+ (1− λ)x0] ≥
λx+ (1− λ)x0
P (x+ y)−A(x) and

x0

P [λx+ (1− λ)x0 + y]− A[λx+ (1− λ)x0] ≥
λx+ (1− λ)x0
P (x0 + y)− A(x0) .

Multiplying the two inequalities by λ and 1− λ respectively, adding them up, and sim-

plifying yields (since one of them is strict)

1

P [λx+ (1− λ)x0 + y]− A[λx+ (1− λ)x0] >
λ

P (x+ y)− A(x) +
1− λ

P (x0 + y)−A(x0)
which contradicts the assumption of convexity of 1/[P (x+y)−A(x)] in x. Hence, (i) follows.
For Part (ii), it follows directly from Part (i) that r(y) is a continuous function for

y ∈ [0, y]. Also r(y) = 0 by definition of y, and thus Π(r(y), y) = 0. We now show that

r(y) = 0 for y ≥ y by contradiction. Assume that r(y0) > 0 for some y0 > y. Then we

must have Π(r(y0), y0) ≥ 0, since a response of 0 guarantees zero profit. Then Π(r(y0), y) >
Π(r(y0), y0) ≥ 0 since Π is strictly decreasing in y (from Assumption A1) and y0 > y. But

Π(r(y0), y) > 0 is a contradiction to the fact that r(y) is a best-response to y yielding

Π(r(y), y) = 0. Since y is uniquely defined, the conclusion follows directly.

33For a similar argument in price competition, see Caplin and Nalebuff (1991).
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