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Abstract

I study a model of moral hazard with soft information: the agent alone observes

the stochastic outcome of her action; hence the principal faces a problem of ex post

adverse selection. With limited instruments the principal cannot solve these two prob-

lems independently; the ex post incentive for misreporting interacts with the ex ante

incentives for effort. This affects the shape and properties of the optimal contract,

which fails to elicit truthful revelation in all states. In this set up audit and transfer

become strategic complements; this is rooted in the non-separability of the problem.
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1 Introduction

The standard solution of a moral hazard problem requires the observation of some informative

signal of the agent’s action. It is then possible to design a second-best contract, which is

conditioned on that information instead of the actual action. When performance is difficult

to observe or noisy, the signal may be complemented. Sometimes however performance is

not observed at all: an accounting report, for instance, is not a direct observation of the

state of a firm.

This paper studies exactly this problem: the outcome realization is not observable by

the principal, but must be reported by the agent. Then the principal is exposed to ex ante

moral hazard and adverse selection ex post. The object of the paper is to characterize the

optimal contract when these two problems interact. Bar for the issue of observability, the

model mirrors that of a standard moral hazard problem. A risk-neutral principal delegates

production to a risk-averse agent, who relies on a stochastic technology. The agent alone

observes the outcome θ, which must therefore be elicited ex post. Because the principal

otherwise observes nothing, the contract must include an audit and some (bounded) penalty.1

The model attempts to be faithful to audit as a sampling process, which is imperfect.2

Applications are broad-ranging. For example, after hiring the CEO, a board often asks of

him (her) to report his (her) results while on the job; a regulated firm may be asked to reveal

its production cost after investing in an uncertain technology. Kedia and Philippon (2006)

also document the pervasiveness of “earnings management”–a euphemism for fraudulent

accounting–which arises in the equilibrium of this model.

The paper’s main contribution is to show that audit and transfer are strategic comple-

ments. More precisely, they respond to exogenous changes by moving in the same direction.

This departs from standard results of the costly state verification literature, which shows

they are substitutes. It also depart from the standard literature on moral hazard, where

1Doornik (2006) notes that penalties are always bounded for courts will not enforce any penalty in excess

of the damages incurred.
2For example, financial audits are sampling processes. See the discussion for details.
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monitoring and incentives are substitutes.3 The more powerful the ex ante incentives for

effort (i.e. the steeper the transfer function with respect to the outcome), the more attractive

is the option to manipulate information ex post, especially when it is bad. Therefore the

more accurate must the audit be. Yet the transfer function must remain steep enough to

generate ex ante incentives in the first place. This is the fundamental conflict of this paper.

This work is closely connected to that of Mookherjee and Png (1989, now MP), who

show that with enough instruments, the twin problem of moral hazard and ex post adverse

selection can be treated separately. More precisely, separability allows for ex post truthful

revelation without any consequence on the incentive device used to solve the ex ante moral

hazard problem. Their connection becomes moot and the moral hazard problem can be

solved in standard fashion, yielding standard results. The analysis of such interaction has

received scant attention in economics, possibly because the Revelation Principle (applied by

MP) is too powerful in some sense. Indeed the accounting literature roots misreporting of

information in some failure of the Revelation Principle (e.g. Arya, Glover and Sunder, 1998

or Demski and Frimor, 1999). I suggest a different route.

The starting premise is that the real world does not accord with the results of MP; agents

do mislead their principal. For example, Bally Total Fitness, a large chain of fitness clubs,

fired its controller and treasurer, then its CFO, for misleading accounting in 2005. More

recently, Howie Hubler, a “headstrong” trader at Morgan Stanley single-handedly lost the

firm $9 Bn after covering up his trades, was terminated and yet paid out past boni.4 Thus a

model that systematically predicts truthful revelation has limited applicability. Second, the

schemes suggested by MP are not observed in practice. Executive compensation contracts,

for example, may specify a diverse array of contingent payments, but usually not a bonus

for not misleading shareholders. A third objection is that the transfer (a reward) that is

3“Auditing” is understood to mean observing the output; to observe the agent;s action is to “monitor”;

see for example Khalil and Lawarree (1995), who show this is not a trivial distinction. There is no monitoring

in this model, only auditing.
4Bally’s executive were not subject to legal proceedings of any kind, neither was Hubler. Sources: Motley

Fool at motley.com. and “The Big Short”, Michael Lewis, 2008.
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necessary to induce information revelation may be arbitrarily large; it turns the principal

into a source of money regardless of the value of the productive relationship with the agent.

In this paper complete truth-telling can never be an equilibrium.5 Furthermore, when

truthful revelation is possible for at least some states, the agent misreports in the worse

states, where the incentive is strongest and the cost is lowest. The reason is non-separability:

a single transfer is used to solve the ex ante and the ex post problems. This is not enough

to disentangle them and introduces a fundamental tension between ex ante effort provision,

which requires a state-contingent compensation, and ex post information revelation, which

is best addressed with a constant transfer. The interaction of these two problems implies

that the optimal transfer function is “option-like”. It must satisfy an implicit limited liability

constraint (because of the bounded penalty), which creates systematic incentives for message

inflation. This option shape accords well with many real-life contracts.

The papers closest to this one are MP and Kanodia (1985). Both consider a combination

of moral hazard and ex post adverse selection with no observability. MP combine a Grossman-

Hart (1983) model with an ex post revelation mechanism. The principal may use a transfer

for each of the moral hazard and the adverse selection problems; the latter is a reward (by

limited liability) that may be arbitrarily large. In the present paper, the principal can use

only one payment, which also accords well with real-life contracts.6 Border and Sobel (1987)

construct an audit mechanism with endogenous penalties. The optimal probability of audit

varies in the messages sent; truthful revelation obtains with arbitrarily large penalties (and

ignoring the agent’s participation decision, as pointed out by MP).7 In all these papers,

auditing is perfect but the principal controls the probability of running an audit. Here the

audit is imperfect and closer to sampling, which is what real financial audits do, and has been

modeled by Bushman and Kanodia (1996) or Demski and Dye (1999). Crocker and Morgan

5Whether any truthful revelation occurs is determined in equilibrium; it depends on the whole contract.
6MP’s model yields a quirky byproduct: the agent strictly prefers being audited. This owes to the

construction of the revelation constraint, which implicitly only allows reward to be offered for truth-telling.
7In Khalil (1997) truthful revelation obtains through a standard direct revelation mechanism. Auditing

relaxes the agent’s incentive constraint; the principal trades-off the audit cost with the information rent.
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(1998) construct an optimal insurance contract in the presence of fraud: actual damages may

be inflated ex post. In equilibrium there is always falsification, as here. It is necessary to

induce separation, which is a condition of efficient insurance; here separation is a condition

of effort. The payment scheme internalizes this fraud and is low-powered, as in this paper.

Doornik (2006) considers the opposite problem: the principal only observe the outcome of

the agent’s effort and may renegotiate at the interim stage. The interim offer is informative;

the equilibrium is Perfect Bayesian. A rejection triggers costly legal enforcement, which does

occur with some probability in equilibrium. This is sufficient to be unable to implement the

first best in spite of the agent risk neutrality. The contract is a one-step bonus: a (extreme)

form of option. An “option-like” contract is derived by Jewitt, Kadan and Swinkels (2008,

now JKS) when the agent must receive a minimum payment: it pays a constant wage below

a threshold, and an increasing transfer beyond. In this paper bounded penalties imply a

limited liability constraint; the contract takes a similar shape.

Close in spirit, Gromb and Martimort (2007) let (an) expert(s) search for some informa-

tion by exerting some effort, who then has (have) to disclose it to the principal. To overcome

the moral hazard problem, the expert’s incentive contract must be made state-dependent.

Like in this paper, this very fact introduces adverse selection. However, a contract can be

conditioned on the final outcome, unlike here. For the purpose of this discussion, Krähmer

and Strausz (2011) adopt a similar construct in the context of pre-project planning. Mal-

comson (2009) studies a problem where the agent acquires soft information that may be used

by the agent to make a decision yielding a verifiable outcome. The principal may have incen-

tives to distort the decision rule away from the first-best to foster information acquisition.

Levitt and Snyder (1997) develop a contracting model in which the agent receives an early

(soft) signal about the likely success of the project. With appropriate early information,

the principal can decide whether to shut-down or continue. To obtain this information, he

must commit to shut-down less frequently than the unconstrained solution prescribes. The

eventual outcome is fully observed by the principal, hence contractible. In all these papers,

information is still exogenously given although ex ante unknown to the agent. Here the
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private information emerges endogenously.

After introducing the model, Section 3 deals with the ex post information revelation

problem. Next I characterize the optimal contract; Sections 5 explores some properties.

Section 6 presents an extensive discussion. The proofs and some of the technical material

are relegated to the Appendix.

2 Model

A principal delegates a task to an agent who undertakes an action a ∈ A ⊂ R+. The action’s

cost c(a) is increasing and convex, and yields a stochastic outcome θ ∈
[
θ, θ

]
≡ Θ ⊂ R with

conditional distribution F (θ|a) and corresponding density f(θ|a) > 0. The density f(θ|a)

satisfies the MLRP: fa/f is non-decreasing, concave in θ; therefore F (θ|a′) stochastically

dominates F (θ|a) in a first-order sense when a′ > a. I make the additional assumption that

Fa(F
−1(θ|a)) is convex in (θ, a).8 The agent alone observes the outcome θ and reports a

message ω ∈ Ω to the principal, whereupon she receives a transfer t. Her net utility is given

by u(t, a) = v(t) − c(a), where v : R 7→ R is a continuous, increasing, concave function

with v(0) = 0. The principal receives a net payoff S(t, θ) = θ − t. If the true state θ were

observable by the principal, the model would collapse to the textbook moral hazard problem.

The principal can commit to the contract.

At the stage of information revelation, effort is sunk so all that matters is the utility v(t),

which can only be conditioned on the message ω. Given the monotonicity of v(t), either all

types pool to the same message if t(ω) is increasing, or have no effort incentive at all if it

is constant. Auditing restores a measure of ex post observability; it has zero marginal cost.

However it is imperfect and uncovers misreporting with probability p(ω−θ;α), where p : R 7→

[0, 1] is a continuous, differentiable function in both arguments and p(0;α) = p(·; 0) = 0.9

This breaks the monotonicity of v(t). The technology p(·;α) is costly to acquire; it is drawn

from a family P of increasing, at least weakly convex functions parametrized by an investment

8This is sufficient for the Concave Local Informativeness condition of JKS.
9This is akin to a sampling process, as in Bushman and Kanodia (1996).
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α at cost k(α), increasing and convex. The parameter α affects the slope of p(·;α) at 0, that

is, the precision of the audit. Auditing remains imperfect: ∀α, ∂p(z|α)/∂z|z=0 < ∞ but there

are no type-II errors. If discovered the agent receives nothing.10 With this construction the

expected utility function of an agent at the revelation stage is U = v(t(ω)) [1− p(ω − θ;α)].

Hence,
∂U

∂t
= v′ [1− p] ≥ 0;

∂2U

∂t∂θ
= v′p′ ≥ 0 (2.1)

is a sorting condition on the ex post expected utility of the agent, akin to the Spence-Mirrlees

condition. The timing is almost standard:

1. The principal offers a contract C = ⟨Ω, t(ω), p(ω − θ;α)⟩ made of a message space, a

transfer function and an audit technology;

2. The agent accepts or rejects the contract. If accepting, she also chooses an action a;

3. Action a generates an outcome θ ∈ Θ observed by the agent only;

4. The agent reports a message ω ∈ Ω;

5. Audit occurs (because it has 0 marginal cost);

6. Transfers are implemented and payoffs are realized.11

3 Information Revelation

This Section focuses on information transmission. It takes advantage of some results con-

tained in a companion paper (Roger 2012) that are briefly explained. Then it is shown

that truthful revelation in any arbitrary state θ amounts to a condition relating the transfer

function t(·) to the probability p(·|α). This defines three regimes: complete, partial or no

information revelation. The dependence on α is suppressed where convenient.

10See Section 6 for a discussion of these two assumptions.
11That payoffs are realized needs not imply that they are observed by the principal, as in the accounting

example. Mathematically, not observing θ does not prevent maximizing E[S(t, θ)] or any other monotone

transformation E[S(t, g(θ))]. See also Grossman and Hart (1983), Remark 4.
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3.1 Preliminaries

Consider a mechanism with message space Ω and suppose that the transfer function

t(ω) is increasing and a.e. differentiable.12 The agent sends a message ω such that

maxω∈Ω v(t(ω)) [1− p(ω − θ)], i.e. ω(θ) solves:

v′t′(ω)[1− p(ω − θ)]− v(t(ω))p′(ω − θ) = 0 (3.1)

Condition (3.1) must bind for some ω because p(·) is monotonically increasing. For a mech-

anism to be truthful, v(t(θ)) ≥ v(t(ω)) [1− p], or v(t(θ)) = maxω∈Ω v(t(ω)) [1− p(ω − θ)].

Using (3.1), this is equivalent to there being some θ̃ such that:

v′t′(θ̃) = v(t(ω))|ω=θ̃ · p
′(0). (3.2)

Roger (2012) establishes that (i) a direct mechanism where Ω = Θ induces a measure

of pooling and (ii) there is no loss of generality in restricting attention to a separating

mechanism that uses an enlarged, but simple, message space labeled M̂.13 That is, choosing

the appropriate message space becomes part of the design problem, unlike instances where

attention may be restricted to direct mechanisms without loss. That sufficient message space

is defined as follows: consider some set M such that Θ ⊂ M ⊂ R. Let

m̂(θ, t) = arg max
m∈M

v(t(m)) [1− p(m− θ)] ,

then we have M̂ ≡ {m̂(θ; t) ∈ M|m̂ ∈ argmax U ∀θ ∈ Θ}. The mapping m̂ is a function

of the transfer t, which is fixed and committed to at the stage of information revelation.

Already we see that information revelation and ex ante incentives interact. Lemma 8 (in the

Appendix) shows there is no better message space than M̂.14

Partial pooling may arise in a direct mechanism because all agents may have incentives

to misreport upwards but the top type cannot report more than θ; this applies to a positive

12This is not a restriction: p(·;α) is continuous, so must be t(·). See Roger (2012).
13Kartik (2009) derives similar results in a model of almost cheap talk, for essentially the same reasons.

See the Discussion.
14This observation stems from working through an anonymous referee’s comment, whom I must thank.
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measure of agents. This partial pooling dampens ex ante incentives because the contract

does not sufficiently discriminate between outcomes: the compensation scheme is flat for a

range of outcomes. A completely separating mechanism always dominates. Furthermore,

removing some messages from the set M̂ also does not help. It always renders the contract

more expensive to the principal. If M̂ is truncated from below, the agent must overstate her

optimal message for some realisation (which is risky and therefore costly). If some interior

messages are prohibited, the ex post expected utility U is no longer monotonic in θ. But any

non-monotonic scheme is dominated by a monotone one (Carlier and Dana, 2005).

3.2 Degrees of information revelation

Equation (3.2) embodies a requirement on the precision of the audit at 0; that is, it defines a

subset P0(t) ⊆ P of audit functions that can elicit truthful revelation for at least some values

of θ, given the transfer t. Condition (3.2) is necessary and sufficient for truthful revelation

at θ̃, which does not mean it holds for all values. There may be three cases of interest; which

of these the principal faces is determined in equilibrium.

Case 1: Partial truthful revelation. This corresponds to condition v′t′(θ̃) = v(t(θ̃))p′(0)

for some value θ̃ ∈
(
θ, θ

)
. If v(t(·)) is concave, then v′t′|θ≥θ̃ ≤ v(t(θ̃))p′(0) and truth-telling

obtains above θ̃. Similarly, v′t′|θ<θ̃ > v(t(θ̃))p′(0) and truth-telling is out of reach below θ̃ (so

m̂(θ) > θ). The converse is true for v(t(·)) convex. Figure 1 (left panel) depicts an interior

example of θ̃ when v(t(·)) is a concave function.

The next two cases are special instances of the first one.

Case 2: Truthful revelation. Condition (3.2) is satisfied for all values of the private

information θ; more precisely, ∀θ, v′t′(θ) ≤ v(t(θ))p′(0). Jointly with the transfer, the audit

technology p(·;α) is sufficiently precise so ∀θ, m̂(θ) = θ.

Case 3: No truthful revelation. Condition (3.2) fails to hold anywhere on the range

Θ, i.e. ∀θ ∈ Θ, v′t′(θ) > v(t(θ))p′(0). This is shown on the right panel of Figure 1. This
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Figure1: Optimal messages above and below θ̃ (left); with extended message space (right)
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m̂(θ)

m(θ)

M

problem is the reason for constructing a separating mechanism.

This rich array of outcomes obtains because of non-separability of the twin problem

of ex ante moral hazard and ex post adverse selection. That non-separability stems from

the combination of the imperfect audit technology and the limited number of instruments.

It implies a fundamental tension between ex ante effort incentives, which require a state-

contingent transfer, and ex post information revelation that is best addressed with state-

independent transfers. The consequence is that in Cases 2 and 3, an agent who is induced

to exert any effort necessarily misreports her private information with positive probability.

Indeed, re-arrange the truth-telling condition as p(ω − θ) ≥ 1− v(t(θ))/v(t(ω)): for a given

α, this inequality is more difficult to satisfy when t(·) is steep.

One last remark is in order. There may exist many contracts satisfying t′ ≥ 0: some may

include jumps, there may be intervals on which t′ = 0 and so on, with implications for the

message m̂. It is not obvious that m̂ must be continuous, as it is depicted in Figure 1. To

see why, consider a scheme t(·) that is flat on some range, say, on Θf ≡ [θ1, θ2]. If θ̃ ≥ θ2 the

agent misreports her information on Θf as anywhere else below θ̃. If θ̃ ≤ θ1, she may face the

conditions v′t′(θ1) ≤ v(t(θ1))p
′(0;α) but v′t′(θ2) ≥ v(t(θ2))p

′(0;α), i.e. t(·) may be steeper

at θ2 than at θ1 and (3.2) is reversed. Then one moves from truthful revelation above θ̃ and

below θ1 to misreporting from θ2 on, i.e. there is a jump in the optimal message (because
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θ

Θ

m(θ)

θ̃

t(·)

Θ
θ̃ θ1 θ2 θ1 θ2

Figure 2: contract (left) may induce jump(s) in the optimal message (right)

v(t(θ̃)) ≥ (1− p)v(t(m(θ̃))) at θ̃ but v(t(θ2)) < (1− p)v(t(m(θ2)))– see Figure 2.

4 Characterization

To proceed, I first seek to understand the behavior of the contract for some fixed audit

technology p(·;α). Then I endogenize α, to which all other endogenous variables also respond,

and optimize fully over the whole set of instruments t, a, α. I use the first-order approach.15

The ensuing analysis may be problematic in that the agent’s utility

U =

 v(t(θ)), θ ≥ θ̃;

(1− p(m− θ))v(t(m)), θ < θ̃.

may not be smooth, nor even continuous, at θ̃. It turns out that it must be both; the formal

statement takes the form of Lemma 6 in the Appendix. From this it follows that the optimal

message is also a smooth function of θ at θ̃ by the Theorem of the Maximum (see Figure 1),

so the regime change at θ̃ is “smooth”.16 Defining t : M̂ 7→ R, the principal’s program is

15See Jewitt (1988) or Conlon (2009) for validations; Jewitt (1988) specifically for sufficient conditions.
16The other potential source of discomfort is that highlighted in Figure 2, i.e. a jump away from truth-

telling above θ̃; this is addressed later.
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Problem 1

max
α,t,a

∫ θ̃

θ

[x− (1− p(m̂(x)− x;α))t(m(x))] dF (x|a) +
∫ θ

θ̃

[x− t(x)] dF (x|a)− k(α)

s.t.

m̂(θ) = arg max
m∈M

(1− p(m− θ))v(t(m)) (4.1)∫ θ̃

θ

v(t(m̂(x)))[1− p(m̂(x)− x)]dF (x|a) +
∫ θ

θ̃

v(t(x))dF (x|a)− c(a) ≥ 0 (4.2)

∫ θ̃

θ

v(t(m̂(x)))[1− p(m̂(x)− x)]dFa(x|a) +
∫ θ

θ̃

v(t(x))dFa(x|a) = c′(a) (4.3)

where θ̃ ≡ θ̃(p(·;α), t, a). The ex post message may be entirely truthful (only drawn from Θ),

not at all (and only drawn from M̂) or some of both depending on where θ̃ lies.17 From an ex

ante standpoint the principal must account for any of these possibilities, which the objective

function and the constraints reflect. Condition (4.1) is the agent’s information revelation

constraint – the novelty in this paper. Let λ be the Lagrange multiplier of constraint (4.3),

µ that of (4.2) and tO denote the solution of the following conditions.

Lemma 1 Fix a and α. The first-order conditions of Problem 1 are given by:-

1

v′(t(m̂(θ)))
= µ+ λ

fa
f
; (4.4)

for θ < θ̃; and
1

v′(t(θ))
= µ+ λ

fa
f
; (4.5)

for θ ≥ θ̃, where m̂(θ) is determined by (4.1) and µ, λ ≥ 0.

The case of complete information revelation is obtained by extending θ̃ to θ. Then the

first-order condition is standard; (4.5) holds over Θ. Case 3 corresponds to θ̃ ≥ θ.

17Note that although the problem does not specify a distribution over the message space

M, F (θ|a) is still the relevant distribution because m̂(θ) is injective. For details, see Roger

(2012). More comprehensively the program allows for jumps as described in Section 3; the

principal’s objective is then
∫ θ̃

θ
[x− (1− p(m(x)− x;α))t(m(x))] dF (x|a) +

∫ θ2
θ̃

[x− t(x)] dF (x|a) +∫ θ̂

θ2
[x− (1− p(m(x)− x;α))t(m(x))] dF (x|a) +

∫ θ

θ̂
[x− t(x)] dF (x|a) − k(α), with a jump at θ2 and two

thresholds θ̃, θ̂–and the agent’s utility is similarly modified. The analysis extends immediately.
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4.1 Incentives under soft information

The agent’s incentives, and the principal’s response, are altered in two ways that are exten-

sively explored in Roger (2012). This section presents a brief summary. First, the potential

for misrepresentation affects the agent’s incentives in Problem 1. Denote by â the action

solving
∫
Θ
v(t(x))dFa(x|a) = c′(a)–the standard moral hazard constraint. Formally,

Lemma 2 Fix the transfer function t across models. Whenever θ̃ ≥ θ, the agent selects an

action a∗ solving (4.3) below the action â.

For a given transfer schedule the agent’s moral hazard constraint is hardened because her

expected payoff is higher in any state thanks to message inflation–so the marginal benefit of

effort is lower. Very low outcomes are tempered by the option to exaggerate them; they do

not provide strong incentives.

Second, the ex post penalties act like a default payment that interacts with the ex ante

incentives. Indeed, the agent can always do better than accepting a negative transfer: she

can simply take the lottery {p, 1− p} over 0 and some positive v(t(m)) by exaggerating her

message. In the words of JKS, this penalty becomes “payment binding”; that is, it becomes

a limited liability constraint. The transfer function is modified in consequence, as in JKS.

Because the ratio fa/f is monotonic and EΘ [fa/f ] = 0, for some action a there exists some

θa such that fa(θa|a)/f(θa|a) = 0.

Lemma 3 Fix a. The optimal transfer tO takes the form

1

v′(tSB)
=

 κ, ∀ m̂(θ) ≤ θa;

κ+ λfa
f
, ∀ m̂(θ) > θa.

where κ ≥ 0, κ ̸= µ and m̂(θ) solves (4.1). Furthermore, the multiplier λ of the moral

hazard constraint (4.3) is strictly positive.

JKS call this kind of scheme option contracts. The constant κ corresponds to the minimum

payment the agent must receive ex post. It is evident that the option contract generates

weaker incentives for the agent because failure does not carry great consequences. For the
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Figure 3: Transfers functions–standard and distorted.

tO(m(θ))

m(θ)θS
a θSB

a

principal that means that a high action becomes more expensive to implement. To complete

the description of the transfer function,

Proposition 1 The optimal transfer function tO solving Problem 1 is continuous, non-

decreasing over Θ and described by Lemma 3; in particular, it:-

• is continuous but with a kink at θa;

• is non-decreasing concave for all θ above θa; and

• pays zero below θa.

Figure 3 depicts the transfer function. The zero payment below θa stems from the zero ex

post penalty. Notice that when θ̃ is interior, tO is still continuous at θ̃. The reason is that

m̂(θ) smoothly converges to θ at θ̃ because the function U is smooth. (See the left panel of

Figure 1). An immediate consequence of Proposition 1 is

Corollary 1 Completely truthful revelation (Case 2) can never occur in equilibrium.

Because the optimal contract pays zero on the range [θ, θa], the agent is strictly better off

taking the lottery {p, 1− p} over zero (if detected) and a positive payoff obtained by reporting

m̂(θ) > θ. Furthermore, because the optimal transfer function is concave, misreporting
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always occurs “at the bottom” (see Case 2). Indeed, the agent with the strongest incentives

to misreport is the one in the worse states. It is also the agent whose cost of misreporting is

the lowest. From the collection of the previous results, it is also true that:

Corollary 2 The optimal message m̂(θ) is everywhere continuous on Θ; i.e. there are no

jumps.

This follows from the fact that the optimal transfer function tO is monotone strictly concave

from θa on. There can be no pair θ1 < θ2 such that v′t′(θ2) > v′t′(θ1); thus Condition (3.2)

cannot be simultaneously holding at θ1 but reversed at θ2. Furthermore, there can be only

at most one threshold θ̃, and the three simple regimes described in Section 3 are exhaustive.

4.2 Optimal contract

As part of the optimal contract the principal selects his audit technology p(·;α) ∈ P by

choice of α. This may have two effects. First, fixing t(·) and a, it may alter the degree of

information revelation, i.e. the cutoff θ̃ (Cases 1 to 3). Second, t(·) and a are endogenous

variables, so they too adjust to a change in α. The optimal contract balances all these effects.

Proposition 2 The optimal contract is characterised by:-

1. a continuous transfer scheme tO =

 tO(m̂(θ)), θ < θ̃;

tO(θ), θ ≥ θ̃.
determined by Proposition 1,

and Conditions (4.4) and (4.5) on the relevant ranges;

2. an action aO solving the first-order condition∫ θ̃

θ

[x− t(m̂(x))(1− p)]dFa +

∫ θ

θ̃

[x− t(x)]dFa

+λ

[∫ θ̃

θ

v(t(m̂(x)))(1− p)dFaa +

∫ θ

θ̃

v(t(x))dFaa − c′′(a)

]
= 0 (4.6)

3. and an audit investment αO = αO
1 + αO

2 , where αO
1 solves

v′t′(θ) = v(t(θ))p′(0;αO
1 ) (4.7)
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and αO ≥ αO
1 solves∫ θ̃

θ

t(m̂)pαdF (x|a) + λ

∫ θ̃

θ

v(t(m̂))pαdFa(x|a) = k′(α) (4.8)

The cut-off θ̃ ∈ [θ, θ] is determined by (3.2) given tO, aO, αO.

The threshold θ̃ is free to lie at either boundary or to be interior; it is endogenous to the

contract and so is the regime one operates under. The first two items of Proposition 2 resem-

ble standard ones. The last one determines the level of investment in the audit technology.

It allows for αO
2 to be zero, that is, θ̃ = θ. If so, the technology is sufficiently inexpensive

(or equivalently, precise) for Condition (3.2) to hold at θ. Condition (4.7) thus pins down

the smallest investment necessary for truthful revelation. In that case, the transfer is de-

termined by (4.5) and (4.6) collapses to the standard expression; the pair tO, αO, together

with the zero penalty, are such that they compel truthful revelation. If αO
1 is not sufficient,

the investment may be increased from αO
1 to αO (i.e. by αO

2 ), and this entails a trade-off

given by (4.8); that is, further distortions arise. The total marginal benefit (LHS) includes

saving on undue transfers, as well as relaxing the moral hazard constraint. When truthful

revelation is impossible, the transfer is determined solely by (4.4) and (4.6) is modified by

extending θ̃ to θ. Truth-telling cannot be guaranteed (unlike in Mookherjee and Png [26]),

because tO, αO are jointly determined. Whether truthful revelation obtains does not just

depends on the audit procedure because the problems of moral hazard (ex ante) and adverse

selection (ex post) are meshed.

5 The relationship between audit and transfers

Because both the transfer t and the audit investment α are costly to the principal, a question

of practical importance is to understand how they relate. Indeed, the costly state verifica-

tion literature (as Mookherjee and Png, 1989 or Border and Sobel, 1987 among others)

establishes and exploits the fact that transfer and audit are substitutes. Similarly we know

that monitoring and transfers are substitutes in standard moral hazard problems. On the
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other hand, we know that the expected cost of effort defined as T (a) ≡
∫
Θ
t(x)dF (x|a) is

increasing, concave in a (see Conlon, 2008). So too in this model:

TO(a) ≡
∫
Θ

tO(m(x))[1− p(m(x)− x)]dF (x|a)

=

∫ θa

θ

tO(m(x))[1− p(m(x)− x)]dF (x|a) +
∫ θ

θa

tO(m(x))[1− p(m(x)− x)]dF (x|a)

= 0 +

∫ θ

θa

tO(m(x))[1− p(m(x)− x)]dF (x|a)

follows the same properties (for p(·) is weakly convex and the product of two concave func-

tions tO and [1 − p] is concave). So at face value it is not clear how tO and αO relate.

Indeed, in this model, α is used to elicit information ex post : the better the audit, the less

over-reporting and the lower the transfer in a given state. But we know this relaxes the

moral hazard constraint, which induces a higher action. This allows for a higher transfer

in any state (as the principal re-optimizes). Because all these variables are jointly deter-

mined, to make a statement about their behaviour I run a comparative statics exercise on

the primitives of the problem.

Proposition 3 The transfer tO and the audit investment αO both:-

1. decrease in the dispersion of the distribution F (in the sense of SOSD);

2. decrease in the agent’s risk-aversion;

3. decrease as the cost of effort (c(a)) increases;

4. increase in the principal’s payoffs.

Thus high-power contracts are necessarily accompanied with a large enough investment in

the audit technology. Conversely, it is because the audit is sufficiently precise that the

contract can be high-powered. Increasing t in isolation in response the the moral hazard

problem is destructive; it requires a simultaneous increase in audit.

This claim may be counterintuitive; it stems from the non-separability of the problem

and is explained as follows. In a costly state verification problem the transfer’s only pur-

pose is to provide incentives for information revelation (either as a penalty or a reward).
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Because transfer and audit enter the incentive constraint multiplicatively they naturally are

substitutes. In fact, the Maximum Punishment Principle of Baron and Besanko (1984) tells

us that only one transfer is necessary (the most extreme one). Here the transfer’s primary

purpose is to induce effort, so it must be upward sloping. This is the very source of adverse

selection: it is this responsiveness of the transfer to the state that generates the incentives

to manipulate information. So the stronger are these incentives, the more beneficial is the

audit.18

From a practical standpoint, Proposition 3 together with Condition (3.2) suggest it may

not be the lack of audit that is the culprit in corporate embezzlement and earnings manipu-

lation. There is little doubt that firms of that nature are subject to audit. Rather the audit

may not have been sufficient given the incentives offered.

6 Discussion

Limited liability

In this model bounded penalties act like a limited liability constraint, which drives the shape

of the optimal contract. Introducing a “proper” limited liability constraint on transfers would

not change the substance of the paper. Consider such a constraint t ≥ t and some penalty

−l ≤ 0. The relevant constraint for the agent facing some bad state θ is max {t,−l · p}: only

one constraint really matters. In this paper I effectively let the constraint on penalties be

the relevant one. This may not be to an entirely trivial effect in that even a wealthy agent

may be shielded by bounded penalties, but it does fit the examples of the introduction.

Other penalties

The paper purposefully bounds penalties; left unconstrained they necessarily lead to truth-

ful revelation (unless they conflict with a limited liability constraint, which is essentially

18A friend of mine sits on a few board of very large, publicly listed corporations. To her this statement is

equivalent to an economist hearing that agents respond to incentives.
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equivalent to the present model). Here I discuss two potential modifications in this respect.

Harsher penalties. The model could allow for penalties −l < 0. Then the information

revelation condition (3.1) would become v′t′(1 − p) − p′(m − θ) [v(t(m))− v(−l)] = 0 and

clearly (i) there would be less exaggeration and (ii) for some l large enough, m̂(θ) = θ ∀θ

(no misreporting). That is, one would revert to model closer to that of MP.19 If l were not

too large, the problem would remain as here, albeit muted. The only significant difference

is that the threshold θa would be such that fa/f would be negative.

Penalties conditioned on offense. The Maximal Punishment Principle (see Baron and

Besanko, 1984, now MPP) asserts that the penalty should be as severe as possible, and thus

swiftly rules out conditioning it on the offense (e.g. small deviations from the state θ could

be met with fines that commensurate). Setting the MPP aside, suppose that the principal

instead uses some fine φ ≡ φ(m̂ − θ) where φ(0) = 0. The agent expected utility then

becomes U = (1 − p)v(t(m̂)) + pv(t(m̂) − φ(m̂ − θ)) and one can see that the truth-telling

condition (3.2) turns into

v′t′(θ) = p′(0) [v(t(m̂))− v(t(m̂)− φ(m̂− θ))] |m̂=θ + p(m̂− θ; ·)v′φ′|m̂=θ

i.e. v′t′(θ) = 0. In other words, driving a wedge between the transfers when the agent reports

truthfully and does not, is essential. That is, φ(·) must be discontinuous at 0. How large a

wedge (discontinuity) is discussed above at some length. The MPP applies in this model as

in many others because the audit generates no false negatives.

Audit technology

In this paper the accuracy of the audit is conditioned on the the magnitude of the misreport-

ing. The literature has considered other approaches such as conditioning the precision of the

audit on the message alone. Absent additional punishments or rewards (as in Border and

Sobel, 1987 or MP) this cannot deliver separation, let alone truthful revelation. To see why,

19Noting that here truthful revelation would obtain immediately from the exogenous penalty.
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rewrite the audit technology as p(ω;α); this may also be interpreted either as a probability

of running the audit, given some message ω, as in those papers. Then truth-telling requires

v(t(θ)) = maxω∈Θ v(t(ω)) [1− p(ω)], i.e. v′t′(θ) = 0; hence the need for fines or rewards in

both these papers, and many others.

Furthermore, according to most accounting standards (e.g. US GAAP or the AASB in

Australia), an audit seeks to provide a reasonable assurance that statements are free from

material errors. As a result, a sampling procedure is usually adopted by financial auditors,

who can verify the details of the transaction(s). This justifies the absence of type-II errors

in the process.20 Note also that the accuracy of this verification process cannot be connected

to the message received, but rather to its veracity. Statistical sampling is also followed by

ISO-accredited companies for the purpose of quality assurance.21 In either case, the audit is

always performed. The technology p(·;α) displays exactly these characteristics.

Participation fee and binding constraint

The agent receives an ex ante rent in this model; the participation constraint fails to bind.

This could be addressed with an ex ante participation fee, say ϕ. Then a contract entails a

tariff (t(·), ϕ) and the agent’s expected utility reads U = (1− p)v(t(m̂)− ϕ) + pv(−ϕ) where

v(−ϕ) < 0. The truth-telling condition (3.2) becomes v′t′(θ) = p′(0) [v(t(m̂)− ϕ)− v(−ϕ)].

Because v(t(·) is concave, v(t− ϕ)− v(−ϕ) > v(t) for each t, so for a fixed transfer function

the truth-telling condition holds for a larger set of states θ. That is, −ϕ acts like −l (see

the first paragraph of this discussion). When ϕ is not too large, the information revelation

problem remains as in the main text.

20“If controls are assessed as appropriate and operating as expected then lower levels of substantive testing

is expected. [...] appropriate sampling (either statistically -in total or stratified - or judgementally when a

small number of items make up much of the volume) is performed and transactions and account balances

verified. The steps involved include tracing transactions from the general ledger back to supporting docu-

ments or from initiating documents through to the ledger to ensure that they are appropriately included.”

Mark Pickering, Auditor at Deloitte Touche Tohmatsu, 1986-91
21ISO: International Organization for Standardization.
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The main purpose of the fee ϕ is to render the participation constraint binding; suppose

such a fee does exist. When µ > 0 however the optimal transfer function still retains the

same shape. The reason is that ϕ is paid ex ante, so ex post the agent still faces a gamble

{p, 1− p} over utilities {v(−ϕ), v(t(m̂)− ϕ)} versus taking some really bad v(t(θ)− ϕ).

If the participation constraint is made to bind the agent no longer receives an ex ante rent

but an ex post information rent U(tO, θ) = [1−p(m̂(θ)−θ)]v(tO(m̂(θ)))−v(tO(θ)) > 0, ∀θ < θ̃

that is decreasing in the state θ.

Other disclosure models

M-implementability (Green and Laffont, 1986). These authors study the imple-

mentability of a social choice function when the agent may report a message from a set

M(θ) ⊂ Θ, where M(·) is exogenous and publicly known. The idea is to allow for the agent

to report small lies (the set M(θ)) around the true state, and characterise the set of social

choice functions that are truthfully implementable. It may sometimes be optimal for the

principal to not induce truthful revelation. This is clearly a feature of the present paper,

where the principal is better off with a contract that allows for reporting outside the type

space, and where truthful revelation can never occur for at least some states.

Green and Laffont (1986) provide a necessary and sufficient condition – called the nested

range condition (NRC) – for the agent to report her information truthfully. The NRC

does not hold in this model, although it corresponds to a game of of “unidirectional dis-

tortions with an ordered space” (to use their words) – example a(2) in Green and Laf-

font (1986). Because the agent has a unique optimal deviation for each type, the set

M(θ) = {ω|ω ∈ Θ, ω ≥ θ} (to use their notation) collapses to a singleton for each type,

whence no nesting condition can possibly hold. This is because Green and Laffont (1986)

exogenously allow for the agent’s response to be a correspondence, whereas here the agent’s

optimal message is unique.
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Almost cheap talk (Kartick et al., 2007; Kartik, 2009) Kartik (2009) builds on

Crawford and Sobel’s 1982 paper and introduces a lying cost k. He finds there cannot exist

a completely separating equilibrium and that any equilibrium entails a measure of message

inflation, which is decreasing in the lying cost. Pooling occurs because the high types “run

out of messages to send”, which is exactly the problem the principal faces if using a direct

mechanism (see also Roger, 2012). In both papers, there exists a critical type, above which

pooling occurs. This problem does not arise in Kartik et al. (2007) because the message

space is unbounded; this is the approach I suggest in this paper too.

A large message inflation accompanies a small lying cost in Kartik (2009). This maps

into a small probability of discovery in this paper, i.e. a poor audit technology. Message

inflation is not problematic for Kartik (2009) because types are exogenous and the receiver

anticipates inflation (and adjust his response). It is costly here because it hampers the ex

ante incentives for effort.

7 Conclusion

When a principal cannot observe the outcome of his agent’s action in a moral hazard frame-

work and needs to elicit this information from that very agent, he faces a problem of ex post

adverse selection as well. With limited instruments, this introduces a fundamental tension

between ex ante incentive, for which a contingent transfer is necessary, and ex post incen-

tives, best addressed with a state-independent transfer. Type separation (not necessarily

truthful revelation) requires the use of an ex post audit and penalties.

The ex post adverse selection problem is costly to the principal in three ways: first,

the agent is able to exaggerate her actual performance and thereby may receive an inflated

transfer. The principal’s response introduces a first set of distortions. Second, because

penalties are weak, they act as an implicit limited liability constraint. As a result the

participation constraint cannot bind (there are rents) and the contract resembles an option.

Last, the very fact that the contract entails a region with constant transfer implies that
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complete truthful revelation can never arise in equilibrium. There may be partial truthful

revelation below a threshold; that is, the agent misreports her information in the worse states

because the incentive is the strongest and the cost the lowest.

A key result of this paper is that the audit investment and the level of transfer co-vary.

That is, the stronger the incentives offered to the agent, the more she must be audited to

be kept in check. In light of practical examples drawn from real life, this seems to be an

important feature that was so far absent from our extensive literature on moral hazard and

its applications.

8 Appendix

8.1 Preliminaries

I begin with a series of Lemmata that address the potential lack of smoothness of the agent’s

expected utility function U , and others that the will be useful throughout.

Lemma 4 The function U is a.e. differentiable over Θ.

Proof: By application of the Theorem of Lebesgue to a monotonically increasing function;

i.e. by (3.2), U is monotonically increasing.

Then naturally:

Lemma 5 Suppose a solution m(t; θ) of FOC (3.1) exists, then

1. this solution is unique;

2. m(θ) is a.e. differentiable and

3. dm
dθ

> 0

Proof: Directly from the sorting condition ∂2U
∂t∂θ

= v′p′ > 0, we know that condition (3.1)

admits a unique maximiser when it binds. That m(θ; t) is increasing in θ is immediate
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from observing that the agent’s optimisation problem is supermodular. I will need more

that this statement though. Continuity of the solution m(t; θ) follows from the Theorem

of the Maximum. To show that m(θ, t) is monotonically increasing, re-arrange (3.1) as

v′t′/v = p′/1− p, i.e. d ln(v(t(m)))/dm = −d ln(1− p)/dm. Take some θ′ > θ and suppose

m(θ′) ≤ m(θ). Then p′(m(θ′) − θ′)/1 − p′(m(θ′) − θ′) < p′(m(θ) − θ)/1 − p′(m(θ) − θ), so

that d ln(v(t(m(θ′))))/dm < d ln(v(t(m(θ))))/dm. Therefore v(t(m(θ′))) > v(t(m(θ))) and

since v(·) and t(·) are monotone increasing, m(θ′) > m(θ), a contradiction. The same can be

shown if taking some θ′ < θ and supposing that m(θ′) ≥ m(θ). It follows that m(θ, t) is a.e.

differentiable, by application of the Theorem of Lebesgue, except at most for a finite set of

points. Differentiate (3.1) with respect to θ and rearrange.

In spite of Lemma 4, there may still exist problematic discontinuities, especially at θ̃,

and this point is one of particular interest.

Lemma 6 The function U is continuous and differentiable at θ̃ when θ̃ ∈ (θ, θ)

Proof: I show that U cannot be discontinuous at θ̃ and that by Condition (3.2) it must

be also differentiable. The proof is written for U concave but also applies with obvious

adjustments when it is convex. Suppose v(t(·)) is at least weakly concave; since only upward

deviations are of concern, the trouble is that we may have v(t(θ̃)) < [1− p(m(θ̃ − ε)− (θ̃ −

ε))]v(t(m(θ̃ − ε))) for ε > 0, ε → 0. Suppose so, then truth-telling cannot be an optimal

response at θ̃. So there must exist some value θ0 < θ̃ (possibly θ) such that v(t(θ̃)) ≥

[1 − p(m(θ) − θ)]v(t(m(θ))) for θ ∈ [θ0, θ̃). Let θ → θ̃, this is exactly the definition of

continuity. Now notice that

v′t′(θ̃) = v(θ̃)p′(0;α) ⇔ ∂

∂θ
v(t(θ))|θ̃ =

∂

∂θ
[1− p(m(θ)− θ)]v(t(m(θ)))|θ̃

or ∂
∂θ
U |R = ∂

∂θ
U |L at θ̃. So U is differentiable. Condition (3.2) is a pasting condition at θ̃.

Lemma 7 The mapping m : Θ 7→ M is piece-wise weakly convex in θ.

Proof: Take first θ̃ ∈ (θ, θ). m(θ) is increasing and a.e. differentiable by application

of Lemma 1, with m(θ) > θ for any θ̃ > θ. Because U is continuous and differentiable,
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limθ↑θ̃ m(θ) = θ. Suppose now that m(θ) − θ were increasing; then dm(θ)/dθ > 1 and

limθ↑θ̃ m(θ) ̸= θ; so m(θ)−θ must be decreasing, and consequently, dm(θ)/dθ < 1. Therefore

m(θ) is convex when θ̃ ∈ (θ, θ). Now extend θ̃ to θ to obtain Case 3.

Lemma 8 The message space M̂ is the optimal message space.

Proof: Proposition 1 of Roger (2012) shows that the principal is at least weakly better

off extending the message space from Θ to M̂ (strictly when truthful revelation is impossible,

i.e. when θ̃ ≥ θ). Lemma 2 of the same paper extends the Revelation Principle: there is

no gain by using richer message spaces than M̂. It is immediate that restricting M̂ by

truncating it from the bottom (say, minm > m̂(θ)) does not help. It induces a measure of

types to overstate their report beyond what is privately optimal (given by Condition (3.1)),

for which they have to be compensated (the agent is risk-averse). Last, considering a grid of

messages of the form M = {m0,m1, ...,mi, ...mN} also does not help.

First take as given that the transfer function must be monotone increasing, and consider

an arbitrary set M and two arbitrary points mi,mi+1 ∈ M .22 (Using any such grid will be

shown to be dominated by using an interval M̂, so we need not worry whether that grid is

optimal.) By monotonicity of t, t(mi+1) ≥ t(mi) and agent θ reports mi+1 over mi if and

only if

v(t(mi+1))[1− p(mi+1 − θ)] ≥ v(t(mi))[1− p(mi − θ)].

Because M is a grid, there exists some θi such that

v(t(mi+1))[1− p(mi+1 − θi)] = v(t(mi))[1− p(mi − θi)],

and for types to the “left” of θi, t = t(mi), while to the right of θi, t = t(mi+1). Similarly

for pairs of messages mi−1,mi and mi+1,mi+2 and so on. That is, offering the agent a grid

amounts to offering a transfer scheme that is a step function of the type. With this, the

agent’s ex post expected utility

U = v(t(mi))[1− p(mi − θ)]

22This is established in a companion paper, Roger (2012).
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is no longer monotonic in θ; it reaches a local maximum at θ = mi and local minima at θi−1

and θi. In contrast

U = v(t(m̂(θ)))[1− p(m̂(θ)− θ)]

is monotone (increasing) by application of the Envelop Theorem when m̂(θ) is continuous.

Suppose there exists a scheme (t(mi),mi), mi ∈ M that is optimal and induces effort ā.

Let w(θ) = v(t(mi(θ)))[1− p(mi(θ)− θ)], where mi(θ) ∈ argmaxmi∈M U , so that a solution

to this problem can be represented as (w(θ), ā). The ex ante expected utility reads

E[U(w)] =

∫
Θ

w(x)dF (x|a)

By Proposition 1 of Carlier and Dana (2005), there exists a non-decreasing function z(θ)

(the non-decreasing re-arrangement of w) such that, for any fixed a,

E[U(w)] =

∫
Θ

w(x)dF (x|a) =
∫
Θ

z(x)dF (x|a) = E[U(z)]

By Lemma 2 of Carlier and Dana (2005), (z(θ), ā) also represents a solution; here is can be

constructed as z(θ) = v(t(m̂(θ)))[1− p(m̂(θ)− θ)]. Furthermore, for the principal,∫
Θ

S(z(θ), θ)dF (x|ā) ≥
∫
Θ

S(w(θ), θ)dF (x|ā)

with a strict inequality if w(θ) is not monotonic–which is the case here.

It is immediate that the claim extends to any other modification of M̂, such as restricting

it to be disjoint intervals or combinations of intervals and points.

8.2 Proofs

Proof of Lemma 1: By pointwise optimization of Problem 1. Below θ̃, m(θ) > θ, so the

transfer tSB ≡ t(m(θ)), while above θ̃, tS ≡ t(θ). Notice that θa ≤ θ̃, otherwise there exists

an interval [θ̃, θa] where tO is constant and the agent reports truthfully. But this cannot be

optimal by (3.1).

Proof of Lemma 2: Fix the transfer schedule t; by optimality of the message

m̂(θ), (1 − p)v(t(m̂(θ))) > v(t(θ)), ∀θ < θ̃ and m̂(θ), (1 − p)v(t(m̂(θ))) ≥ v(t(θ)), ∀θ ≥
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θ̃. So for any given action a,
∫
Θ
(1 − p)v(t(m̂(θ)))dF ≥

∫
Θ
v(t(θ))dF and therefore∫

Θ
(1 − p)v(t(m̂(θ)))dFa ≤

∫
Θ
v(t(θ))dFa by concavity in a. These latter two inequalities

become strict as soon as θ̃ > θ.

Proof of Lemma 3: The existence, sufficiency and uniqueness of such contract is

shown in Jewitt, Kadan and Swinkels [17] (in particular, they show the multipliers µ, λ exist

and are non-negative). To construct the contract, fix some action aO and take the first-order

condition. We know µ = 0 necessarily, so below θa the transfer must be such that 1/v′

remains non-negative. To show that the multiplier λ is positive, fix some a. Integrate 1/v′

over Θ:

Eθ

[
1

v′(tO)

]
= κ

∫ θ

θ

dF (x|a) + λ

∫ θ

θa

fa
f
dF (x|a) = κ+ λ

∫ θ

θa

fa(x|a)dx.

where κ ≥ 0. That is,

0 < Eθ

[
1

v′(tO)

]
− 1

v′(tO(θ))
|θ≤θa = λ

∫ θ

θa

fa(x|a)dx.

(unless v′ = ∞ for some t and that t is a constant). For any increasing tO on some measure

of Θ, the inequality must hold as 1/v′ is increasing. Because fa/f ≥ 0 on
[
θa, θ

]
and strictly

for at least a positive measure, λ > 0 necessarily.

Proof of Proposition 1: Fix a. Rewrite the first-order condition as v′(tO) =

(κ+ λfa/f)
−1; let h ≡ (v′)−1. The function h(·) is continuous because v′ is also contin-

uous, so tO ≡ h
(
[κ+ λfa/f ]

−1) is a continuous function. To show continuity at θa, recall

that λfa
f
|θa = 0 and fa/f is continuous in θ, so continuity at θa follows. For the second part

of the Proposition, restrict attention to θ ≥ θa and define τ(θ) ≡ tO ◦m(θ). Then rewrite the

FOC as v′(τ) −
(
κ+ λfa

f

)−1

= 0, where τ(θ) is a.e. differentiable; differentiate w.r.t. θ to

find v′′τ ′ + λ d
dθ

(
fa
f

)
/
(
κ+ λfa

f

)2

= 0. This verifies τ ′ > 0 and therefore t′ > 0 as required

since dm
dθ

> 0. Re-arrange this expression and redefine the variables

τ ′ = −λ
1

v′′︸︷︷︸
Y

d
dθ

(
fa
f

)
(
κ+ λfa

f

)2

︸ ︷︷ ︸
X
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Then τ ′′ ≥ 0 ⇔
(
dY
dθ
X + dX

dθ
Y
)
≤ 0. With Y < 0, rewrite the second condition as

dY

dθ
X ≤ −dX

dθ
Y ⇔ d

dθ
ln−Y ≤ d

dθ
lnX,

d

dθ
ln− 1

v′′
≤ d

dθ
ln

 d
dθ

(
fa
f

)
(
κ+ λfa

f

)2


Since the ratio fa

f
is increasing concave, the RHS is negative. It is immediate to verify by

differentiation that the LHS is positive, so the necessary and sufficient condition cannot

hold. Hence τ ′′ < 0 (where it is differentiable), that is, the effective transfer τ(θ) is concave

in the type. To show it is concave in the message, call on Lemma 7 and observe that τ is

the composition of the function t(·) and the convex function m(θ). Therefore t(·) must be

concave in m. For the last item, observe that at θ̃, m(θ̃) = θ̃ by (3.2) – the agent is truthful.

Thus, under tO(·):-

v(tO(θ̃)) = [1− p(m(θ̃)− θ̃)]v(tO(m(θ̃))) = v(tO(m(θ̃)))

⇔ tO(θ̃) = tO(m(θ̃)) (8.1)

directly from (3.2). From Lemma 1, tO(m(θ)) = tSB(m(θ)) for θ ≤ θ̃ and tO(θ) = tS(θ)

for θ > θ̃. Both these transfer functions are continuous on their respective domains. Thus

by (8.1) I have shown that limθ↑θ̃ t(m(θ)) = tO(m(θ̃)) = tO(θ̃) = limθ↓θ̃ t(θ), which is the

definition of continuity. Next, the right-derivative of tO at θ̃ can be denoted dtO

dθ
|θ̃, while

the left-derivative is dtO

dm
dm
dθ
|θ̃, where dm/dθ|θ̃ = 1 since m(θ) = θ at this point. Using this

one more time, dtO

dm
dm
dθ
|θ̃ = dtO

dθ
|θ̃; i.e. the left- and right-derivative are identical at θ̃, which

defines differentiability. Last, any amount lower than zero is not binding. Take tO to be

zero below θaO . Then by application of (3.2) and Lemma 6, θ̃ > θaO . (There is a kink at

θaO , so Lemma 6 precludes θ̃ = θaO . Economically, the LHS of (3.2) is the marginal benefit

of misreporting and the RHS the marginal cost; at θaO the former is positive but the latter

is 0, so it cannot be the point of indifference.) All things otherwise equal, having θ̃ interior

is costly to the principal in that the expected transfer is higher (otherwise the agent would

not misreport) and so is the agent’s optimal action. So the principal may have incentives to
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lower θ̃. The smallest possible change, dθ, requires a fixed γ > 0 to be paid for all types (not

just below θaO). So the increase in expected cost is γ > 0, and because dθ has measure zero,

it alters neither the agent’s moral hazard constraint (4.3) nor her information revelation

problem (4.1). Calling on continuity completes the argument for any measure
∫
dθ.

Proof of Corollary 2: Take any two θ1 < θ2 and suppose that truthful revelation

holds at θ1, i.e. v
′t′(θ1) ≤ p′(0)v(t(θ1). Because t

O is everywhere non-decreasing and concave

(and so is v(·)), it must therefore be that v′t′(θ2) ≤ v′t′(θ1) ≤ p′(0)v(t(θ1) ≤ p′(0)v(t(θ2).

Therefore the agent also reveals herself truthfully at θ2; she does not jump away from truth-

telling.

Proof of Proposition 2: Construct the Lagrangian with the objective function and

the constraints (4.1)-(4.3). Apply the Envelop Theorem to the first constraint. Because

θ̃ ≡ θ̃(α, t), Leibnitz rule gives an additional term (e.g. p(m(θ̃)− θ̃;α)t(m(θ̃))f(θ̃|a) dθ̃
dα
). But

it is naught at θ̃, where m(θ̃) = θ̃. This gives the first-order conditions found in Lemma 1,

as well as (4.8). When θ̃ = θ, this latter condition is meaningless. In this case the level of

investment is determined by (3.2) at θ, i.e. (4.7).

Proof of Proposition 3: The following will be useful in several instances. Let a∗ solve

the agent’s moral hazard constraint (4.3). Differentiate (4.3) with respect to t:

0 =

∫ θ̃

θ

v′[1− p]dFa(x|a) +
∫ θ

θ̃

v′dFa(x|a) (8.2)

+

[∫ θ̃

θ

v(t(m(x)))[1− p(m(x)− x)]dFaa(x|a) +
∫ θ

θ̃

v(t(x))dFaa(x|a)− c′′(a)

]
da∗

dt

Since the term in the brackets is the agent’s second-order condition, it is negative. Therefore

da∗

dt
> 0. To prove item (i), consider two distributions F 1(θ|a) and F 2(θ|a), where F 2 is a

mean-preserving spread of F 1 (see Rothschild and Stiglitz [31]). Fix t; because F 1 dominates

F 2 in the second order sense, it follows from (4.3) that at a∗∫ θ̃

θ

v[1− p]dF 2
a +

∫ θ

θ̃

vdF 2
a <

∫ θ̃

θ

v[1− p]dF 1
a +

∫ θ

θ̃

vdF 1
a (8.3)

by application of the envelop theorem (to the messages). Now define the following variable

θ2 = θ1 + ϵ, where θ2 ∼ F 2 and θ1 ∼ F 1 (so θ2 is more risky than θ1, and (8.3) follows).
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Consider again (4.3), as under F 1, and differentiate with respect to ϵ at ϵ = 0:[∫ θ̃

θ

v(t(m(x)))[1− p(m(x)− x)]dF 1
aa(x|a) +

∫ θ

θ̃

v(t(x))dF 1
aa(x|a)− c′′(a)

]
da

dϵ

+
d

dϵ

[∫ θ̃

θ

v[1− p]dF 1
a +

∫ θ

θ̃

vdF 1
a

]
= 0

By (8.3) the last term is negative, so from (8.2) da
dϵ

< 0. Letting da
dϵ

≡ da
dt

dt
dϵ
, dt

dϵ
< 0 as claimed.

To show (ii), consider a family of utility functions v(t; r) parametrized by r; risk aversion

(i.e. the concavity of v(·; ·)) increases in r. Suppose for simplicity that v(t; r) is continuous

and differentiable in r (as well as t). For a fixed action a, we know that

d

dr

[∫ θ̃

θ

v(t; r)[1− p]dF (x|a) +
∫ θ

θ̃

v(t; r)dF (x|a)

]
< 0

using the envelop theorem again. That is, equivalently, for any two r2 > r1,
∫ θ̃

θ
v(t; r2)[1−

p]dF (x|a)+
∫ θ

θ̃
v(t; r2)dF (x|a) <

∫ θ̃

θ
v(t; r1)[1−p]dF (x|a)+

∫ θ

θ̃
v(t; r1)dF (x|a). It then follows

from (4.3) that a∗(r2) < a∗(r1); equivalently, differentiating (4.3)

0 =
d

dr

[∫ θ̃

θ

v(t; r)[1− p]dFa(x|a) +
∫ θ

θ̃

v(t; r)dFa(x|a)

]
(8.4)

+
da

dr

[∫ θ̃

θ

v(t; r)[1− p]dFaa(x|a) +
∫ θ

θ̃

v(t; r)dFaa(x|a)− c′′(a)

]

Because the first term of (8.4) is negative it follows that da
dr

< 0 as well. Making use of

the fact that da
dt

> 0 completes the argument. To prove (iii), consider two cost functions

c1(a), c2(a) such that ∀a, c2 > c1. Because c
′
i, c

′′
i , c

′′′
i > 0, c2 > c1 ∀a implies c′2 > c′1 ∀a. Fix t,

from (4.3) we have that a∗(c2) < a∗(c1). By (8.2) therefore t(θ, c2) < t(θ, c1) ∀θ (with obvious

notation). For the last item, suppose the principal’s payoff is some increasing function π(θ).

From (4.6) it follows that aO increases, and from (8.2) so does the transfer t. To complete

the proof, apply Lemma 2.
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