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Abstract

As a central motivating example, we consider a policy maker facing a
cross-section of markets in which �rms play an entry game. Her theory is
Nash equilibrium and it is incomplete because there are multiple equilib-
ria and she does not understand how equilibria are selected. This leads to
partial identi�cation of parameters when drawing inferences from realized
outcomes in some markets and to ambiguity when considering (policy) de-
cisions for other markets. We model both her inference and choice. The
central component of the model is a generalization of de Finetti�s exchange-
able Bayesian model to accommodate ambiguity.

�Boston University, lepstein@bu.edu. We gratefully acknowledge the �nancial support of the
National Science Foundation (awards SES-0917740 and SES-0918248) and discussions with Soo
Hong Chew, Marc Henry, Hiro Kaido, Peter Klibano¤ and Minjae Song. We also thank three
referees, and seminar participants at Harvard, Warwick, Northwestern, Austin, Yale, Cal Tech
and Wisconsin. Some of the material in this paper was formerly contained in the paper �A
de Finetti Theorem for Capacities,� originally circulated in 2009, which no longer exists as a
separate paper.



1. Introduction

1.1. Motivation - Entry Games

Consider a policy maker (PM) who must choose a policy that will a¤ect a number
of markets. The consequences of the policy depend on �rm behavior (for example,
entry decisions) which is uncertain. However, the PM has data on behavior in
related markets. Thus she wants to learn from these data and then choose a
policy. Our goal is to model both how she does inference and how she chooses,
and to do so in a way that respects her theory of the environment (how data are
generated and how �rms behave) and also her concerns. We illustrate her theory
and concerns next.
There are I markets, with two �rms in each market. The PM assumes that in

the ith market, �rms j = 1; 2 play the entry game described by the payo¤ matrix
shown.1

out in
out 0; 0 0;��i2
in ��i1; 0 �1=2 � �i1; �1=2 � �i2

The parameter � lies in (0; 1] and the �ij �s are observed by players but not by the
PM. She views � as common across markets and the �ij �s as uniformly distributed
on [0; 1]2 for each i and i.i.d. across markets. The PM�s theory is that the
outcome in each market is a pure strategy Nash equilibrium. However, she does
not understand equilibrium selection at all and this is important because there
may be multiple equilibria: the set of Nash equilibria in market i is given by

fB;Ng if 0 � �i1; �i2 � �1=2
fNg otherwise,

(1.1)

where B denotes the outcome where both �rms enter and N the outcome where
neither �rm enters.

1This entry game, taken from Jovanovic (1989), serves as a running example. It illustrates
the important features of a class of models used in the applied IO literature, including, for
example, in Bresnahan and Reis (1991), Berry (1992), Tamer (2003), Ardillas-Lopez and Tamer
(2008), Ciliberto and Tamer (2009) and Bajari-Hong-Ryan (2010). Many assumptions are made
purely for simplicity, including: two �rms in each market, the particular functional forms for
payo¤s, and the uniform distribution for the unobserved heterogeneity represented by the ��s.
Section 5 shows how more general entry games can be accommodated.
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Ignorance of the selection mechanism creates di¢ culties for both inference and
choice. Because � is assumed to be common across markets, one can hope to learn
about � from outcomes observed in some markets. However, inference is compli-
cated by the fact that a given sample can be interpreted in di¤erent ways: an
observed outcome N could be due to the ��s and � satisfying the inequality indi-
cated in (1.1) and N being selected, or it could re�ect violation of the inequality
and N being the unique equilibrium. Consequently, one may not be able to point
identify � even with an in�nite set of data. In general, � is identi�ed only up to
an interval, that is, it is partially identi�ed.2 The multiplicity of equilibria also
makes (prediction and) choice more di¢ cult, and this is so even if the value of �
is known. For example, being agnostic about the selection mechanism suggests
that the individual may not be willing to make a probabilistic prediction about
the outcome in the next market. Without taking a stand on selection, one can
say only that the probability of B lies in the interval [0; �].
Consider now a PM in the above context and assume also that she has observed

the entry outcomes in a subset of markets. We argue in Section 1.3 that the
literature provides limited guidance as to how she might proceed. Our objective
is to describe a way for her to go about both the inference and choice components
of her problem. Our approach is axiomatic so that assumptions are explicit and
arguably simple and she can judge if they suit her.
We take the core issue to be ignorance about selection and the desire to make

decisions that are robust to this limitation. To elaborate, imagine the PM having
the following perspective. She believes that a complete theory of selection exists
in principle, and that selection could be explained and predicted given a suitable
set of explanatory variables, but she (and most economists) cannot identify these
�omitted variables.�As a result, not only can she not assign a probability to B
being selected in any given market, neither does she understand how selection
may di¤er or be correlated across markets. Thus she seeks to make decisions that
are robust to heterogeneity and correlation of an unknown form. Finally, with
regard to inference, though the PM tries to learn about �, because she cannot
even formulate a theory of selection she cannot learn about selection. There is
an analogy with learning from a sequence of Ellsberg urns, each with 100 balls
that are labelled either B or N . Suppose that there is repeated sampling from
consecutive urns and that the individual has the following perception of the urns:
the fraction � of balls has a composition that is common across all urns, while

2Tamer (2010) surveys the econometric literature on partial identi�cation. See below for
more references.
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the remaining component varies across urns in a way that is not understood at
all. The individual can then hope to learn about the common component but
plausibly does not even attempt to learn about the others.
An important ingredient of the entry game is the a priori dichotomy between

two kinds of uncertainty: the PM is con�dent enough to assign probabilities to
the ��s, but she does not understand selection well enough to posit a probabilistic
selection mechanism. A general model would permit ambiguity about both. We
adopt the dichotomy emphasized in the cited applied literature and propose so-
lutions to modeling problems that have not been adequately addressed even for
this special case.
The paper proceeds as follows. In the remainder of this introduction we outline

our model and then explain the value-added relative to existing literature. Section
2 presents the axiomatic foundations of our model of choice and inference. The
implied representations of utility and updating are described in Section 3, speci�-
cally in Theorem 3.1 which is our main result. Section 4 demonstrates tractability
of the model by considering the problem of optimally predicting empirical frequen-
cies within the entry game. The concluding section outlines an extension to more
general entry games and considers additional related literature. In particular, the
connection between axiomatic decision theory and statistical decision theory has
been emphasized also by Stoye (2012) and thus we compare our approach with
Stoye�s. Proofs and technical details are collected in appendices.

1.2. Model outline

We outline our model of choice and inference here in the context of the Jovanovic
entry game to communicate the essential points. See Section 3 for the general
model, including all technical details, and Section 2 for axiomatic foundations.
As in our axiomatic characterization, take I = 1. The set of all possible

sequences of market outcomes, or the full state space, is


 = S1 � S2 � :::� Si � :::, Si = S for all i,

where S = fB;Ng. Frequently, we write Bi and Ni to indicate elements in i-th
copy of S. A policy maps a sequence of market outcomes into payo¤s, assumed
to lie in the unit interval. Therefore, to model policy choice, consider the set
F of all acts f : 
 ! [0; 1], and a binary relation � on F , interpreted as the
ex ante (prior to sampling) preference order. We take � to be ambiguity averse
and to be a special case of both the multiple-priors model (Gilboa and Schmeidler
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(1989)) and Choquet expected utility (Schmeidler (1989)); we call the special case
belief function utility.3 The connection to ambiguity aversion is suggested by the
description of the entry game in terms of �ignorance�of the selection mechanism
and �two kinds of uncertainty�which bring to mind the distinction between risk
and ambiguity.
To de�ne belief function utility, consider �rst acts that depend only on the

outcome in market i. Then uncertainty is represented by the state space S =
fB;Ng, and an issue is how to arrive at beliefs on S in light of ignorance of
selection. We describe one way to do so. Each given parameter � induces, via
(1.1), the equilibrium correspondence ��,

�� : f�i = (�i1; �i2)g = [0; 1]2  fB;Ng.

The PM holds the uniform distribution, denoted m, on [0; 1]2. Therefore, a con-
servative attitude leads to beliefs on S represented by ��, where, for any A � S,

�� (A) = m
��
�i 2 [0; 1]2 : ��(�i) � A

	�
. (1.2)

Then �� is a belief function on S, and it admits the explicit representation

�� (B) = 0, �� (N) = 1� �, and �� (fB;Ng) = 1. (1.3)

Evidently, �� is nonadditive and is a special case of a capacity as de�ned by
Schmeidler (1989).4 Each �� is associated with a set of priors via its core, core (��),
which is the set of all probability measures P on fB;Ng that dominate ��, that
is,

core (��) = fP 2 �(S) : P (A) � �� (A) , for all A � Sg. (1.4)

Then core (��) consists of all measures for which the probability of B lies in the
interval [0; �].

3Appendix A provides some background material regarding belief functions and belief func-
tion utility.

4Like many other papers in the literature, see Berry (1992) and Ciliberto and Tamer (2009),
for example, we consider only pure strategies throughout. Arguably, pure strategies are more
intuitive and computationally simpler in applications. In addition, mixed strategy equilibria do
not induce a capacity in general because the convex hull of the set of mixed strategy equilibria
is not necessarily the core of a capacity. Mixed strategy equilibria are accommodated by the
multiple-priors model of preference used in Epstein and Seo (2010).
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Next de�ne beliefs on 
 using a similar algorithm. Each parameter � induces
the equilibrium sequence correspondence �1� ,

�1� : [0; 1]
2 � [0; 1]2 � ::: fB;Ng1,

where
�1� (�1; �2; :::) � �� (�1)� �� (�2)� :::

We are given that the PM views the �i�s as being i.i.d. across markets. Therefore,
she employs the i.i.d product measure m1 on [0; 1]2 � [0; 1]2 � ::: Accordingly,
a conservative attitude leads to beliefs on 
 represented by the capacity (��)1,
where, for any A � 
,

(��)
1 (A) = m1 ��(�i) 2 [0; 1]2 � [0; 1]2 � ::: : �1� ((�i)) � A	� . (1.5)

Then (��)1 is a belief function on 
. We refer to it as the i.i.d. product of ��.
The preceding takes � as given, hence known, though the PMmay be uncertain

about its value. Accordingly, suppose that she forms a prior � over possible values
of �, (thereby excluding ambiguity about �), and that her beliefs about 
 are given
by the �average�belief function ��:

�� (�) =
Z
(0;1]

(��)
1 (�) d� (�) . (1.6)

Finally, her utility function is given by the Choquet expected utility function:5

for every f in F ,
U (f) =

Z



fd��. (1.7)

(This is a special case of what we later call belief function utility.) Note that the
utility function is completely speci�ed by the measure �.
One way to see that this utility function captures a concern with unknown

heterogeneity and correlation across markets is by examining the core of each
i.i.d. product (��)1.6 For P a measure on 
, denote by mrgf1;2gP the marginal

5The connection to the multiple-priors model is explained in Appendix A. Integration in
(1.7) is in the sense of Choquet. The integrand is f rather than u � f for some felicity function
u, because outcomes are denominated in utils.

6core ((��)
1
) is de�ned by the counterpart of (1.4). The argument here is based solely on

the functional form and hence is only suggestive. Section 2 provides a behavioral argument.
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on S1 � S2. Then7

fmrgf1;2gP : P 2 core ((��)1)g =
(1� �)2�(fN1g � fN2g) + �2�(fB1; N1g � fB2; N2g) (1.8)
� (1� �) [� (fB1; N1g � fN2g) + � (fN1g � fB2; N2g)] .

This set of probability mixtures attaches weight �2 to the set of all probability
measures on fB1; N1g � fB2; N2g, including both nonproduct measures and non-
identical products, thus indicating that uncertainty about both correlation and
heterogeneity is re�ected in beliefs. (We will see later that there is aversion to
this uncertainty.)
To discuss inference, consider as a primitive not only ex ante preference, de-

noted now �0, but also the conditional preference order �n;sn that prevails after
observing the sample sn = (s1; :::; sn) of outcomes in markets 1 through n. As-
sume that the corresponding utility function Un;sn is also a belief function utility,
that is, it has the form in (1.7) though with the posterior beliefs �n;sn about �.
Then the inference problem consists of how the posterior �n;sn is related to the
prior �0 and the sample s

n. This is a matter of updating probability measures,
but it is not a standard updating problem because of the di¢ culty mentioned in
the previous section regarding how to interpret a signal. Because each parameter
value � is associated with the probability interval [0; �] for observing B, there is
a set of likelihoods and thus Bayes�rule does not apply immediately. The model
dictates that the PM average over these likelihoods, speci�cally that she update
�0 by Bayes�rule using a likelihood L (� j �) of the form

L (� j �) =
Z
q2�(fB;Ng)

q1 (�) d�� (q) , (1.9)

where each �� is a (subjective) probability measure over selection mechanisms
(represented by q). Thus the complete model of choice and inference is speci�ed
by �0 and the collection f��g�2(0;1].
Similar likelihood speci�cations have been used in the literature. Acemoglu

et al. (2009) use such a likelihood to model a di¢ cult to interpret signal. We
interpret the likelihood similarly: it is as if the individual is uncertain, to a degree

7This expression follows from (A.8) in Appendix A. It is readily understood informally.
For example, note that the weight �2 attached to �(fB1; N1g � fB2; N2g) is the probability
according to the product measure m2 that (�1; �2) lies in the region for which there are two
equilibria in both markets 1 and 2.
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represented by ��, what any given realized sample reveals about �. Accordingly,
the subjective nature of the ���s is natural. Some PM�s may update as if each ��
is uniform over [0; �]. (Here, because each q in �(fB;Ng) can be identi�ed with
the probability of B, we identify each �� with a measure on the unit interval.)
Others may process the signal provided by an observed market outcome B as if
its likelihood were unambiguously equal to �=2.8

In the more directly relevant literature, Moon and Schorfheide (2012) use a
likelihood function of this form in their Bayesian econometric approach to infer-
ence in partially identi�ed models. Though one can invoke the subjective expected
utility framework for foundations to (1.9), we argue below that such a model of
choice does not capture an aversion to unknown heterogeneity and correlation.
A possibly surprising feature of our model is the demonstration that Bayesian
inference is compatible with non-Bayesian choice and the noted aversion.

1.3. What does the literature provide?

One way to model the entry game is to use the exchangeable Bayesian model.
Savage (1972) and Anscombe and Aumann (1963) axiomatize the subjective ex-
pected utility model of choice and de Finetti (1937) shows that exchangeability
(or symmetry), the property that the probability of any �nite set of outcomes
does not depend on the order in which the outcomes are realized, characterizes
the �conditionally i.i.d.�form for the predictive prior P 2 �(
):

P (�) =
Z
�(S)

q1 (�) d� (q) . (1.10)

Here � represents beliefs (either a prior or posterior after updating) on �(S).
Updating is done by application of Bayes�rule.
Expressed in terms of behavior, exchangeability is the assumption that there

is indi¤erence between any two bets that di¤er only by a permutation or reorder-
ing of markets; such indi¤erence is natural in the Jovanovic entry game because
there is no reason given to distinguish between markets. However, we argue in
Section 2 that the Independence Axiom for preference implies indi¤erence also to
uncertainty about heterogeneity and correlation. The de Finetti representation
is strongly suggestive: though the beliefs in (1.10) re�ect uncertainty about the

8They behave di¤erently. Only the latter type would converge, in a given sample, to certainty
that � equals twice the limiting empirical frequency of B.
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true selection probability, they also indicate certainty that the selection mecha-
nism is i.i.d. across markets, thus excluding any concern about heterogeneity and
correlation. This motivates us to generalize the Bayesian model, while retaining
exchangeability, that is, the noted indi¤erence to the ordering of markets.
There is a large literature on partially identi�ed models. We share the view

underlying much of that literature, and that is expressed most forcefully by Manski
(2003) and Tamer (2003, 2010), that modelers should avoid assumptions that
are driven by convenience (for example, adding an ad hoc assumption about the
selection mechanism in order to permit point indenti�cation of �) rather than
by economic theory.9 These authors often have in mind an empirical modeler,
but the same principle has merit when applied to a decision maker such as our
PM. Our emphasis on robustness to model uncertainty, speci�cally to the i.i.d.
assumption across markets, can be understood in terms of the following slight
restatement of Manski�s (2003) �law of decreasing credibility�: the credibility of
inference and (we would add) the desirability of choice decrease with the strength
of the assumptions maintained.
We di¤er from the partial identi�cation literature in the speci�cs of how and

in what sense robustness is achieved or modeled. Most of the literature studies
inference and estimation using a frequentist approach.10 These papers do not
explicitly address choice in their formal analyses. However, our presumption is
that, as stated by Tamer (2010, p. 174):

One main motivation for empirical work in economics is to evaluate
policies, with an important purpose of decision making

Therefore, we ask how this frequentist based literature feeds into modeling choice.
With unlimited data, one can in principle identify a set of values for �, which in
turn yields a set of predictive measures. These might be used as in the multiple-
priors model to guide choice. With �nite samples, one has only an estimate
of the identi�ed set and thus the added layer of uncertainty due to estimation
error. It is not clear to us how to base decision making on any given estimation
results. The di¢ culty, it seems to us, is inherent in the approach of �rst doing
inference/estimation, and only afterwards worrying about how to use the output
to make decisions. Rather than viewing inference and choice as separable in this
way, we take seriously that decision making is the ultimate goal. Accordingly, in

9See also Berry and Tamer (2006) and Echenique and Komunjer (2009).
10Chernozhukov et al. (2007) is a prominent example.
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our model choice drives inference in the sense that preference is the primitive and
implications for inference are derived from assumptions about preference.
Bayesian statistical methods have also been applied to partially identi�ed

models (Moon and Schorfheide (2012) and Liao and Jiang (2010), for example).
Though these authors are not explicit about how to model choice, presumably
they have in mind subjective expected utility maximization. As mentioned, we
argue in this paper that it does not capture the story surrounding the entry game.
Stoye (2012), Kitagawa (2012) and Menzel (2011) study robust approaches to

statistical decision problems for partially identi�ed models. They do not address
robustness with respect to correlation and heterogeneity; nor do they deal with
policy choice. Section 5.3 elaborates on di¤erences between studies focussed on
statistical decision making and our approach which is focussed on, and driven by,
policy choice.
The only papers of which we are aware that explicitly address policy choice in

the context of partially identi�ed models are Manski (2011, 2012, 2013) and Kasy
(2012).11 Their approaches are nonaxiomatic and their models are much di¤erent
than ours.
Finally, in this introduction we elaborate on how we see our axioms and the

value of our axiomatic approach. For the most part, we do not see our model
as descriptive in the sense of explaining observed behavior of policy makers, for
example. (The quali�cation is added because the model does �explain�the Moon
and Schorfheide (2012) statistical procedure.) Neither is the model normative in
the strong sense that the Savage axioms are often seen. We do not claim that our
axioms would be acceptable to everyone.12 However, we do suggest that they lay
out in simple and explicit terms the principles characterizing our model, which
could be useful to the PM we have described: she does not understand the se-
lection mechanism and she seeks a course of action that is robust to the implied
uncertainty about heterogeneity and correlation across markets. She feels uncom-
fortable or dissatis�ed with existing models of choice and needs some guidance.
Therefore, even if she does not �nd our axioms compelling, she might very well
�nd them to be sensible and helpful; at least she will be able to judge.

11Ciliberto and Tamer (2009) conduct a counterfactual analysis of policy change in airline
markets, though they do not take the natural next step of modeling the choice of policy.
12Note that even the Savage axioms are not always seen as compelling. For example, Gilboa

et al (2012) see the Ellsberg paradox as a normative critique of expected utility theory, which
is a viewpoint that we share.
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2. Foundations

Consider a sequence of experiments, each of which yields an outcome in a �nite
set S; we refer back often to the entry game where S = fB;Ng. The payo¤
to any chosen physical action depends on the realized state in the state space 

given by


 = S1 � S2 � :::: = S1, where Si = S for all i.

Objects of choice are (Borel measurable and simple, that is, �nite-ranged) acts
f : 
! [0; 1]. The set of all acts is F . Binary acts are called bets. The bet that
pays 1 util if there are two entrants in the �rst market and none in the second is
denoted B1N2. The bet (with payo¤s 1 and 0) that the �rst two markets have the
same number of entrants is denoted fB1B2; N1N2g. Similarly for other bets.
Payo¤s to acts should be interpreted as measured in utils, which are derived

from an expected utility ranking of objective lotteries. Denominating payo¤s
in utils can be justi�ed via a more primitive Anscombe-Aumann formulation of
choice under uncertainty. Because these details are standard, we simplify and
adopt the reduced form above. Note that with payo¤s denominated in utils, and
given a vNM ranking of objective lotteries, one can view the individual as though
she were risk neutral.
We study choice of acts both ex ante and after observing the outcomes of n

experiments, where n is arbitrary. We emphasize that, for reasons given below,
we assume that one sample only is observed and that therefore, updating is done
only once, as opposed to repeatedly with gradually increasing sample size. (In the
entry game example, the PM observes outcomes in some markets and then chooses
a policy that a¤ects remaining markets. Further revisions are not modeled.) To
model both choice and inference, we adopt as primitives the set of conditional
preferences f�n;sn : n � 0; sn 2 Sng, where�n;sn is the preference on F conditional
on having observed the outcomes sn = (s1; :::; sn) in the �rst n experiments; �0,
corresponding to n = 0, denotes ex ante preference. We specify a number of
axioms for f�n;sng.
The ordering of experiments is not temporal, nor is it important. One should

think of a cross-sectional setup, where the n experiments producing the sample sn

were carried out simultaneously and all remaining experiments will be conducted
simultaneously. It is convenient for the formalism to �x an order, which we do,
but it is arbitrary.
To state the �rst axiom, we must de�ne �belief function utility�. First we gen-
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eralize the de�nition of belief function from (1.5) and the entry game example.13

Refer to (2.1). The objects of choice are acts f over 
, and thus beliefs � on 

are important. To formulate them, the decision maker employs an auxiliary

(b
;m) � (
; �)
#f
[0; 1]

(2.1)

state space b
 where her understanding permits her to assign probabilities using a
measure m. The auxiliary space provides a coarse picture of 
 in that each point
in b
 corresponds to a set of points in 
, that is, there is a correspondence � fromb
 into 
. Awareness of this coarseness and a conservative attitude lead to beliefs
on 
 represented by �, where

� (A) = m
�nb! 2 b
 : �(b!) � Ao� . (2.2)

Any function � on the Borel �-algebra of 
 that can be constructed in this way is
called a belief function on 
.14 Refer to (b
;m;�) as representing, or generating,
�. In the entry game example, the belief function de�ned via (1.5) hasb
 = �1i=1 [0; 1]2, m equal to the i.i.d. product of the uniform measure and � equal
to the equilibrium sequence correspondence.
A function U : F ! R is called a belief function utility (for the state space 
)

if there exists a belief function � on 
 such that

U (f) = U� (f) =

Z



fd�, for all f in F . (2.3)

Here integration is in the sense of Choquet and thus every belief function utility
is a special case of Choquet expected utility (Schmeidler (1989)).

For all the axioms that follow, the quanti�er �for all n and sn� should be
understood.
13See Appendix A for more on belief functions and the corresponding utility functions.
14More precisely, we take b
 to be compact metric, m a Borel probability measure, the corre-

spondence � measurable and nonempty-compact-valued, and � is de�ned on the Borel �-algebra
of b
. Equivalent de�nitions of belief functions are described in Appendix A. If � is singleton-
valued and hence a random variable, then � is a probability measure and (2.2) is the familiar
formula for computing induced distributions.
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Axiom 1 (Belief Function Utility). Every preference �n;sn admits represen-
tation by a belief function utility.

This axiom is not completely satisfactory because it is not stated in terms
of behavior which is presumably the only observable. However, Epstein et al.
(2007) and Gul and Pesendorfer (2010) describe behavioral foundations for (2.3).
Because modeling ambiguity aversion in the abstract is not our focus, we move on
to study the special features arising from the presence of repeated experiments.
There is a parallel with de Finetti, who took subjective expected utility (or at
least a subjective prior) as given and explored the implications of exchangeability
for a setting with repeated experiments. We take belief function utility as given
and focus on additional structure that is of interest given repeated experiments.
The next two axioms describe the individual�s perception of experiments and how
they are related.
Given subjective expected utility preferences, de Finetti�s assumption that the

prior is exchangeable is equivalent to the following restriction on preference that
we call Symmetry. Let � be the set of (�nite) permutations on N. For � 2 � and
! = (s1; s2; :::) 2 
, let �! =

�
s�(1); s�(2); :::

�
. Given an act f , de�ne the permuted

act �f by (�f) (s1; :::; sn; :::) = f
�
s�(1); :::; s�(n); :::

�
. For example, if f = B1N2

and � switches 1 and 2, then �f = N1B2. An act is said to be �nitely-based if it
depends on the outcomes of only �nitely many experiments.

Axiom 2 (Symmetry). For all �nitely-based acts f and permutations �,

f �n;sn �f:

Symmetry is intuitive in situations where the temporal ordering of experiments
is not important and information about the experiments is symmetric. This intu-
ition applies also to conditional preference, even if the sample exhibits the alter-
nating pattern B1; N1; B2; N2; :::; Bn=2; Nn=2. The outcomes of experiments 1 to n
constitute cross-sectional data and their ordering has no signi�cance.
Note that symmetry of information does not imply that information is sub-

stantial; in fact there could be no information available at all about any of the
experiments and about how they are related. Thus Symmetry is entirely consis-
tent with ambiguity about both correlation and heterogeneity. The next axiom
leaves room for such ambiguity. It does so by suitably relaxing the Independence
axiom to permit randomization to have positive value in some circumstances.
Refer to acts f and g as mutually orthogonal if they depend on disjoint sets

of experiments; write f ? g. Our main axiom is:
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Axiom 3 (Weak Orthogonal Independence (WOI)). For all 0 < � � 1,
and all �nitely based acts f 0, f and g such that f 0 ? g and f ? g,

f 0 �n;sn f () �f 0 + (1� �) g �n;sn �f + (1� �) g.

To minimize notational clutter, refer to a generic preference � satisfying the
axiom. Given also Belief Function Utility, then WOI is satis�ed if and only if
the corresponding utility function U satis�es:15 For all � and �nitely-based and
orthogonal acts f and g,

U (�f + (1� �) g) = �U (f) + (1� �)U (g) : (2.4)

We use this characterization of WOI frequently in the sequel. Note that the belief
function utility U provided by our �rst axiom provides a certainty equivalent
because, by (2.3), any act f is indi¤erent to the constant act giving U (f) in every
state. Therefore, the expression (2.4) is a meaningful statement about preference.
Turn to interpretation of the axiom. The Independence axiom requires the

similar invariance of rankings for all (not necessarily orthogonal) acts. We ar-
gue that Independence is too strong given a concern with unknown correlation
and heterogeneity. In fact, one can illustrate behaviorally three separate kinds of
ambiguity that are germane to the entry game and that are excluded by Indepen-
dence but permitted by WOI. The �rst is simply ambiguity about the outcome in
any single market. Even given knowledge of �, ignorance of the selection mech-
anism suggests the perception that the probability of B could lie anywhere in
[0; �]. Given that no entry can be a unique equilibrium but that dual entry can-
not, the strict ranking N1 � B1 is intuitive. Without loss of generality, suppose
that :8N1 � B1, that is, indi¤erence is restored by suitably reducing the winning
prize when there is no entry. Then the intuitive ranking familiar from the 2-color
Ellsberg Paradox is that

1
2
B1 +

1
2
(:8N1) � B1, (2.5)

which contradicts Independence. Gilboa and Schmeidler (1989) describe the value
of such randomization as due to its smoothing out ambiguity, or, adapting �nance
terminology, because the bets being mixed may �hedge�one another.

15Assume WOI and let f 0 be constant at level U(f), so that f 0 � f . Because constant
acts are orthogonal to every act, deduce that �U (f) + (1� �) g � �f + (1� �) g and thus
�U(f) + (1� �)U (g) = U(�U (f) + (1� �) g) = U(�f + (1� �) g). The �rst equality is due
to (A.6).
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The other two kinds of ambiguity have to do with how di¤erent markets are
related. Consider the ranking

1
2
B1 +

1
2
N1 � 1

2
B1 +

1
2
N2. (2.6)

The act on the left perfectly hedges uncertainty about the �rst experiment and
yields 1

2
with certainty. But the act on the right also involves uncertainty about

possible di¤erences in the selection mechanism across markets. For example, if
selection favors dual entry in the �rst market and no entry in the second, that is
a good scenario for 1

2
B1 +

1
2
N2. However, under the reverse scenario, the act is

unattractive. Thus if both scenarios are considered possible, and there is aversion
to uncertainty about which is true, then the indicated ranking follows. In this
way, ambiguous heterogeneity suggests (2.6).
Finally, we illustrate behavior that reveals a concern with correlation, which

we take to mean roughly a concern that the selection mechanism may follow some
unknown �patterns.�Consider betting that the outcomes are identical in the �rst
two markets versus betting that they are identical in the �rst and third mar-
kets. Symmetry implies indi¤erence. However, there is intuition for the following
rankings contradicting Independence:

1
2
fB1B2; N1N2g+ 1

2
fB1B3; N1N3g (2.7)

� fB1B2; N1N2g � fB1B3; N1N3g.

Suppose the probability of selection of B depends positively on an unknown �omit-
ted�variable. The variable may be similar in markets one and two (and di¤er
between markets one and three), which would favor the bet fB1B2; N1N2g, or the
variable may be similar in markets one and three (and di¤er in markets two and
three), which would favor the other bet. Which is the case is uncertain. The
mixture is strictly preferable because it smooths out this uncertainty.
It is comforting that WOI permits (2.5)-(2.7), but it remains to determine

what kind of behavior it excludes. Interpret the axiom in the entry game setting.
Because it imposes that bets on outcomes in di¤erent markets do not hedge one
another, roughly speaking the assumption is that disjoint sets of markets perceived
to be �not connected.� One connection is that market outcomes depend on the
common factor �. If there is ambiguity about �, then the sort of hedging gains
pointed to by Gilboa and Schmeidler (1989) would lead to violations of WOI. Thus
the axiom excludes ambiguity about the parameter �. In addition, even given �, it
excludes the perception that markets are �stochastically dependent.�For example,
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it excludes certainty that selection is identical in all markets, whether it be that
B is always selected, or alternatively that N is selected in all markets.16 In that
case, one would expect that (with rescaling as in (2.5))

1
2
B1 +

1
2
(:8N2) � B1 � :8N2,

contrary to (2.4).
One would like to say more about the kind of (conditional) stochastic inde-

pendence being assumed via WOI, especially because while referring to stochastic
independence we also argue that ambiguous correlation is accommodated by the
model. The di¢ culty is that �stochastic independence� is multifaceted if there
is ambiguity and not well understood behaviorally ( see Ghirardato (1997), for
example). However, one can view the axiom as providing behavioral meaning for
one form of (conditional) stochastic independence.
A major appeal of the axiom in the present context is its simplicity, which

promises that a decision-maker would be able to understand it and either accept
or reject the axiom. In the entry game, indi¤erences required by WOI, such as

1
2
B1 +

1
2
N3 � 1

2
B2 +

1
2
N3,

seem intuitive where selection is poorly understood, and in any case are simple
enough that a decision-maker would be able to agree or not.
The �nal three axioms are focussed on conditioning.

Axiom 4 (Consequentialism). For all acts f 0 and f , f 0 �n;sn f if f 0 (sn; �) =
f (sn; �).

This familar axiom states that when evaluating acts conditional on the node
(n; sn), the decision maker cares only about what these acts promise on the con-
tinuation from that node: unrealized parts of the tree do not matter.

Axiom 5 (Commutativity). For all permutations �, �n;�sn = �n;sn

16To be perfectly clear, our intention here is to certainty that selection is perfectly correlated,
which excludes the possibility that other forms of correlation exist. The axiom and model admit
perfect correlation as a possibility in the mind of the decision maker. It is the exclusion of all
other correlation patterns on her part that is contradicted by the axiom.
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There is no natural ordering of cross-sectional data and thus the order of past
observations should not matter.
If k < n , write sn =

�
sk; snnk

�
, where snnk denotes (sk+1; :::; sn)

Axiom 6 (Weak Dynamic Consistency (WDC)). For any 0 � k < n, sam-
ple sk and acts f 0; f over Sn+1 � Sn+2 � :::,

if f 0 �n;(sk;snnk) f for all snnk, then f 0 �k;sk f ,

and, if in addition f 0 �n;(sk;snnk) f for some snnk, then f 0 �k;sk f .

Suppose �rst that k = 0. Let f 0 and f describe two policies that pertain only to
markets n + 1 and beyond. Data are to be collected describing the outcomes, B
or N , realized in the �rst n markets. Suppose that for every possible realization
of the sample, f 0 would be preferred to f ex post. Then the axiom requires that
also ex ante, prior to collecting the data, f 0 be preferred to f . (Further, strict
preference conditional on at least one sample implies strict preference ex ante.)
The axiom weakens the usual dynamic consistency assumption, which would have
the identical statement except that f 0 and f would be allowed to vary over all acts
in F . The weakening refers only to situations where the PM observes outcomes in
some markets and then �bets�on outcomes in others. In other words, the outcomes
in markets 1 to n are �pure�signals and are not payo¤ relevant, while outcomes
in markets n+1 and beyond in�uence payo¤s but are not a source of information
for further updating (which is done only once).
The intuition for such (weak) consistency between post sample preferences and

ex ante preference is not due to a special status for the ex ante stage. Thus the
axiom extends it to also to the �interim stage�given by k and sk.
Given the prescriptive nature of our model and the strong normative appeal

of dynamic consistency, why do we adopt only the weaker axiom? The reason is
that dynamic consistency con�icts with other desiderata. Assume that preferences
satisfy Symmetry, Consequentialism and very weak continuity and monotonicity
properties as in Epstein and Seo (2011); the latter two properties are jointly much
weaker than Belief Function Utility. From their Theorem 2.1, it follows that if
DC is also assumed in the entry game example, then

1
2
B1 +

1
2
N2 �0 1

2
B1 +

1
2
N1 ()

1
2
B1 +

1
2
B2 �0 B1.
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That is, aversion to ambiguity about heterogeneity as in (2.6) is exhibited if and
only if randomizing between the bets B1 and B2 has positive value.17 But, as
in the discussion of WOI, indi¤erence to such randomization expresses a form
of (conditional) stochastic independence across markets, which we take to be
intuitive.18

Thus we would explain to the PM: �If your situation calls for �sampling from
some markets and then choosing a policy for the others�, then you do not need full
dynamic consistency and our model applies. Otherwise, you can�t have everything.
You will have to decide what you are willing to give up, and then we will have
more modeling to do.�

3. The Representation

3.1. Main result

We show in this section that the above axioms characterize the model outlined in
the introduction, which we describe here in full generality.
In the preceding section, we de�ned belief functions on 
 via (2.2). In a similar

fashion, replacing 
 and b
 by S and bS, de�ne belief functions on S, thought of
as representing beliefs about a single experiment. Denote by Bel (S) the set of
all belief functions on S; a generic element is denoted �.19 Each � induces a
belief function on 
, denoted �1 and referred to as the i.i.d. product of �. Let�bS;�;m� generate � as in (2.2) and consider the triple (�bS�1 ;m1;�1), where
m1 is the ordinary i.i.d. product of the probability measure m, and �1 is the

correspondence �1 :
�bS�1  
 = S1 given by

�1 (bs1; bs2; :::) = � (bs1)� � (bs2)� ::: (3.1)

17The cited theorem implies that �0 can be represented by a utility function that is additive
across states, in particular, for any act depending only on S1 �S2, U0 (f) = �r2S1�S2vr (f (r)).
Then each of the indicated strict rankings is equivalent to the condition vB1N2

�
1
2

�
+vN1B2

�
1
2

�
>

vB1N2 (1) + vN1B2 (0).
18Indi¤erence between 1

2B1+
1
2B2 and B1 follows in our model from Symmetry and (2.4), and

the latter follows from Belief Function Utility and WOI.
19Endow Bel (S) with the topology for which �n ! � if and only if

R
fd�n !

R
fd� for every

continuous function f on S, where the integral is in the sense of Choquet. Then Bel (S) is
compact metric.
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Then �1 is the belief function on 
 generated as in (2.2) by (b
;m1;�1).20 The
construction (1.5) in the entry game example is a special case where S = fB;Ng,
� = ��, bS = [0; 1]2, m is the uniform measure on [0; 1]2 and � is the equilbrium
correspondence.
The belief-function utility V on F is called an i.i.d. (belief-function) utility if

there exists �, a belief function on S, such that

V (f) = V�1 (f) �
Z
fd (�1) , for all f 2 F .

When � is additive, the function reduces to expected value with an i.i.d. proba-
bility measure.
Refer to L as a likelihood function if L : Bel (S) ! �(
), where � 7�!

L (B j �) is (Borel) measurable for each measurable subset B of 
.
The main result of the paper can now be stated.

Theorem 3.1. Let f�n;sn : n � 0; sn 2 Sng be preference orders on the set of
acts F . Then the statements (a) and (b) are equivalent:
(a) f�n;sng satis�es Belief Function Utility, Symmetry, Weak Orthogonal In-

dependence, Consequentialism, Commutativity and Weak Dynamic Consistency.
(b.i) Choice: For every n and sn, there exists a (necessarily unique) Borel

probability measure �n;sn on Bel (S) such that �n;sn, the belief-function provided
by Belief Function Utility, can be expressed in the form

�n;sn (A) =

Z
Bel(S)

�1 (A) d�n;ss (�) , for every Borel A � 
, (3.2)

and such that �n;sn is represented by Un;sn having the form

Un;sn (f) =

Z
Bel(S)

V�1 (f) d�n;sn (�) , for every f in F . (3.3)

(b.ii) Inference: There exists a likelihood function L : Bel (S)! �(
) such
that:
20Appendix A shows that �1 is well de�ned (if (bS;m;�) and (bS0;m0;�0) both generate �,

then they both lead to the same belief function on S1) and that it corresponds, in the case
of �nitely many experiments, to the product notion for belief functions proposed by Dempster
(1967, 1968) and studied by Hendon et al. (1996).
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L1
R
Bel(S)

L (sn � 
 j �) d�0 (�) > 0 for all n � 1 and sn 2 Sn.

L2 Each L (� j �) is exchangeable, that is, for every � 2 Bel (S),

L (� j �) =
Z
�(S)

q1 (�) d�� (q) (3.4)

for some probability measure �� on �(S).

L3 For each n and sn, �n (� j sn) is obtained by applying Bayes�rule to the prior
�0 and the likelihood L.

Focus on su¢ ciency of the axioms. Part (b.i) describes implications for pref-
erence conditional on any sample. That each conditional preference has a belief
function on 
, denoted �n;sn, is an assumption through the axiom Belief Function
Utility. The content of (b.i) is the structure of that belief function expressed in
(3.2). The relation (1.6) described in the introduction is a special case. In the
entry game example, each market is described by the parameter �, common to all
markets, or by the corresponding belief function �� on fB;Ng, which generates
beliefs over 
 represented by the i.i.d. product (��)

1. Because � is unknown, a
prior over �, and hence over �� is used and the expectation over all i.i.d. products
describes beliefs over the sequence of markets. In the present general setting,
markets are replaced by arbitrary experiments with outcomes in S, the unknown
�parameter�that is common across all experiments is �, a belief function for each
experiment, which is uncertain according to the prior or posterior �n;sn, and the
expectation over all i.i.d. products �1 represents beliefs over 
 = S1. De Finetti�s
celebrated �conditionally i.i.d.� representation for exchangeable Bayesian beliefs is
the special case of (3.2) where �n;sn has support in the set of (additive) probability
measures on Bel (S).
The de Finetti representation is important in part because it provides for-

mal justi�cation for the reference to �parameters�, features that are believed to
be common across all experiments and that can (to some degree) be learned. In
the Bayesian case, the parameter is the probability law that describes each ex-
periment. Part (b.i) generalizes the notion of parameter to a belief function over
each experiment, or equivalently, to its core, core (�), a set of probability laws
over a single experiment. In the Bayesian model, knowledge of the parameter de-
termines a unique probability law over the sequence of experiments. In contrast,
in our model knowledge of the parameter � determines only a set, core (�1), of
probability laws over the sequence of experiments. Because of the decision maker�s

20



inability or unwillingness to make a probabilistic prediction even given knowledge
of her parameter, we refer to her as having an incomplete theory of her environ-
ment. In the entry game example, incompleteness is due to ignorance of how
equilibria are selected. In general, incompleteness is revealed through preference
and the underlying reasons are not modeled.
Thus far we have discussed part (b.i) and what it says about preference. It

does not say how the posteriors �n;sn are related to the prior �0, which is the
inference component of the model and the content of part (b.ii). In the entry
game example (Section 1.2), we indicated why the updating rule is not obvious
and the same reason is apparent here: when updating beliefs about �, there would
seem to be many likelihood functions, one for each measure in core (�), that could
give the likelihood of observing a given experimental outcome conditional on �.
The model prescribes that one average over them in the sense of applying Bayes�
rule to the likelihood function de�ned in (3.4). The measures �� are subjective,
as explained in Section 1.2, and unrestricted. Therefore, the complete model is
de�ned by specifying both the prior �0 and the collection f�� : � 2 Bel (S)g.
The fact that updating is Bayesian has the advantage that results fromBayesian

learning theory translate directly. For example, in the entry game example, it fol-
lows from Acemoglu et al (2009) that for an exchangeable likelihood where each
�� has support equal to [0; �], then along some in�nite samples posteriors can fail
to converge to certainty about a single �, that is, � is only partially identi�ed.21

Two �nal remarks in this section o¤er further perspective on Theorem 3.1.22

Remark 1. The gap between our model and the exchangeable Bayesian model
of inference and choice lies in the di¤erence between Weak Dynamic Consistency
and Dynamic Consistency. If we replace the former by the latter, then our model
reduces to the exchangeable Bayesian model. (This follows from Epstein and Seo
(2011, Thm. 2.1).) Note that if instead one strengthens WOI to the Independence
axiom, then full dynamic consistency is still not implied and the two models
di¤er in how they treat inference because only in our model is any exchangeable
likelihood admissible.

Remark 2. A likelihood function of the form in (3.4) can be formulated for any
abstract parameter �. Therefore, one might wonder about the role of belief func-
tions in the inference component of the model. However, the justi�cation for (3.4)

21See our paper (2010) for related illustrative results.
22The second is in response to a question raised by a referee.
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provided by the theorem is based on the complete set of preference axioms, in-
cluding Belief Function Utility, and is inextricably tied to the implication that
belief functions are the correct parameters.

3.2. The entry game example again

As noted in Section 1.2 in the entry game example, given � and the uniform
distribution on the unobservables �i, the set of logically possible probabilities for
B equals the interval [0; �]. We modeled the PM�s beliefs by assuming that she
associates � with this interval, and hence with �� de�ned in (1.5). However, the
model does not require this tight connection between subjective beliefs and what is
logically possible.23 In particular, according to the model the PM might even act
as a Bayesian and as if assuming that, conditional on the value �, the probability
that B is selected is �=2 and i.i.d. across markets.
More generally, beliefs are subjective and unobservable as is the analyst�s un-

derlying theory of selection. The de�nition of belief functions on S via triples�bS;m;�� permits a host of alternative theories of selection through alternative
measures m, (m is after all also subjective), and through alternative auxiliary
spaces and correspondences. For example, our model permits the probability in-
terval corresponding to the parameter � to be a strict subset of [0; �]. Indeed,
any interval

�
p; p
�
de�nes a unique belief function: take the auxiliary state spacebS = ffBg; fNg; fB;Ngg, the probability measure m given by m (fBg) = p,

m (fNg) = 1 � p and m (fB;Ng) = p � p, and the correspondence � given by
� (fBg) = fBg, � (fNg) = fNg and � (fB;Ng) = fB;Ng. Then the counterpart
of (2.2) de�nes the belief function � for which

[� (B) ; 1� � (N)] =
�
p; p
�
.

With the generality of our model thus clari�ed, we can now verify that, apart
from extreme special cases, the utility functions in (3.3) accommodate the rankings
(2.5)-(2.7) that illustrate our intuition for the Jovanovic entry game. Suppose that
�0 attaches positive probability to �, where � (B) ; � (N) > 0 and � (B)+� (N) < 1.
Then it su¢ ces to show that the noted rankings are satis�ed by the utility function
V�1. This can be veri�ed by straightforward calculations. For the third ranking,

23In the same way, the multiple-priors model of a decision maker confronting an Ellsberg urn
does not require that her set of priors coincide with the set of all logically possible probability
laws.
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abbreviate the bet fB1B2; N1N2g by f and let � be the permutation that switches
the second the third markets. Then compute that

V�1 (f) = (� (B))2 + (� (N))2

< (� (B))2 + (� (N))2 + � (B) � (N) (1� � (B)� � (N))
= V�1

�
1
2
f + 1

2
�f
�
,

which proves (2.7).

3.3. Prior beliefs and the LLN

Though Theorem 3.1 establishes the existence (given the axioms) of the subjective
components �0 and f��g that pin down both preference and updating, it does not
provide guidance to the decision maker as to how to arrive at these components.
However, as we show here the model does provide a way for the decision maker to
calibrate her prior beliefs if she can manage the arguably weaker task of assessing
how much she would be willing to pay for bets on empirical frequencies. We
illustrate this �rst in the entry game example and provide a general result in
Appendix C. Admittedly, we address only �0, which is adequate if all choice is ex
ante, and we leave open the question of how to provide guidance for arriving at
the ���s.
Denote by 	n (�) (!) the empirical frequency measure given the sample !;

	n (A) (!) is the empirical frequency of the event A � S in the �rst n experiments.
Begin with a PM facing (1.1) who is certain that the selection probability of B

is q in each market and i.i.d. across markets. She maximizes subjective expected
utility with an exchangeable predictive prior. Therefore, the classical Law of Large
Numbers (LLN) for exchangeable measures implies certainty that the empirical
frequency of B converges to q�, and further that prior beliefs about � and the
(certainty equivalent) utility for bets about empirical frequencies are related by24

�0(f� : 0 � � � �g) = U0 (f! : lim	n (!) � q�g) . (3.5)

(We consider the ex ante perspective only.) Therefore, the PM can calibrate her
prior �0 over the parameter � if she can arrive at certainty equivalents for the
indicated bets on limiting empirical frequencies.

24f! : lim	n (!) � q�g denotes both the event and the bet on the event with winning and
losing prizes 1 and 0. Similarly below.
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Now consider a PM who is averse to her ignorance about selection as modeled
in Section 1.2. Because she is uncertain about how selection may di¤er and be
correlated across markets, she is not certain that empirical frequencies converge.
Nevertheless, there exists the following connection between prior beliefs about �
and her certainty equivalents for suitable bets on empirical frequencies:25

�0(f� : 0 � � � �g) = U0 (f! : lim sup	n (!) � �g) . (3.6)

In other words, the probability assigned to values of � no greater than � equals
the certainty equivalent of the bet (with prizes 1 and 0) that, for all � > 0, the
empirical frequency of B is less than � + � in all su¢ ciently large samples.26

See Appendix C for a more general result.

4. Prediction of empirical frequencies

We illustrate the choice component of our model and its tractability by applying it
to an optimal point prediction problem, that of predicting optimally the empirical
frequency of each outcome when the experiment has two possible outcomes. The
entry game is one example; indeed we denote outcomes by B and N . The appli-
cation serves also to illustrate the in�uence on decisions of unknown correlation
and heterogeneity. In this binary case, each belief function � can be identi�ed
with a probability interval I� = [� (B) ; �

� (B)] for B, where �� (B) = 1 � � (N).
We permit � (B) 6= 0; recall Section 3.2.
Begin with beliefs � about belief functions, (they may be prior beliefs or poste-

riors after observing a sample), and consider prediction for n markets. We model
optimal prediction by the following decision problem:

max
�2[0;1]

Z
Bel(S)

Z



G (	n (!)� �) d�1d� (�) , (4.1)

where�G is a bounded strictly convex loss function that penalizes large di¤erences
between the predicted and realized frequencies � and 	n (!).

25The proof (see Appendix C) is based on a LLN for i.i.d. products of belief functions due to
Maccheroni and Marinacci (2005).
26Only the lim sup appears because we have assumed that � is associated with the proba-

bility interval I� = [0; �] having zero as its left endpoint. For other speci�cations of I�, or
equivalently, of ��, if I� � I� () � � �, then (3.6) is valid if the right side is replaced by
U0 (f! : [lim inf 	n (!) ; lim sup	n (!)] � I�g).
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Theorem 4.1. There is a unique maximizer �n in (4.1) and �1 � limn!1 �n
exists. Moreover,

f�1g = arg max
�2[0;1]

Z
min fG (� (B)� �) ; G (�� (B)� �)g d� (�) . (4.2)

The limiting prediction �1 serves as an approximately optimal prediction for
a su¢ ciently large number of experiments. Intuition for its characterization via
(4.2) is derived from the LLN for i.i.d. belief functions (see (C.1) and (C.2)). Fix
� and � and considerZ




G (	n (!)� �) d�1 = min
P2core(�1)

Z



G (	n (!)� �) dP . (4.3)

The LLN implies that limit points of empirical frequencies are certain to lie in I�,
and that, for some possible probability law, they are certain to be found arbitrarily
near an endpoint of I�; that is, for any � (B) < a < b < �

� (B),

P (f[lim inf 	n (!) ; lim sup	n (!)] � [a; b]g) = 0

for some P in core (�1). This suggests that, when n is large, for the worst-case
scenario in (4.3) it su¢ ces to consider only samples that have empirical frequency
equal to one of � (B) and �� (B), as in (4.2).
To gain some insight into the nature of optimal predictions, we specialize the

model by adding three assumptions. First, let the penalty functionG be quadratic,

G (t) = �t2.

Second, consider the entry game and suppose that the only relevant belief func-
tions are of the form �� satisfying

�� (B) = 0 and �
�
� (B) = �.

Finally, assume certainty that the true parameter value � is known. Then (4.2)
yields the closed-form solution

�1 = �=2.

At the other extreme of predictions for a small number of markets, elementary
calculations yield:

�1 =

�
� � � 1

2
1
2

1
2
� � (4.4)

25



and

�2 =

8>><>>:
� � � 1

4
1
4

1
4
� � � 1

2

�2 1
2
� � � 1p

2
1
2

1p
2
� �

(4.5)

One observation is that �1 6= �2 6= �1. Thus the optimal prediction depends
on the number of markets being considered, which is intuitive when correlation
between markets is a concern.
The prediction for two markets reveals the in�uence of ambiguous correlation

in a more explicit way. By the appropriate form of (A.5), the optimal prediction
problem (when � (�) = 1) can be rewritten in the form

max
�2[0;1]

min
P2core(�1)

Z



G (	n (!)� �) dP .

Then it follows from the minimax theorem that �n is optimal if and only if it
solves

max
�2[0;1]

Z



G (	n (!)� �) dP �,

where P � is a worst-case scenario for �n, that is, it solves

min
P2core(�1)

Z



G (	n (!)� �n) dP .

In brief, one can view �n as the best response to the scenario P �, and thus by
identifying P � we can understand the reasons for the choice of �n. Apply the
preceding to �2 in (4.5). The corresponding worst-case measure P � satis�es on
fB1; N1g� fB2; N2g:27

P � (Bi) = �; P
� (Ni) = 1� �, i = 1; 2, for all �, (4.6)

and, if � > 1
2
,

P � (B1; B2) = �, P � (N1; N2) = 1� �, P � (B1; N2) = P � (N1; B2) = 0. (4.7)

Therefore, for � larger than 1
2
, the optimal prediction responds to the worst-case

concern that selection is positively correlated across markets (if B is selected in

27Only the �rst two markets matter and thus we consider only the marginal of P � on S1�S2.
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one market then it is certain to be selected also in the other, and similarly for
N). Correlation does not play a role when predicting given � < 1

2
, where P � is

the i.i.d. product of the marginal in (4.6).
Another way to see the e¤ect of correlation is by comparing our decision-maker

with one who solves:

max
�2[0;1]

inf
m2�([0;�])

Z
�(S)

Z



� (��	n (!))2 dq1dm (q) . (4.8)

This decision-maker is also uncertain about the probability in [0; �] with which
the outcome B is selected in any single market, but she di¤ers in two respects
from the one discussed above. She is certain that the selection mechanism is
i.i.d. across markets, and for her the true selection probability (corresponding
to q) is ambiguous - she cannot settle on a single distribution over [0; �] and
uses instead the set of all distributions on the interval.28 Thus she resembles the
decision-makers modeled in much of the robust Bayesian literature, and we refer
to her as a robust Bayesian. When predicting the outcome in one market, the
robust Bayesian makes the identical prediction (4.4) as our decision-maker. In
fact, the two decision-makers would rank all bets on a single market identically
because they have a common set of predictive priors on fB;Ng, namely the set
of all distributions for which the probability of B is no greater than �. However,
they di¤er when predicting for two or more markets. In particular, �RB2 6= �2.29
We attribute this di¤erence to the fact that only our agent is concerned about
correlation between markets.30

Finally, it is interesting to note that the di¤erence between predictions disap-
pears when predicting for a very large number of markets. More precisely,

lim
n!1

�RBn = lim
n!1

�n = �1 =
�

2
.

Thus the e¤ects of ambiguity about correlation vanish in the limit when predicting
for a large number of markets.

28Identify q 2 �(fB;Ng) with the point q (B) in the unit interval.
29One can compute that �RB2 = � if � � 1

3 and
1+�
4 otherwise.

30A concern with heterogeneity does not seem relevant: if one generalizes the objective func-
tion in (4.8) by allowing nonidentical product measures q1 
 q2 
 :::, the optimal prediction is
not a¤ected for any n.
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5. Concluding Remarks

5.1. More general entry games

The model we have proposed can be applied to a large class of entry games. For
example, consider the following payo¤matrix where pro�ts depend also on exoge-
nous variables (player/market characteristics or policy variables), xi = (xi1; xi2) 2
X � R2K , assumed observable to both the players and the analyst. (Any �nite
number of players is easily accommodated.) The PM believes that, for each i,
�i = (�i1; �i2) 2 E � R2 is distributed according to m� and that �i�s are i.i.d. The
full set of parameters is � = (�; �1; �2; �) 2 �.

out in
out 0; 0 0; �2xi2 + �i2
in �1xi1 + �i1; 0 �1xi1 + � + �i1; �2xi2 + � + �i2

Let Y = fout,ing2 be the set of all pure strategy pro�les in any single market.
Given �, the basic uncertainty concerns which pure strategy Nash equilibrium will
be played for each given xi. Thus describe the set of outcomes for each market by

S = Y X ,

and denote the equilibrium correspondence by �� : E  S. Then the triple
(E ;m�;��) de�nes a belief function �� on S.
The rest of the speci�cation proceeds as before with one modi�cation for in-

ference. The state for market i would not be revealed by any real data. Rather,
one would observe for market i the equilibrium yi and the associated value xi.
Not observing entry decisions for other values x0i can be captured by modeling the
signal forthcoming from market i by the event�

s 2 Y X : s (xi) = yi
	
� Si:

Then updating can be modeled as above but using the modi�ed �ltration on
S1 � S2 � ::: that is de�ned thereby.
The more general class of games permits policy tools that a¤ect pro�ts. More-

over, the choice between such policy tools translates into a choice between acts
and thus policy decisions can be modeled using belief function utility. As an ex-
ample, suppose that the PM can choose between the policy variables x�1 and x

��
1

for market 1. They correspond to the acts f �; f�� de�ned on the full state space
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�1i=1Y
X , where

f � (s1; :::; si; :::) = u (s1 (x
�) ; x�) and f �� (s1; :::; si; :::) = u (s1 (x��) ; x��) .

Here s1 (x�) is the Nash equilibrium strategy pro�le in market 1 given state s1 2
Y X , and u (�) gives the payo¤ to the policy maker as a function of the Nash
equilibrium pro�le and the policy variable. A similar interpretation applies to
s1 (x

��).

5.2. More related literature

Epstein and Seo (2010, Thm. 5.2) extend the de Finetti theorem to the class
of multiple-priors preferences. Belief function utility is appealing because it is a
special case of both multiple-priors utility and Choquet expected utility, and thus
is �close�to the benchmark expected utility model. This closeness permits a much
sharper representation result here in permitting both much simpler axioms and
a stronger representation. The latter point concerns the meaning of �stochastic
independence.�Stochastic independence is more complicated in the nonadditive
probability (or multiple-priors) framework and there is more than one way to form
independent products (Ghirardato (1997)). Accordingly, the representation in our
previous paper admits various ways of forming i.i.d. products. In contrast, in our
model the rule for forming the i.i.d. product �1 is pinned down - it corresponds
to that advocated by Dempster (1967, 1968) and Hendon et al. (1996). To our
knowledge, this paper is the �rst to provide (via Theorem 3.1) a choice-theoretic
rationale for any particular i.i.d. product rule.31 The value added herein lies
also in the demonstrated usefulness of employing ambiguity averse preferences to
accommodate issues arising from theory incompleteness.
There exist a number of other generalizations of the de Finetti theorem to

ambiguity averse preferences; see Epstein and Seo (2010, Thm. 3.2), Al Najjar
and de Castro (2010), Cerreia-Vioglio et al. (2011) and Klibano¤ et al. (2011).
They are all in the spirit of what we referred to as the robust Bayesian model (recall
(4.8)), in that they deal with ambiguity about parameters but exclude ambiguity
about how experiments are related; for example, they cannot exhibit the rankings
(2.6) and (2.7). As a result these models seem orthogonal to the central issues

31Ghirardato (1997) shows that the Hendon rule is the only product rule for belief functions
such that the product (i) is also a belief function, and (ii) it satis�es a mathematical property
called the Fubini property. In our model, this property emerges as an implication of assumptions
about preference.
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raised by multiple equilibria in entry games. Moreover, they address choice but
not updating. A model in the same spirit is found in Shafer (1982), who is the
�rst, to our knowledge, to discuss the use of belief functions within the framework
of parametric statistical models analogous to de Finetti�s. He sketches (section
3.3) a de Finetti-style treatment of randomness based on belief functions. His
model is not axiomatic or choice-based.
When experiments are ordered in time, Epstein and Schneider (2007, 2008),

model learning and choice under ambiguity using a speci�cation for utility inspired
by de Finetti�s. They posit functional forms without foundations and motivate
them through applications. Their model violates Symmetry and thus is not suited
for cross-sectional applications such as discussed here.

5.3. Statistical decision theory

Finally, we relate decision problems as modeled here to those considered in sta-
tistical decision theory.32 Conditional decisions in our model are determined by
optimization problems of the form

max
f2�

Z
Bel(S)

�Z



fd�1
�
d�N

�
� j sN

�
, (5.1)

where � is the feasible set of acts and �N
�
� j sN

�
is the posterior after having

observed the outcomes sN = (s1; :::; sN) of the �rst N experiments. Fix N � 0;
if N = 0, then choice is made ex ante without the bene�t of a sample. Without
loss of generality, the payo¤s to acts in � depend only on the outcomes of the
remaining experiments i = N + 1; N + 2; :::
Such conditional choices can be readily translated into the formalism of statis-

tical decision theory. De�ne a (feasible) decision rule � as a mapping � : SN ! �.
The set of all such decision rules is D = �S

N
. Then the collection of problems

(5.1), with sN varying over all possible samples, can be reformulated as one of
optimization over decision rules:

max
�2D

Z
Bel(S)

u (�; �) d�0 (�) = �min
�2D

Z
Bel(S)

r (�; �) d�0 (�) , (5.2)

where

�r (�; �) = u (�; �) = �sNL
�
sN j �

��Z



�
�
sN
�
(�) d�1 (�)

�
. (5.3)

32The latter are formulated below following Stoye (2012) in order to facilitate comparison
with his approach to exploiting ambiguity modeling for statistical decision-making.
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(Here L is any likelihood used for updating as provided by Theorem 3.1.) The
function r (�; �) is the risk function of decision rule �. Its expectation using �0 is
the Bayes risk of �. Thus conditional optimization in our model translates into
the common prescription that an optimal decision rule should minimize Bayes
risk.
This prescription seems entirely standard and, in particular, might appear to

exclude any role for ambiguity. However, from this perspective, the novelty in
our model is two-fold. First, in statistical decision theory � is taken to lie in an
abstract set � of parameters. The set � is a primitive, it presumably comes with
the statistical decision-maker, and no justi�cation is attempted for adopting any
particular parametrization. In contrast, for our setting we have justi�ed taking the
parameter set to be the set of belief functions on S (the set of outcomes for a single
experiment); recall that when S is binary, this is equivalent to taking intervals
within [0; 1] as the relevant parameters. The second novelty is that we justify the
particular form (5.3) for the risk function. For example, in the prediction problem
of Section 4, in the �no-data� case N = 0, a decision rule � is simply a point
forecast, D = [0; 1], and the risk function takes the form

r (�; �) = �
Z



G (	n (!)� �) d�1.

It is through the speci�c form for r, notably through the i.i.d. products of be-
lief functions and Choquet expectation, that aversion to unknown correlation and
heterogeneity is captured. Both achievements are possible because we take as
primitives preferences over bets (or acts) whose payo¤s depend on the realized
outcomes of experiments rather than on the true value of a parameter. We em-
phasize that real world decision problems under uncertainty are generally of this
form. For example, investment choice is a bet that realized returns will be favor-
able rather than a bet on the true mean and variance of the underlying distribution
of returns; and the payo¤ to a policy choice in the entry game example depends
on the entry outcomes realized in the relevant markets and only indirectly on the
value of �.
In contrast, the axiomatic modeling reviewed in Stoye (2012) takes the risk

function r as a primitive and hence unexplained. As a result, it cannot address the
issues addressed here - ambiguity about correlation and heterogeneity arising from
the multiplicity of equilibria in entry games. In fact, the formulation described by
Stoye does not relate speci�cally to the setting of repeated experiments. Rather
it deals in an abstract setting with how uncertainty about risk measures (due
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to uncertainty about �) is, or should be, evaluated by the statistical analyst.
For example, in addition to the Bayesian criterion as in (5.2), Stoye describes
axiomatizations of �-minimax loss (where the single prior �0 is replaced by a set
of priors as in the Gilboa-Schmeidler model), and versions of minimax regret.

A. Appendix: Belief Functions

The following notation is used throughout the appendices. For any compact metric
space 
, K (
) is the space of compact subsets endowed with the Hausdor¤metric;
�(
) is the space of Borel probability measures on 
 endowed with the weak
convergence topology; and Bel (
) is the space of belief functions endowed with
the topology for which �n ! � if and only if

R
fd�n !

R
fd� for every continuous

function f on 
, where the integral is in the sense of Choquet. All three spaces
are compact metric. They are endowed with the corresponding Borel �-algebras.
For any metric space X, its �-algebra is denoted �X .
This appendix collects some facts about belief functions that support assertions

in the text and in the proofs below. We deal with belief functions on 
, which
until further notice can be any compact metric space.
A belief function is most commonly de�ned as a set function � : �
 ! [0; 1]

satisfying:

Bel.1 � (?) = 0 and � (
) = 1

Bel.2 � (A) � � (B) for all Borel sets A � B

Bel.3 � (Bn) # � (B) for all sequences of Borel sets Bn # B

Bel.4 � (G) = supf� (K) : K � G, K compactg, for all open G

Bel.5 � is totally monotone (or 1-monotone): for all Borel sets B1; ::; Bn,

�
�
[nj=1Bj

�
�

P
? 6=J�f1;:::;ng

(�1)jJ j+1 � (\j2JBj)

These conditions are adapted from Phillipe et al. (1999). Conditions Bel.1-
Bel.4 form a common de�nition of capacity (Schmeidler (1989)). When restricted
to probability measures, Bel.4 is the well-known property of regularity. If the
inequalities in Bel.5 are restricted to n = 2, one obtains that � is convex (super-
modular, or 2-alternating).
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An important result regarding belief functions is Choquet�s Theorem. Our
statement of the theorem relies on Phillipe et al. (1999, Thms. 2 and 3),
Molchanov (2005, Thm. 5.1) and Castaldo et al. (2004, Thm. 3.2). Note that, by
Phillipe at al. (1999, Lemma 1), fK 2 K (
) : K � Ag is universally measurable
for every A 2 �
. Further, any Borel probability measure (such as m on Borel
subsets of K (
)) admits a unique extension (also denoted m) to the collection of
all universally measurable sets.33

Theorem A.1 (Choquet). The set function � : �
 ! [0; 1] satis�es Bel.1-Bel.5
if and only if there exists a (necessarily unique) Borel probability measure m� on
K (
) such that

� (A) = m� (fK 2 K (
) : K � Ag) , for every A 2 �
. (A.1)

Moreover, in that case, for every measurable f : 
! [0; 1], the Choquet integralR


fd� satis�es: Z




fd� =

Z
K(
)

�
inf

P2�(K)
P � f

�
dm� (K) (A.2)

=

Z
K(
)

�
inf
x2K

f (x)

�
dm� (K) .

We use frequently below the implication that every belief function (as de�ned
by Bel.1-Bel.5) on a space 
 can be identi�ed with a unique probability measure
on the space of its closed subsets; in fact, Bel (
) is homeomorphic to �(K (
)).
Another implication is that the de�nition via Bel.1-Bel.5 is equivalent to that given
in the text via (2.2). (We note that the latter formulation is due to Dempster
(1967) and Shafer (1976).) For one direction, Bel.1-Bel.5 imply the representation
(A.1), which is the special case of (2.2) where b
 = K (
), � maps any K (a point
in K (
)) into K (a subset of 
) and m = m� . Conversely, let � be de�ned

via the triple
�b
;m;�� and (2.1)-(A.4). View � as a function from b
 to K (
).

Then � is measurable (Aliprantis and Border (2006, Thm. 18.10)) and induces
the measure m0 = m � ��1 on K (
). Then Choquet�s Theorem implies that
� (�) = m � ��1 (fK : K � �g) satis�es Bel.1-Bel.5 and m0 = m� .

33Throughout, given any Borel probability measure, we identify it with its unique extension

to the �-algebra of universally measurable sets. Below P � f is short-hand for
Z
X

fdP .
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Associated with any belief function � is its core de�ned by

core (�) = fP 2 �(
) : P (�) � � (�)g .

Then34

core (�) =

�
P 2 �(
) : P =

Z
b
 pb!dm (b!) , pb! 2 �(� (b!)) m-a:e:

�
. (A.3)

Turn to the corresponding utility function. The objects of choice are (Borel
measurable) acts f : 
 ! [0; 1], which for simplicity are restricted to have �nite
range (such acts are commonly called �simple�). The utility U (f) of any act f is
de�ned by (2.3). ByMolchanov (2005, Thm. 5.1), it can be expressed alternatively
in the form

U (f) =

Z
b

�
inf

!2�(b!) f (!)
�
dm (b!) . (A.4)

This expression for utility re�ects the individual�s perception that given the aux-
iliary state b!, the true payo¤ relevant state lies in � (b!) but there is ignorance
within � (b!). Put another way, the marginal distribution of the subsets f� (b!)g
is given by m, but conditional distributions within each � (b!) are unrestricted.
Belief function utility is a special case of the multiple-priors model (Gilboa

and Schmeidler (1989)) with set of priors equal to core (�):

U (f) = min
P2core(�)

Z



fdP . (A.5)

Accordingly, it inherits the following properties that play a central role in the
multiple-priors model: For all acts f and g, and for all constants x,

U (�x+ (1� �) g) = �x+ (1� �)U (g) , (A.6)

and
U (�f + (1� �) g) � �U (f) + (1� �)U (g) . (A.7)

Gilboa and Schmeidler (1989) refer to these properties as certainty additivity and
ambiguity aversion respectively. We use them repeatedly.
As noted, the preceding applies to any state space. Now we consider further

structure that is relevant in a setting with repeated experiments. Thus consider

34When the support of m is not �nite, a measurability assumption for b! 7�! pb! must be
added to give meaning to this expression.
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a sequence of experiments indexed by the set N of positive integers. Each experi-
ment yields an outcome in S (a compact metric space). Uncertainty concerns the
outcomes of all experiments, and thus let 
 be de�ned by


 = S1 � S2 � :::: = S1, where Si = S for all i.

Now let 
 = S1. Let � 2 Bel (S) be generated by (bS;m;�). We de�ned �1
to be the belief function on 
 represented by (b
;m1;�1), where: b
 = �bS�1,
m1 is the ordinary i.i.d. product of the probability measure m, and �1 is the
correspondence �1 : b
  
 = S1 given by (3.1). Choquet�s theorem gives an
alternative characterization of the product that we use frequently. In particular,
it implies that the product �1 does not depend on the particular representation
(bS;m;�) for �.
Lemma A.2. Let � 2 Bel (S) correspond to m� 2 �(K (S)) as in Choquet�s
theorem. Then �1 2 Bel (
) is the unique belief function corresponding to
(m�)

1 2 �(K (
)) as in Choquet�s theorem (where (m�)
1 is the i.i.d. prod-

uct of the measure (m�)
1).

The proof of the lemma is omitted. Note that (m�)
1 is a measure on (K (S))1

which is a subset of K (
). Therefore, it can be identi�ed with a measure on K (
).
By Philippe et al. (1999, Thm. 3),

core (�1) =

Z
�(� (�1)� � (�2)� :::) dm1 (�1; :::) (A.8)

where the integral is an Aumann integral. This characterization of the core was
used to derive the implication (1.8).

B. Appendix: Proof of Theorem 3.1

First we prove the measurability required to show that the integrals in (3.2) and
(3.3) are well-de�ned. (Recall that any Borel probability measure � has a unique
extension to the class of all universally measurable subsets.)

Lemma B.1. Both � 7�! V�1 (f) and � 7�! �1 (A) are universally measurable
for any f 2 F and A 2 �
.
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Proof. Since Bel (S) and �(K (S)) are homeomorphic, and in light of (A.2), it
is enough to prove analytical (and hence universal) measurability of the mapping
from �(K (S)) to R given by

` 7�!
Z
[K(S)]1

inf
!2K

f (!) d`1 (K) .

Step 1. �(K (S)) and f`1 : ` 2 �(K (S))g are homeomorphic when the latter
set is endowed with the relative topology inherited from �([K (S)]1).
Step 2. P 7�!

R
f̂dP from�([K (S)]1) to R is analytically measurable for any

bounded analytically measurable function f̂ on [K (S)]1: If f̂ is simple (has a �nite
number of values), then P 7�!

R
f̂dP is analytically measurable by Aliprantis

and Border (2006, p. 169). More generally,
R
f̂dP equals the pointwise limit

of lim
R
f̂ndP for some simple and analytically measurable f̂n, which implies the

desired measurability.
Step 3. Note that�

K 2 K : inf
!2K

f (!) � t
�
= fK 2 K : K � f! : f (!) � tgg (B.1)

is coanalytic by Phillipe et al. (1999, p. 772), and hence analytically measurable.
Steps 1, 2 and 3 complete the proof. �

Where conditioning is not important, it is suppressed notationally and we
refer to a generic �, U and �. For any � 2 Bel (
), denote by � (�) the measure
m� on K (
) provided by the Choquet theorem. (Similarly if � 2 Bel (S), then
� (�) 2 �(K (S)).) We use (A.2) repeatedly without reference.

Necessity of the axioms. (b) =) (a): Belief Function Utility is obvious.
Verify that V�1 satis�es Symmetry and WOI, which implies the same for U . Let
m = � (�1). By Lemma A.2, m is an i.i.d. measure on [K (S)]1, hence symmetric.
Therefore,

V�1 (�f) =

Z
K(
)

inf
!2K

�f (!) dm (K) =

Z
K(
)

inf
!2K

f (�!) dm (K)

=

Z
K(
)

inf
�!2�K

f (�!) dm (K) =

Z
K(
)

inf
!2K

f (!) d (�m) (K)

=

Z
K(
)

inf
!2K

f (!) dm (K) = V�1 (f) :
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Show (2.4) to prove WOI. For simplicity, let f 2 F1 and g 2 F2. The general
case is similar. For 0 < � � 1,

V�1 (�f + (1� �) g)

=

Z
K(
)

inf
!2K

[�f (!) + (1� �) g (!)] dm (K)

=

Z
[K(S)]1

inf
s12K1;s22K2

[�f (s1) + (1� �) g (s2)] dm (K1; K2; :::)

=

Z
[K(S)]1

�

�
inf
s12K1

f (s1)

�
+ (1� �)

�
inf
s22K2

(1� �) g (s2)
�
dm (K1; K2; :::)

= �

Z
[K(S)]1

�
inf
s12K1

f (s1)

�
dm (K1; K2; :::)

+ (1� �)
Z
[K(S)]1

�
inf
s22K2

g (s2)

�
dm (K1; K2; :::)

= �V�1 (f) + (1� �)V�1 (g) :

The second equality follows because K 2 [K (S)]1, a:s:-m [K].
Necessity of Consequentialism, Commutativity and WDC is readily veri�ed.

Su¢ ciency of the axioms. (a) =) (b:i): Show that axioms =) (3.2) =)
(3.3).

Proof that (3.2) =) (3.3): Let �0 be the �-algebra generated by the class

fK 2 K : K � AgA2�
 :

We claim that m� (�) =
R
Bel(S)

� (�1) (�) d� (�) on �0. Since the latter is a proba-
bility measure on K (
), it is enough to show that

m� (fK 2 K (
) : K � Ag) =
Z
Bel(S)

� (�1) (fK 2 K (
) : K � Ag) d� (�)

for each A 2 �. This is equivalent to

� (A) =

Z
Bel(S)

�1 (A) d� (�) ,
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which is true given (3.2).
By a standard argument using the Lebesgue Dominated Convergence Theorem,Z

K
f̂dm� =

Z
Bel(S)

�Z
K(
)

f̂d� (�1)

�
d� (�) ,

for all�0-measurable f̂ : K (
)! [0; 1]. SinceK 7�! inf!2K f (!) is�0-measurable
by (B.1),

U� (f) =

Z
K(
)

inf
!2K

f (!) dm� (K) =

Z
Bel(S)

�Z
K(
)

inf
!2K

f (!) d� (�1)

�
d� (�)

=

Z
Bel(S)

V�1 (f) d� (�) .

Proof that axioms =) (3.2): For C � K (
), let �C = f�K 2 K (
) : K 2 Cg,
and for m 2 �(K (
)), de�ne �m 2 �(K (
)) by �m (C) = m (�C) for each
Borel measurable C � K (
).

Lemma B.2. For any m 2 �(K (
)), m = �m for all � if and only if m = �(�)
for some symmetric belief function � on 
.

Proof. If m = � (�), then � (K) = m (fK 0 2 K (
) : K 0 � Kg), and

� (�K) = m (fK 0 2 K (
) : K 0 � �Kg) = m (f�K 0 2 K (
) : �K 0 � �Kg)
= m (f�K 0 2 K (
) : K 0 � Kg) = m (�(fK 0 2 K (
) : K 0 � Kg)) .

The asserted equivalence follows, because the class fK 0 2 K (
) : K 0 � KgK2K(
)
generates the Borel �-algebra on K (
). �

Lemma B.3. Let � be a belief function on 
 and m = � (�) the corresponding
measure on K (
). If U� satis�es WOI, then m [(K (S))1] = 1.

Proof. For any ! 2 
 and disjoint sets I; J � N, !I denotes the projection of
! onto SI , and we write ! = (!I ; !J ; !�I�J). When I = fig, we write !i, rather
than !fig, to denote the i-th component of !.
Let A be the collection of compact subsets K of 
 satisfying: For any n > 0,

and !1; !2 2 K, and for every partition f1; :::; ng = I [ J ,

9!� 2 K, such that !�I = !1I and !�J = !2J . (B.2)
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In other words, for every n, the projection of K onto Sn is a Cartesian product.

Step 1. For any continuous acts f 2 FI and g 2 FJ with �nite disjoint I and J ,

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
= 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) , (B.3)

a:s:-m [K]: This is where WOI enters - by (2.4) it implies that

U�
�
1
2
f + 1

2
g
�
= 1

2
U� (f) +

1
2
U� (g) .

Since U� (f) =
R
K(
) inf!2K f (!) dm (K),Z

K(
)
min
!2K

�
1
2
f (!) + 1

2
g (!)

�
dm (K) = 1

2

Z
K(
)

min
!2K

f (!) dm (K)+1
2

Z
K(
)

min
!2K

g (!) dm (K) .

The assertion follows from

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
� 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) .

Let G be the set of all pairs (f; g) such that f and g are continuous and f 2 FI ;
g 2 FJ for some �nite disjoint I and J . Let Bf;g be the collection of K 2 K (
)
satisfying (B.3), given f and g. Step 1 implies m (Bf;g) = 1 for each (f; g) 2 G.

Step 2. m

 T
(f;g)2G

Bf;g

!
= 1: Since the set of continuous �nitely-based acts is

separable under the sup-norm topology (Aliprantis and Border (2006, Lemma
3.99)), it is easy to see that G is also separable. Let f(fn; gn)g be a countable
dense subset of G. By Step 1,

m

�
Kn
� 1T
i=1

Bfi;gi
��

= m

� 1S
i=1

(KnBfi;gi)
�
�
P
m (KnBfi;gi) = 0:

Thus it is enough to show that
1T
i=1

Bfi;gi =
T

(f;g)2G
Bf;g.

Only � requires proof. Let K 2
1T
i=1

Bfi;gi, (f; g) 2 G and assume without loss

of generality that (fi; gi) ! (f; g). Then, by the Maximum Theorem (Aliprantis
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and Border (2006, Thm. 17.31),

min
!2K

�
1
2
f (!) + 1

2
g (!)

�
= lim

i
min
!2K

�
1
2
fi (!) +

1
2
gi (!)

�
= lim

i

�
1
2
min
!2K

fi (!) +
1
2
min
!2K

gi (!)

�
= 1

2
min
!2K

f (!) + 1
2
min
!2K

g (!) .

Thus K 2
T

(f;g)2G
Bf;g.

Step 3. If K 2
T

(f;g)2G
Bf;g, then K 2 A: Let n � 0; !1; !2 2 K and

f1; :::; ng = I [ J , with I and J disjoint. For each i, take closed sets

Ai =

(
! :
X
t2I
2�td

�
!t; !

1
t

�
� 1

i

)
and

Bi =

(
! :
X
t2J
2�td

�
!t; !

2
t

�
� 1

i

)
,

where d (�; �) is the metric on S. By Urysohn�s Lemma, there are continuous
functions fi and gi such that, for each i,

fi (!) = 1 if ! 2 Ai and 0 if !I = !1I , and
gi (!) = 1 if ! 2 Bi and 0 if !J = !2J .

Since Ai 2 �I and Bi 2 �J , we can take fi 2 FI , and gi 2 FJ . Then,
min!2K fi (!) = min!2K gi (!) = 0 and, since K 2 Bfi;gi,

min
!2K

[fi (!) + gi (!)] = 0.

Hence, there exists !̂i 2 K such that fi
�
!̂i
�
= gi

�
!̂i
�
= 0: By the construction

of fi and gi, we have !̂
i =2 Ai; Bi, which impliesX

t2I
2�td

�
!̂it; !

1
t

�
+
X
t2J
2�td

�
!̂it; !

2
t

�
<
2

i
:

Since f!̂ig � K and K is compact, there is a limit point !� 2 K satisfying (B.2).
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Step 4. m (A) = 1: By Steps 2-3, 1 � m (A) � m
 T
(f;g)2G

Bf;g

!
= 1.

Step 5. A = (K (S))1: Clearly A � (K (S))1. For the other direction, take
K 2 A and assume !1; !2; ::: 2 K. It su¢ ces to show that

!� =
�
!11; !

2
2; :::; !

n
n; :::

�
2 K: (B.4)

Since K 2 A and !1; !2 2 K, there exists !̂2 2 K such that
�
!̂21; !̂

2
2

�
=

(!11; !
2
2). Similarly, since !̂

2; !3 2 K, there exists !̂3 2 K such that
�
!̂31; !̂

3
2; !̂

3
3

�
=�

!̂21; !̂
2
2; !

3
3

�
= (!11; !

2
2; !

3
3), and so on, giving a sequence f!̂ng in K. Any limit

point !� satis�es (B.4). �

Let � be a belief function on 
 and suppose that U� satis�es Symmetry and
WOI. By Lemma B.3, m � � (�) can be viewed as a measure on [K (S)]1, and by
Lemma B.2, m is symmetric. Thus we can apply de Finetti�s Theorem (Hewitt
and Savage (1955)) to m, viewing K (S) as the one-period state space, to obtain:
There exists �̂ 2 �(� (K (S))) such that

m (C) =

Z
�(K(S))

`1 (C) d�̂ (`) for all C 2 �[K(S)]1.

Here each ` lies in �(K (S)) and `1 is the i.i.d. product measure on [K (S)]1.
Extend each measure `1 to �K(
) and write

m (C) =

Z
�(K(S))

`1 (C) d�̂ (`) for all C 2 �K(
).

We claim that the equation extends also to C 2 �0, where �0 is the �-algebra
generated by the class

fK 2 K (
) : K � AgA2� .
First, note that ` 7�! `1 (C) is universally measurable by Lemma B.1, and hence
the integral is well-de�ned. By a standard argument using the Lebesgue Dom-
inated Convergence Theorem, C 7�!

R
�(K(S)) `

1 (C) d�̂ (`) is countably additive
on �0. This completes the argument because m has a unique extension to the
�-algebra of universally measurable sets, and the latter contains �0.
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Let � � �̂ � � 2 �(Bel (S)) and apply the Change of Variables Theorem to
derive, for any A 2 �,

� (A) = m (fK 2 K (
) : K � Ag)

=

Z
�(K(S))

`1 (fK 2 K (
) : K � Ag) d�̂ (`)

=

Z
�(K(S))

`1 (fK 2 K (
) : K � Ag) d� � ��1 (`)

=

Z
Bel(S)

[� (�)]1 (fK 2 K (
) : K � Ag) d� (�)

=

Z
Bel(S)

� (�1) (fK 2 K (
) : K � Ag) d� (�)

=

Z
Bel(S)

�1 (A) d� (�) .

Uniqueness of � follows from the uniqueness of �̂ provided by de Finetti�s
Theorem.

(a) =) (b:ii): Existence of a likelihood function L : Bel (S) ! �(S1) satisfyng
L1 and L3 amounts to a minor modi�cation of Epstein and Seo (2010, Thm.
6.1) and can be proven similarly. (The latter adopts multiple-priors utility as the
framework, rather than belief function utility. However, this di¤erence is of no
signi�cance for the proof and calls only for an obvious translation.)
It remains only to prove that L2 (exchangeability for L) follows from Com-

mutativity. While L need not be exchangeable, we prove that there exists an
exchangeable likelihood L� that also generates updating.
Assume S = fB;Ng for notational simplicity. By Commutativity, Un (f j sn) =

Un (f j �sn) for all f , n, sn and �. By uniqueness of the representing measure
noted above,

� (� j sn) = � (� j �sn) .
Let

L (sn) �
Z
L (sn j �) d�0.

42



Then

U0 (f) =
X
sn

L (sn)Un (f j sn)

=

nX
k=0

X
sn2Sn;k

L (sn)Un (f j sn)

=

nX
k=0;Sn;k 6=?

 X
sn2Sn;k

L (sn)

!
Un (f j sn) ,

where Sn;k is the set of all samples sn 2 Sn with k occurrences of B. De�ne
L
�
n 2 �(Sn) by

L
�
n (s

n) =
1

jSn;kj

 X
sn2Sn;k

L (sn)

!
if sn 2 Sn;k:

By the Kolomogorov Extension Theorem, there exists L
� 2 �(S1) that coincides

with L
�
n on S

n for every n. Therefore, it is exchangeable and satis�es, for every
n,

U0 (�) =
X
sn

L
�
(sn)Un (� j sn) on F . (B.5)

The latter equation leads to the desired likelihood function. Take

L� (sn j �) � L� (sn) (d� (� j sn) =d�0 (�)) .

By the uniqueness of representing measures in Theorem 3.1, (B.5) implies

�0 (�) =
X
sn

L
�
(sn)� (� j sn) ,

and thus �snL� (sn j �) = 1 for all �. Further,

L� (sn j �) = L
�
(sn) (d� (� j sn) =d�0 (�))

= L
�
(�sn) (d� (� j �sn) =d�0 (�))

= L� (�sn j �) .

It is easily veri�ed that posteriors are generated by Bayesian updating using �0
and L� (proceed as in the proof of Theorem 6.1 of our earlier paper). �
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C. Appendix: Proofs for Section 3.3

Proof of (3.6): The LLN in Maccheroni and Marinacci (2005) implies that

(��)
1 (f! 2 
 : [lim inf 	n (!) ; lim sup	n (!)] � I�g) = 1. (C.1)

Further, these bounds on empirical frequencies are tight in the sense that

[a > �� (B) = 0 or b < 1� �� (N) = �] =) 0 = (C.2)

(��)
1 (f[lim inf 	n (!) ; lim sup	n (!)] � [a; b]g) .

Therefore, the representation (3.2) implies that, for every 0 � b � 1,

�0 (f� : I� � [0; b]g) (C.3)

= U0 (f! : [lim inf 	n (!) ; lim sup	n (!)] � [0; b]g)
= U0 (f! : lim sup	n (!) � bg) .

Take [0; b] = I�. Because I� � I� if and only if � � �, (3.6) follows. �
The following connection between prior beliefs and the certainty equivalents

of bets on empirical frequencies, is a corollary of Theorem 3.1.

Corollary C.1. Adopt the assumptions in Theorem 3.1 and let U0 and �0 be as
provided there. Then:
(a) For every �nite collection fA1; :::; AJg of subsets of S, and for all aj � bj,
j = 1; :::; J ,

�0

 
JT
j=1

f� : [� (Aj) ; 1� � (SnAj)] � [aj; bj]g
!

(C.4)

= U0

 
JT
j=1

f! : [lim inf 	n (Aj) (!) ; lim sup	n (Aj) (!)] � [aj; bj]g
!
.

(b) Let �0 be any probability measure on Bel (S) that agees with �0 on all sets
of the form

f� 2 Bel (S) : � (A1) � a1; :::; � (AJ) � aJg ,
where Aj; aj and J vary over the nonempty subsets of S, [0; 1] and the positive
integers respectively. Then �0 = �0.
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Equation (C.4) relates the prior �0 over parameters, here belief functions, to
the evaluation of bets on empirical frequencies for the events A1; :::; AJ . More
precisely, the �0-measures of the sets shown are so related. However, (b) shows
that �0 is completely determined by its values on these sets.
We need two lemmas. Recall that 	n (A) (!) = 1

n

Pn
i=1 I (si 2 A) where si is

the i-th component of ! 2 S1. Similarly de�ne b	n (A) (K) = 1
n

Pn
i=1 I (Ki � A)

for K 2 [K (S)]1, where Ki is the i-th component of K.

Lemma C.2. Let K 2 [K (S)]1, K = K1 � K2 � ::: , and � 2 R. Then the
following are equivalent:
(i) lim infn	n (A) (!) > � for every si 2 Ki, i = 1; :::
(ii) lim infn b	n (A) (K) > �.
Proof. (i))(ii): If Ki � A, let si be any element in Ki, and otherwise, let si be
any element in KinA. Then, I (Ki � A) = I (si 2 A) and thus (ii) is implied.
(ii))(i): If si 2 Ki, I (Ki � A) � I (si 2 A). Thus, if si 2 Ki for i = 1; 2; :::,

then,
lim inf

n
	n (A) (!) � lim inf

n

b	n (A) (K) > �:
�

Lemma C.3. (i) �1 (f! : � (A) < lim infn	n (A) (!)g) = 0 for each A � S; and
(ii) �1 (f! : lim supn	n (A) (!) < 1� � (SnA)g) = 0 for each A � S.

Proof. Fix A � S. Then,

�1
�n
! : � (A) < lim inf

n
	n (A) (!)

o�
= [� (�)]1

�n
K 2 [K (S)]1 : K �

n
! : � (A) < lim inf

n
	n (A) (!)

oo�
= [� (�)]1

�n
K 2 [K (S)]1 : lim inf

n

b	n (A) (K) > � (A)o� (by Lemma C.2).

By the classical LLN, b	n (A) (K) converges to � (�) (fK1 2 K (S) : K1 � Ag) = � (A)
almost surely-[� (�)]1, which implies (i). The proof of (ii) is similar. �

Proof of Corollary C.1: (a) Because �1 (A) = � (A) for A � S, � 7�! � (A) is
universally measurable by Lemma B.1. Hence, every set of the form

f� 2 Bel (S) : [� (A) ; 1� � (SnA)] � [a; b]g

45



is universally measurable and the statement of the corollary is well-de�ned.
By the LLN inMaccheroni andMarinacci (2005), Lemma C.3 and the monotonic-

ity of belief functions,

�1 (f! : [lim inf 	n (A) (!) ; lim sup	n (A) (!)] � [a; b]g) = 1
, [� (A) ; 1� � (SnA)] � [a; b]

and

�1 (f! : [lim inf 	n (A) (!) ; lim sup	n (A) (!)] � [a; b]g) = 0
, [� (A) ; 1� � (SnA)] is not a subset of [a; b].

Moreover, for any belief function 
 on 
, if 
 (A) = 
 (B) = 1, then 
 (A \B) = 1
by the Choquet theorem (Theorem A.1). Therefore,

�

 
JT
j=1

f! : [lim inf 	n (Aj) (!) ; lim sup	n (Aj) (!)] � [aj; bj]g
!

=

Z
Bel(S)

�1

 
JT
j=1

f! : [lim inf 	n (Aj) (!) ; lim sup	n (Aj) (!)] � [aj; bj]g
!
d�0 (�)

= �0

 
JT
j=1

f� : [� (Aj) ; 1� � (SnAj)] � [aj; bj]g
!
.

(b) We can identify �0 and �0 with measures on �(K (S)). Modulo this iden-
ti�cation, we are given that �0 and �0 agree on the collection of all subsets of
�(K (S)) of the form

JT
j=1

f` 2 �(K (S)) : ` (fK 2 K (S) : K � Ajg) � ajg ,

for all J > 0, Aj � S and aj 2 [0; 1]. They necessarily agree also on the generated
�-algebra, denoted ��. Therefore, it su¢ ces to show that

��(K(S)) � ��.

Step 1. ` 7�! ` (C) is ��-measurable for measurable C 2 �K(S): Let C be
the collection of measurable subsets C of K (S) such that ` 7�! ` (C) is ��-
measurable. Every set of the form fK 0 2 K (S) : K 0 � Kg for K 2 K (S) lies in
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C. Since the collection fK 0 2 K (S) : K 0 � KgK2K(S) generates �K(S), it is enough
to show that C is a �-algebra: (i) C 2 C implies K (S) nC 2 C; (ii) if each Cj 2 C,
then ` 7�! `

�
[1j=1Cj

�
is ��-measurable because it equals the pointwise limit of

` 7�! `
�
[nj=1Cj

�
- hence [1j=1Cj 2 C.

Step 2. ` 7�!
R
f̂d` is ��-measurable for all Borel-measurable f̂ on K (S):

Identical to Step 2 in Lemma B.1.
Step 3. ��(K(S)) � ��: By Step 2,

n
` :
R
f̂d` � a

o
2 �� for all Borel-

measurable f̂ on K (S). But ��(K(S)) is the smallest �-algebra containing the
sets

n
` :
R
f̂d� � a

o
for all continuous f̂ and a 2 R. �

D. Appendix: Prediction

This appendix deals with binary experiments, S = fB;Ng. Each belief function �
on S corresponds to the probability interval for outcomeB given by [� (B) ; �� (B)].
The entry game is one example but here we do not impose � (B) = 0. The
empirical frequency of B in the �rst n experiments of the sample ! 2 S1 is
denoted 	n (!).
We make use of the following Central Limit Theorem (CLT) for belief functions

(Epstein and Seo (2011b)).

Theorem D.1 (CLT). Suppose that Gn : R ! R is quasiconcave and continu-
ous for each n and that supn;t jGn (t)j <1. Let (X1n; X2n) be normally distributed
with mean (� (B) ; �� (B)) and variance

1

n

�
� (B) (1� � (B)) � (B) � (N)
� (B) � (N) (1� � (N)) � (N)

�
:

Then Z
Gn (	n (!)) d�

1 = E [min fGn (X1n) ; Gn (X2n)g] +O
�
1p
n

�
,

that is, there exists a constant K such that

lim sup
n!1

p
n

����Z Gn(	n (!))d�
1 � E [min fGn (X1n) ; Gn (X2n)g]

���� � K.
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Proof of Theorem 4.1: Step 1: Show that

lim
n!1

Z Z
G (��	n (!)) d�1d�0 (�)

=

Z
min fG (�� � (B)) ; G (�� �� (B))g d�0 (�) .

By the CLT, for each �,Z
G (��	n (!)) d�1 = E

�
min

�
G
�
�� �X1n

�
; G
�
�� �X2n

�	�
+O

�
1p
n

�
,

where �X1n =
1
n

Pn
i=1X1i and �X2n =

1
n

Pn
i=1X2i, and each (X1i; X2i) is normally

distributed (i.i.d. across i�s) with mean (� (H) ; 1� � (T )) and variance�
� (B) (1� � (B)) � (B) � (N)
� (B) � (N) (1� � (N)) � (N)

�
.

By the classical strong LLN,
�
�X1n; �X2n

�
converges to (� (B) ; �� (B)) a.s. with re-

spect to the i.i.d. product of the above normal. Then, by the continuous mapping
theorem,min

�
G
�
�� �X1n

�
; G
�
�� �X2n

�	
converges tomin fG (�� � (B)) ; G (�� �� (B))g

a.s. and thus in distribution. Therefore,

E
�
min

�
G
�
�� �X1n

�
; G
�
�� �X2n

�	�
! min fG (�� � (B)) ; G (�� �� (B))g ,

(D.1)
and

R
G (��	n (!)) d�1 ! min fG (�� � (B)) ; G (�� �� (B))g. Apply the Dom-

inated Convergence Theorem to complete the proof.

Step 2: Show that

lim
n!1

argmax
�2[0;1]

Z Z
G (��	n (!)) d�1d� (�)

= argmax
�2[0;1]

lim
n!1

Z Z
G (��	n (!)) d�1d� (�) .

There is a unique solution �n for max�2[0;1]
R R

G (��	n (!)) d�1d� (�): Ob-
viously the maximum exists. Uniqueness follows from the strict concavity of
� 7�!

R
G (��	n (!)) d�1 for each �. Application of the Maximum Theorem

completes the proof of this step once we establish the needed continuity, which
we do next.
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The set f1; 2; :::;1g is compact when endowed with the topology generated by
singletons fng and sets of the form fn; :::;1g. De�ne F : [0; 1]�f1; 2; :::;1g ! R
by

F (�; n) =

� R
G (��	n (!)) d�1 (!) d� (�) n <1

limk!1
R R

G (��	k (!)) d�1 (!) d� (�) n =1
F is well-de�ned by Step 1. It is also jointly continuous: We need to check only
the case �n ! � and n!1. Note that G is uniformly continuous on [�1; 1] and
thus that F (�; n) is continuous uniformly in n. Then the desired joint continuity
follows from the triangle inequality, that is, from

j F (�n; n)� F (�;1) j�
j F (�n; n)� F (�; n) j + j F (�; n)� F (�;1) j .

Step 3: Complete the proof. From Steps 1 and 2,

�1 � lim
n!1

argmax
�

Z Z
G (��	n (!)) d�1d� (�)

= argmax
�

lim
n!1

Z Z
G (��	n (!)) d�1d� (�)

= argmax
�

Z
min fG (�� � (B)) ; G (�� �� (B))g d� (�) . �
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