
A Nonparametric Test of Granger Causality in
Continuous Time�

Simon Sai Man Kwoky

Cornell University

First Draft: September 21, 2011
This version: April 2, 2012

Abstract

This paper develops a nonparametric Granger causality test for continuous
time point process data. Unlike popular Granger causality tests with strong
parametric assumptions on discrete time series, the test applies directly to strictly
increasing raw event time sequences sampled from a bivariate temporal point
process satisfying mild stationarity and moment conditions. This eliminates
the sensitivity of the test to model assumptions and data sampling frequency.
Taking the form of an L2-norm, the test statistic delivers a consistent test against
all alternatives with pairwise causal feedback from one component process to
another, and can simultaneously detect multiple causal relationships over variable
time spans up to the sample length. The test enjoys asymptotic normality under
the null of no Granger causality and exhibits reasonable empirical size and power
performance. Its usefulness is illustrated in three applications: tests of trade-to-
quote causal dynamics in market microstructure study, credit contagion of U.S.
corporate bankruptcies over di¤erent industrial sectors, and �nancial contagion
across international stock exchanges.

1 Introduction

The concept of Granger causality was �rst introduced to econometrics in the ground-
breaking work of Granger (1969) and Sims (1972). Since then it has generated an
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extensive line of research and quickly became a standard topic in econometrics and
time series analysis textbooks. The idea is straightforward: a process Xt does not
strongly (weakly) Granger cause another process Yt if, at all time t, the conditional
distribution (expectation) of Yt given its own history is the same as that given the
histories of both Xt and Yt almost surely. Intuitively, it means that the history of
process Xt does not a¤ect the prediction of process Yt.
Granger causality tests are abundant in economics and �nance. Instead of giving a

general overview on Granger causality tests, I will focus on some of the shortfalls of pop-
ular causality tests. Currently, most Granger causality tests in empirical applications
rely on parametric assumptions, most notably the discrete time vector autoregressive
(VAR) models. Although it is convenient to base the tests on discrete time parametric
models, there are a couple of issues that can potentially invalidate this approach:
(1) Model uncertainty. If the data generating process (DGP) is far from the para-

metric model, the econometrician will run the risk of model misspeci�cation. The
conclusion of a Granger causality test drawn from a wrong model can be misleading.
A series of studies attempts to reduce the e¤ect of model uncertainty by relaxing or
eliminating the reliance on strong parametric assumptions.1

(2) Sampling frequency uncertainty. Existing tests of Granger causality in discrete
time often assume that the time di¤erence between consecutive observations is constant
and prespeci�ed. However, it is important to realize that the conclusion of a Granger
causality test can be sensitive to the sampling frequency of the time series. As implied
by the results of Sims (1971) and argued by Engle and Liu (1972), the test would
potentially be biased if we estimated a discretized time series model with temporally
aggregated data which are from a continuous time DGP (see section 1.1).
To address the above shortcomings, I consider a nonparametric Granger causality

test in continuous time. The test is independent of any parametric model and thus
the �rst problem is eliminated. Unlike discrete time Granger causality tests, the test
applies to data sampled in continuous time - the highest sampling frequency possible -
and can simultaneously and consistently detect causal relationships of various durations
spanning up to the sample length. The DGP is taken to be a pure-jump process known
as bivariate temporal point process.
A temporal point process is one of the simplest kinds of stochastic process and is the

central object of this paper. It is a pure-jump process consisting of a sequence of events
represented by jumps that occur over a continuum, and the observations are event
occurrence times (called event times).2 Apart from their simplicity, point processes
are indispensable building blocks of other more complicated stochastic processes (e.g.
Lévy processes, subordinated di¤usion processes). In this paper, I study the testing

1One line of research extends the test to nonlinear Granger causality test. To relax the strong
linear assumption in VAR models, Hiemstra and Jones (1994) developed a nonparametric Granger
causality tests on discrete time series without imposing any parametric structures on the DGP except
some mild ones such as stationarity and Markovian dynamics. In the application of their test, they
found that volume Granger causes stock return.

2The trajectory of a counting process, an equivalent representation constructed from point process
observations, is a stepwise increasing and right-continuous function with a jump at each event time.
An important example is the Poisson process in which events occur independently of each other.

2



of Granger causality in the context of a simple3 bivariate point process, which consists
of a strictly monotonic sequence of event times originated from two event types with
possible interactions among them. The problem of testing Granger causality consis-
tently and nonparametrically in a continuous time set-up for a simple bivariate point
process is non-trivial: all interactive relationship of event times over the continuum
of the sample period needs to be summarized in a test statistic, and continuous time
martingale theory is necessary to analyze its asymptotic properties. It is hoped that
the results reported in this paper will shed light on a similar test for more general types
of stochastic processes.
To examine the causal relation between two point processes, I �rst construct event

counts (as a function of time) of the two types of events from the observed event
times. The functions of event counts, also known as counting processes, are monotone
increasing functions by construction. To remove the increasing trends, I consider the
di¤erentials of the two counting processes. After subtracting their respective condi-
tional means (estimated nonparametrically), I obtain the innovation processes that
contain the surprise components of the point processes. It is possible to check, from
the cross-covariance between the innovation processes, if there is a signi�cant feed-
back from one counting process to another. As detailed in section 2, such a feedback
relationship is linked to the Granger causality concept that was de�ned for general
continuous time processes (including counting processes as a particular case) in the
extant literature. More surprisingly, if the raw event times are strictly monotonic,
then all pairwise cross-dependence can be su¢ ciently captured by the cross-covariance
between the innovation processes. This insight comes from the Bernoulli nature of the
jump increments of the associated counting processes, and will greatly facilitate the
development and implementation of the test.
The paper is organized as follows. Empirical applications of point processes are

described in sections 1.3 and 1.4. The relevant concepts and properties of a simple bi-
variate point process is introduced in section 2, while the concept of Granger causality
is discussed and adapted to the context of point processes in section 3. The test sta-
tistic is constructed in section 4 as a weighted integral of the squared cross-covariance
between the innovation processes. and the key results on its asymptotic behaviors are
presented in section 5. Variants of the test statistic under di¤erent bandwidth choices
are discussed in section 6. In the simulation experiments in section 7, I show that the
nonparametric test has reasonable size performance under the null hypothesis of no
Granger causality and nontrivial power against di¤erent alternatives. In section 8, I
demonstrate the usefulness of the nonparametric Granger causality test in a series of
three empirical applications. In the �rst application on the study of market microstruc-
ture hypotheses (section 8.1), we see that the test con�rms the existence of a signi�cant
causal relationship from trades to quote revisions in high frequency �nancial datasets.
Next, I turn to the application in credit contagion (section 8.2) and provide the �rst
empirical evidence that bankruptcies in �nancial-related sectors tend to Granger-cause
those in manufacturing-related sectors during crises and recessions. In the last appli-
cation on international �nancial contagion (section 8.3), I examine the extent to which

3The simple property will be formally de�ned in assumption (A1) in section 2.
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an extreme negative shock of a major stock index is transmitted across international
�nancial markets. The test reveals the presence of �nancial contagion, with U.S. and
European stock indices being the sources of contagion. Finally, the paper concludes in
section 9. Proofs and derivations are collected in the Appendix.

1.1 The Need for Continuous Time Causality Test

The original de�nition of Granger causality is not only con�ned to discrete time series
but also applicable to continuous time stochastic processes. However, an overwhelming
majority of research work on Granger causality tests, be it theoretical or empirical,
has focused on a discrete time framework. One key reason for this is the limited
availability of (near) continuous time data. However, with much improved computing
power and storage capacity, economic and �nancial data sampled at increasingly high
frequencies have become more accessible.4 This calls for more sophisticated techniques
for analyzing these datasets. To this end, continuous time models provide a better
approximation to frequently observed data than discrete time series models with very
short time lags and many time steps. Indeed, even though the data are observed and
recorded in discrete time, it is sometimes more natural to think of the DGP as evolving
in continuous time, because economic agents do not necessarily make decisions at the
same time when the data are sampled. The advantages of continuous time analyses
are more pronounced when the observations are sampled (or available) at random time
points. Imposing a �xed discrete time grid on highly irregularly spaced time data
may lead to too many observations in frequently sampled periods and/or excessive null
intervals with no observations in sparsely sampled periods.5

Furthermore, discretization in time dimension can result in the loss of time point
data and spurious (non)causality. The latter problem often arises when �the �nite
time delay between cause and e¤ect is small compared to the time interval over which
data is collected�, as pointed out by Granger (1988, p.205). A Granger causality test
applied to coarsely sampled data can deliver very misleading results: while the DGP
implies a unidirectional causality from process Xt to process Yt, the test may indicate
(i) a signi�cant bidirectional causality between Xt and Yt, or (ii) insigni�cant causality
between Xt and Yt in either one or both directions.6 The intuitive reason is that the
causality of the discretized series is the aggregate result of the causal e¤ects in each
sampling intervals, ampli�ed or diminished by the autocorrelations of the marginal
processes. The severity of these problems depends on prespeci�ed sampling intervals:
the wider they are relative to the causal durations (the actual time durations in which

4For example, trade and quote data now include records of trade and quote timestamps in unit of
milliseconds.

5Continuous time models are more parsimonious for modeling high frequency observations and
are more capable of endogenizing irregular and possibly random observation times. See, for instance,
Du¢ e and Glynn (2004), Aït-Sahalia and Mykland (2003), Li, Mykland, Renault, Zhang, Zheng
(2010).

6Sims (1971) provided the �rst theoretical explanation in the context of distributed lag model (a
continuous time analog of autoregressive model). See also Geweke (1978), Christiano and Eichenbaum
(1987), Marcet (1991) and, for a more recent survey, McCrorie and Chambers (2006).
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causality e¤ect transmits), the more serious the problems.7 With increasingly acces-
sible high frequency and irregularly spaced data, it is necessary to develop theories
and techniques tailored to the continuous time framework to uncover any interactive
patterns between stochastic processes. Analyzing (near) continuous time data with
inappropriate discrete time techniques is often the culprit of misleading conclusions.
To remedy the above problems, there have been theoretical attempts to extend

discrete time causality analyses to fully continuous time settings. For example, Florens
and Fougere (1996) examined the relationship between di¤erent de�nitions of Granger
non-causality for general continuous time models. Comte and Renault (1996) studied a
continuous time version of ARMA model and provided conditions on parameters that
characterize when there is no Granger causality, while Renault, Sekkat and Szafarz
(1998) gave corresponding characterizations for parametric Markov processes. All of
the above work, however, did not elaborate further on the implementation of the tests,
let alone any formal test statistic and empirical applications.
Due to a lack of continuous time testing tools for high-frequency data, practitioners

generally rely on parametric discrete time series methodology or multivariate paramet-
ric point process models. Traditionally, time series econometricians have little choice
but to adhere to a �xed sampling frequency of the available dataset, even though they
have been making an e¤ort to obtain more accurate inference by using the highest sam-
pling frequency that the data allow (Engle, 2000). The need to relax the rigid sampling
frequency is addressed by the literature on mixed frequency time series analyses.8 On
the other hand, inferring causal relationships from parametric point process models
may address some of these problems as this approach respects the irregular nature of
event times.
It is important to reiterate that correct inference about the directions of Granger

causality stems from an appropriate choice of sampling grid. The actual causal du-
rations, however, are often unknown or even random over time (as is the case for
high-frequency �nancial data). In light of this reality, it is more appealing to carry
out Granger causality tests on continuous time processes in a way that is indepen-
dent of the choice of sampling intervals and allows for simultaneous testing of causal
relationships with variable ranges.

1.2 The Need for Nonparametric Causality Test

Often times, the modelers adopt a pragmatic approach when choosing a parametric
model in order to match the model features to the observed stylized facts of the data.
In the study of empirical market microstructure, there exist parametric bivariate point

7For instance, suppose the DGP implies a causal relationship between two economic variables
which typically lasts for less than a month. A Granger causality test applied to the two variables
sampled weekly can potentially reveal a signi�cant causal relationship, but the test result may turn
insigni�cant if applied to the same variables sampled monthly.

8Ghysels (2012) extends the previous mixed frequency regression to VAR models with a mixture
of two sampling frequencies. Chiu, Eraker, Foerster, Kim and Seoane (2011) proposed a Bayesian
mixed frequency VAR models which are suitable for irregularly sampled data. This kind of models
has power for DGPs in which Granger causality acts over varying horizons.
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process models that explain trade and quote sequences. For example, Russell (1999)
proposed the �exible multivariate autoregressive conditional intensity (MACI) model,
in which the intensity takes a log-ARMA structure that explains the clustered nature
of tick events (trades and quotes). More recently, Bowsher (2007) generalized the
Hawkes model (gHawkes), formerly applied to clustered processes such as earthquakes
and neural spikes, to accommodate intraday seasonality and interday dependence fea-
tures of high frequency TAQ data. Even though structural models exist that predict
the existence of Granger causality between trade and quote sequences, the functional
forms of the intensity functions are hardly justi�ed by economic theories. Apart from
their lack of theoretical foundation, MACI and gHawkes models were often inadequate
for explaining all the observed clustering in high frequency data, as evidenced by un-
satisfatory goodness-of-�t test results. Model misspeci�cation may potentially bias the
result of causal inference. Hence, it would be ideal to have a nonparametric test that
provides robust and model-free results on the causal dynamics of the data.
In this paper, I pursue an alternative approach by considering a nonparametric

test of Granger causality that does not rely on any parametric assumption and thus is
free from the risk of model misspeci�cation. Since I assume no parametric assumptions
and only impose standard requirements on kernel functions and smoothing parameters,
the conclusion of the test is expected to be more robust than existing techniques. In
addition, the nonparametric test in this paper can be regarded as a measure of the
strength of Granger causality over di¤erent spans as the bandwidth of the weight
function varies. Such �impulse response�pro�le is an indispensible tool in the quest
for suitable parametric models.
More importantly, the conclusions from any statistical inference exercise are model

speci�c and have to be interpreted with care. In other words, all interpretations from
an estimated model are valid only under the assumption that the parametric model
represents the true DGP. For example, in the credit risk literature, there has been
ongoing discussion on whether the conditional independence model or the self-exciting
clustering model provides a better description of the stylized facts of default data. This
is certainly a valid goodness-of-�t problem from the statistical point of view, but it is
dangerous to infer that the preferred model represents the true DGP. There may be
more than one point process model that can generate the same dataset.9 The conclu-
sion can entail substantial economic consequences: under a doubly stochastic model,
credit contagion is believed to spread through information channels (Bayesian learning
on common factors); while under a clustering model, credit contagion is transmitted
through direct business links (i.e. counterparty risk exposure). The two families of
DGPs are very di¤erent in both model forms and economic contents, but they can gen-
erate virtually indistinguishable data (Barlett, 1964). Without further assumptions,
we are unable to di¤erentiate the two schools of belief solely based on empirical analy-
ses of Granger causality. It is precisely the untestability and non-uniqueness of model
assumptions that necessitate a model-free way of uncovering the causal dynamics of a

9An example is provided by Barlett (1964), which showed that it is mathematically impossible to
distinguish a linear doubly stochastic model and a clustering model with a Poisson parent process and
one generation of o¤springs (each of which is independently and identically distributed around each
parent), as their characteristic functions are identical.
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point process.

1.3 Point Processes in High Frequency Finance

Point process models are prevalent in modeling trade and quote tick sequences in
high frequency �nance. The theoretical motivation comes from the seminal work by
Easley and O�hara (1992), who suggested that transaction time is endogenous to stock
return dynamics and plays a crucial role in the formation of a dealer�s belief in the
fundamental stock price. Extending Glosten and Milgrom�s (1985) static sequential
trade model, their dynamic Bayesian model yields testable implications regarding the
relation between trade frequency and the amount of information disseminated to the
market, as re�ected in the spread and bid/ask quotes set by dealers.
In one of the �rst empirical analyses, Hasbrouck (1991) applied a discrete vec-

tor autoregressive (VAR) model to examine the interaction between trades and quote
revisions. Dufour and Engle (2000) extended Hasbrouck�s work by considering time
duration between consecutive trades as an additional regressor of quote change. They
found a negative correlation between a trade-to-trade duration and the next trade-to-
quote duration, thus con�rming that trade intensity has an impact on the updating of
beliefs on fundamental prices.10

Given the conjecture of Easley and O�hara (1992) and the empirical evidence of Du-
four and Engle (2000), it is important to have a way to extract and model transaction
time, which may contain valuable information about the dynamics of quote prices. To
this end, Engle and Russell (1998) proposed the Autoregressive Conditional Duration
(ACD) model, which became popular for modeling tick data in high frequency �nance.
It is well known that stock transactions on the tick level tend to cluster over time,
and time durations between consecutive trades exhibit strong and persistent autocor-
relations. The ACD model is capable of capturing these stylized facts by imposing an
autoregressive structure on the time series of trade durations.11

A problem with duration models is the lack of a natural multivariate extension
due to the unsynchronized nature of trade and quote durations by construction (i.e. a
trade duration always starts and ends in the middle of some other quote durations).
At the time a trade occurs, the econometrician�s information set would be updated to
re�ect the new trade arrival, but it is di¢ cult to transmit the updated information
to the dynamic equation for quote durations, because the current quote duration has
not ended yet. The same di¢ culty arises when information from a new quote arrival
needs to be transmitted in the opposite direction to the trade dynamics. Indeed, as
argued by Granger (1988, p.206), the problem stems from the fact that durations are
�ow variables. As a result, it is impossible to identify clearly the causal direction
between two �ow variable sequences when the �ow variables overlap one another in

10See Hasbrouck (2007, p.53) for more details.
11Existing applications of ACD model to trade and quote data are widespread, including (but not

limited to) estimation of price volatility from tick data, testing of market microstructure hypotheses
regarding spread and volume and intraday value-at-risk estimation. See Pacurar (2008) for a survey
on ACD models.

7



time dimension.12 Nevertheless, there exist a number of methods that attempt to
get around this problem, such as transforming the tick data to event counts over a
prespeci�ed time grid (Heinen and Rengifo, 2007) and rede�ning trade/quote durations
in an asymmetric manner to avoid overlapping of durations (Engle and Lunde, 2003).
They are not perfect solutions either.13

It is possible to mitigate the information transmission problem in a systematic
manner, but this requires a change of viewpoint: we may characterize a multivariate
point process from the point of view of intensities rather than duration sequences.
The intensity function of a point process, which is better known as hazard function
or hazard rate for more speci�c types of point processes in biostatistics, quanti�es
the event arrival rate at every time instant. Technically, it is the probability that at
least one event occurs. While duration is a �ow concept, event arrival rate is a stock
concept and thus not susceptible to the information transmission problem. To specify
a complete dynamic model for event times, it is necessary to introduce the concept of
conditional intensity function: the conditional probability of having at least one event
at the next instant given the history of the entire multivariate point process up to
the present. The dynamics of di¤erent type events can be fully characterized by the
corresponding conditional intensity functions. Russell (1999), Hautsch and Bauwens
(2006), and Bowsher (2007) proposed some prominent examples of intensity models.14

The objective is to infer the direction and strength of the lead-lag dependence among
the marginal point processes from the proposed parametric model.

1.4 Point Processes in Counterparty Risk Modeling

The Granger causality test can be useful to test for the existence of counterparty risk
in credit risk analysis. Counterparty risk was �rst analyzed in a bivariate reduced form
model in Jarrow and Yu (2001) and was then extended to multivariate setting by Yu
(2007). Under this model, the default likelihood of a �rm is directly a¤ected by the
default status of other �rms. See Appendix A.13 for a summary of the counterparty
risk model.
In a related empirical study, Chava and Jarrow (2004) examined if industry e¤ect

plays a role in predicting the probability of a �rm�s bankruptcy. They divided the

12As another example, Renault and Werker (2011) tested for a causal relationship between quote
durations and price volatility. They assume that tick-by-tick stock returns are sampled from a con-
tinuous time Lévy process. Based on the moment conditions implied from the assumptions, they
uncovered instantaneous causality from quote update dynamics to price volatility calculated from
tick-by-tick returns. Similar criticism on Engle and Lunde (2003) applies to this work as well because
trade durations over which volatility is computed overlap with quote durations.
13Information about durations is lost under the event count model of Heinen and Rengifo. Data loss

problem occurs in the Engle and Lunde model when there are multiple consecutive quote revisions,
as only the quote revision immediately after a trade is used. Moreover, the asymmetry of the Engle
and Lunde model only allows the detection of trade-to-quote causality but not vice versa.
14Russell (1999) estimated a bivariate ACI model to uncover the causal relationship between trans-

action and limit order arrivals of FedEx from November 1990 to January 1991. With the gHawkes
model, Bowsher (2007) provided empirical evidence of signi�cant two-way Granger causality between
trade arrivals and mid-quote updates of GM traded on the NYSE over a 40 day span from July 5 to
August 29, 2000.
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�rms into four industrial groups according to SIC codes, and ran a logistic regression
on each group of �rms. Apart from a better in-sample �t, introducing the industrial
factor signi�cantly improves their out-of-sample forecast of bankruptcy events.
A robust line of research uses panel data techniques to study the default risk of

�rms. The default probabilities of �rms are modeled by individual conditional inten-
sity functions. A common way to model dependence of defaults among �rms is to
include exogenous factors that enter the default intensities of all �rms. This type of
conditional independence models, also known as Cox models or doubly stochastic mod-
els, is straightforward to estimate because the defaults of �rms are independent of each
other after controlling for exogenous factors. In a log-linear regression, Das, Du¢ e, Ka-
padia and Saita (2006, DDKS hereafter) estimate the default probabilities of U.S. �rms
over a 25 year time span (January 1979 to October 2004) with exogenous factors15.
However, a series of diagnostic checks unanimously rejects the estimated DDKS model.
A potential reason is an incorrect conditional independence assumption, but it could
also be due to missing covariates. Their work stimulated future research e¤ort in the
pursuit of a more adequate default risk model. As a follow-up, Du¢ e, Eckners, Horel
and Saita (2009) attempt to extend the DDKS model by including additional latent
variables. Lando and Nielsen (2010) validate the conditional independence assumption
by identifying another exogenous variable (industrial productivity index) and showing
that the DDKS model with this additional covariate cannot be rejected.
In view of the inadequacy of conditional independence models, Azizpour, Giesecke

and Schwenkler (2008) advocate a top-down approach to modeling corporate bankrupt-
cies: rather than focusing on �rm-speci�c default intensities, they directly model the
aggregate default intensity for all �rms over time. This approach o¤ers a macroscopic
view of default pattern of a portfolio of 6,048 issuers of corporate debts in the U.S..
A key advantage of this approach is that it provides a parsimonious way to model
self-exciting dynamics which is hard to incorporate in the DDKS model. The authors
showed that the self-exciting mechanism e¤ectively explains a larger portion of default
clustering. Idiosyncratic components such as �rm-speci�c variables may indirectly
drive the dynamics of the default process through the self-exciting mechanism.

1.5 Test of Dependence between two stochastic processes

Various techniques that test for the dependence between two stochastic processes are
available. They are particularly well studied when the processes are time series in dis-
crete time. Inspired by the seminal work of Box and Pierce (1970), Haugh (1976) de-
rives the asymptotic distribution of the residual cross-correlations between two indepen-
dent covariance-stationary ARMA models. A chi-squared test of no cross-correlation
up to a �xed lag is constructed in the form of a sum of squared cross-correlations over a
�nite number of lags. Hong (1996b) generalizes Haugh�s test by considering a weighted
sum of squared cross-correlations over all possible lags, thereby ensuring consistency
against all linear alternatives with signi�cant cross-correlation at any lag. A similar

15They include macroeconomic variables such as three-year Treasury yields and trailing one year
return of S&P500 index, and �rm-speci�c variables such as distance to default and trailing one year
stock return.
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test of serial dependence was developed for dynamic regression models with unknown
forms of serial correlations (Hong, 1996a).
In the point process literature, there exist similar tests of no cross-correlation. Cox

(1965) proposes an estimator of the second-order intensity function of a univariate
stationary point process and derived the �rst two moments of the estimator when the
process is a Poisson process. Cox and Lewis (1972) extend the estimator to a bivariate
stationary point process framework. Brillinger (1976) derives the pointwise asymptotic
distribution of the second-order intensity function estimator when the bivariate process
exhibits no cross-correlation and satis�es certain mixing conditions. Based on these
theoretical results, one can construct a test statistic in the form of a (weighted) sum-
mation of the second-order intensity estimator over a countable number of lags. Under
the null of no cross-correlations, the test statistic has an asymptotic standard normal
distribution. Doss (1991) considers the same testing problem but proposes using the
distribution function analog to the second-order intensity function as a test statistic.
Under a di¤erent set of moment and mixing conditions, he shows that this test is
more e¢ cient than Brillinger�s test while retaining asymptotic normality. Similar to
the work of Brillinger, Doss�asymptotic normality result holds in a pointwise sense
only. The users of these tests are left with the task of determining the grid of lags to
evaluate the intensity function estimator. The grid of lags must be sparse enough to
ensure independence so that central limit theorem is applicable, but not too sparse as
to leave out too many alternatives. For the test considered in this paper, such concern
is removed because the test statistic is in the form of a weighted integration over a
continuum of lags up to the sample length.

2 Bivariate Point Process

The bivariate point process � consists of two sequences of event time 0 < � k1 � � k2 �
: : : <1 (k = a; b) on the positive real line R+, where � ki represents the time at which
the ith event of type k occurs. Another representation of the event time sequences is
the bivariate counting process N = (Na; N b)0, with the marginal counting process for
type k events de�ned by Nk(B) =

P1
i=1 1f� ki 2 Bg, k = a; b, for any set B on R+. Let

Nk
t = N

k((0; t]) for all t > 0 and Nk
0 = 0, k = a; b. It is clear that both representations

are equivalent - from a trajectory of N one can recover that of � and vice versa; hence,
for notational simplicity, the probability space for both � and N is denoted by (
; P ).
First, I suppose that the bivariate counting process N satis�es the following as-

sumption:

Assumption (A1) The pooled counting process N � Na + N b is simple, that is
P (N(ftg) = 0 or 1 for all t) = 1.

Essentially, assumption (A1) means that, almost surely, there is at most one event
happening at any time point, and if an event happens, it can either be a type a or type
b event, but not both. In other words, the pooled counting process N , which counts
the number of events over time regardless of event types, is a monotonic increasing
piecewise constant random function which jumps by exactly one at countable number
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of time points or otherwise stays constant at integer values. As it turns out, this simple
property imposed on the pooled counting process plays a crucial role in simplifying the
computation of moments of the test statistic. More importantly, the Bernoulli nature
of the increments dNt (which is either zero or one almost surely) of N at time t
implies that if two increments dNs and dNt (s 6= t) are uncorrelated, then they must
be independent.16 Therefore, a statistical test that checks for zero cross correlation
between any pair of increments of Na and N b is su¢ cient for testing for pairwise
independence between the increments.
In theory, assumption (A1) is mild enough to include a wide range of bivariate point

process models. It is certainly satis�ed if events happen randomly and independently of
each other over a continuum (i.e. when the pooled point process is a Poisson process).
Also, the assumption is often imposed on the pooled process of many other bivariate
point process models that are capable of generating dependent events (e.g. doubly sto-
chastic models, bivariate Hawkes models, bivariate autoregressive conditional intensity
models). In practice, however, it is not uncommon to have events happening at exactly
the same time point. In many cases, this is the artifact of recording or collecting point
process data over a discrete time grid that is too coarse.17 In some other cases, multiple
events really happen at the same time. Given a �xed time resolution, it is impossible
to tell the di¤erence between the two cases.18 There are two ways to get around this
conundrum: I may either drop assumption (A1) and include a bigger family of models
(e.g. compound Poisson processes), or keep the assumption but lump multiple events
at the same time point into a single event. In this paper, I would adopt the latter
approach by keeping assumption (A1) and treating multiple events at the same time
point as a single event, so that an occurrence of a type k event is interpreted as an
occurrence of at least one type k event at that time point. In the datasets of empirical
applications, the proportions that events of di¤erent types occur simultaneously turn
out to be small or even zero by construction.19

I can as well replace assumption (A1) by the assumption:

Assumption (A1b) the pooled counting process N � Na + N b is orderly, that is
P (N((0; s]) � 2) = o(s) as s # 0.

16If two random variables X and Y are uncorrelated, it does not follow in general that they are
statistically independent. However, there are two exceptions: one is when (X;Y ) follows a bivariate
normal distribution, another is when X and Y are Bernoulli distributed.
17For instance, in a typical TAQ dataset, timestamps for trades and quote revisions are accurate

up to a second. There is a considerable chance that more than two transactions or quote revisions
happen within a second. This is at odds with assumption (A1).
18TAQ datasets recorded with millisecond timestamps are available more recently. The improve-

ment in resolution of timestamps mitigates the con�ict with assumption (A1) by a large extent. A
comparison with the TAQ datasets with timestamps in seconds can reveal whether a lump of events
in the latter datasets is indeed the case or due to discrete time recording.
19Among all trades and quote revisions of PG (GM) from 1997/8/4 to 1997/9/30 in the TAQ data,

3.6% (2.6%) of them occur within the same second. In the bankruptcy data ranging from January
1980 to June 2010, the proportion of cases in which bankruptcies of a manufacturing related �rm and a
�nancial related �rm occur on the same date is 4.9% (out of a total of 892 cases). In the international
�nancial contagion data, the proportions are all 0% because I intentionally pair up the leading indices
of di¤erent stock markets which are in di¤erent time zones.
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It can be shown that with the second-order stationarity of N (see assumption (A2)
to be stated later), assumptions (A1) and (A1b) are equivalent (Daley and Vere-Jones,
2003).
It is worth noting that assumptions (A1) and (A1b) are imposed on the pooled

counting process N , and thus stronger than if they were imposed on the marginal
processesNa andN b instead, because simple (or orderly) property of marginal counting
processes does not carry over to the pooled counting process. For instance, if Na is
simple (or orderly) and N b � Na for each trajectory, then N = Na+N b = 2Na is not.
To make statistical inference possible, some sort of time homogeneity (i.e. stationar-

ity) condition is necessary. Before discussing stationarity, let us de�ne the second-order
factorial moment measure as

Gij(B1 �B2) = E
�Z

B2

Z
B1

1ft1 6=t2gdN
i
t1
dN j

t2

�
;

for i; j = a; b (see Daley and Vere-Jones, 2003, section 8.1). Note that the indicator
1ft1 6=t2g is redundant if the pooled process of N is simple (assumption (A1)). The
concept of second-order stationarity can then be expressed in terms of the second-
order factorial moment measure Gij (�; �).

De�nition 1 A bivariate counting process N = (Na; N b)0 is second-order stationary
if
(i) Gij((0; 1]2) = E [N i((0; 1])N j((0; 1])] <1 for all i; j = a; b; and
(ii) Gij((B1 + t) � (B2 + t)) = Gij(B1 � B2) for all bounded Borel sets B1, B2 in

R+ and t 2 R+.

The analogy to the stationarity concept in time series is clear from the above de�n-
ition, which requires that the second-order (auto- and cross-) moments exist and that
the second-order factorial moment measure is shift-invariant. By the shift-invariance
property, the measure Gij (�; �) can be reduced to a function of one argument, say �Gij(�),
as it depends only on the time di¤erence of the component point process increments.
If ` (�) denotes the Lebesgue measure, then second-order stationarity of N implies that,
for any bounded measurable functions f with bounded support, the following decom-
position is valid:Z

R2
f(s; t)Gij (ds; dt) =

Z
R

Z
R
f(x; x+ u)` (dx) �Gij(du):

From the moment condition in De�nition 1 (i), second-order stationarity implies
that the �rst-order moments exist by Cauchy-Schwarz inequality, so that

�k � E
�
Nk((0; 1])

�
<1 (1)

for k = a; b. This is an integrability condition on Nk which ensures that events are not
too closely packed together. Often known as hazard rate or unconditional intensity, the
quantity �k gives the mean number of events from the component process Nk over a
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unit interval. Given stationarity, the unconditional intensity de�ned in (1) also satis�es
�k = lim�t#0 (�t)

�1 P (Nk((t; t+�t]) > 0). If I further assume that Nk is simple, then
� = lim�t#0 (�t)

�1 P (Nk((t; t+�t]) = 1) = E(dNk
t =dt), which is the mean occurrence

rate of events at any time instant t, thus justifying the name intensity.
Furthermore, if the reduced measure �Gij(�) is absolutely continuous, then the re-

duced form factorial product densities 'ij (�) (i; j = a; b) exist, so that, in di¤erential
form, �Gij(d`) = 'ij (`) d`. It is important to note that the factorial product density
function 'ij (`) is not symmetric about zero unless i = j. Also, the reduced form
auto-covariance (when i = j) and cross-covariance (when i 6= j) density functions of
N are well-de�ned:

cij (`) � 'ij (`)� �i�j (2)

for i; j = a; b.
The assumptions are summarized as follows:

Assumption (A2) The bivariate counting process N =(Na; N b) is second-order sta-
tionary and that the second-order reduced product densities 'ij (�) (i; j = a; b)
exist.

Analogous to time series modeling, there is a strict stationarity concept: a bivari-
ate process N =(Na; N b) is strictly stationary if the joint distribution of fN(B1 +
u); : : : ;N(Br + u)g does not depend on u, for all bounded Borel sets Bi on R2, u 2 R2
and integers r � 1. Provided that the second-order moments exist, strict stationarity
is stronger than second-order stationarity.
While the simple property is imposed on the pooled point process in assumption

(A1), second-order stationarity is required for the bivariate process in assumption (A2).
Suppose instead that only the pooled counting process is assumed second-order station-
ary. It does not follow that the marginal counting processes are second-order stationary
too.20

The assumption of second-order stationarity on N ensures that the mean and vari-
ance of the test statistic (to be introduced in (13)) are �nite under the null hypothesis
of no causality (in (11)), but in order to show asymptotic normality I need to assume
the existence of fourth-order moments for each component process, as follows:

Assumption (A6) E
�
fNk(B1)N

k(B2)N
k(B3)N

k(B4)g
�
<1 for k = a; b and for all

bounded Borel sets Bi on R+, i = 1; 2; 3; 4.

Fourth-order moment condition is typical for invoking central limit theorems. In
a related work, David (2008) imposes a much stronger assumption of Brillinger-mixing,
which essentially requires the existence of all moments of the point process over bounded
intervals.
Before proceeding, let me introduce another important concept: the conditional

intensity of a counting process:

20For instance, if N = Na + N b is second-order stationary, and if we de�ne Na
t =

N ([i�0(2i; 2i+ 1] \ (0; t]) and N b
t = Nt � Na

t , then N
a and N b are clearly not second-order sta-

tionary. The statement is still valid if second-order stationarity is replaced by strict stationarity.
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De�nition 2 Given a �ltration21 G = (Gt)t�0, the G�conditional intensity �(tjGt�) of
a univariate counting process �N =

�
�Nt

�
t�0
is any G-measurable stochastic process such

that for any Borel set B and any Gt-measurable function Ct, the following condition is
satis�ed:

E

�Z
B

Ctd �Nt

�
= E

�Z
B

Ct�(tjGt�)dt
�
: (3)

It can be shown (Brémaud, 1981) that the G-conditional intensity �(tjGt�) is unique
almost surely if those �(tjGt�) that satisfy (3) are required to be G-predictable. In the
rest of the paper, I will assume predictability for all conditional intensity functions (see
assumption (A3) at the end of this section).
Similar to unconditional intensity, we can interpret the conditional intensity at

time t of a simple counting process �N as the mean occurrence rate of events given the
history G just before time t, as �(tjGt�) = lim�t#0 (�t)

�1 P ( �N((t; t + �t]) > 0jGt�) =
lim�t#0 (�t)

�1 P ( �N((t; t + �t]) = 1jGt�) = E(d �Nt=dtjGt�), P -almost surely22, where
the second equality follows from (A1).
Let F = (F t)t�0 be the natural �ltration of the bivariate counting process N, i.e. ,

and Fk = (Fk
t )t�0 (k = a; b) be the natural �ltration of N

k, so that Ft and Fk
t are the

sigma �elds generated by the processes N and Nk on [0; t], i.e. Ft = �f(Na
s ; N

b
s ); 0 �

s � tg and Fk
t = �fNk

s : s 2 [0; t]g. Clearly, F = Fa _ F b. Let �k(tjFt�) be the
F-conditional intensity of Nk

t , and de�ne the error process by

ekt := N
k
t �

Z t

0

�k(sjFs�)ds (4)

for k = a; b.
By Doob-Meyer decomposition, the error process ekt is an F-martingale process, in

the sense that E
�
ekt jFs

�
= eks for all t > s � 0. The integral �t =

R t
0
�k(sjFs�)ds

as a process is called the F-compensator of Nk
t which always exists by Doob-Meyer

decomposition, but the existence of F-conditional intensity �k(tjFt�) is not guaranteed
unless the compensator is absolutely continuous. For later analyses, I will assume the
existence of �k(tjFt�) (see assumption (A3) at the end of this section).
I can express (4) in di¤erential form:

dekt = dN
k
t � �k(tjFt�)dt = dNk

t � E(dNk
t jFt�)

for k = a; b. From the martingale property of ekt , it is then clear that the di¤erential de
k
t

is a mean-zero martingale process. In particular, E
�
dekt jFt�

�
= 0 for all t > 0. In other

words, based on the bivariate process history Ft� just before time t, an econometrician
can obtain the F-conditional intensities �a(tjFt�) and �b(tjFt�) which are computable
just before time t (recall that �k(tjFt�) is F-predictable) and give the best prediction
of the bivariate counting process N at time t. Since by (A1) the term �k(tjFt�)dt
21All �ltrations in this paper satisfy the usual conditions in Protter (2004).
22In the rest of the paper, all equalities involving conditional expectations hold in an almost surely

sense.
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becomes the conditional mean of dNk
t , the prediction is the best in the mean square

sense.
One may wonder whether it is possible to achieve equally accurate prediction of �

with a reduced information set. For instance, can we predict dN b
t equally well with

its F b-conditional intensity �b(tjF b
t�), where �

b(tjF b
t�)dt = E(dN

b
t jF b

t�), instead of its
F-conditional intensity �b(tjFt�)? Through computing the F b-conditional intensity,
we attempt to predict the value of N b solely based on the history of N b. Without using
the history of Na, the prediction �b(tjF b

t�)dt ignores the feedback or causal e¤ect that
shocks to Na in the past may have on the future dynamics of N b. One would thus
expect the answer to the previous question is no in general. Indeed, given that � is in
the �ltered probability space (
; P;F), the error process

�bt := N
b
t �

Z t

0

�b(sjF b
s�)ds (5)

is no longer an F-martingale. However, �bt is an F-martingale under one special cir-
cumstance: when the F b- and F-conditional intensities

�b(tjF b
t�) = �

b(tjFt�)

are the same for all t > 0. I am going to discuss this circumstance in depth in the next
section.
Let me summarize the assumptions in this section:

Assumption (A3) The F-conditional intensity �k(tjFt�) and Fk-conditional inten-
sity �kt � �k(tjFk

t�) of the counting process N
k
t exist and are predictable.

3 Granger Causality

In this section, I am going to discuss the concept of Granger causality in the bivariate
counting process set-up described in the previous section. Assuming (A1), (A2) and
(A3), and with the notations in the previous section, we say that Na does not Granger-
cause N b if the F-conditional intensity of N b is identical to the F b-conditional intensity
of N b. That is, for all t > s � 0, P -almost surely,

E[dN b
t jFs] = E[dN b

t jF b
s ] (6)

A remarkable result, as proven by Florens and Fougere (1996, section 4, example I), is
the following equivalence statement in the context of simple counting processes.

Theorem 3 If Na and N b are simple counting processes, then the following four def-
initions of Granger noncausality are equivalent:

1. Na does not weakly globally cause N b, i.e. E[dN b
t jFs] = E[dN b

t jF b
s ], P -a.s. for

all s; t.
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2. Na does not strongly globally cause N b, i.e. F b
t ? FsjF b

s for all s; t.

3. Na does not weakly instantaneously cause N b, i.e. N b, which is an F b-semi-
martingale with decomposition dN b

t = d�bt + E[dN
b
t jF b

t� ], remains an F-semi-
martingale with the same decomposition.

4. Na does not strongly instantaneously cause N b, i.e. any F b-semi-martingale with
decomposition remains an F-semi-martingale with the same decomposition.

According to the theorem, weakly global noncausality is equivalent to weakly in-
stantaneous noncausality, and hence testing for (6) is equivalent to checking �bt de�ned
in (5) is an F-martingale process, or, checking d�bt is an F-martingale di¤erence process:

E[d�bt jFs] = 0 (7)

for all 0 � s < t.
If one is interested in testing for pairwise dependence only, then (7) implies

E
�
f (d�as) d�

b
t

�
= 0 (8)

and
E
�
f
�
d�bs
�
d�bt
�
= 0 (9)

for all 0 � s < t and any Fa-measurable function f (�). However, since �bt is an F b-
martingale by construction, condition (9) is automatically satis�ed and thus is not
interesting from testing�s point of view as long as the conditional intensity �b(tjF b

t�) is
computed correctly.
There is a loss of generality to base a statistical test on (8) instead of (7), as it would

miss the alternatives in which a type b event is not Granger-caused by the occurrence
(or non-occurrence) of any single type a event at a past instant, but is Granger-caused
by the occurrence (or non-occurrence) of multiple type a events jointly at multiple past
instants or over some past intervals.23

I can simplify the test condition (8) further. Due to the dichotomous nature of d�at ,
it su¢ ces to test

E
�
d�asd�

b
t

�
= 0 (10)

for all 0 � s < t, as justi�ed by the following lemma.

Lemma 4 If Na and N b are simple counting processes, then (8) and (10) are equiva-
lent.
23One hypothetical example in default risk application is given as follows. Suppose I want to detect

whether corporate bankruptcies in industry a Granger-cause bankruptcies in industry b. Suppose also
that there were three consecutive bankruptcies in industry a at times s1, s2 and s3, followed by a
bankruptcy in industry b at time t (s1 < s2 < s3 < t). Each bankruptcy in industry a alone would not
be signi�cant enough to in�uence the well-being of the companies in industry b, but three industry a
bankruptcies may jointly trigger an industry b bankruptcy. It is possible that a test based on (8) can
still pick up such a scenario, depending on the way the statistic summarizes the information of (8) for
all 0 � si < t.
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Proof. The implication from (8) to (10) is trivial by taking f(�) to be the identity
function. Now assuming that (10) holds, i.e. Cov(d�as ; d�

b
t) = 0. Given that Na and

N b are simple, dNa
s jFa

s� and dN b
t jF b

t� are Bernoulli random variables (with means
�a(sjFa

s�)ds and �
b(tjF b

t�)dt, respectively), and hence zero correlation implies indepen-
dence, i.e. for all measurable functions f(�) and g(�), we have Cov

�
f(d�as); g(d�

b
t)
�
= 0.

We thus obtain (8) by taking g(�) to be the identity function.
Thanks to the simple property of point process assumed in (A1), two innovations

d�as and d�
b
t are pairwise cross-independent if they are not pairwise cross-correlated by

Lemma 4. In other words, a suitable linear measure of cross-correlation between the
residuals from two component processes would su¢ ce to test for their pairwise cross-
independence (both linear and nonlinear), as each in�nitesimal increment takes one out
of two values almost surely. From testing�s point of view, a continuous time framework
justi�es the simple property of point processes (assumption (A1)) and hence allows
for a simpler treatment on the nonlinearity issue, as assumption (A1) gets rid of the
possibility of nonlinear dependence on the in�nitesimal level. Indeed, if a point process
�N is simple, then d �Nt can only take values zero (no jump at time t) or one (a jump at

time t), and so
�
d �Nt

�p
= d �Nt for any positive integers p. Without assumption (A1),

the test procedure would still be valid (to be introduced in section 4, with appropriate
adjustments to the mean and variance of the test statistic), but it would just check
for an implication of pairwise Granger noncausality, as the equivalence of (8) and (10)
would be lost.
Making sense of condition (10) requires a thorough understanding of the conditional

intensity concept and its relation to Granger causality. From De�nition 2, it is crucial
to specify the �ltration with respect to which the conditional intensity is adapted.
The G-conditional intensity can be di¤erent depending on the choice of the �ltration
G. If G = F = Fa _ F b, then the G-conditional intensity is evaluated with respect to
the history of the whole bivariate counting process N. If instead G = Fk, then it is
evaluated with respect to the history of the marginal point process Nk only.
From the de�nition of weakly instantaneous noncausality in Theorem 3, Granger-

noncausality for point processes is the property that the conditional intensity is invari-
ant to an enlargement of the conditioning set from the natural �ltration of the marginal
process to that of the bivariate process. More speci�cally, if the counting process Na

does not Granger-cause N b, then we have

E[dN b
t jFt� ] = E[dN b

t jF b
t� ]

for all t > 0, which conforms to the intuition of Granger causality that the predicted
value of N b

t given its history remains unchanged with or without the additional infor-
mation of the history of Na by time t. Condition (10), on the other hand, means that
any past innovation d�as = dNa

s � E[dNa
s jFa

s� ] of N
a is independent of (not merely

uncorrelated with, due to the Bernoulli nature of jump sizes for simple point processes
according to Lemma 4) the future innovation d�bt = dN

b
t � E[dN b

t jF b
t� ] of N

b (t > s).
This is exactly the implication of Granger noncausality from Na to N b, and except for
those loss-of-generality cases discussed underneath (9), the two statements are equiv-
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alent.
Assuming (A2) and (A3), the reduced form cross covariance density function of the

innovations d�at and d�
b
t is then well-de�ned, and is denoted by 
 (`) dtd` = E

�
d�at d�

b
t+`

�
.

The null hypothesis of interest can thus be written down formally as follows:

H0 : 
 (`) = 0 for all ` > 0 vs (11)

H1 : 
 (`) 6= 0 for some ` > 0:

It is important to distinguish the reduced form cross-covariance density function

 (`) of the innovations d�at and d�

b
t from the cross-covariance density function cab (`)

of the counting process N = (Na; N b), de�ned earlier in (2). The key di¤erence rests
on the way the jumps are demeaned: the increment dNk

t at time t is compared against
the conditional mean �k(tjFk

t�)dt in 
 (`), but it is compared against the unconditional
mean �kdt in cab (`). In this sense, the former 
 (`) captures the dynamic feedback e¤ect
as re�ected in the shocks of the component processes, but the latter cab (`) merely sum-
marizes the static correlation relationship between the jumps of component processes.
Indeed, valuable information of Granger causality between component processes is only
contained in 
 (`) (as argued earlier in this section) but not in cab (`). Previous research
focused mostly on the large sample properties of estimators of the static auto-covariance
density function ckk (`) or cross-covariance density function cab (`). This paper, how-
ever, is devoted to the analysis of the dynamic cross-covariance density function 
 (`).
As we will see, the approach in getting asymptotic properties of 
 (`) is quite di¤erent.
I will apply the martingale central limit theorem - a dynamic version of the ordinary
central limit theorem - to derive the sampling distribution of a test statistic involving
estimators of 
 (`).

4 The statistic

The econometrician observes two event time sequences of a simple bivariate stationary
point process � over the time horizon [0; T ], namely, 0 < � k1 < �

k
2 < � � � < � kNk(T )

for
k = a; b. This is the dataset required to calculate the test statistic to be constructed
in this section.

4.1 Nonparametric cross-covariance estimator

In this section, I am going to construct a statistic for testing condition (10) from the
data. One candidate for the lag ` sample cross-covariance 
 (`) of the innovations d�at
and d�bt is given by

Ĉ(`)d` =
1

T

Z T

0

d�̂at d�̂
b
t+`

where d�̂kt = dN
k
t � �̂

k

t dt (k = a; b) is the residual and �̂
k

t is some local estimator of the
Fk-conditional intensity �kt in (A3) (to be discussed in section 4.4). The integration is
done with respect to t. However, if the jumps of Nk are �nite or countable (which is the
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case for point processes satisfying (A2)), the product of increments dNa
t dN

b
t+` is zero

almost everywhere except over a set of P -measure zero, so that Ĉ(`) is inconsistent for

 (`). This suggests that some form of local smoothing is necessary. The problem is
analogous to the probability density function estimation in which the empirical density
estimator would be zero almost everywhere over the support if there were no smoothing.
This motivates the use of a kernel function K(�), with a bandwidth H which controls
the degree of smoothing applied to the sample cross-covariance estimator Ĉ(`) above.
To simplify notation, let KH(x) = K(x=H)=H. The corresponding kernel estimator is
given by


̂H(`) =
1

T

Z T

0

Z T

0

KH (t� s� `) d�̂asd�̂bt (12)

=
1

T

Z T

0

Z T

0

KH (t� s� `)
�
dNa

s � �̂
a

sds
��
dN b

t � �̂
b

tdt
�
:

The kernel estimator is the result of averaging the weighted products of innovations
d�̂as and d�̂

b
t over all possible pairs of time points (s; t). The kernel KH(�) gives the

heaviest weight to the product of innovations at the time di¤erence t� s = `, and the
weight becomes lighter as the time di¤erence is further away from `. The following
integrability conditions are imposed on the kernel:

Assumption (A4a) The kernel function K(�) is symmetric around zero and satis�es
�1 �

R1
�1K(u)du = 1, �2 �

R1
�1K

2(u)du <1, �4 �
RRR

(�1;1)K(u)K(v)K(u+

w)K(v + w)dudvdw <1 and
R1
�1 u

2K(u)du <1.

4.2 The statistic as L2 norm
An ideal test statistic for testing (11) would summarize appropriately all the cross-
covariances of residuals d�̂as and d�̂

b
t over all 0 � s < t. This problem is similar to

that of Haugh (1976) when he checked the independence of two time series, but there
are two important departures: here I am working with two continuous time point
processes instead of discrete time series, and I do not assume any parametric models
on the conditional means. To this end, I propose a weighted integral of the squared
sample cross-covariance function, de�ned as follows:

Q � k
̂Hk2 �
Z
I

w(`)
̂2H(`)d`: (13)

where I � [�T; T ]. To test the null hypothesis in (11), the integration range is set to
be I = [0; T ].
Applying an L2 norm rather than an L1 norm on the sample cross-covariance func-

tion 
̂H(`) is standard in the literature of discrete time serial correlation test. If I
decided to test (11) based on

k
̂Hk1 �
Z
I

w(`)
̂H(`)d`
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instead, it would lead to excessive type II error - the test would fail to reject those
DGP�s in which the true cross-covariance function 
 (`) is signi�cantly away from zero
for certain ` 2 I but the weighted integral k
̂Hk1 is close to zero due to cancellation.
A test based on the test statistic Q in (13) is on the conservative side as Q is an L2

norm. More speci�cally, the total causality e¤ect from Na to N b is the aggregate of the
weighted squared contribution from each individual type a-type b event pair (see Figure
A.2). If E(d�asid�

b
t) = ci then the aggregate causality e¤ect is

P3
i=1 c

2
i without kernel

smoothing. However, less conservative test can be constructed with other choices
of norms (e.g. Hellinger and Kullback-Leibler distance) as in Hong (1996a), and the
methodology in this paper is still valid with appropriate adjustment.

4.3 Weighting function

I assume that

Assumption (A5) The weighting function w(`) is integrable over (�1;1):Z 1

�1
w(`)d` <1:

The motivations behind the introduction of the weighting function w(`) on lags
are in a similar spirit as the test of serial correlation proposed by Hong (1996a) in the
discrete time series context. The economic motivation is that the contagious e¤ect from
one process to another diminishes over time, as manifested by the property that the
weighting function discounts more heavily the sample cross covariance as the time lag
increases. From the econometric point of view, by choosing a weighting function whose
support covers all possible lags in I � [�T; T ] , the statistic Q can deliver a consistent
test to (11) against all pairwise cross dependence of the two processes as it summarizes
their cross covariances over all lags in an L2 norm, whereas the statistic with a truncated
weighting function over a �xed lag window I = [c1; c2] cannot. From the statistical
point of view, a weighting function that satis�es (A5) is a crucial device for controlling
the variation of the integrated squared cross-covariance function over an expanding lag
interval I = [0; T ], so that Q enjoys asymptotic normality. It can be shown that the
asymptotic normality property would break down without an appropriate weighting
function w(`) that satis�es (A5).

4.4 Conditional intensity estimator

In this section, I will discuss how to estimate the time-varying Fk-conditional intensity
nonparametrically. I employ the following Nadaraya-Watson estimator for the Fk-
conditional intensity �kt � �k(tjFk

t�),

�̂
k

t =

Z T

0

�KM (t� u) dNk
u : (14)
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While the cross-covariance estimator 
̂H(`) is smoothed by the kernel K(�) with band-
width H, the conditional intensity estimator is smoothed by the kernel �K(�) with
bandwidth M . The kernel �K(�) is assumed to satisfy the following:

Assumption (A4b) The kernel function �K(�) is symmetric around zero and satis�es
��1 �

R1
�1

�K(u)du = 1,��2 �
R1
�1

�K2(u)du <1,��4 �
RRR

(�1;1)
�K(u)�K(v)�K(u+

w)�K(v + w)dudvdw <1 and
R1
�1 u

2�K(u)du <1.

The motivation of (14) comes from estimating the conditional mean of dNk
t by a

nonparametric local regression. Indeed, the Nadaraya-Watson estimator is the local
constant least square estimator of E(dNk

t jFk
t�) around time t weighted by �KM(�). (As

usual, I denote �KM(`) = �K(`=M)=M .) By (A4b) it follows that
R T
0
�KM (t� u) du =

1 + o(1) as M=T ! 0 and thus the Nadaraya-Watson estimator becomes (14). The
estimator (14) implies that the conditional intensity takes a constant value over a local
window, but one may readily extend it to a local linear or local polynomial estimator.
Some candidates for regressors include the backward recurrence time t � tk

Nk
t
of the

marginal process Nk, and the backward recurrence time t� tNt of the pooled process
N .
Another way to estimate the Fk-conditional intensity is by �tting a parametric

conditional intensity model on each component point process. For k = a; b, let �k 2 Rdk

be the vector of parameters of the Fk-conditional intensity �kt , which is modeled by

�kt � �k
�
t;�k

�
for t 2 [0;1). Each component model is estimated by some parametric model estima-
tion techniques (e.g. MLE, GMM). The estimator �k converges to �k at the typical
parametric convergence rate of T�1=2 (or equivalently

�
nk
��1=2

=
�
Nk
T

��1=2
), which is

faster than the nonparametric rate of M�1=2.

4.5 Computation of 
̂H(`)

To implement the test, it is important to compute the test statistic Q e¢ ciently. From
the de�nition, there are three layers of integrations to be computed: the �rst layer
is the weighted integration with respect to di¤erent lags `, a second layer involves
two integrations with respect to the component point processes in the cross-covariance
function estimator 
̂H(`), and a third layer is a single integration with respect to each

component process inside the Fk-conditional intensity estimator �̂
k

t . The �rst layer
of integration will be evaluated numerically, but it is possible to reduce the second
and third layers of integrations to summations over marked event times in the case
of Gaussian kernels, thus simplifying a lot the computation of 
̂H(`) and hence Q.
Therefore, I make the following assumption:

Assumption (A4d) The kernels K(x), �K(x) and �K(x) are all standard Gaussian
kernels. That is: K(x) = �K(x) = �K(x) = (2�)�1=2 exp (�x2=2).
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Theorem 5 Under assumptions (A1-3, 4a, 4b, 4d), the cross-covariance function es-
timator 
̂H(`) de�ned in (12) and (14) is given by


̂H(`) =
1
T

Na
TP

i=1

Nb
TP

j=1

h
1
H
K
�
tbj�tai�`
H

�
� 2p

H2+M2K
�

tbj�tai�`p
H2+M2

�
+ 1p

H2+2M2K
�

tbj�tai�`p
H2+2M2

�i
:

4.6 Consistency of conditional intensity estimator

Unlike traditional time series asymptotic theories in which data points are separated
by a �xed (but possibly irregular) time lag in an expanding observation window [0; T ]
(scheme 1), consistent estimation of moments of point processes requires a �xed ob-
servation window [0; T0] in which events grow in number and are increasingly packed
(scheme 2). The details of the two schemes are laid out in Table 1.
As we will see shortly, the asymptotic mechanism of scheme 2 is crucial for consis-

tent estimation of the �rst and second order moments, including the Fk-conditional
intensity functions �kt for k = a; b, the auto- and cross-covariance density functions
cij (�) of N (for i; j = a; b), as well as the cross-covariance density function 
 (�) of
the innovation processes d�kt for k = a; b. However, the limiting processes of scheme 2
would inadvertently distort various moments of N. For instance, the Fk-conditional
intensity �kt will diverge to in�nity as the number of observed events n

k = Nk(T0) in
a �nite observation window [0; T0] goes to in�nity. In contrast, under traditional time
series asymptotics (scheme 1) as T ! 1, the moment features of N are maintained
as the event times are �xed with respect to T , but all moment estimators are doomed
to be pointwise inconsistent since new information is only added to the right of the
process (rather than everywhere over the observation window) as T !1.
Let us take the estimation of Fk-conditional intensity function �kt as an example.

At �rst sight, scheme 1 is preferable because the spacing between events is �xed relative
to the sample size and we want the conditional intensity �kt at time t to be invariant
to the sample size in the limit. However, the estimated Fk-conditional intensity is
not pointwise consistent under scheme 1�s asymptotics since there are only a �xed and
�nite number of observations around time t. On the other hand, under scheme 2�s
asymptotics, the number of observations around any time t increases as the sample
grows, thus ensuring consistent estimation of �kt , but as events get more and more
crowded in a local window around time t, the Fk-conditional intensity �kt diverges to
in�nity. 24

How can we solve the above dilemma? Knowing that there is no hope to estimate
�kt consistently at each time t, let us stick to scheme 2, and estimate the moment
properties of a rescaled counting process ~Nv = ( ~N

a
v ;
~N b
v),where

~Nk
v :=

Nk
Tv

T
(15)

for k = a; b and v 2 [0; 1] (a �xed interval, with T0 = 1). The stationarity property

24Note the similarity of the problem to probability density function estimation on a bounded sup-
port.
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of ~N and the Bernoulli nature of the increments of the pooled process ~N = ~Na + ~N b

are preserved.25 The time change acts as a bridge between the two schemes - the
asymptotics of original process N is governed by scheme 1, while that of the rescaled
process ~N is governed by scheme 2; and the two schemes are equivalent to one another
after rescaling by 1=T . Indeed, it is easily seen, by a change of variable t = Tv, that
the conditional intensities of ~Nk

v and N
k
Tv are identical:

�kTv = lim
�t#0

1

�t
E
�
Nk
Tv+�t �Nk

TvjFk
Tv�
�

= lim
�v#0

1

T�v
E
�
Nk
T (v+�v) �Nk

TvjFk
Tv�
�

= lim
�v#0

1

�v
E
�
~Nk
v+�v � ~Nk

v j ~Fk
v�

�
=: ~�

k

v ; (16)

where I denoted the natural �ltration of ~Nk by ~Fk and the ~Fk-conditional intensity
function of ~Nk

v by ~�
k

v on the last line.

If the conditional intensity ~�
k

v of the rescaled point process ~N
k
v is continuous and

is an unknown but deterministic function, then it can be consistently estimated for
each v 2 [0; 1]. In the same vein, other second-order moments of ~N are well-de�ned
and can be consistently estimated, including the (auto- and cross-) covariance density
functions ~cij (�) of ~N (for i; j = a; b) and the cross-covariance density function ~
 (�) of
the innovation processes d~�kv := d ~N

k
v � ~�

k

vdv for k = a; b. Speci�cally, it can be shown
that

~
 (�) = 
 (T�) (17)

and ~cij (�) = cij (T�) for i; j = a; b, and consistent estimation is possible for �xed
� 2 [0; 1].
To show the consistency and asymptotic normality of the conditional intensity

kernel estimator �̂
k

Tv, the following assumption is imposed:

Assumption (A7) The rescaled counting process ~Nk
u � Nk

Tu=T (with natural �ltra-

tion ~Fk) has an ~Fk-conditional intensity function ~�
k

u, which is twice continuously
di¤erentiable with respect to u, and is unobservable but deterministic.

Theorem 6 Given that a bivariate counting process N satis�es assumptions (A1-

3,4a,4b,7) and is observed over [0; T ]. Let �̂
k

t (k = a; b) be the Fk-conditional intensity
kernel estimator of the component process Nk de�ned in (14). Assume thatM5=T 4 ! 0
as T !1, M !1 andM=T ! 0. Then, for any �xed v 2 [0; 1], the kernel estimator
�̂
k

Tv converges in mean squares to the conditional intensity �
k
Tv, i.e.

E[
�
�̂
k

Tv � �kTv
�2
]! 0;

25Strictly speaking, the pooled process ~N of ~N is no longer simple because the increment d ~Nt takes
values of either zero or 1=T (instead of 1) almost surely, but the asymptotic theory of the test statistic
on ~N only requires that the increments d ~Nk

t are Bernoulli distributed with mean �
k
t dt.
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and the normalized di¤erence

�kv :=
p
M

0@ �̂kTv � �kTvq
�kTv

1A (18)

converges to a normal distribution with mean 0 and variance ��2 =
R1
�1

�K(x)dx, as
T !1, M !1 and M=T ! 0.

By Theorem 6, it follows that �̂
k

Tv is mean-squared consistent and that in the limit

�̂
k

Tv � �kTv = OP (M�1=2) for k = a; b.

There is a corresponding kernel estimator of the cross-covariance function ~
h (�)
of the innovations of the rescaled point process de�ned in (15). With an appropriate
adjustment to the bandwidth, by setting the new bandwidth after rescaling H to
h = H=T , I can reduce it to 
̂H(`). For a �xed � 2 [0; 1],


̂H(T�) =
1

T

Z T

0

Z T

0

KH (t� s� T�)
�
dNa

s � �̂
a

sds
��
dN b

t � �̂
b

tdt
�

=
1

T

Z 1

0

Z 1

0

KH (T (v � u� �))
�
dNa

Tu � �̂
a

TuTdu
��
dN b

Tv � �̂
b

TvTdv
�

=
T 2

T

Z 1

0

Z 1

0

1

H
K

�
v � u� �
H=T

��
d ~Na

u �
b~�audu��d ~N b

v �
b~�bvdv�

=

Z 1

0

Z 1

0

Kh (v � u� �) db~�audb~�bv =: b~
h (�) :
For a �xed lag � 2 [0; 1], the kernel cross-covariance estimator b~
h (�) consistently
estimates ~
 (�) as nk = ~Nk(1)!1, h! 0 and nkh!1 for k = a; b.
The statisticQ can thus be expressed in terms of the squared sample cross-covariance

function of the rescaled point process de�ned in (15) with rescaled bandwidths. Assum-
ing that the weighting function is another kernel with bandwidth B, i.e. w(`) = wB (`),
I can rewrite Q into

Q =

Z
I

wB(`)
̂
2
H(`)d`

= T

Z
I=T

wB(T�)
̂
2
H(T�)d�

=

Z
I=T

wb(�)b~
2h(�)d�;
where b = B=T and h = H=T .
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4.7 Simpli�ed Statistic

Another statistic that deserves our study is

Qs =
1

T 2

Z
I

Z
J

wB (`) dN
a
s dN

b
s+`:

where I � [�T; T ] and J = [�`; T � `] \ [0; T ] are the ranges of integration with
respect to ` and s, respectively. In fact, this statistic is the continuous version of
the statistic of Cox and Lewis (1972), whose asymptotic distribution was derived by
Brillinger (1976). Both statistics �nd their root in the serial correlation statistic for
univariate stationary point process (Cox, 1965). Instead of the continuous weighting
function w (`), they essentially considered a discrete set of weights on the product
increments of the counting processes at a prespeci�ed grid of lags, which are separated
wide enough to guarantee the independence of the product increments when summed
together.
To quantify how much we lose with the simpli�ed statistic, let us do a comparison

between Qs and Q. If the pooled point process is simple (assumption (A1)), then the
statistic Qs is equal to, almost surely,

Qs =
1

T 2

Z
I

Z
J

wB (`) (d�̂
a
s)
2 �d�̂bs+`�2 ;

which is the weighted integral of the squared product of residuals.26 On the other hand,
observe that there are two levels of smoothing in Q: the sample cross covariance 
̂H(`)
with kernel function KH(�) which smooths the cross product increments d�̂asd�̂bt around
the time di¤erence t�s = `, as well as the weighting function wB(`) which smooths the
squared sample cross-covariance function around lag ` = 0. Suppose that B is large
relative to H in the limit, such that H = o(B) as B !1. Then, the smoothing e¤ect
is dominated by wB(`). Indeed, as B !1, the following approximation holds

wB(`)KH (t1 � s1 � `)KH (t2 � s2 � `) = wB(`)�`(t1 � s1)�`(t2 � s2) + o(1)

where �`(�) is the Dirac delta function at `. Hence, the di¤erence Q�Qs becomes

Q�Qs =

Z
I

wB(`)
̂
2
H(`)d`�Qs

= 1
T 2H2

Z
I

ZZZZ
(0;T ]4

wB(`)K
�
t1�s1�`

H

�
K
�
t2�s2�`

H

�
d�̂as1d�̂

a
s2
d�̂bt1d�̂

b
t2
d`�Qs

= 1
T 2

Z
I

ZZ
(0;T ]4

wB(`)d�̂
a
s1
d�̂as2d�̂

b
s1+`

d�̂bs2+`d`�Q
s + oP (1)

= 1
T 2

Z
I

ZZ
(0;T ]2;s1 6=s2

wB(`)d�̂
a
s1
d�̂as2d�̂

b
s1+`

d�̂bs2+`d`+ oP (1) : (19)

where in getting the second-to-last line, the quadruple integrations over f(s1; s2; t1; t2) 2
26This follows from (28) in the Appendix.
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(0; T ]4g collapse to the double integrations over f(s1; s2; s1+ `; s2+ `) : s1; s2 2 (0; T ]g.
Indeed, computing Qs is a lot simpler than Q because there is no need to estimate

conditional intensities. However, if I test the hypothesis (11) based on the statistic
Qs instead of Q, I will have to pay the price of potentially missing some alternatives
- for example, those cases in which the cross correlations alternate in signs as the
lag increases, in such a way that the integrated cross-correlation

R
I

 (`) d` is close to

zero, but the individual 
 (`) are not. Nevertheless, such kind of alternatives is not
very common at least in our applications in default risk and high frequency �nance,
where the feedback from one marginal process to another is usually observed to be
positively persistent, and the positive cross correlation gradually dies down as the time
lag increases. In terms of computation, the statistic Qs is much less complicated than
Q since it is not necessary to estimate the sample cross covariance function 
̂H (`) and

the conditional intensities of the marginal processes �̂
k

t ; thus two bandwidths (M and
H) are saved. The bene�t of this simpli�cation is highlighted in the simulation study
where the size performance of Qs stands out from its counterpart Q.27

The mean and variance of Qs are given in the following theorem. The techniques
involved in the derivation are similar to those for Q.
Let us recall that in section 2, the second-order reduced form factorial product

density of Nk (assumed to exist in assumption (A2)) was de�ned by 'kk(u)dtdu :=
E
�
dNk

t dN
k
t+u

�
for u 6= 0 and 'kk(0)dt = E

�
dNk

t

�2
= E

�
dNk

t

�
= �kdt. Note that

there is a discontinuity point at u = 0 as limu!0 '
kk(u) =

�
�k
�2 6= 'kk(0). The

reduced unconditional auto-covariance density function can then be expressed into
ckk(u)dtdu := E

�
dNk

t � �kdt)(dNk
t+u � �kdu

�
= ['kk(u)�

�
�k
�2
]dtdu.

Theorem 7 Let I � [�T; T ] and Ji = [�`i; T � `i] \ [0; T ] for i = 1; 2. Under
assumptions (A1-3, 4a,b and 4d) and the null hypothesis,

E(Qs) =
�a�b

T

Z
I

wB (`)

�
1� j`j

T

�
d`:

With no autocorrelations:

V ar(Qs) =
�a�b

T 3

Z
I

w2B (`)

�
1� j`j

T

�
d`:

27There are two bandwidths for the simpli�ed statistic: one for the weighting function and the other
for the nonparametric estimator of the autocovariance function. We will show in simulations that for
simple bivariate Poisson process and for bivariate point process showing mild autocorrelations, the
empirical rejection rate (size) of the nonparametric test is stable over a wide range of bandwidths that
satisfy the assumptions stipulated in the asymptotic theory of the statistic. When autocorrelation
is high, the size is still close to the nominal level for some combinations of the bandwidths of the
weighting function and the autocovariance estimators.
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With autocorrelations:

V ar(Qs) = 1
T 4

ZZ
I2

Z
J2

Z
J1

wB (`1)wB (`2) c
aa(s2 � s1)cbb(s2 � s1 + `2 � `1)ds1ds2d`1d`2

+
(�b)

2

T 4

ZZ
I2

Z
J2

Z
J1

wB (`1)wB (`2) c
aa(s2 � s1)ds1ds2d`1d`2

+ (�a)2

T 4

ZZ
I2

Z
J2

Z
J1

wB (`1)wB (`2) c
bb(s2 � s1 + `2 � `1)ds1ds2d`1d`2:

If I = [0; T ] and B = o(T ) as T !1, then (with autocorrelations)

V ar(Qs) � 2
T 3

�Z T

0

W2(u)du

Z T

�T
caa (v) cbb (v + u) dv +

�
�b
�2
!1

Z T

0

caa(v)dv

+(�a)2 !1

Z T

0

cbb(v)dv

�
; (20)

where !1 =
R T
0
w (`)

�
1� `

T

�
d` and W2(u) =

R T
u
w (`� u)w (`)

�
1� `

T

�
d`.

In practice, the mean and variance can be consistently estimated with the following
replacements. For k = a; b:

(i) replace the unconditional intensity �k by the estimator �̂
k
= Nk=T , and

(ii) replace the unconditional auto-covariance density ckk(`) by the kernel estimator:

ĉkkRk(`) =
1

T

Z T

0

Z T

0

�KRk (t� s� `)
�
dNk

s � �̂
k
ds
��
dNk

t � �̂
k
dt
�

= 1
T

Nk
TP

i=1

Nk
TP

j=1

�KRk
�
tkj � tki � `

�
�
�
1� j`j

T

��
�̂
k
�2
+ o(1); (21)

where the last equality holds if Rk=T ! 0 as T !1. The proof of (21) will be given
in Appendix A.7, which requires that �K(�) satisfy the following assumption:

Assumption (A4c) The kernel function �K(�) is symmetric around zero and satis�es
��1 �

R1
�1

�K(u)du = 1, ��2 �
R1
�1

�K2(u)du <1, ��4 �
RRR

(�1;1)
�K(u) �K(v) �K(u+

w) �K(v + w)dudvdw <1 and
R1
�1 u

2 �K(u)du <1.

5 Asymptotic Theory

5.1 Asymptotic Normality under the Null

Recall from the de�nition that the test statistic Q is the weighted integral of squared
sample cross-covariance function between the residuals of the component processes.
However, the residuals d�̂kt do not form a martingale di¤erence process as the counting

process increment dNk
t is demeaned by its estimated conditional mean �̂

k

t dt instead
of the true conditional mean �kt dt. According to the de�nition of �

k
t , the innovations
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d�kt = dNk
t � �kt dt form a martingale di¤erence process, but not the residuals d�̂kt =

dNk
t � �̂

k

t dt.
To facilitate the proof, it is more convenient to separate the analysis of the estima-

tion error of conditional intensity estimators �̂
k

t from that of asymptotic distribution
of the test statistic. To this end, I de�ne the hypothetical version of Q as follows

~Q =

Z
I

wB(`)

2
H(`)d`;

where 
H(`) is the hypothetical cross-covariance kernel estimator between the innova-
tions d�as and d�

b
t :


H(`) =
1

T

Z T

0

Z T

0

KH (t� s� `) d�asd�bt

=
1

T

Z T

0

Z T

0

KH (t� s� `) (dNa
s � �asds)

�
dN b

t � �btdt
�
:

In the �rst stage of the proof, I will prove the asymptotic normality of the hypothetical
test statistic ~Q. In the second stage (to be covered in section 5.2), I will examine
the conditions under which the approximation of ~Q by Q yields an asymptotically
negligible error, so that Q is also asymptotically normally distributed.

Theorem 8 Under assumptions (A1-3,4a,5,6) and the null hypothesis (11), the nor-
malized test statistic

J =
~Q� E( ~Q)q
V ar( ~Q)

(22)

converges in distribution to a standard normal random variable as T ! 1, H ! 1
and H=T ! 0, where the mean and variance of ~Q are given as follows:

E( ~Q) = 1
TH
�a�b�2

Z
I

wB(`)
�
1� j`j

T

�
d`+ o

�
1
TH

�
;

V ar( ~Q)

= 2
T 2H

�4

Z
I
w2B(`)

Z T�j`j

�(T�j`j)

�
1� jrj

T �
j`j
T

� h
(�a)2 + caa (r)

i ��
�b
�2
+ caa (r)

�
drd`+ o

�
1

T 2H

�
=

2(�a�b)
2

T 2H
�4

Z
I
w2B(`)

�
1� j`j

T

�2
d`

+ 2
T 2H

�4

Z
I
w2B(`)

Z T�j`j

�(T�j`j)

�
1� jrj

T �
j`j
T

�
f (r) drd`+ o

�
1

T 2H

�
;

where f (x) = (�a)2 cbb (r) +
�
�b
�2
caa (r) dr + caa (r) cbb (r).

If Na and N b do not exhibit auto-correlations, then ckk(u) � 0 for k = a; b and
hence the variance reduces to the �rst term in the last equality.
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5.2 E¤ect of Estimation

In this section, I discuss the e¤ect of estimating the unconditional and theFk-conditional
intensities on the asymptotic distribution of the statistic J . I want to argue that, with
the right convergence rates of the bandwidths, the asymptotic distribution of J is
una¤ected by both estimations.
In practice, the statistic J is infeasible because (i) ~Q is a function of the conditional

intensities �at and �
b
t ; and (ii) both E(Q) = E( ~Q) and V ar(Q) = V ar( ~Q) contain the

unconditional intensities �a and �b. As discussed in section 4.4, one way to estimate
the unknown conditional intensities �kt (for k = a; b) is by means of the nonparametric
kernel estimator

�̂
k

t =

Z T

0

1
M
�K
�
t�u
M

�
dNk

u ;

On the other hand, by stationarity ofN (assumption (A2)) the unconditional intensities
�k (for k = a; b) are consistently estimated by

�̂
k
=

Nk
T

T
:

Recall that Q is the same as ~Q after replacing �kt by �̂
k

t . Let [E(Q) and \V ar(Q) be the
same as E(Q) and V ar(Q) after replacing �k by �̂

k
and ckk(`) by ĉkk

Rk
(`).

Theorem 9 Suppose thatH = o(M) asM !1, and thatM5=T 4 ! 0 and
�
Rk
�5
=T 4 !

0 as T !1. Then, under assumptions (A4b,4c) and the assumptions in Theorems 6
and 8, the statistic Ĵ de�ned by

Ĵ =
Q� [E(Q)q
\V ar(Q)

converges in distribution to a standard normal random variable as T ! 1, H ! 1
and H=T ! 0.

As discussed in section 4.4, the conditional intensity �kt of each component process
Nk can also be modeled by a parametric model. Since the estimator of the parameter
vector has the typical parametric convergence rate of T�1=2 or

�
Nk
T

��1=2
(which is

faster than the nonparametric rate of M�1=2), the asymptotic bandwidth condition in
Theorem 9, i.e. H = o(M) as M ! 1 becomes redundant, and thus the result of
Theorem 9 is still valid even without such condition. Similar remark applies to the
auto-covariance density function ckk(`).

5.3 Asymptotic Local Power

To evaluate the local power of theQ test, I consider the following sequence of alternative
hypotheses

HaT : 
(`) = aT

p
�a�b�(`);

29



where aT�(`) is the cross-correlation function between d�as and d�
b
s+`, and aT is a se-

quence of numbers so that aT ! 1 and aT = o(T ) as T ! 1. The function �(`),
the cross-correlation function before in�ated by the factor aT , is required to be square-
integrable over R. The goal is to determine the correct rate a�T with which the test
based on Q has asymptotic local power. For notational simplicity, I only discuss the
case where Na and N b do not exhibit auto-correlations. The result corresponding to
autocorrelated point processes can be stated similarly.
The following assumption is needed:

Assumption (A8) The joint cumulant c22(`1; `2; `3) of fd�as ; d�as+`1 ; d�
b
s+`2

; d�bs+`3g is
of order o(a2T ).

Theorem 10 Suppose that assumption (A8) and the assumptions in Theorem 8 hold.
Suppose further that H = o(B) as B ! 1. Then, under Ha�T

with a�T = H1=4, the
statistic J � �(K;wB) (J as de�ned in (22)) converges in distribution to N(0; 1) as
H !1 and H = o(T ) as T !1, where

�(K;wB) =
�2
R
I
wB(`)

�
1� j`j

T

�
��2(`)d`r

2�4
R
I
w2B(`)

�
1� j`j

T

�2
d`

and

��2(`) := �2(`) +

Z T

�T

�
1� juj

T

�
�
�
`+ u

T

�
�
�
`� u

T

�
du:

According to Theorem 10, a test based on Q picks up equivalent asymptotic ef-
�ciency against the sequence of Pitman�s alternatives in which the cross-correlation
of innovations (for each lag `) grows at the rate of a�T = H1=4 as the sample size T
tends to in�nity. It is important to note, after mapping the sampling period from
[0; T ] to [0; 1] as in (15), that the cross-covariance under HaT becomes ~
(�) = 
(T�) =
aT
p
�a�b�(T�) = ~aT

p
�a�b~�(�) by (17), where ~aT and ~�(�) are the rate and cross-

correlation of innovations after rescaling. As a result, the corresponding rate that
maintains the asymptotic e¢ ciency of the test under the new scale is ~a�T = H

1=4=T � ,
where � is the rate of decay of the unin�ated cross-correlation function �: �(`) = O(`�v)
as ` ! 1. The rate ~a�T generally goes to zero for bivariate point processes exhibiting
short and long memory cross-correlation dynamics, as long as � � 1=4.

6 Bandwidth Choices

According to assumption (A5), the weighting function w(`) in the test statistic Q is
required to be integrable. In practice, it is natural to choose a function that decreases
with the absolute time lag j`j to re�ect the decaying economic signi�cance of the
feedback relationship over time (as discussed in section 4.3). Having this economic
motivation in mind, I suppose in this section, without loss of generality, that the
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weighting function is a kernel function with bandwidth B, i.e. w (`) � wB (`) =
w (`=B) =B. The bandwidth B is responsible for discounting the importance of the
feedback strength as represented by the squared cross-covariance of innovations: the
further away the time lag ` is from zero, the smaller is the weight wB (`).

6.1 Case 1: B � H � T

Suppose B = o(H) as H !1. This happens when B is kept �xed, or when B !1
but B=H ! 0. Since w(`) has been assumed to be a �xed function before this section,
the asymptotic result in Theorem 8 remains valid. Nevertheless, I can simplify the
result which is summarized in the following corollary.

Corollary 11 Let QG � TH
�a�b

Q. Suppose that B = o(H) as H !1. Suppose further
that I = [0; T ]. Then, with the assumptions in Theorem 8 and under the null hypothesis
(11), the statistic

MG � QG � CGp
2DG

converges in distribution to a standard normal random variable as T !1, and H=T !
0 as H !1, where

CG = �2

and
DG = 3�4:

6.2 Case 2: H � B � T

Suppose instead that B !1 and H = o(B) as H !1. In this case, the smoothing
behavior of the covariance estimator is dominated by that of the weighting function
w (`). As it turns out, the normalized statistic (denoted by MH in the following
corollary) is equivalent to the continuous analog of Hong�s (1996a) test applied to
testing for cross-correlation between two time series.

Corollary 12 Let QH � TB
�a�b

Q. Suppose that B !1 and that H = o(B) as H !1.
Suppose further that I = [0; T ]. Then, with the assumptions in Theorem 8 and under
the null hypothesis (11), the statistic

MH � QH � CHp
2DH

converges in distribution to a standard normal random variable as T !1, and B=T !
0 as B !1, where

CH =

Z T

0

w
�
`
B

� �
1� `

T

�
d`

and

DH =

Z T

0

w2
�
`
B

� �
1� `

T

�2
d`:
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6.3 Optimal Bandwidths

Choosing optimal bandwidths is an important and challenging task in nonparamet-
ric analyses. For nonparametric estimation problems, optimal bandwidths are chosen
to minimize the mean squared error (MSE), and automated procedures that yield
data-driven bandwidths are available and well-studied for numerous statistical models.
However, optimal bandwidth selection remains a relatively unknown territory for non-
parametric hypothesis testing problems. In the �rst in-depth analysis of how to choose
the optimal bandwidth of the heteroskedasticity-autocorrelation consistent estimator
for testing purpose, Sun, Phillips and Jin (2008) proposed to minimize a loss function
which is a weighted average of the probabilities of type I and II error. Their theoretical
comparison revealed that the bandwidth optimal for testing has a smaller asymptotic
order (O(T 1=3)) than the MSE-optimal bandwidth, which is typically O(T 1=5). Al-
though the focus is on statistical inference of the simple location model, their result
could serve as a guide to the present problem of nonparametric testing for Granger
causality.

7 Simulations

7.1 Size and Power of Q

In the �rst set of size experiments, the data generating process (DGP) is set to
be a bivariate Poisson process which consists of two independent marginal Poisson
processes with rate 0.1. The number of simulation runs is 5000. The weighting func-
tion of Q is chosen to be a Gaussian kernel with bandwidth B = 10. I consider four
di¤erent sample lengths (T = 500; 1000; 1500; 2000) with corresponding bandwidths
(M = 60; 75; 100; 120) for the nonparametric conditional intensity estimators in such a
way that the ratioM=T gradually diminishes. Figure 2 shows the plots of the empirical
rejection rates against di¤erent bandwidths H of the sample cross-covariance estimator
for the four di¤erent sample lengths we considered. The simulation result reveals that
in �nite sample the test is generally undersized at the 0.1 nominal level and oversized
at the 0.05 nominal level, but the performance improves with sample length.
In the second set of experiments, the DGP is set to a more realistic one: a bivariate

exponential Hawkes model (see section 1.4) with parameters

�=
�

0:0277
0:0512

�
; �=

�
0:0086 0:0017

0 or 0:0182 0:0896

�
; �=

�
0:0254 0:0507
0:0254 0:1473

�
; (23)

which were estimated by �tting the model to a high frequency TAQ dataset of PG
traded in NYSE on a randomly chosen day (1997/8/8) and period (9:45am to 10:15am).
For the size experiments, the parameter �21 was intentionally set to zero so that there
is no causal relation from the �rst process to the second under the DGP, and we are
interested in testing the existence of causality from the �rst process to the second only
(i.e. by setting the integration range of the statistic Q to I = [0; T ]). The number of
simulation runs is 10000 with a �xed sample length 1800 (in seconds). The bandwidth
of the sample cross covariance estimator is �xed at H = 3. A Gaussian kernel with
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bandwidths B = 2 and 20 respectively is chosen for the weighting function. For the
power experiments, I set �21 back to the original estimate 0.0182. There is an increase,
albeit mild, in the rejection rate compared to the size experiments. Figure 3 shows
the plots of the rejection rates against di¤erent bandwidths M of the nonparametric
conditional intensity estimators. A �rst observation, after comparing Figures 3(a) and
3(c), is that the empirical sizes of the test are more stable over various M when B
is small. A second observation, after comparing Figures 3(b) and 3(d), is that the
test seems to be more powerful when B is small. This indicates that, while a more
slowly decaying weighting function gives a more consistent test against alternatives
with longer causal lags, this is done at the expense of a lower power and more sensitive
size to bandwidth choices.

7.2 Size and Power of Qs

To investigate the �nite sample performance of the simpli�ed statistic Qs, I conduct
four size experiments with di¤erent parameter combinations of a bivariate exponential
Hawkes model. Recall that there are only three bandwidths to choose for Qs, namely
the bandwidth B of the weighting function wB(`) and the bandwidths Rk of the auto-
correlation function estimator ĉkk

Rk
(`) for k = a; b. In each of the following experiments,

I generate four sets of 5000 samples of various sizes (T = 300; 600; 900; 1200) from a
DGP and carry out a Qs test for Granger causality from Na to N b on each of the
samples. The DGP�s of the four size experiments and one power experiment are all
bivariate exponential Hawkes models with the following features:

� Size experiment 1: Na and N b are independent and have the same uncondi-
tional intensities with comparable and moderate self-excitatory (autoregressive)
strength (Figure 4).

� Size experiment 2: Na and N b are independent and have the same unconditional
intensities, but N b exhibits stronger self-excitation than Na (Figure 5).

� Size experiment 3: N b Granger causes Na, and both have the same unconditional
intensities and self-excitatory strength (Figure 6).

� Size experiment 4: Na and N b are independent and have the same self-excitatory
strength, but unconditional intensity of N b doubles that of Na (Figure 7).

� Size experiment 5: Na and N b are independent and have the same unconditional
intensities with comparable and highly persistent self-excitatory (autoregressive)
strength (Figure 8).

� Power experiment: Na Granger causes N b, and both have the same unconditional
intensities and self-excitatory strength (Figure 9).

The nominal rejection rates are plotted against di¤erent weighting function band-
widths B (small relative to T ). The bandwidths Rk of the autocovariance function
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estimators are set proportional to B (Rk = cB where c = 0:5 for size experiment 5 and
c = 1 for all other experiments).
Under those DGP�s that satis�es the null hypothesis of no Granger causality (all

size experiments), the empirical rejection rates of the test based on Qs are reasonably
close to the nominal rates over a certain range of B that grows with T , as shown in
Figures 4-8. According to Theorem 7, I need B = o(T ) so that the variance can be
computed by (20) in the theorem. In general, the empirical size becomes more accurate
as the sample length T increases. On the other hand, the Qs test is powerful against
the alternative of a bivariate exponential Hawkes model exhibiting Granger causality
from Na to N b, and the power increases with sample length T , as shown in Figure 9.

8 Applications

8.1 Trades and Quotes

In the market microstructure literature, there are various theories that attempt to ex-
plain the trades and quotes dynamics of stocks traded in stock exchanges. In the sem-
inal study, Diamond and Verrecchia (1987) propose that the speed of price adjustment
can be asymmetric due to short sale constraints. As a result, a lack of trades signals
bad news because informed traders cannot leverage on their insights and short-sell the
stock. Alternatively, Easley and O�hara (1992) argue that trade arrival is related to
the existence of new information. Trade arrival a¤ects the belief on the fundamental
stock price held by dealers, who learn about the direction of new information from the
observed trade sequence and adjust their bid and/or ask quotes in a Bayesian manner.
It is believed that a high trade intensity is followed by more quote revisions, while a low
trade intensity means a lack of new information transmitted to the market and hence
leads to fewer quote revisions. As discussed in 1.3, much existing research is devoted to
the testing of these market microstructure hypotheses, but the tests are generally con-
ducted through statistical inference under strong parametric assumptions (e.g. VAR
model in Hasbrouck, 1991 and Dufour and Engle, 2000; the bivariate duration model in
Engle and Lunde, 2003). This problem o¤ers an interesting opportunity to apply the
nonparametric test in this paper. With minimal assumptions on the trade and quote
revision dynamics, the following empirical results indicate the direction and strength
of causal e¤ect in support of the conjecture of Easley and O�hara (1992): more trade
arrivals predict more quote revisions.
I obtain the data from TAQ database available in the Wharton Research Data

Services. The dataset consists of all the transaction and quote revision timestamps of
the stocks of Proctor and Gamble (NYSE:PG) in the 41 trading days from 1997/8/4
to 1997/9/30, the same time span as the dataset of Engle and Lunde (2003). Then,
following the standard data cleaning procedures (e.g. Engle and Russell, 1998) to
prepare the dataset for further analyses,

1. I employ the �ve-second rule when combining the transaction and quote time se-
quences into a bivariate point process by adding �ve seconds to all the recorded
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quote timestamps. This is to reduce unwanted e¤ects from the fact that trans-
actions were usually recorded with a time delay.

2. I eliminate all transaction and quote records before 9:45am on every trading day.
Stock trades in the opening period of a trading day are generated from open
auctions and are thus believed to follow di¤erent dynamics.

3. Since the TAQ timestamps are accurate up to a second, this introduces a limi-
tation to the causal inference in that there is no way to tell the causal direction
among those events happening within the same second. The sampled data also
constitutes a violation of assumption (A1). I treat multiple trades and quotes
occurring at the same second as one event, so that an event actually indicates
the occurrence of at least one event within the same second. 28

After carrying out the data cleaning procedures, I split the data into di¤erent
trading periods and conduct the nonparametric causality test for each trading day.
Then, I count the number of trading days with signi�cant causality from trade to
quote (or quote to trade) dynamics. For each sampling period, let N t and N q be
the counting processes of trade and quote revisions, respectively. The hypotheses of
interest are

H0 : there is no Granger causality from Na to N b; vs

H1 : there is Granger causality from Na to N b.

where a; b 2 ft; qg and a 6= b.
The results are summarized in Tables 2 to 4. In each case, I present the signif-

icant day count for di¤erent combinations of bandwidths (all in seconds). For each
(H;B) pair, the bandwidth M of the conditional intensity estimator is determined
from simulations so that the rejection rate matches the nominal size.
Some key observations are in order. First, there are more days with signi�cant

causation from trade to quote update dynamics than from quote update to trade dy-
namics for most bandwidth combinations. This suppports the �ndings of Engle and
Lunde (2003). Second, for most bandwidth combinations, there are more days with
signi�cant causations (in either direction) during the middle of a trading day (11:45am
�12:45pm) than in the opening and closing trading periods (9:45am �10:15am and
3:30pm �4:00pm). One possible explanation is that there are more confounding fac-
tors (e.g. news arrival, trading strategies) that trigger a quote revision around the
time when the market opens and closes. When the market is relatively quiet, investors

28For PG, 5.6% of trades, 28.1% of quote revisions and 3.6% of trades and quotes were recorded
with identical timestamps (in seconds). The corresponding proportions for GM are 5.7%, 19.9% and
2.6%, respectively. Admittedly, the exceedingly number of quote revisions recorded at the same time
invalidates assumption (A1), but given the low proportions for trades and trade-quote pairs with same
timestamps, the distortion to the empirical results is on the conservative side. That is, if there exists
a more sophisticated Granger causality test that takes into account the possibility of simultaneous
quote events, the support for trade-to-quote causality would be even stronger than the support Q and
Qs tests provide, as we shall see later in Tables 2-6.
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have less sources to rely on but update their belief on the fundamental stock price
by observing the recent transactions. Third, the contrast between the two causation
directions becomes sharper in general when the weighting function, a Gaussian kernel,
decays more slowly (larger B), and it becomes the sharpest in most cases when B is
10 seconds (when the day counts with signi�cant causation from trade to quote is the
maximum). This may suggest that most causal dynamics from trades to quotes occur
and �nish over a time span of about 3B = 30 seconds.
Next, I employ the simpli�ed statistic Qs to test the data. I am interested to see

whether it implies the same causal relation from trades to quotes as found earlier,
given that a test based on Qs is only consistent against a smaller set of alternatives (as
discussed in section 4.7). The result of theQs test on trade and quote revision sequences
of PG is presented in Table 5. The result shows stronger support for the causal direction
from trades to quote revisions across various trading periods of a day (compare Table 5
to Tables 2-4: the Qs test uncovers more signi�cant days with trade-to-quote causality
than the Q test does). I also conduct the Qs test on trades and quotes of GM, and
obtain similar result that trades Granger-cause quote revisions. (See Table 6 for the test
results on General Motors. Test results of other stocks considered by Engle and Lunde
(2003) are similar and available upon request.) The stronger support by the Qs test
for the trade-to-quote causality suggests indirectly that the actual feedback resulting
from a shock in trade dynamics to quote revision dynamics is persistent rather than
alternating in signs over the time range covered by the weighting function w(`). Given
that I am testing against the alternatives with persistent feedback e¤ect from trades
to quote revisions, it is natural that the Q test is less powerful than the Qs test. This
is the price for being consistent against a wider set of alternatives29.

8.2 Credit Contagion

Credit contagion occurs when a credit event (e.g. default, bankruptcy) of a �rm leads
to a cascade of credit events of other �rms (see, for example, Jorion and Zhang, 2009).
This phenomenon is manifested as a cluster of �rm failures in a short time period.
As discussed in section 1.4, a number of reduced-form models, including conditional
independence and self-exciting models, are available to explain the dependence of these
credit events over time, with varying level of success. Conditional independence model
assumes that the probabilities of a credit events of a cross section of �rms depend on
some observed common factors (Das, Du¢ e, Kapadia and Saita, 2008; DDKS here-
after). This modeling approach easily induces cross-sectional dependence among �rms,
but is often inadequate to explain all the observed clustering of credit events unless a
good set of common factors is discovered. One way to mitigate the model inadequacy
is to introduce latent factors into the model (Du¢ e, Eckners, Horel and Saita, 2010;
DEHS hereafter). Counterparty risk model, on the other hand, o¤ers an appealing
alternative: the occurrence of credit events of �rms are directly dependent on each
other (Jarrow and Yu, 2001). This approach captures directly the mutual-excitatory

29This includes those alternatives in which excitatory and inhibitory feedback e¤ect from trades to
quotes alternate as time lag increases.
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(or serial correlation) nature of credit events that is neglected by the cross-sectional
approach of conditional independence models. In a series of empirical studies, Jorion
and Zhang (2007, 2009) provided the �rst evidence that a signi�cant channel of credit
contagion is through counterparty risk exposure. The rationale behind their arguments
is that the failure of a �rm can a¤ect the �nancial health of other �rms which have
business ties to the failing �rm. This empirical evidence highlights the importance of
counterparty risk model as an indispensable tool for credit contagion analysis.
All the aforementioned credit risk models cannot avoid the imposition of ad-hoc

parametric assumptions which are not justi�ed by any structural models. For instance,
the conditional independence models of DDKS and DEHS rely on strong log-linear as-
sumption30 on default probabilities, while the counterparty risk model of Jarrow and Yu
adopt a convenient linear con�guration. Also, the empirical work of Jorion and Zhang
is based on the linear regression model. The conclusions drawn from these parametric
models have to be interpreted with care as they may be sensitive to the model assump-
tions. Indeed, as warned by DDKS, a rejection of their model in goodness-of-�t tests
can indicate either a wrong log-linear model speci�cation or an incorrect conditional
independence assumption of the default intensities, and it is impossible to distinguish
between them from their test results. Hence, it is intriguing to investigate the extent
of credit contagion with as few interference from model assumptions as possible. The
nonparametric Granger causality tests make this model-free investigation a reality.
I use the �Bankruptcies of U.S. �rms, 1980�2010�dataset to study credit contagion.

The dataset is maintained by Professor Lynn LoPucki of UCLA School of Law. The
dataset records, among other entries, the �ling dates of Chapter 11 and the Standard
Industrial Classi�cation (SIC) codes of big bankrupting �rms31. In this analysis, a
credit event is de�ned as the occurrence of bankruptcy event(s). To be consistent with
assumption (A1), I treat multiple bankruptcies on the same date as one bankruptcy
event. Figure 10 shows the histogram of bankruptcy occurrences in 1980�2010.
I classify the bankrupting �rms according to the industrial sector. More speci�-

cally, I assume that a bankruptcy belongs to manufacturing related sectors if the SIC
code of the bankrupting �rm is from A to E, and �nancial related sectors if the SIC
code is from F to I. The rationale behind the classi�cation is that the two industrial
groups represent �rms at the top and bottom of a typical supply chain, respectively.
The manufacturing related sectors consist of agricultural, mining, construction, man-
ufacturing, transportation, communications and utility companies, while the �nancial
related sectors consist of wholeselling, retailing, �nancial, insurance, real estate and
service provision companies.32 Let Nm and N f be the counting processes of bankrupt-
cies from manufacturing and �nancial related sectors, respectively. Figure 11 plots the

30In the appendix of their paper, DEHS evaluates the robustness of their conclusion by considering
the marginal nonlinear dependence of default probabilities on the distance-to-default. Nevertheless,
the default probability is still assumed to link to other common factors in a log-linear fashion.
31The database includes those debtor �rms with assets worth $100 million or more at the time of

Chapter 11 �ling (measured in 1980 dollars) and which are required to �le 10-ks with the SEC.
32The industrial composition of bankruptcies in manufacturing related sectors are A: 0.2%; B: 6.3%;

C: 4.5%; D: 58.6%; E: 30.5%. The composition in �nancial related sectors are F: 8.4%; G: 29.4%; H:
32.8%; I: 29.4%.
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counting processes of the two types of bankruptcies. The hypotheses of interest are

H0 : there is no Granger causality from Na to N b; vs

H1 : there is Granger causality from Na to N b.

where a; b 2 fm; fg and a 6= b.
Similar to the TAQ application, I carry out the Q test for di¤erent combinations of

bandwidths (in days). The bandwidths M (for conditional intensity estimators) and
B (for weighting function) are set equal to 365, 548 and 730 days (corresponding to
1, 1.5 and 2 years), while the bandwidth H (for cross-covariance estimator) ranges
from 2 to 14 days.33 The test results are displayed in Tables 7-9. For most bandwidth
combinations, the Q test detects a signi�cant credit contagion (at 5% signi�cance
level) from �nancial to manufacturing related sectors in periods that contain crises and
recession (Asian �nancial crisis and 9/11 in September 1996 �July 2003; subprime
mortgage crisis in September 2007 �June 2010) but not in periods of economic growth
(August 2003 �August 2007). The reverse contagion becomes statistically signi�cant
too during the subprime mortgage crisis.
I also conduct the Qs test over the period September 1996 �June 2010 that spans

the �nancial crises and the boom in the middle. During this period, there are 350 and
247 bankruptcies in the manufacturing and �nancial related sectors. The normalized
test statistic values (together with p-values) are presented in Table 10. The bandwidth
B of the weighting function ranges from 30 to 300 days, while the bandwidths Rk

of the unconditional autocorrelation kernel estimators ĉkk
Rk
(`) (for k = m and f) are

both �xed at 300 days. All kernels involved are chosen to be Gaussian. Over the
period of interest, there is signi�cant (at 5% signi�cance level) credit contagion in both
directions up to B = 90 days, but the �nancial-to-manufacturing contagion dominates
manufacturing-to-�nancial contagion in the long run.

8.3 International Financial Contagion

The Granger causality test developed in this paper can be used to uncover �nancial
contagion that spreads across international stock markets. An adverse shock felt by one
�nancial market (as re�ected by very negative stock returns) often propagates quickly
to other markets in a contagious manner. There is no agreement in the concept of
�nancial contagion in the literature34. For instance, Forbes and Rigobon (2002; here-
after FR) de�ned �nancial contagion as a signi�cant increase in cross-market linkages
after a shock. To measure and compare the extent of contagion over di¤erent stock
market pairs, FR used a bias-corrected cross-correlation statistic for index returns.
However, whether the increased cross-correlation represents a causal relationship (in
Granger sense) is unclear. More recently, Aït-Sahalia, Cacho-Diaz and Laeven (2010;
hereafter ACL) provided evidence of �nancial contagion by estimating a parametric

33The Q test is more sensitive to the choice of M than B, according to test results not shown in
the paper (they are provided upon request). The choice of bandwidth H is guided by the restriction
H = o(M) from Theorem 9.
34See Forbes and Rigobon (2002) and the references therein for a literature review.
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Hawkes jump-di¤usion model to a cross-section of index returns. The contagion con-
cept ACL adopted is in a wider sense than that of FR in that contagion can take place
in both �good�and �bad�times (see footnote 2 of ACL). Based on the dynamic model
of ACL, it is possible to infer the causal direction of contagion from one market to
another. Nevertheless, their reduced-form Hawkes jump-di¤usion model imposes a fair
amount of structure on both the auto- and cross-correlation dynamics of the jumps
of index returns without any guidance from structural models. The conclusion drawn
from ACL regarding causal direction of contagion is model-speci�c and, even if the
model is correct, sensitive to model estimation error. To robustify the conclusion, it
is preferred to test for Granger causality of shock propagations in a nonparametric
manner.
To this end, I collect daily values of the major market indices from �nance.yahoo.com

and compute daily log-returns from adjusted closing values. The indices in my data
are picked from representative stock markets worldwide covering various time zones,
including the American (Dow Jones), European (FTSE, DAX, CAC 40), Asian Paci�c
(Hang Seng, Straits Times, Taiwan, Nikkei), and Australian (All Ordinary) regions.
The data frame, trading hours and number of observations are summarized in Table
11.
To de�ne the days with negative shocks, I use the empirical 90%, 95% and 99%

value-at-risk (VaR) for the corresponding stock indices. An event is de�ned as a neg-
ative shock when the daily return exceeds the VaR return. In each test, I pair up
two point processes of events from two indices of di¤erent time zone, with a sampling
period equal to the shorter of the two sample lengths of the two indices. The event
timestamps are adjusted by the time di¤erence between the two time zones of the two
markets. De�ne the counting processes of shock events for indices a and b by Na and
N b, respectively. The hypotheses of interest are

H0 : there is no Granger causality from Na to N b; vs

H1 : there is Granger causality from Na to N b.

The results of the Qs test applied to the pairs HSI-DJI, NIK-DJI, FTSE-DJI and
AOI-DJI are shown in Tables 12-1535. There are a few observations. First, days
with extreme negative returns exceeding 99% VaR have a much stronger contagious
e¤ect than those days with less negative returns (exceeding 95% or 90% VaR). This
phenomenon is commonly found for all pairs of markets. Second, except for European
stock indices, the U.S. stock market, as represented by DJI, plays a dominant role in
infecting other major international stock markets. It is not hard to understand why
the daily returns of European stock indices (FTSE, DAX, CAC 40) Granger-cause
DJI�s daily returns given the overlap of the trading hours of European stock markets
and the U.S. stock market. Nonetheless, the causality from the American to European
markets remains signi�cant (for B � 3 with 95% VaR as the cuto¤). Third, the test

35The Qs test results for pairs involving DAX and CAC are qualitatively the same as that involving
FTSE (all of them are in the European time zones), while the test results for pairs involving STI and
TWI are qualitatively the same as that involving HSI (all of them are in the same Asian-Paci�c time
zone). I do not present these results here to reserve space, but they are available upon request.
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statistic values are pretty stable over di¤erent choices of B and Rk (k = a; b). I used
di¤erent functions of Rk = M(B), such as a constant Rk = 10 and Rk = 24B0:25, and
found that, qualitatively, the dominating indices / markets remain the same as before
(when Rk = 10:5B0:3). Fourth, the shorter is the testing window (bandwidth B of the
weighting function w(`)), the stronger is the contagious e¤ect. For instance, with 95%
value-at-risk as cuto¤, DJI has signi�cant Granger causality to HSI and NIK when
B � 3 (in days) and to AOI when B � 5. This implies that contagious e¤ect, once it
starts, is most signi�cant on the �rst few days, but usually dampens quickly within a
week.

9 Conclusion

With growing availability of multivariate high frequency and/or irregularly spaced
point process data in economics and �nance, it becomes more and more of a chal-
lenge to examine the predictive relationship among the component processes of the
system. One important example of such relationship is Granger causality. Most of the
existing tests for Granger causality in the traditional discrete time series setting are
inadequate for the irregularity of these data. Tests based on parametric continuous
time models can better preserve the salient features of the data, but they often impose
strong and questionable parametric assumptions (e.g. conditional independence as in
doubly stochastic models, constant feedback e¤ect as in Hawkes models) that are sel-
dom supported by economic theories and, more seriously, distort the test results. This
calls for a need to test for Granger causality (i) in a continuous time framework and
(ii) without strong parametric assumptions. In this paper, I study a nonparametric
approach to Granger causality testing on a continuous time bivariate point process
that satis�es mild assumptions. The test enjoys asymptotic normality under the null
hypothesis of no Granger causality, is consistent, and exhibits nontrivial power against
departure from the null. It performs reasonably well in simulation experiments and
shows its usefulness in three empirical applications: market microstructure hypothesis
testing, checking the existence of credit contagion between di¤erent industrial sectors,
and testing for �nancial contagion across international stock exchanges.
In the �rst application on the study of market microstructure hypotheses, the test

con�rms the existence of a signi�cant causal relationship from the dynamics of trades
to quote revisions in high frequency �nancial datasets. The next application on credit
contagion reveals that U.S. corporate bankruptcies in �nancial related sectors Granger-
cause those in manufacturing related sectors during crises and recessions. Lastly, the
test is applied to study the extent to which an extreme negative shock of a major
stock index transmits across international �nancial markets. The test con�rms the
presence of contagion, with U.S. and European stock indices being the major sources
of contagion.
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A Appendix

A.1 List of Assumptions

(A1) The pooled counting process N � Na +N b is simple, i.e. P (N(ftg) = 0 or 1 for
all t) = 1.

(A2) The bivariate counting processN =(Na; N b) is second-order stationary and that
the second-order reduced product densities 'ij (�) (i; j = a; b) exist.

(A3) TheF-conditional intensity �k(tjFt�) andFk-conditional intensity �kt � �k(tjFk
t�)

of the counting process Nk
t exist and are predictable.

(A4a) The kernel functionK(�) is symmetric around zero and satis�es �1 �
R1
�1K(u)du =

1, �2 �
R1
�1K

2(u)du <1, �4 �
RRR

(�1;1)K(u)K(v)K(u+w)K(v+w)dudvdw <

1 and
R1
�1 u

2K(u)du <1.

(A4b) The kernel function �K(�) is symmetric around zero and satis�es��1 �
R1
�1

�K(u)du =

1,��2 �
R1
�1

�K2(u)du <1,��4 �
RRR

(�1;1)
�K(u)�K(v)�K(u+w)�K(v+w)dudvdw <

1 and
R1
�1 u

2�K(u)du <1.

(A4c) The kernel function �K(�) is symmetric around zero and satis�es ��1 �
R1
�1

�K(u)du =

1, ��2 �
R1
�1

�K2(u)du <1, ��4 �
RRR

(�1;1)
�K(u) �K(v) �K(u+w) �K(v+w)dudvdw <

1 and
R1
�1 u

2 �K(u)du <1.

(A4d) The kernels K(x), �K(x) and �K(x) are all standard Gaussian kernels. That is:
K(x) = �K(x) = �K(x) = (2�)�1=2 exp (�x2=2).

(A5) The weighting function w(`) is integrable over (�1;1): i.e.
R1
�1w(`)d` <1.

(A6) E
�
fNk(B1)N

k(B2)N
k(B3)N

k(B4)g
�
<1 for k = a; b and for all bounded Borel

sets Bi on R, i = 1; 2; 3; 4.

(A7) The rescaled counting process ~Nk
u � Nk

Tu=T (with natural �ltration ~Fk) has an
~Fk-conditional intensity function ~�

k

u, which is twice continuously di¤erentiable
with respect to u, and is unobservable but deterministic.

(A8) The joint cumulant c22(`1; `2; `3) of fd�as ; d�as+`1 ; d�
b
s+`2

; d�bs+`3g is of order o(a
2
T ).
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A.2 Figures

Figure 1: The statistic Q aggregates the squared contributions of residual products
d�̂asd�̂

b
t for all s < t. The lines join all pairs of type a and type b events (shocks) at

their event times (�ai ; �
a
j ) for all �

a
i < �

a
j .

(a) T = 500; B = 10;M = 60 (b) T = 1000; B = 10;M = 75

(c) T = 1500; B = 10;M = 100 (d) T = 2000; B = 10;M = 120

Figure 2: Size experiment of Q test, bivariate Poisson process.
Runs=5000, DGP= bivariate Poisson process (two independent Poisson processes with rate 0.1). Nominal size: blue=0.1;

red=0.05; green=0.025; black=0.01.
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(a) size: H = 3; B = 2 (b) power: H = 3; B = 2

(c) size: H = 3; B = 20 (d) power: H = 3; B = 20

Figure 3: Size and power experiment of Q test, bivariate exponential Hawkes process.
Runs=10000, T=1800, DGP= bivariate exponential Hawkes model in (23). Nominal size: blue=0.1; red=0.05;

green=0.025; black=0.01.
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Figure 4: Size experiment 1 of Qs test.
Runs=5000, DGP=bivariate exponential Hawkes: �=

�
0:1
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�
, �=

�
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�
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1 0
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�
: Nominal size: blue=0.1;

red=0.05; green=0.025; black=0.01.
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(a) T = 300 (b) T = 600
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Figure 5: Size experiment 2 of Qs test.
Runs=5000, DGP= bivariate exponential Hawkes: �=
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: Nominal size: blue=0.1;

red=0.05; green=0.025; black=0.01.
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(a) T = 300 (b) T = 600
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Figure 6: Size experiment 3 of Qs test.
Runs=5000, DGP= bivariate exponential Hawkes: �=
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(a) T = 300 (b) T = 600
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Figure 7: Size experiment 4 of Qs test.
Runs=5000, DGP= bivariate exponential Hawkes: �=
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(a) T = 300 (b) T = 600
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Figure 8: Size experiment 5 of Qs test.
Runs=5000, DGP= bivariate exponential Hawkes: �=

�
0:1
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�
, �=

�
0:9 0
0 0:9

�
, �=

�
1 0
0 1

�
: Nominal size: blue=0.1;

red=0.05; green=0.025; black=0.01.
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(a) T = 300 (b) T = 600
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Figure 9: Power experiment of Qs test.
Runs=5000, DGP= bivariate exponential Hawkes: �=

�
0:1
0:1

�
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�
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�
: Nominal size: blue=0.1;

red=0.05; green=0.025; black=0.01.

Figure 10: Histogram of bankruptcies of U.S. �rms, 1980�2010.
Figure 11: Raw counts of bankruptcies in manufacturing and �nancial related sectors.
Nm
t (Blue): A: Agricultural; B: Mining; C: Construction; D: Manufacturing; E: Transportation, Communications,

Electric, Gas; Nf
t (Red): F: Wholesale; G: Retail; H: Finance, Insurance, Real Estate; I: Services

A.3 Tables

Table 1: The asymptotic mechanisms of the two schemes.
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Scheme Observation window Sample size Limit Duration
1 [0; T ] n = N(T ) T !1) n!1 � i � � i�1 �xed
2 [0; T0] n = N(T0) n!1, T0 �xed � i � � i�1 # 0

Table 2: Signi�cant day counts (out of 41 days) of PG, 9:45am �10:15am.
H B M Trade ! Quote Quote ! Trade
sig. levels: 0.1 0.05 0.01 0.1 0.05 0.01

0.6 2 20 3 1 1 4 2 1
0.6 4 17 4 3 2 4 2 1
0.6 10 15 7 5 3 1 1 0
0.6 20 10 4 2 1 1 1 1
1 2 38 8 7 3 6 6 3
1 4 35 9 6 3 4 3 3
1 10 30 15 15 15 4 3 2
1 20 27 16 15 11 3 2 2
3 2 40 8 6 5 7 6 3
3 4 35 13 11 6 8 7 2
3 10 33 19 16 11 7 5 4
3 20 30 15 12 11 4 2 2
Mean number of trades=88.8, quotes=325.1. The bandwidth combinations give right sizes in simulations (with an

estimated bivariate Hawkes model to PG data as DGP). Bandwidths (in days) of (i) cross-covariance function: H; (ii)

weighting function: B; (iii) conditional intensity: M . All kernels are Gaussian.

Table 3: Signi�cant day counts (out of 41 days) of PG, 11:45am �12:45pm.
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H B M Trade ! Quote Quote ! Trade
sig. levels: 0.1 0.05 0.01 0.1 0.05 0.01

0.6 2 20 11 8 6 8 6 4
0.6 4 17 16 15 11 9 7 4
0.6 10 15 17 16 15 8 6 5
0.6 20 10 9 6 6 7 5 3
1 2 38 6 5 4 8 8 6
1 4 35 20 18 13 10 8 7
1 10 30 17 16 13 11 10 8
1 20 27 17 16 14 13 11 9
3 2 40 14 9 4 17 12 6
3 4 35 24 20 18 19 14 11
3 10 33 26 25 22 24 20 18
3 20 30 25 23 18 26 25 16
Mean number of trades=103.8, quotes=403.73. The bandwidth combinations give right sizes in simulations (with an

estimated bivariate Hawkes model to PG data as DGP). Bandwidths (in days) of (i) cross-covariance function: H; (ii)

weighting function: B; (iii) conditional intensity: M . All kernels are Gaussian.

Table 4: Signi�cant day counts (out of 41 days) of PG, 3:30pm �4:00pm.
H B M Trade ! Quote Quote ! Trade
sig. levels: 0.1 0.05 0.01 0.1 0.05 0.01

0.6 2 20 1 0 0 2 1 1
0.6 4 17 7 5 3 1 1 0
0.6 10 15 8 7 7 0 0 0
0.6 20 10 6 5 3 1 1 0
1 2 38 4 3 2 4 3 1
1 4 35 5 5 4 2 2 1
1 10 30 18 18 16 6 5 2
1 20 27 13 13 13 2 2 0
3 2 40 5 5 3 6 4 3
3 4 35 10 9 7 6 6 4
3 10 33 14 13 12 7 7 5
3 20 30 10 10 9 8 6 2
Mean number of trades=93.7, quotes=361.56. The bandwidth combinations give right sizes in simulations (with an

estimated bivariate Hawkes model to PG data as DGP). Bandwidths (in days) of (i) cross-covariance function: H; (ii)

weighting function: B; (iii) conditional intensity: M . All kernels are Gaussian.
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Table 5: Signi�cant day counts (out of 41 days) of PG over various trading hours of a
day.
PG B Trade ! Quote Quote ! Trade
periods sig.: 0.1 0.05 0.01 0.1 0.05 0.01

09:45-10:15 10 13 8 0 1 0 0
20 24 13 4 3 1 0

�t = 88:8 30 23 14 4 2 1 0
�q = 325:1 40 21 16 4 1 1 0
11:45-12:45 10 32 28 16 2 0 0

20 35 34 21 3 0 0
�t = 103:8 30 34 34 16 5 0 0
�q = 403:7 40 33 30 14 6 0 0
15:30-16:00 10 26 12 3 0 0 0

20 30 21 3 1 0 0
�t = 93:7 30 26 16 6 3 1 0
�q = 361:6 40 20 11 4 3 0 0
�t=mean number of trades, �q=mean number of quotes. The bandwidths Rk of unconditional autocorrelation estimators

ĉkk
Rk
(�) (for k = trade and quote) are set equal to B, the bandwidth of the weighting function wB(�).

Table 6: Signi�cant day counts (out of 41 days) of GM over various trading hours of a
day.
GM B Trade ! Quote Quote ! Trade
periods sig.: 0.1 0.05 0.01 0.1 0.05 0.01

09:45-10:15 10 6 1 0 0 0 0
20 13 8 0 1 1 0

�t = 65:4 30 15 11 1 2 2 0
�q = 191:9 40 17 11 4 2 2 0
11:45-12:45 10 26 16 6 9 2 1

20 28 19 10 10 4 0
�t = 80:5 30 26 18 8 7 2 0
�q = 217:3 40 24 20 7 9 2 0
15:30-16:00 10 8 4 0 2 1 0

20 12 7 1 4 1 0
�t = 65:1 30 11 5 0 5 3 0
�q = 188:9 40 10 5 0 6 2 1
�t=mean number of trades, �q=mean number of quotes. The bandwidths Rk of unconditional autocorrelation estimators

ĉkk
Rk
(�) (for k = trade and quote) are set equal to B, the bandwidth of the weighting function wB(�).
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Table 7: Q tests on bankruptcy data, Sep96 �Jul03.
B =M = 365 B =M = 548 B =M = 730

H Jm!f Jf!m Jm!f Jf!m Jm!f Jf!m

2 2.32 3.56 0.09 12.66 -0.90 31.81
4 -3.85 5.87 -4.01 17.58 0.90 43.21
6 -3.14 -0.45 -2.21 10.87 5.97 49.86
8 -2.21 0.86 -0.82 15.22 9.21 49.06
10 -1.53 1.93 0.15 18.63 11.52 57.37
12 -1.06 2.62 0.86 21.12 13.32 63.88
14 -0.67 3.04 1.41 22.93 14.73 69.04
Sample sizes: (nm; nm) = (209; 149). m ! f (f ! m) denotes bankruptcy contagion from manufacturing related to

�nancial related �rms (and vice versa). One-sided critical values: z0:05 = 1:64 ; z0:01 = 2:33. Bandwidths (in days) of

(i) cross-covariance function: H; (ii) weighting function: B; (iii) conditional intensity: M . All kernels are Gaussian.

Table 8: Q test on bankruptcy data, Aug03 �Aug07.
B =M = 365 B =M = 548 B =M = 730

H Jm!f Jf!m Jm!f Jf!m Jm!f Jf!m

2 -5.12 0.55 -4.56 -1.21 -2.98 -1.77
4 -3.13 1.77 -2.24 -0.24 0.01 -0.71
6 -2.70 1.17 -1.38 -0.34 1.46 -0.21
8 -1.96 0.32 -0.21 -0.68 3.17 0.04
10 -1.14 -0.07 0.96 -0.78 4.77 0.35
12 -0.46 -0.09 1.88 -0.65 5.95 0.75
14 0.04 0.10 2.53 -0.41 6.72 1.17
Sample sizes: (nm; nm) = (65; 29). m ! f (f ! m) denotes bankruptcy contagion from manufacturing related to

�nancial related �rms (and vice versa). One-sided critical values: z0:05 = 1:64 ; z0:01 = 2:33. Bandwidths (in days) of

(i) cross-covariance function: H; (ii) weighting function: B; (iii) conditional intensity: M . All kernels are Gaussian.

Table 9: Q tests on bankruptcy data, Sep07 �Jun10.
B =M = 365 B =M = 548 B =M = 730

H Jm!f Jf!m Jm!f Jf!m Jm!f Jf!m

2 19.37 7.58 50.42 28.11 83.53 52.44
4 10.25 14.67 46.67 39.19 89.14 73.09
6 12.80 17.67 56.57 56.38 108.40 100.61
8 15.37 20.86 65.69 65.72 125.76 117.12
10 22.14 23.29 73.90 73.13 141.37 130.41
12 23.24 25.23 81.46 79.42 155.63 141.87
14 24.43 26.87 93.37 85.00 175.19 152.16
Sample sizes: (nm; nm) = (78; 71). m ! f (f ! m) denotes bankruptcy contagion from manufacturing related to

�nancial related �rms (and vice versa). One-sided critical values: z0:05 = 1:64 ; z0:01 = 2:33. Bandwidths (in days) of

(i) cross-covariance function: H; (ii) weighting function: B; (iii) conditional intensity: M . All kernels are Gaussian.
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Table 10: Qs test on bankruptcy data, September 1996 �June 2010.
B m! f p-value f ! m p-value
30 1.79 0.037 1.78 0.038
60 1.74 0.041 1.93 0.027
90 1.66 0.049 1.99 0.024
120 1.58 0.057 1.99 0.024
150 1.51 0.066 1.96 0.025
180 1.43 0.076 1.93 0.027
210 1.35 0.088 1.89 0.029
240 1.27 0.103 1.86 0.032
270 1.18 0.119 1.82 0.034
300 1.09 0.138 1.79 0.037
m! f (f ! m) denotes bankruptcy contagion from manufacturing related to �nancial related �rms (and vice versa).

One-sided critical values: z0:05 = 1:64 ; z0:01 = 2:33. Bandwidth (in days) of the weighting function: B. Bandwidths

Rk of autocovariance function estimators are set equal to 300. All kernels are Gaussian.

Table 11: Trading hours, Greenwich mean time and start dates of the sampling periods
of major stock indices.
Index Trading hours (local time) GMT Start date
DJI 09:30 - 16:00 -5 10/1/1928
FTSE 08:00 - 16:30 +0 4/2/1984
DAX 09:00 - 17:30 +1 11/26/1990
CAC 09:00 - 17:30 +1 3/1/1990
HSI 10:00 - 12:30, 14:30 - 16:0036 +8 12/31/1986
STI 09:00 - 12:30, 2:00 - 5:00 +8 12/28/1987
TWI 09:00 - 13:30 +8 7/2/1997
NIK 09:00 - 11:00, 12:30 - 15:00 +9 1/4/1984
AOI 10:00 - 16:00 +10 8/3/1984
Adjusted daily index values were collected from Yahoo! Finance. The end date of all the time series is 8/19/2011. Each

time, a Granger causality test is performed on the event sequences of a pair of indices, with the sampling period equal

to the shorter of the two sampling periods of the two indices.

Table 12: Qs test applied to extreme negative shocks of DJI and HSI.
90% VaR 95% VaR 99% VaR

B HSI!DJI DJI!HSI HSI!DJI DJI!HSI HSI!DJI DJI!HSI
1 0.92 1.69 1.28 3.00 7.35 9.61
2 0.75 1.17 1.04 2.16 5.98 7.92
3 0.67 0.95 0.98 1.81 5.23 6.99
5 0.60 0.76 0.96 1.49 4.63 6.44
10 0.53 0.60 0.96 1.19 4.06 5.85
(n1; n2) (608,620) (304,310) (61,62)
The bandwidths of the autocovariance functions are chosen to be Rk = 10:5B0:3.

36Trading hours starting from March 7, 2011: 09:30 - 12:00 and 13:30 - 16:00.
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Table 13: Qs test applied to extreme negative shocks of DJI and NIK.
90% VaR 95% VaR 99% VaR

B NIK!DJI DJI!NIK NIK!DJI DJI!NIK NIK!DJI DJI!NIK
1 0.56 1.64 1.23 2.87 5.70 10.62
2 0.46 1.13 1.00 2.05 5.21 7.84
3 0.43 0.93 0.90 1.72 5.12 7.01
5 0.41 0.74 0.82 1.42 4.93 6.52
10 0.38 0.57 0.74 1.11 4.49 6.18
(n1; n2) (604,614) (303,306) (63,59)
The bandwidths of the autocovariance functions are chosen to be Rk = 10:5B0:3.

Table 14: Qs test applied to extreme negative shocks of DJI and FTSE.
90% VaR 95% VaR 99% VaR

B FTS!DJI DJI!FTS FTS!DJI DJI!FTS FTS!DJI DJI!FTS
1 2.88 0.88 4.93 1.76 18.53 5.81
2 1.82 0.86 3.18 1.74 13.25 6.35
3 1.46 0.81 2.59 1.68 11.25 6.38
5 1.16 0.76 2.07 1.62 9.16 6.46
10 0.90 0.68 1.65 1.45 7.31 6.56
(n1; n2) (621,620) (311,310) (63,62)
The bandwidths of the autocovariance functions are chosen to be Rk = 10:5B0:3.

Table 15: Qs test applied to extreme negative shocks of DJI and AOI.
90% VaR 95% VaR 99% VaR

B AOI!DJI DJI!AOI AOI!DJI DJI!AOI AOI!DJI DJI!AOI
1 0.59 2.32 1.37 4.72 7.10 14.28
2 0.60 1.48 1.29 3.19 6.80 10.82
3 0.60 1.16 1.25 2.56 6.39 9.58
5 0.57 0.89 1.17 1.98 5.57 8.59
10 0.50 0.67 1.08 1.47 4.74 7.82
(n1; n2) (679,680) (340,341) (68,69)
The bandwidths of the autocovariance functions are chosen to be Rk = 10:5B0:3.
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A.4 Proof of Theorem 5

I �rst expand (12) into
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Note that the last three terms involve the convolution of the kernels K(�) and �K(�)
(twice for A4).
Under assumption (A4d), I can simplify the expressions further, as it is well known

that Gaussian kernels are invariant under convolution: for anyH1; H2 > 0, the Gaussian
kernel K(�) enjoys the property that
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Using this invariance property and a change of variables, I can simplify the integrations
and rewrite (24) as
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A.5 Proof of Theorem 6

Let us prove asymptotic normality �rst. For notational convenience, I drop the super-
script k of Nk

t , �
k
t and their rescaled version in this proof. Let �

�
t =

R T
0

1
M
�K
�
t�s
M

�
�sds,

then I can rewrite (18) into
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Suppose ~Fk denotes the natural �ltration of the rescaled counting process ~Nk.
Then, it follows from (16) that ~�u = �Tu.
With a change of variables t = Tv and s = Tu, the �rst term of (25) becomes
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The multiplicative model in Ramlau-Hansen (R-H, 1983) assumes that ~�u � ~�
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u �u for each n � ~N(1) = N(T ).37 Let J (n)u = 1fY (n)u > 0g and bn = M=T . Then,
following the last line above, I obtain
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Theorem 4.2.2 of R-H states that if (i) nJ (n)=Y (n) !P 1=& uniformly around v as
n!1; and (ii) � and & are continuous at v, then
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as n ! 1, bn ! 0 and nbn ! 1. By picking Y (n)u � T and noting the twice
continuous di¤erentiability of ~�u assumed by the theorem, assumptions (i) and (ii) are
automatically satis�ed. This implies that X1 !d N (0;��2) as T ! 1, M ! 1 and
M=T !1.
37The superscript (n) indicates the dependence of the relevant quantity on the sample size n.
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To complete the proof, it su¢ ces to show that the second term X2 of (25) is as-
ymptotically negligible relative to the �rst term, which was just shown to be OP (1).
Indeed, by symmetry of the kernel �K() and the twice continuous di¤erentiability of ~�u,
I obtain
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If M5=T 4 ! 0 (which corresponds to nb5n ! 0), then X2 =
p
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p
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OP (M
2:5=T 2) = oP (1), and thus is asymptotically negligible relative to X1.

For mean-squared consistency of �̂Tv, simply apply Proposition 3.2.2 of R-H.

A.6 Proof of Theorem 7

For notational simplicity, I only treat the case where I = [0; T ]. Under the null
hypothesis, the innovations from the two processes are uncorrelated, which implies
that E
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Before computing the variance, let us recall that the second-order reduced prod-
uct density of Nk (which exists by assumption (A2)) was de�ned by 'kk(u)dtdu =
E
�
dNk

t dN
k
t+u

�
for u 6= 0, and the unconditional autocovariance density function can

thus be expressed as ckk(u)dtdu = E
�
dNk

t � �kdt)(dNk
t+u � �kdu

�
=
h
'kk(u)�

�
�k
�2i
dtdu

for u 6= 0. Then, under the null hypothesis, I obtain

E((Qs)2) =
1

T 4
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wB (`1)wB (`2)E

�
dNa

s1
dNa

s2
dN b

s1+`1
dN b

s2+`2

�
=

1

T 4
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�
dNa

s1
dNa

s2

�
E
�
dN b
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dN b

s2+`2

�
:
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I can decompose the di¤erential as follows:

E
�
dNa

s1
dNa

s2
dN b

s1+`1
dN b

s2+`2

�
= E

�
dNa

s1
dNa

s2

�
E
�
dN b

s1+`1
dN b

s2+`2

�
=

�
E
�
dNa

s1
dNa

s2

�
� (�a)2 ds1ds2

� h
E
�
dN b

s1+`1
dN b

s2+`2

�
�
�
�b
�2
d`1d`2

i
+
�
�b
�2 �
E
�
dNa

s1
dNa

s2

�
� (�a)2 ds1ds2

�
d`1d`2

+(�a)2
h
E
�
dN b

s1+`1
dN b

s2+`2

�
�
�
�b
�2
d`1d`2

i
ds1ds2

+(�a)2
�
�b
�2
ds1ds2d`1d`2

= caa(s2 � s1)cbb(s2 � s1 + `2 � `1)ds1ds2d`1d`2
+
�
�b
�2
caa(s2 � s1)ds1ds2d`1d`2

+(�a)2 cbb(s2 � s1 + `2 � `1)ds1ds2d`1d`2
+(�a)2

�
�b
�2
ds1ds2d`1d`2:

Note that the integral term associated with the last di¤erential is [E(Qs)]2, so that

V ar(Qs) =
1

T 4
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I2
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J2
wB (`1)wB (`2) c

aa(s2 � s1)cbb(s2 � s1 + `2 � `1)ds1ds2d`1d`2

+
1

T 4

ZZ
I2

ZZ
J2
wB (`1)wB (`2)

�
�b
�2
caa(s2 � s1)ds1ds2d`1d`2

+
1

T 4

ZZ
I2

ZZ
J2
wB (`1)wB (`2) (�

a)2 cbb(s2 � s1 + `2 � `1)ds1ds2d`1d`2

= A1 + A2 + A3:

Suppose I = [0; T ]. I evaluate the three terms individually as follows.

(i) the �rst term becomes

A1 =
2

T 4

Z T

0

Z `2

0

Z
J2

Z
J1

wB (`1)wB (`2) c
aa (s2 � s1) cbb (s2 � s1 + `2 � `1) ds1ds2d`1d`2:

where Ji = [0; T � `i] for i = 1; 2. With a change of variables

(s1; s2; `1; `2) 7! (v = s2 � s1; s2; u = `2 � `1; `2) ;

I can rewrite A1 into

A1 = 2
T 4

Z T

0

Z T

u

Z T�`2

�T

Z T�`2

0

wB (`2 � u)wB (`2) caa (v) cbb (v + u) ds2dvd`2du

= 2
T 3

Z T

0

Z T

u

wB (`2 � u)wB (`2)
�
1� `2

T

� Z T�`2

�T
caa (v) cbb (v + u) dvd`2du:

To simplify further, I rely on the assumption that the bandwidth of w (`) � wB (`)
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is small relative to T , i.e. B = o(T ). Then, the integral
R T�`2
�T caa (v) cbb (v + u) dv can

be well approximated by �(u) :=
R T
�T c

aa (v) cbb (v + u) dv, and hence

A1 � 2
T 3

Z T

0

W2(u)� (u) du:

where we de�ned a new weighting function byW2(u) :=
R T
u
wB (`� u)wB (`)

�
1� `

T

�
d`.

Figure 12 gives a plot of W2(u) when w (�) is a standard normal density function and
T is large (T � 3).

(ii) With a change of variables (s1; s2) 7�! (v = s2 � s1; s2), the second term be-
comes

A2 =
(�b)

2

T 4
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I2

ZZ
J2
wB (`1)wB (`2) 


a(s2 � s1)ds1ds2d`1d`2

=
(�b)

2

T 4

Z T

0

Z T

0
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Z T�`2
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v

caa(v)ds2dvd`1d`2

=
(�b)

2

T 3

Z T

0

Z T

0

wB (`1)wB (`2)
�
1� `1

T

� Z T�`2

�(T�`1)
caa(v)dvd`1d`2:

To simplify further, I rely on the assumption that the bandwidth B of the weighting
function wB (�) is small relative to T , i.e. B = o(T ). Then, the following holds
approximately: Z T�`2

�(T�`1)
caa(v)dv �

Z T

�T
caa(v)dv:

As a result, we obtain

A2 �
2(�b)

2

T 3
!1

Z T

0

caa(v)dv

where I de�ned the constant !1 :=
R T
0
wB (`)

�
1� `

T

�
d` =

R T=B
0

w (u)
�
1� Bu

T

�
du.

(iii) With a change of variables (s1; s2) 7�! (x = s2 � s1 + `2 � `1; s2), the third
term becomes

A3 = (�a)2

T 4
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wB (`1)wB (`2) c

bb(s2 � s1 + `2 � `1)ds1ds2d`1d`2

= (�a)2

T 4

Z T

0

Z T

0
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Z T�`1

�(T�`2)

Z x+T�`1+`2�`1

x+`2�`1
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= (�a)2

T 3

Z T

0

Z T

0

wB (`1)wB (`2)
�
1� `1

T

� Z T�`1

�(T�`2)
cbb(x)dxd`1d`2:

To simplify further, I rely on the assumption that the bandwidth B of the weighting
function wB (�) is small relative to T , i.e. B = o(T ). Then, the following holds
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approximately: Z T�`1

�(T�`2)
cbb(v)dv �

Z T

�T
cbb(v)dv:

As a result, I obtain

A3 � 2(�a)2

T 3
!1

Z T

0

cbb(v)dv:

Combining the above three terms Ai for i = 1; 2; 3, I obtain an approximation to
the variance of Qs:

V ar(Qs) � 2
T 3

�Z T

0

W2(u)� (u) du+
�
�b
�2
!1

Z T

0

caa(v)dv + (�a)2 !1

Z T

0

cbb(v)dv

�
:

A.7 Proof of (21)

For notational convenience, I drop the superscript k from all relevant symbols through-
out this proof. Let R=T ! 0 as T ! 1. I start by decomposing ĉR(`) � ĉkk

Rk
(`) as

follows:

ĉR(`) = 1
TR

Z T

0

Z T

0

�K
�
t�s�`
R

� �
dNs � NT

T
ds
� �
dNt � NT

T
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s dt+
1
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T
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T
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�
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R

�
dsdt

= : C1 + C2 + C3 + C4:

Now, the second term is

C2 = � 1
TR

NT
T

Z T

0

Z T

0

�K
�
t�s�`
R

�
dsdN b

t

= �NT
T 2

NTP
j=1

Z T

0

1
R
�K
�
tj�s�`
R

�
ds = �NT

T 2

NTP
j=1

Z (tbj�`)=R

(tbj�T�`)=R
�K (x) dx

= �NT
T 2

NTP
j=1

�
1f`<tj<T+`g\[0;T ] + o(1)

�
= �NT

T 2

�
NT^(T+`) �N`_0

�
+ o(1);

where the third equality made use of assumption (A4c). By stationarity of Nk, I
observe that NT^(T+`) �N`_0 = T�j`j

T
NT . Therefore, up to the leading term,

C2 = �N2
T

T 2

�
1� j`j

T

�
:
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Similarly, by stationarity of N b, the third term is, up to the leading term,

C3 = �N2
T

T 2

�
1� j`j

T

�
= C2:

The last term is

C4 = 1
T
NT
T
NT
T

Z T

0

Z T

0

1
R
�K
�
t�s�`
R

�
dsdt

=
N2
T

T 2
1
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0

Z (t�`)=R
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�K (x) dxdt

=
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T
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1
T
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0

�
1f0<t�`<Tg\[0;T ] + o(1)

�
dt

=
N2
T

T 2

�
1� j`j

T

�
+ o(1);

which is �C2 (neglecting the o(1) terms). As a result, except for the o(1) terms, I
obtain

ĉR(`) =
1
TR

NTP
i=1

NTP
j=1

�K
�
tj�ti�`
R

�
� N2

T

T 2

�
1� j`j

T

�
;

which is (21).

A.8 Proof of Theorem 8

Let d�̂kt = dN
k
t � �̂

k

t dt for k = a; b. Then,

Q =

Z
I

wB(`)
̂
2
H(`)d`

=

Z
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wB(`)
1

(TH)2
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�
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a
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d�̂bt1d�̂

b
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Z
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H2K
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�
t2�s2�`

H

�
d`d�̂as1d�̂

a
s2
d�̂bt1d�̂

b
t2

A.8.1 Asymptotic Mean of Q

By Fubini�s theorem, the expectation ofQ becomes an multiple integration with respect
to E[d�̂as1d�̂

a
s2
d�̂bs1+ud�̂

b
s2+u

], which, under the null hypothesis (11), can be split into
E[d�̂as1d�̂

a
s2
]E
�
d�̂bs1+ud�̂

b
s2+u

�
. By the law of iterated expectations and the martingale

property of the innovations d�̂ku, it follows that E[d�̂
k
u1
d�̂ku2 ] = 0 unless u1 = u2 = u
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when it is equal to E[
�
d�̂ku
�2
]. Then, I can simplify the di¤erential

�
d�̂ku
�2
as follows:

�
d�̂ku
�2

=
�
dNk

u � �̂
k

udu
�2

=
�
dNk
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udu
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udu
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u � 2dNk

u�
k
udu+

�
�kudu

�2
+ oP (du)

= dNk
u + oP (du): (28)

The second-to-last equality holds because of assumption (A1), which implies that�
dNk

u

�2
= dNk

u almost surely; hence the second order di¤erential
�
d�̂ku
�2
has a domi-

nating �rst-order increment dNk
u . It is therefore true, up to OP (du), that E[

�
d�̂ku
�2
] =

E[dNk
u ] = �

kdu.
Now, letting b = B=T and h = H=T , the expected value of Q is evaluated as follows:
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h
(1� j�j)�2 + o

�
1
h

�
:

where �2 =
R1
�1K

2(x)dx (from assumption (A4a)). As a result, as T ! 1, Th =
H ! 1 and h = H=T ! 0, the asymptotic mean of Q under the null hypothesis is
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given by
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From (28), I also observe that
�
d�̂ku
�2
=
�
d�ku
�2
+oP (du), which entails that E(Q) =

E( ~Q).

A.8.2 Asymptotic Variance of Q Under the Null

The Case Without Autocorrelations Now, I derive the asymptotic variance of
Q as T ! 1, and H=T ! 0 as H ! 1. Let I � [c1; c2] � [�T; T ], where c1 < c2.
Consider

E
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= 1

(TH)4
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t11�s11�`1
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t21�s21�`1
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t12�s12�`2

H

�
K
�
t22�s22�`2

H

�
E
�
d�̂as11d�̂

a
s12
d�̂bt11d�̂

b
t12
d�̂as21d�̂

a
s22
d�̂bt21d�̂

b
t22

�
d`1d`2:

Assume that (i) there is no cross-correlation between the two innovation processes,
i.e. 
(u) = 0; and (ii) there is no auto-correlation for each component process, i.e.
caa(u) = cbb(u) = 0. I will relax the second assumption in the next subsection.
A key observation is that E (Q2) 6= 0 only in the following cases (in all cases

s1 6= s2 6= t1 6= t2 and s 6= t):

1. R1 = fs11 = s12 = s1, s21 = s22 = s2 , t11 = t12 = t1, t21 = t22 = t2g;

2. R2 = fs11 = s12 = s1, s21 = s22 = s2 , t11 = t21 = t1, t12 = t22 = t2g;

3. R3 = fs11 = s12 = s1, s21 = s22 = s2 , t11 = t22 = t1, t12 = t21 = t2g;

4. R4 = fs11 = s21 = s1, s12 = s22 = s2 , t11 = t12 = t1, t21 = t22 = t2g;

5. R5 = fs11 = s21 = s1, s12 = s22 = s2 , t11 = t21 = t1, t12 = t22 = t2g;

6. R6 = fs11 = s21 = s1, s12 = s22 = s2 , t11 = t22 = t1, t12 = t21 = t2g;

7. R7 = fs11 = s22 = s1, s12 = s21 = s2 , t11 = t12 = t1, t21 = t22 = t2g;

8. R8 = fs11 = s22 = s1, s12 = s21 = s2 , t11 = t21 = t1, t12 = t22 = t2g;

9. R9 = fs11 = s22 = s1, s12 = s21 = s2 , t11 = t22 = t1, t12 = t21 = t2g;

10. R10 = fs11 = s12 = s21 = s22 = s and t11 = t12 = t21 = t22 = tg:
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Under the null of no cross-correlation, for cases 1 to 9, we have, up toO(ds1ds2dt1dt2),
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while for case 10, I have, up to O(dsdt),
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Cases 1 and 9: the innermost eight inner integrals reduce to four integrals, so that
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I applied the change of variables: (s1; s2; t1; t2) 7�! (u = t1�s1

T
; v = t2�s2

T
; v1 =

t1
T
; v2 =
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T
) in the second equality, and (u; v; `2) 7�!
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h
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h
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�
in the

third equality. To get the fourth equality, I did a �rst-order Taylor expansion of
wb(�1 � zh) around �1, with ��1 2 [�1 � zh; �1].
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Cases 2, 4, 6 and 8:
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=
(�a�b)

2

T 4h
�4

ZZZ
(0;1]3

wb(v1 � u1)wb(v2 � u1)1fv1�u12I=Tg1fv2�u12I=Tgdu1dv1dv2 + o
�

1
T 4h

�
=

(�a�b)
2

T 4h
�4

Z 1

0

Z 1�s

�s

Z 1�s

�s
wb(u)wb(v)1fu2I=Tg1fv2I=Tgdudvds+ o

�
1
T 4h

�
= O

�
1

T 3H

�
:

I applied the change of variables: (`1; `2; s2) 7�!
�
x = v1�u1��1

H=T
; y = v2�u1��2

H=T
; z = u1�u2

H=T

�
in the second equality, and (u1; v1; v2) 7�! (s; u = v1 � u1; v = v2 � u1) in the fourth
equality, and the fact that

R 1
0

R 1�s
�s

R 1�s
�s wb(u)wb(v)dudvds = O(1) in the last equality.

Cases 3 and 7:

E
�
Q2
�

=
(�a�b)

2

(TH)4

ZZ
I2
wB(`1)wB(`2)

Z
� � �

Z
(0;T ]4

K
�
t1�s1�`1

H

�
K
�
t2�s1�`1

H

�
K
�
t1�s2�`2

H

�
K
�
t2�s2�`2

H

�
ds1ds2dt1dt2d`1d`2

=
(�a�b)

2

T 4h

ZZZ
(0;1]3

Z v1�u2�c1=T
h

v1�u2�c2=T
h

Z v2��1
h

v2�1��1
h

Z v1�u1�c1=T
h

v1�u1�c2=T
h

wb(v1 � u1 � xh)wb(v1 � u2 � yh)

K (x)K (x+ z)K (y)K (y + z) dxdydzdu1du2dv1

=
(�a�b)

2

T 4h
�4

ZZZ
(0;1]3

wb(v1 � u1)wb(v1 � u2)1fv1�u12I=Tg1fv1�u22I=Tgdu1du2dv1 + o
�

1
T 4h

�
=

(�a�b)
2

T 4h
�4

Z 1

0

Z t

t�1

Z t

t�1
wb(u)wb(v)1fu2I=Tg1fv2I=Tgdudvdt+ o

�
1
T 4h

�
= O

�
1

T 3H

�
:

I applied the change of variables: (`1; `2; s2) 7�!
�
x = v1�u1��1

H=T
; y = v1�u2��2

H=T
; z = v2�v1

H=T

�
in the second equality, and (v1; u1; u2) 7�! (t; u = v1 � u1; v = v1 � u2) in the fourth
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equality, and the fact that
R 1
0

R t
t�1
R t
t�1wb(u)wb(v)dudvdt = O(1) in the last equality.

Case 5:

E
�
Q2
�

=
(�a�b)

2

(TH)4

ZZ
I2
wB(`1)wB(`2)

Z
� � �

Z
(0;T ]4

K2
�
t1�s1�`1

H

�
K2
�
t2�s2�`2

H

�
ds1ds2dt1dt2d`1d`2

=
(�a�b)

2

T 4h2

ZZZ
(0;1]3

Z v2�u1�c1=T
h

v2�u1�c2=T
h

Z v1�u1�c1=T
h

v1�u1�c2=T
h

wb(v1 � u1 � xh)w(v2 � u2 � yh)

K2 (x)K2 (y) dxdydu1du2dv1dv2

=
(�a�b)

2

T 4h2
�22

ZZZ
(0;1]3

wb(v1 � u1)wb(v2 � u2)1fv1�u12I=Tg1fv2�u22I=Tgdu1du2dv1dv2 + o
�

1
T 2h2

�
=

(�a�b)
2

T 4h2
�22

Z 1

0

Z 1

0

Z 1�u2

�u2

Z 1�u1

�u1
wb(u)wb(v)1fu2I=Tg1fv2I=Tgdudvdu1du2 + o

�
1

T 2h2

�
=

(�a�b)
2

T 4h2
�22

�Z 1

0

Z 1�s

�s
wb(u)1fu2I=Tgduds

�2
+ o

�
1

T 4h2

�
= [E (Q)]2 + o

�
1

T 2H2

�
:

I applied the change of variables: (`1; `2) 7�!
�
x = v1�u1��1

H=T
; y = v2�u2��2

H=T

�
in the

second equality, and (u1; u2; v1; v2) 7�! (u1; u2; u = v1 � u1; v = v2 � u2) in the fourth
equality. The last equality follows from Fubini�s theorem, which givesZ 1

0

Z 1�s

�s
wb(u)1fu2I=Tgduds =

�Z 0

�1

Z 1

�u
+

Z 1

0

Z 1�u

0

��
wb(u)1fu2I=Tg

�
dsdu

=

Z c2=T

c1=T

(1� juj)wb(u)du:

=

Z c2

c1

�
1� j`j

T

�
wB(`)d` = E(Q)
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Case 10:

E
�
Q2
�

= �a�b

(TH)4

ZZ
I2
wB(`1)wB(`2)

Z Z
(0;T ]2

K2
�
t�s�`1
H

�
K2
�
t�s�`2
H

�
dsdtd`1d`2

= �a�b

T 4h2

Z Z
(0;1]2

Z v�u�c1=T
h

v�u�c2=T
h

Z v�u�c1=T
h

v�u�c2=T
h

wb(v � u� xh)wb(v � u� yh)K2 (x)K2 (y) dxdydudv

= �a�b

T 4h2
�22

Z 1

0

Z 1�u

�u
w2b (r)1fr2I=Tgdrdu+ o

�
1

T 5h2

�
= �a�b

T 4h2
�22

Z
I=T

(1� jrj)w2b (r)dr + o
�

1
T 5h2

�
= �a�b

T 5h2
�22

Z
I

�
1� j`j

T

�
w2B(`)d`+ o

�
1

T 5h2

�
= O

�
1

T 3H2

�
:

I applied the change of variables: (`1; `2) 7�!
�
x = v�u��1

H=T
; y = v�u��2

H=T

�
in the second

equality, and (u; v) 7�! (u; r = v�u) in the third equality. The second-to-last equality
follows from Fubini�s theorem.
We observe that the leading terms of the asymptotic variance come from cases 1

and 9 only, thus we conclude that, as T !1 and H=T ! 0 as H !1,

V ar(Q) = E(Q2)� [E(Q)]2

= 2
(�a�b)

2

T 2H
�4

Z
I

w2B(`2)
�
1� j`2j

T

�2
d`2 + o

�
1

T 2H

�
: (30)

The Case With Autocorrelations Suppose the two point processes Na and N b

exhibit autocorrelations, i.e. caa(u) and cbb(u) are not identically zero. Then, it is
necessary to modify the asymptotic variance of Q. I start by noting that, up to
O(ds1ds2dt1dt2),

E
h�
d�̂as1

�2 �
d�̂as2

�2i
E
h�
d�̂bt1
�2 �
d�̂bt2
�2i

= E
�
dNa

s1
dNa

s2

�
E
�
dN b

t1
dN b

t2

�
=

�
(�a)2 ds1ds2 + E

��
dNa

s1
� �ads1

� �
dNa

s2
� �ads2

��	n�
�b
�2
dt1dt2 + E

��
dN b

t1
� �bdt1

� �
dN b

t2
� �bdt2

��o
=

�
(�a)2 + caa(s2 � s1)

� h�
�b
�2
+ cbb(t2 � t1)

i
ds1ds2dt1dt2:

As before, I split the computation into 10 separate cases. Since the computation
techniques are analogous to the case without autocorrelations, let�s focus on cases 1
and 9 which yield the dominating terms for V ar(Q). Under cases 1 and 9:
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E
�
Q2
�

= 1
(TH)4

ZZ
I2
wB(`1)wB(`2)

ZZZ Z
(0;T ]4

K
�
t1�s1�`1

H

�
K
�
t2�s2�`1

H

�
K
�
t1�s1�`2

H

�
K
�
t2�s2�`2

H

�
�
(�a)2 + caa(s2 � s1)

� h�
�b
�2
+ cbb(t2 � t1)

i
ds1ds2dt1dt2d`1d`2

= T 4

(TH)4

ZZ
(I=T )2

T 2

B2
w( �1

B=T
)w( �2

B=T
)

ZZ
(0;1]2

Z v2

v2�1

Z v1

v1�1
K
�
u��1
H=T

�
K
�
v��1
H=T

�
K
�
u��2
H=T

�
K
�
v��2
H=T

�
�
(�a)2 + caa(T (u� v + v2 � v1))

� h�
�b
�2
+ cbb(T (v2 � v1))

i
dudvdv1dv2d�1d�2

= 1
T 4h

Z c2=T

c1=T

wb(�1)wb(�1 � zh)
ZZ
(0;1]2

Z �1�c1=T
h

�1�c2=T
h

Z v2��1
h

v2�1��1
h

Z v1��1
h

v1�1��1
h

K (x)K (y)K (x+ z)K (y + z)

�
(�a)2 + caa(Th (x� y) + T (v2 � v1))

� h�
�b
�2
+ cbb(T (v2 � v1))

i
dxdydzdv1dv2d�1

= 1
T 4h

Z c2=T

c1=T

w2b (�1)

ZZZ
R3
K (x)K (y)K (x+ z)K (y + z) dxdydz

ZZ
(0;1]2

1f(v1;v2):0_�1<vi<(1+�1)^1g

�
(�a)2 + caa(T (v2 � v1))

� h�
�b
�2
+ cbb(T (v2 � v1))

i
dv1dv2d�1 + o

�
1
T 3h

�
= 1

T 2H
�4

Z
I

w2B(`1)

Z T�j`1j

�(T�j`1j)

�
1� jrj

T
� j`1j

T

� �
(�a)2 + caa (r)

� h�
�b
�2
+ caa (r)

i
drd`1 + o

�
1

T 2H

�
:

I applied the change of variables: (s1; s2; t1; t2) 7�! (u = t1�s1
T
; v = t2�s2

T
; v1 =

t1
T
; v2 =

t2
T
), b = B=T and h = H=T in the second equality, and (u; v; `2) 7�!�

x = u��1
h
; y = v��1

h
; z = �1��2

h

�
in the third equality. To get the fourth equality, I

did a �rst-order Taylor expansion of wb(�1 � zh) around �1, with ��1 2 [�1 � zh; �1].
To get the last equality, I let g(x) =

�
(�a)2 + caa(Tx)

� h�
�b
�2
+ cbb(Tx)

i
, and let

r = v2 � v1. Suppose �1 > 0. Then, by Fubini�s theorem, the innermost double
integration (with respect to v1 and v2) becomes

Z 1

�1

Z 1�v1

�v1
g(r)drdv1

=

�Z ��1

�(1��1)

Z 1

�r
+

Z 0

��1

Z 1

�1

+

Z 1��1

0

Z 1�r

�1

�
g(r)dv1dr

=

Z ��1

�1
(1 + r) g(r)dr �

Z �(1��1)

�1
(1 + r) g(r)dr +

Z 0

��1
(1� �1) g(r)dr

+

Z 1��1

0

(1� r � �1) g(r)dr:
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The �rst integral can be simpli�ed toZ ��1

�1
(1 + r) g(r)dr =

Z 0

�(1��1)
(1 + r � �1) g(r � �1)dr

=

Z 0

�(1��1)
(1 + r � �1) [g(r)� _�1g

0(r)] dr

for some _�1 2 [0; �1]. The second and third integrals are negligible for small �1 (as
they are both O(�1) by Taylor�s expansion). Combining the �rst and fourth integrals,
I obtain Z 1

�1

Z 1�v1

�v1
g(r)drdv1 =

Z 1�j�1j

�(1�j�1j)
(1� j�1j � jrj) g(r)dr +O(�1)

and hence (by switching back to `1 = T�1)Z T�j`1j

�(T�j`1j)

�
1� jrj

T
� j`1j
T

�
g
� r
T

�
dr +O

�
1

T

�
:

The conclusion of the theorem follows as a result.
Similar to the mean calculation, the result in (28) implies that

�
d�̂ku
�2
=
�
d�ku
�2
+

oP (du), so it follows that V ar(Q) = V ar( ~Q).

A.8.3 Asymptotic normality of ~Q

The main tool for deriving asymptotic normality of ~Q is Brown�s martingale central
limit theorem (see, for instance, Hall and Heyde, 1980). The proof thus boils down to
three parts: (i) expressing ~Q�E( ~Q) as a sum of mean zero martingales, i.e. ~Q�E( ~Q) =Pn

i=1 Yi where E(YijF� i�1) = 0, n = NT , and � 1; : : : ; �n are the event times of the pooled
process Nt = Na

t +N
b
t ; (ii) showing asymptotic negligibility, i.e. s

�4Pn
i=1E(Y

4
i ) ! 0

where s2 = V ar( ~Q); and (iii) showing asymptotic determinism, i.e. s�4E(V 2n � s2)2 !
0, where V 2n =

Pn
i=1E(Y

2
i jF� i�1).

Martingale Decomposition Recall that the statistic ~Q is de�ned as

~Q =

Z
I

w(`)
2H(`)d`

=

Z
I

w(`) 1
(TH)2

ZZZZ
(0;T ]4

K
�
t1�s1�`

H

�
K
�
t2�s2�`

H

�
d�as1d�

a
s2
d�bt1d�

b
t2
d`

= 1
T 2

ZZZZ
(0;T ]4

Z
I

w(`) 1
H2K

�
t1�s1�`

H

�
K
�
t2�s2�`

H

�
d`d�as1d�

a
s2
d�bt1d�

b
t2

I start by decomposing ~Q into four terms, corresponding to four di¤erent regions of
integrations: (i) s1 = s2 = s, t1 = t2 = t; (ii) s1 6= s2, t1 6= t2; (iii) s1 6= s2, t1 = t2 = t;
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and (iv) s1 = s2 = s, t1 6= t2. In all cases, integrations over regions where si = tj for
i; j = 1; 2 are of measure zero because of assumption (A1): the pooled point process is
simple, which implies that type a and b events cannot occur at the same time almost
surely. Therefore,

~Q = Q1 +Q2 +Q3 +Q4 a.s.,

where

Q1 = 1
(TH)2

ZZ
(0;T ]2

Z
I

1fs 6=tgw(`)K
2
�
t�s�`
H

�
d` (d�as)

2 �d�bt�2 ;
Q2 = 1

(TH)2

ZZZZ
(0;T ]4

Z
I

1fs1 6=s2 6=t1 6=t2gw(`)K
�
t1�s1�`

H

�
K
�
t2�s2�`

H

�
d`d�as1d�

a
s2
d�bt1d�

b
t2
;

Q3 = 1
(TH)2

ZZZ
(0;T ]3

Z
I

1fs1 6=s2 6=tgw(`)K
�
t�s1�`
H

�
K
�
t�s2�`
H

�
d`d�as1d�

a
s2

�
d�bt
�2
;

Q4 = 1
(TH)2

ZZZ
(0;T ]3

Z
I

1fs 6=t1 6=t2gw(`)K
�
t1�s�`
H

�
K
�
t2�s�`
H

�
d` (d�as)

2 d�bt1d�
b
t2
:

I will show that (i) Q1 contributes to the mean of ~Q; (ii) Q2 contributes to the variance
of ~Q; and (iii) Q3 and Q4 are of smaller order than Q2 and hence asymptotically
negligible.

(i) As we saw in (29), Q1 is of order OP
�
1
TH

�
which is the largest among the four

terms. I decompose Q1 to retrieve the mean:

Q1 = 1
(TH)2

ZZ
(0;T ]2

Z
I

w(`)K2
�
t�s�`
H

�
d` (d�as)

2 �d�bt�2
= 1

(TH)2

ZZ
(0;T ]2

Z
I

w(`)K2
�
t�s�`
H

�
d` (d�as)

2
h�
d�bt
�2 � �btdti

+ 1
(TH)2

ZZ
(0;T ]2

Z
I

w(`)K2
�
t�s�`
H

�
d`
�
(d�as)

2 � �asds
�
�btdt

+ 1
(TH)2

ZZ
(0;T ]2

Z
I

w(`)K2
�
t�s�`
H

�
d`�as�

b
tdsdt (31)

� Q11 +Q12 + E( ~Q):

The last line is obtained by (29).

Lemma 13 Q11 = OP
�

1
T 3=2H1=2

�
and Q12 = OP

�
1

T 3=2H1=2

�
as T ! 1 and H=T ! 0

as H !1.

Proof. Note that Q211 contains 5 integrals. By applying a change of variables (on two
variables inside the kernels), I deduce that E(Q211) = O

�
1

T 3H

�
and hence the result.

The proof for Q12 is similar.
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(ii) I decompose Q2 into Q2 = Q21 +Q22 +Q23 +Q24, where

Q21 = 1
(TH)2

Z T

0+

Z t�2

0+

Z t�2

0+

Z t�2

0+

Z
I

1fs1 6=s2 6=t1gw(`)K
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t1�s1�`

H

�
K
�
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H

�
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a
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d�bt1d�

b
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Q22 = 1
(TH)2

Z T
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Z
I

1fs1 6=s2 6=t2gw(`)K
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H

�
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a
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t1

Q23 = 1
(TH)2
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0+

Z s�2

0+
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Z
I

1ft1 6=t2 6=s1gw(`)K
�
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�
K
�
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H

�
d`d�bt1d�

b
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a
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Q24 = 1
(TH)2

Z T

0+

Z s�1
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Z s�1
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Z
I

1ft1 6=t2 6=s2gw(`)K
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K
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H

�
d`d�bt1d�
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a
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Lemma 14 Q2 = OP
�
1
TH

�
+OP

�
1

TH1=2

�
as T !1 and H=T ! 0 as H !1.

Proof. Indeed, the asymptotic variance of ~Q in (30) comes from Q2.

(iii) It turns out that Q3 and Q4 are asymptotically negligible compared to Q2.

Lemma 15 Q3 = OP
�

1
T 3=2H1=2

�
and Q4 = OP

�
1

T 3=2H1=2

�
as T !1 and H=T ! 0 as

H !1.

Proof. Note that Q23 contains 5 integrals. By applying a change of variables (on three
variables inside the kernels) and combining w(`1) and w(`2) into w2(`) in the process,
we deduce that E(Q23) = O

�
1

T 3H

�
and hence the result. The proof for Q4 is similar.

As a result,

~Q� E( ~Q) = Q2 +OP
�

1

T 3=2H1=2

�
:

Now, I want to show that Q2, the leading term of the demeaned statistic, can be
expressed into the sum of a martingale di¤erence sequence (m.d.s.).

Lemma 16 Let n = N(T ) be the total event counts of the pooled process N = Na+N b.
Then, as T !1 and H=T ! 0 as H !1.

~Q� E( ~Q) =
nX
i=1

Yi +OP

�
1

T 3=2H1=2

�

where Yi =
P4

j=1 Yji and E(YjijFab
� i�1) = 0 for all i = 1; : : : ; n and for j = 1; 2; 3; 4 (i.e.

fYjigni=1 are m.d.s. for j = 1; 2; 3; 4).
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Proof. The result follows by de�ning
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d`d�as2d�

b
t2
d�bt1d�

a
s1
:

and noting that E(YjijFab
� i�1) = 0 for all i = 1; : : : ; n.

Asymptotic Negligibility Next, I want to show that the summation
Pn

i=1 Y
4
i is

asymptotically negligible compared to
h
V ar( ~Q)

i2
.

Lemma 17 s�4
Pn

i=1E(Y
4
i ) ! 0 as T ! 1 and H=T ! 0 as H ! 1, where

s2 = V ar( ~Q).

Proof. Consider

Y 41i = 1
T 8H8

ZZZ Z
(� i�1;� i]4

Z
� � �

Z
(0;t2)12

ZZZZ
I4

w (`1) : : : w (`4)K
�
t111�s111�`1

H

�
: : :

K
�
t222�s222�`4

H

�
d`1 : : : d`4d�

a
s111
: : : d�as222d�

b
t111
: : : d�bt222 :

A key observation is that t211 = t212 = t221 = t222 � t2 because there is at most
one event of type b in the interval (� i�1; � i] (one event if � i is a type b event time, zero
events if � i is a type a event time). This reduces the four outermost integrations to
just one over t2 2 (� i�1; � i]. Let us focus on extracting the dominating terms. Then,
to maximize the order of magnitude of E (Y 41i), the next 12 integrations can be reduced
to six integrations after grouping d�aijl and d�

b
1jl into six pairs (if they were not paired,

then the corresponding contribution to E (Y 41i) would be zero by iterated expectations).
Together with the four innermost integrations, there are 11 integrations for Y 411i, with
the outermost integration running over (� i�1; � i]. Therefore, there are 11 integrations
in
Pn

i=1E (Y
4
1i) and its outermost integration with respect to t2 runs over (0; T ]. As six

new variables are su¢ cient to represent all 12 arguments in the 12 kernels, a change
of variables yields a factor of TH6�24.

38 As a result,
Pn

i=1E (Y
4
1i) = O

�
1

T 7H2

�
, and

since s2 = O
�

1
T 2H

�
from (30), we have s�4

Pn
i=1E(Y

4
1i) = O

�
1
T 3

�
. The same argument

applies to Yji for j = 2; 3; 4. By Minkowski�s inequality s�4
Pn

i=1E(Y
4
i ) = O

�
1
T 3

�
.

3811 integrations - 6 d.f. - 4 w() = 1 free integration with respect to t.
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Asymptotic Determinism Lastly, I want to show that the variance of V 2n =Pn
i=1E(Y

2
i jF� i�1) is of a smaller order than s4.

Lemma 18 s�4E(V 2n � s2)2 ! 0 as T !1 and H=T ! 0 as H !1.

Proof. To prove that s�4E(V 2n � s2)2 ! 0, it su¢ ces to show that

E(V 2n � s2)2 = o
�

1
T 4H2

�
: (32)

(i) Recall from lemma 16 that the ith term of the martingale di¤erence sequence in
the demeaned statistic ~Q�E( ~Q) represents the innovation in the time interval (� i�1; � i]
and is given by Yi = Y1i + Y2i + Y3i + Y4i, for i = 1; 2; : : : ; n = N(T ).
Now, note that

Y 2i = Y
2
1i + Y

2
2i + Y

2
3i + Y

2
4i + 2Y1iY2i + 2Y3iY4i (33)

almost surely. The terms Y1iY3i, Y1iY4i, Y2iY3i and Y2iY4i are almost surely zero because
of assumption (A1): the pooled process N = Na + N b is simple, which implies that
type a and b events will not occur at the same time � i almost surely.
(ii) De�ne

S1 = S2 � 1
T 4H4

Z T

0+

ZZ Z
(0;t2)3

ZZ
I2

w (`1)w (`2)K
�
t1�s11�`1

H

�
K
�
t1�s12�`2

H

�
K
�
t2�s21�`1

H

�
K
�
t2�s22�`2

H

�
1R1[R4[R7d`1d`2�

a
s1
�as2�

b
t1
�bt2ds1ds2dt1dt2;

S3 = S4 � 1
T 4H4

Z T

0+

ZZ Z
(0;s2)3

ZZ
I2

w (`1)w (`2)K
�
t11�s1�`1

H

�
K
�
t12�s1�`2

H

�
K
�
t21�s2�`1

H

�
K
�
t22�s2�`2

H

�
1R1[R2[R3d`1d`2�

a
s1
�as2�

b
t1
�bt2ds1dt1dt2ds2;

S12 � 1
T 4H4

Z T

0+

ZZ Z
(0;t2)3

ZZ
I2

w (`1)w (`2)K
�
t1�s11�`1

H

�
K
�
t1�s22�`2

H

�
K
�
t2�s21�`1

H

�
K
�
t2�s12�`2

H

�
1R3[R6[R9d`1d`2�

a
s1
�as2�

b
t1
�bt2ds1ds2dt1dt2;

and

S34 � 1
T 4H4

Z T

0+

ZZ Z
(0;s2)3

ZZ
I2

w (`1)w (`2)K
�
t11�s1�`1

H

�
K
�
t22�s1�`2

H

�
K
�
t21�s2�`1

H

�
K
�
t12�s2�`2

H

�
1R7[R8[R9d`1d`2�

a
s1
�as2�

b
t1
�bt2dt1dt2ds1ds2;
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where Ri were de�ned in section A.8.2. It is easy to verify from the de�nitions that

s2 = S1 + S2 + S3 + S4 + 2S12 + 2S34 + op
�

1
T 2H

�
: (34)

(iii) De�ne for k = 1; 2; 3; 4

V 2nk �
nX
i=1

E(Y 2kijF� i�1);

and for (k; j) = (1; 2) and (3; 4)

Vnkj �
nX
i=1

E(YkiYjijF� i�1):

It follows from (33) that

V 2n = V
2
1n + V

2
2n + V

2
3n + V

2
4n + 2V12n + 2V34n: (35)

(iv) I claim (see the proof below) that, for k = 1; 2; 3; 4,

V 2nk � Sk = op
�

1
T 2H

�
(36)

and, for (k; j) = (1; 2) and (3; 4),

V 2nkj � Skj = op
�

1
T 2H

�
: (37)

(v) It follows from (33)-(37) that (32) holds.
It remains to show the claims in (iv). Since the asymptotic orders of the six dif-

ferences in (36) and (37) can be derived by similar techniques, let us focus on proving
the �rst one.
To this end, I �rst compute E(Y 21ijF� i�1). Now,

Y 21i = 1
T 4H4

Z Z
(� i�1;� i]2

Z
� � �

Z
(0;t2)6

ZZ
I2

w (`1)w (`2)K
�
t11�s11�`1

H

�
K
�
t12�s12�`2

H

�
K
�
t2�s21�`1

H

�
K
�
t2�s22�`2

H

�
d`1d`2d�

a
s11
d�as12d�

a
s21
d�as22d�

b
t11
d�bt12d�

b
t21
d�bt22 :

Observe that there is at most one event of type b in the interval (� i�1; � i] (one event
if � i is a type b event time, zero events if � i is a type a event time). This entails that
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t21 = t22 � t2 and thus saves one integration. I can then rewrite

Y 21i = 1
T 4H4

Z
(� i�1;� i]

Z
� � �

Z
(0;t2)6

ZZ
I2

w (`1)w (`2)K
�
t11�s11�`1

H

�
K
�
t12�s12�`2

H

�
K
�
t2�s21�`1

H

�
K
�
t2�s22�`2

H

�
d`1d`2d�

a
s11
d�as12d�

a
s21
d�as22d�

b
t11
d�bt12

�
d�bt2
�2

�
Z

(� i�1;� i]

H11(t
�
2 )
�
d�bt2
�2
;

where I de�ne H11(u) by

H11(u
�) �

Z
� � �

Z
(0;u)6

ZZ
I2

w (`1)w (`2)K
�
t11�s11�`1

H

�
K
�
t12�s12�`2

H

�
K
�
u�s21�`1

H

�
K
�
u�s22�`2

H

�
d`1d`2d�

a
s11
d�as12d�

a
s21
d�as22d�

b
t11
d�bt12 :

Note that H11(u�) is F-predictable. Now, by iterated expectations, lemma 1, and the
fact that fu 2 (� i�1; � i]g 2 Fu�, I have

E(Y 21ijF� i�1) = E

(Z � i

�+i�1

H11(u
�)
�
d�̂bu
�2�����F� i�1

)

= E

(Z � i

�+i�1

H11(u
�)�budu

�����F� i�1
)

= E

(Z � i

�+i�1

H11(u
�)

�bu
�au + �

b
u

dNu

�����F� i�1
)

= H11(� i�1)E

(
�b� i

�a� i + �
b
� i

�����F� i�1
)
:

Note that I used the property H11(��i ) = H11(� i�1) in the last line. Summing over i
gives

V 2n1 �
nX
i=1

E(Y 21ijF� i�1)

=
nX
i=1

H11(� i�1)E

(
�b� i

�a� i + �
b
� i

�����F� i�1
)

=

Z T

0

H11(u
�)E

�
�bu

�au + �
b
u

����Fu�� dNu
=

Z T

0

H11(u
�)

�bu
�au + �

b
u

dNu:
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The third equality made use of the property that for u 2 (� i�1; � i], Nu� = N� i�1
and hence Fu� = �f(� i; yi) : 0 � i � tNu�g = F� i�1, and the last line follows from
Ft-predictability of conditional intensities �at and �bt .
Let �bu =

�bu
�au+�

b
u
. Apart from the terms with t11 6= t12 and/or sij 6= skl for

(i; j) 6= (k; l) which can be shown to be Op
�

1
T 6H2

�
= op

�
1

T 4H2

�
. the integral V 2n1 =R T

0
H11(t

�
2 )�

b
t2
dNt2 can be decomposed by the same demeaning technique as we used

for decomposing Q1 in (31). The decomposition is represented by di¤erentials for
simplicity:

d`1d`2
�
d�as1

�2 �
d�as2

�2 �
d�bt1
�2
�bt2dNt2

= d`1d`2
�
d�as1

�2 �
d�as2

�2 �
d�bt1
�2
�bt2
�
dNt2 �

�
�at2 + �

b
t2

�
dt2
�

+d`1d`2
�
d�as1

�2 �
d�as2

�2 h�
d�bt1
�2 � �bt1dt1i�bt2dt2

+d`1d`2
�
d�as1

�2 h�
d�as2

�2 � �as2ds2i�bt1�bt2dt1dt2
+d`1d`2

h�
d�as1

�2 � �as1ds1i�as2�bt1�bt2ds2dt1dt2
+d`1d`2�

a
s1
�as2�

b
t1
�bt2ds1ds2dt1dt2:

The �rst four integrals above are dominated by the �rst term, which can be shown to
be of size Op

�
1

(T 5H2)1=2

�
= op

�
1

(T 4H2)1=2

�
. The last integral is S1 which contributes to

s2 = V ar( ~Q) and was proven to be Op
�

1

(T 4H2)1=2

�
in Theorem 8. Hence, V 2n1 � S1 =

op
�

1
T 2H

�
.

A.9 Proof of Theorem 10

First, recall that

~Q = 1
T 2

ZZZZ
(0;T ]4

Z
I

w(`) 1
H2K

�
t1�s1�`

H

�
K
�
t2�s2�`

H

�
d`d�as1d�

a
s2
d�bt1d�

b
t2
:

From the property of the joint cumulant of the innovations, all of which have mean
zero, I can express

E[d�as1d�
a
s2
d�bt1d�

b
t2
] = E[d�as1d�

a
s2
]E[d�bt1d�

b
t2
] + E[d�as1d�

b
t1
]E[d�as2d�

b
t2
]

+E[d�as1d�
b
t2
]E[d�as2d�

b
t1
] + c22(s2 � s1; t1 � s1; t2 � s1)

= 0 + 
(t1 � s1)
(t2 � s2) + 
(t2 � s1)
(t1 � s2)
+c22(s2 � s1; t1 � s1; t2 � s1)

= a2T�
a�b [�(t1 � s1)�(t2 � s2) + �(t2 � s1)�(t1 � s2)]

+o(a2T );

where the last line utilizes assumption (A8).
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Since H = o(B), the asymptotic bias of ~Q becomes

bias( ~Q) =
a2T�

a�b

TH
�2

Z
I

wB(`)
�
1� j`j

T

�
��2(`)d`+ o

�
a2T
TH

�
:

The asymptotic variance of ~Q underHaT is the same as that underH0 and was given in
Theorem 8. If I set a�T = H

1=4, then the normalized statistic J converges in distribution
to N(�(K;wB); 1).

A.10 Proof of Theorem 9

I will only prove the case with no autocorrelations, i.e. ckk(`) � 0 for k = a; b, as
the error of estimating auto-covariances by their estimators can be made negligible by
similar techniques as in the case for conditional intensities.
First, assuming the setup in section 4.4, the conditional intensity �kt can be approx-

imated by �̂
k

t � �kt = OP (M�1=2) by Theorem 6.

Next, by Theorem 6, it follows that �̂
k

t ��kt = OP (M�1=2) for k = a; b. By lemma ??
(see below), it is true that T

�
Q� ~Q

�
= OP (M

�1=2). By the assumption H = o(M),

I thus obtain T
�
Q� ~Q

�
= oP (H

�1=2), and hence, with V ar(TQ) = O(H�1=2),

T
�
Q� ~Q

�
=
p
V ar(TQ) = oP (1): (38)

Besides, note that the approximation error of the unconditional intensity �̂
k��k is

diminishing at the parametric rate of OP (T�1=2) = oP (1) as T ! 1. Also, note that
\E(TQ) is a function of unconditional intensities, so (29) implies that \E(TQ)�E(TQ) =
o(H�1), or h

\E(TQ)� E(TQ)
i
=
p
V ar(TQ) = o(H�1=2) = o(1): (39)

Furthermore, the estimated variance \V ar(TQ) is a function of unconditional intensities
too, so (30) implies that \V ar(TQ)� V ar(TQ) = o(H�1), or

V ar(TQ)= \V ar(TQ) = 1 + o(1): (40)

Lastly, the result follows from the decomposition below with an application of
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Slutsky�s theorem, meanwhile making use of (38), (39) and (40):

Ĵ =
TQ� \E(TQ)q

\V ar(TQ)

=

s
V ar(TQ)

\V ar(TQ)

24T ~Q� E(TQ)p
V ar(TQ)

+
T
�
Q� ~Q

�
p
V ar(TQ)

+
\E(TQ)� E(TQ)p

V ar(TQ)

35
= J + oP (1):

Lemma 19 T
�
Q� ~Q

�
= OP (M

�1=2).

Proof. Recall the statistic Q =
R
I=T
wb (�) b~
2h(�)d� and its hypothetical counterpart

~Q =
R
I=T
wb (�) ~


2
h (�) d�.

To evaluate the asymptotic order of Q � ~Q, I apply a change of variable s = Tu

and t = Tv as described in section 4.6. From Theorem 6, we know that ~̂�kv � ~�
k

v =

�̂
k

Tv � �kTv = OP
�
M�1=2� for k = a; b (u and v �xed). It follows that ~̂�au ~̂�bv � ~�au~�bv =�

~̂�au � ~�
a

u

�
~̂�bv +

�
~̂�bv � ~�

b

v

�
~�
a

u = OP
�
M�1=2�, and hence

d~̂"aud~̂"
b
v � d~"aud~"bv =

�
d ~Na

u � ~̂�audu
��
d ~N b

v � ~̂�bvdv
�
�
�
d ~Na

u � ~�
a

udu
��
d ~N b

v � ~�
b

vdv
�

= �d ~Na
u

�
~̂�bv � ~�

b

v

�
dv � d ~N b

v

�
~̂�au � ~�

a

u

�
du+

�
~̂�au
~̂�bv � ~�

a

u
~�
b

v

�
dudv

= OP
�
M�1=2� :

As a result, b~
h(�) � ~
h (�) = R 10 R 10 Kh (v � u� �)
h
db~"audb~"bv � d~"aud~"bvi = OP

�
M�1=2�.

Since b~
h(�) + ~
h (�) = OP (1), I deduce that
b~
2h(�)� ~
2h (�) =

�b~
h(�) + ~
h (�)��b~
h(�)� ~
h (�)�
= OP

�
M�1=2� ;

and thus conclude that Q � ~Q =
R
I=T
wb (�)

hb~
2h(�)� ~
2h (�)i d� = OP
�
T�1M�1=2�,

which implies that T
�
Q� ~Q

�
= OP (M

�1=2).

A.11 Proof of Corollary 11

It su¢ ces to show that the mean and variance are as given in the corollary. Denote
the delta function by � (�). Since B = o(H) as H ! 1, the following approximation
is valid:

1
B
w
�
`
B

�
1
H2K

�
u�`
H

�
K
�
v�`
H

�
= �` (0)

1
H2K

�
u�`
H

�
K
�
v�`
H

�
+ o(1):
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Therefore,

Q =

Z
I

wB(`)
̂
2
H(`)d`

= 1
T 2

ZZZZ
(0;T ]4
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H2K
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K
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H

�
d`d�̂as1d�̂

a
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H2K
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H
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a
t2�vd�̂

b
t1
d�̂bt2

= 1
T 2

ZZ
(0;T ]2
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t2�T
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�
1
H2K

�
u
H

�
K
�
v
H

�
+ o(1)

�
d�̂at1�ud�̂

a
t2�vd�̂

b
t1
d�̂bt2 :

Under the null hypothesis (11), I compute the mean (up to the leading term) as follows:

E(Q) = 1
T 2

ZZ
(0;T ]2

Z t2

t2�T

Z t1

t1�T

1
H2K

�
u
H

�
K
�
v
H

�
E
�
d�̂at1�ud�̂
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t2�v
�
E
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d�̂bt1d�̂
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t2
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= �a�b

T 2

Z T

0

Z t

t�T

1
H2K

2
�
u
H

�
dudt:

By Fubini�s theorem, the last line becomes

E(Q) = �a�b

T

Z T

�T

1
H2K

2
�
u
H

� �
1� juj

T

�
du

= �a�b

TH

Z T=h

�T=h
K2 (v)

�
1� jvjH

T

�
dv

= �a�b

TH
[�2 + o(1)] :

so that E(QG) = CG + o(1). By similar techniques as I obtained (30), I compute the
second moment (up to the leading term) as follows.

E(Q2) = 1
(TH)4

E

" Y
i;j=1;2

Z T

0

Z tij

tij�T
K
�uij
H

�
d�̂atij�uijd�̂

b
tij

#

The leading order terms of E(Q2) are obtained when:
(1) t11 = t12, t21 = t22, t11 � u11 = t21 � u21, t12 � u12 = t22 � u22;
(2) t11 = t12, t21 = t22, t11 � u11 = t22 � u22, t12 � u12 = t21 � u21;
(3) t11 = t21, t12 = t22, t11 � u11 = t12 � u12, t21 � u21 = t22 � u22;
(4) t11 = t21, t12 = t22, t11 � u11 = t22 � u22, t12 � u12 = t21 � u21;
(5) t11 = t22, t12 = t21, t11 � u11 = t12 � u12, t21 � u21 = t22 � u22;
(6) t11 = t22, t12 = t21, t11 � u11 = t21 � u21, t12 � u12 = t22 � u22:
Their contributions add up to

6(�a�b)
2

(TH)4
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(0;T ]2

Z t2

t2�T

Z t1

t1�T

Z
A

K
�
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H

�
K
�
u2
H

�
K
�
u1+v
H

�
K
�
u2+v
H

�
dvdu1du2dt1dt2
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where A = \2i=1[ti�T �ui; ti�ui]. After a change of variables, the last line reduces to

6(�a�b)
2

T 2H
[�4 + o(1)] ,

which dominates [E(Q)]2. As a result, V ar(QG) = 2DG + o(1).

A.12 Proof of Corollary 12

It su¢ ces to show that the mean and variance are as given in the corollary. Denote
the Dirac delta function at ` by �` (�). Since H = o(B) as B ! 1, the following
approximation is valid:
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Under the null hypothesis (11), I compute the mean (up to the leading term) as follows:
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By Fubini�s theorem, the last line becomes
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so that E(QH) = CH + o(1). By similar techniques as I obtained (30), I compute the
variance (up to the leading term) as follows:
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so that V ar(QH) = 2DH + o(1).
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A.13 Summary of Jarrow and Yu (2001) Model

Suppose that there are two parties (e.g. �rms), a and b, whose assets are subject to
the risk of default. Apart from its own idiosyncratic risk, the probability of default of
each party depends on the default status of the other party. The distribution of � k

(k = a; b), the time to default by party k, can be fully characterized by the conditional
intensity function, �k(tjFt�) = lim�t#0 (�t)

�1 P (� k 2 [t; t + �t)jFt�) where F = (F t)
is the natural �ltration generated by the processes 1f�a � tg and 1f� b � tg, i.e.
Ft = �f1f�a � tg; 1f� b � tgg. Intuitively, it is the conditional probability that party
k will default at time t given the history of the default status of both parties. A simple
reduced form counterparty risk model is given as follows:

for party a : �a(tjFt�) = �a + �ab1f�b�tg for t � �a;
for party b : �b(tjFt�) = �b + �ba1f�a�tg for t � � b:

This is probably the simplest bivariate default risk model with counterparty risk
features represented by the parameters �ab and �ba. For instance, if �ab is positive,
then the default by party b increases the chance of default by party a, thus suggesting
the existence of counterparty risk from party b to party a.
The above counterparty risk model involving two parties can be readily extended

to one involving two portfolios, a and b. (e.g. two industries of �rms). Each portfolio
contains a large number of homogeneous parties whose individual conditional intensities
of defaults take the same piecewise constant form. For k = a; b, let � ki be the time
of the ith default in portfolio k, and de�ne Nk

t =
P1

i=1 1f� ki � tg which counts the
number of default events in portfolio k up to time t. Now, denote the natural �ltration
of (Na; N b) by F = (F t) where Ft = �f(Na

s ; N
b
s ) : s � tg, and the conditional intensity

of default in portfolio k at time t by �k(tjFt�) = lim�t#0 (�t)
�1 P (Nk

t+�t�Nk
t > 0jFt�).

Analogous to the counterparty risk model with two parties, a counterparty risk model
with two portfolios a and b is de�ned as follows:

for portfolio a: �a(tjFt�) = �a + �aa
1X
q=1

1f�aq�tg + �
ab

1X
j=1

1f�bj�tg; (41)

for portfolio b: �b(tjFt�) = �b + �ba
1X
i=1

1f�ai�tg + �
bb

1X
q=1

1f�bq�tg: (42)

We can rewrite (41) and (42) in terms of the counting processes Nk
t :

�a(tjFt�) = �a + �aaNa
t + �

abN b
t for t � �ai ;

�b(tjFt�) = �b + �baNa
t + �

bbN b
t for t � � bj:

With an additional exponential function (or other discount factors) to dampen
the feedback e¤ect of each earlier default event, the system of conditional intensities
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constitutes an bivariate exponential (or generalized) Hawkes model for (Na; N b):

�a(tjFt�) = �a + �aa
naX
i=1

1f�ai�tge
��aa(t��ai ) + �ab

nbX
j=1

1f�bj�tge
��ab(t��bj)

= �a + �aa
Z t

0

e��
aa(t�s)dNa

s + �
ab

Z t

0

e��
ab(t�u)dN b

u;

�b(tjFt�) = �b + �ba
naX
i=1

1f�ai�tge
��ba(t��ai ) + �bb

nbX
j=1

1f�bj�tge
��bb(t��bj)

= �b + �ba
Z t

0

e��
ba(t�s)dNa

s + �
bb

Z t

0

e��
bb(t�u)dN b

u:

To test for the existence of Granger causality based on this model, we can estimate
the parameters �ab and �ba and test if they are signi�cant. However, this parametric
bivariate model is only one of the many possible ways that the conditional intensi-
ties of default from two portfolios can interact with one another. The nonparametric
test in this paper can detect Granger causality without making a strong parametric
assumption on the bivariate point process of defaults.
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