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Abstract

In college admissions and student placements at public schools, the admission decision can be

thought of as assigning indivisible objects with capacity constraints to a set of students such that

each student receives at most one object and monetary compensations are not allowed. In these

important market design problems, the agent-proposing deferred-acceptance (DA-)mechanism

with responsive strict priorities performs well and economists have successfully implemented

DA-mechanisms or slight variants thereof. We show that almost all real-life mechanisms used in

such environments—including the large classes of priority mechanisms and linear programming

mechanisms—satisfy a set of simple and intuitive properties. Once we add strategy-proofness

to these properties, DA-mechanisms are the only ones surviving. In market design problems

that are based on weak priorities (like school choice), generally multiple tie-breaking (MTB)

procedures are used and then a mechanism is implemented with the obtained strict priorities. By

adding stability with respect to the weak priorities, we establish the first normative foundation

for MTB-DA-mechanisms that are used in NYC.
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1 Introduction

In centralized entry-level medical markets students search for their first positions at hospitals.

Each year first the finishing students submit a ranking of the available hospital positions and the
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hospitals submit a ranking of the finishing students (and hospitals’ preferences over sets of students

are supposed to be “responsive” with respect to these ranking). Then, the centralized clearinghouse

matches via a mechanism students and hospitals on the basis of the submitted lists. A matching

is stable if (i) every student prefers his match to being unmatched, (ii) every hospital prefers each

matched student to having the position unfilled, and (iii) there is no student-hospital pair that

blocks the matching in the sense that the student prefers the hospital to his match and the hospital

prefers the student to one of its matched students or having the position unfilled.

The American markets (Roth, 1984a) and the British markets in Edinburgh and Cardiff based

the matching on a stable mechanism called hospital-proposing deferred-acceptance (DA-)mechanism

(Gale and Shapley, 1962). Although the DA-mechanism is the predominant mechanism in the

two-sided matching market literature (Roth, 2008), British markets have introduced and operated

unstable mechanisms (Roth, 1991). The markets in Edinburgh (initially), Newcastle, and Birm-

ingham have adopted priority mechanisms in 1966 and 1967, and the markets in Cambridge and

the London Hospital Medical College have adopted linear programming mechanisms in the 1970’s.

The literature on two-sided matching markets has argued that in such markets stable mechanisms

are more successful than others because unstable mechanisms may produce matchings which are

blocked and unsustainable (e.g., Roth, 1991). This is especially due to the fact that both sides

of the market have to be considered as active agents who, after the announced outcome of the

centralized clearinghouse, can resign from positions (students) or fire students (hospitals) in order

to engage in new matches.

In all these markets preferences are private information and agents need to reveal them. Ideally

we would like to base the outcome on the true preferences and construct an incentive compatible

mechanism. Unfortunately there does not exist any stable mechanism that, for all students and for

all hospitals, makes truth-telling a weakly dominant strategy (Roth, 1982). However, the student-

proposing DA-mechanism is strategy-proof for students (Dubins and Freedman, 1981; Roth, 1982),

but there does not exist any stable mechanism that is strategy-proof for hospitals with several

positions (Roth, 1984b). This is one of the main reasons why in the mid 1990’s the American mar-

kets changed the mechanism from the hospital-proposing DA-mechanism to the student-proposing

DA-mechanism.

Over the past couple of years, the two-sided matching problem has been adapted to address the

assignment of students to public schools. In a so-called school choice problem, schools correspond

to hospitals and students seek a slot at a school (Abdulkadiroğlu and Sönmez, 2003). The difference

to a two-sided matching market problem is that a school’s “preference relation” represents priorities

of students to be admitted at that school. These priorities over individual agents are fixed (via

exogenous criteria or objective tests) and cannot be changed. Furthermore, schools are not strategic

agents. Now if priorities are strict (and priorities over sets of students are responsive with respect to

the priorities over individual agents), then the DA-mechanism can be applied in a straightforward
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manner. The same is true for priority mechanisms and linear programming mechanisms. Indeed, the

famous Boston mechanism for school choice is equivalent to the Edinburgh 1967 priority mechanism

(Ergin and Sönmez, 2006) and priority mechanisms are nowadays still in use in school choice.1

In school choice, schools are not strategic agents and the motivation for stability needs to

be slightly reconsidered (a school simply cannot deny enrollment to a student who has been as-

signed to it by the central authorities in order to rematch with a preferred student). The intuitive

reinterpretation of stability for school choice problems is that stability property (i) still represents

students’ individual rationality, stability property (ii) corresponds to the non-wastefulness of school

seats, and stability property (iii) captures the fairness property of no justified envy2 (Balinski and

Sönmez, 1999). Next, several contributions underline the policy importance of strategy-proofness

for school choice mechanisms. The argument there is not simply that truthful revelation of pref-

erences is desirable, but that it is important to level the playing field for students from different

backgrounds. Abdulkadiroğlu, Pathak, Roth, and Sönmez (2006) and Pathak and Sönmez (2008)

show that under the Boston mechanism sophisticated agents were much better off than unsophis-

ticated agents: näıvely truth-telling students (or parents) tend to be the worst off students under

the Boston mechanism, which is not strategy-proof. This is due to the fact that with a manip-

ulable mechanisms it may be difficult to figure out the best (non-truthful) strategy whereas with

a strategy-proof mechanisms each agent’s simple strategy is to report preferences truthfully. In

this paper we formulate some simple and intuitive properties that are satisfied by many mecha-

nisms (using some arbitrary strict priorities) including priority mechanisms, linear programming

mechanisms and responsive DA-mechanisms. However, we show that once strategy-proofness is

added, only the student-proposing DA-mechanisms (with responsive priorities) survive among all

mechanisms satisfying our set of simple and intuitive properties (Theorem 1). This provides a

rationale for using the student-proposing responsive DA-mechanism if truthful revelation of prefer-

ences is important. Furthermore, the feature of responsiveness-to-individual-priorities makes this

mechanism easily applicable in practice (Roth, 2008).3

For some school choice problems priorities may be coarse, e.g., in Boston priorities are divided

into four classes: (i) siblings and walk zone, (ii) siblings, (iii) walk zone, and (iv) the rest. In

extreme cases, no priorities are given and all students have equal rights for receiving any object.

When priorities are weak, in order to apply a (student-proposing) DA-mechanism, one needs to

resolve the ties in some way. Abdulkadiroğlu, Pathak, and Roth (2009) propose to use a fixed

1In Boston this mechanism has now been changed to the student-proposing DA-mechanism, but many cities
worldwide still use the so-called Boston (or direct acceptance) mechanism.

2A matching eliminates justified envy if whenever a student prefers another student’s match to his own, he has a
lower priority than the other student at that school.

3The search for “good” mechanisms is the subject of many recent contributions, but most of them deal with the
house allocation model where exactly one object of each type is available (e.g., Ehlers, 2002; Ehlers and Klaus, 2006,
2007; Kesten, 2009; Pápai, 2000). In most papers that study the allocation of indivisible objects with capacity
constraints, externally prescribed priorities are also specified; the corresponding class of problems is usually referred
to as “school choice problems” or “student placement problems” (see Sönmez and Ünver, 2011, for a recent survey).
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multiple tie-breaking procedure (MTB) (which is independent of students’ preferences) and then

apply the DA-mechanism. Erdil and Ergin (2008) propose to use different tie-breaking procedures

for different preference profiles. Both these contributions regard stability (with respect to the weak

priorities) as an important requirement. We show that in Theorem 1, we can replace individual

rationality and weak non-wastefulness with stability with respect to weak priorities, and by doing

so we establish the first normative foundation of responsive MTB-DA-mechanisms as used in NYC

(Theorem 2).

The paper is organized as follows. In Section 2 we introduce a model of allocating indivisi-

ble objects with capacity constraints and exogenously given priorities. In Section 3 we introduce

tie-breaking procedures for exogenously given priorities, priority mechanisms, linear programming

mechanisms, and responsive DA-mechanisms. In Section 4 we state simple and intuitive properties

for mechanisms. In Section 5 we show that all described real-life mechanisms satisfy our simple

and intuitive properties. We then show that only (agent-proposing) responsive DA-mechanisms

satisfy these simple and intuitive properties and strategy-proofness. For exogenously given pri-

orities, in Section 6, we then obtain a characterization of responsive MTB-DA mechanisms when

imposing stability. The Appendix contains all our proofs and in addition a second characterization

of responsive DA-mechanisms with weak consistency.4

2 Allocation with Priorities and Variable Resources

Let N = {1, . . . , n} denote a finite set of agents with n ≥ 2. Let O denote a set of potential (real)

object types or types for short. We assume that O contains at least two elements and that O is

finite.5 Not receiving any real object is called “receiving the null object.” Let ∅ represent the null

object.

Each agent i ∈ N is equipped with a preference relation Ri over all types O∪{∅}. The preference

relation Ri is strict, i.e., Ri is a linear order over O ∪ {∅}. Given x, y ∈ O ∪ {∅}, x Pi y means that

agent i strictly prefers x to y (and x 6= y) and x Ri y means that agent i weakly prefers x to y

(and x Pi y or x = y). Let R denote the set of all preferences over O ∪ {∅}, and RN the set of all

(preference) profiles R = (Ri)i∈N such that for all i ∈ N , Ri ∈ R.

Given R ∈ RN and M ⊆ N , let RM denote the profile (Ri)i∈M . It is the restriction of R to the

set of agents M . We also use the notation R−M = RN\M and R−i = RN\{i}.

Given O′ ⊆ O ∪ {∅}, let Ri|O′ denote the restriction of Ri to O′ and R|O′ = (Ri|O′)i∈N . Given

i ∈ N and Ri ∈ R, type x ∈ O is acceptable under Ri if xPi ∅. Let A(Ri) = {x ∈ O : xPi ∅} denote

the set of acceptable types under Ri.

4Our Supplementary Appendix also discusses Kojima and Manea (2010) in relation to our results and provides
the independence of the properties used in our characterizations.

5Our results remain unchanged when O is infinite. For expositional convenience, finiteness of O is assumed.
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For each type x ∈ O, at most qx ∈ N copies are available in any economy with 1 ≤ qx ≤ |N |.6

Let qx, 0 ≤ qx ≤ qx, denote the number of available objects or the capacity of type x. Let

q = (qx)x∈O denote a capacity vector and Q = ×x∈O{0, 1, . . . , qx} denote the set of all capacity

vectors. The null object is always available without scarcity and therefore we set q∅ =∞.

Given type x, let �̂x denote a (weak) priority ordering of type x on N . Here i �̂x j means that

agent i has higher priority than agent j for obtaining an object of type x and i ∼̂x j means that

agents i and j have the same priority for obtaining an object of type x. For each type x, the priority

ordering �̂x is exogenously given. The priority ordering �̂x is strict if for any distinct i, j ∈ N ,

we have either i �̂x j or j �̂x i. Let �̂ = (�̂x)x∈O denote a priority structure (e.g., determined

via test/exam scores or other objective suitability criteria). Priority structure �̂ is strict if for all

x ∈ O, priority ordering �̂x is strict. For a strict priority structure �̂ we sometimes write �̂ instead

of �̂. In the sequel, we denote an exogenously given priority structure by �̂ and an arbitrary

strict priority structure by �. In some environments no priorities are given (no tests/exams are

conducted). Then all agents have equal priority for any type. We denote the “no or equal priorities”

priority structure by ∼̂, i.e., for all types x and for all i, j ∈ N , i ∼̂x j.

An (allocation) problem (with capacity constraints and priorities) consists of a preference profile

R ∈ RN , a capacity vector q ∈ Q, and a priority structure �̂. Since �̂ is exogenously given and

remains fixed throughout, we often denote a problem by (R, q) and the set of all problems by

RN × Q. Given a capacity vector q, let O+(q) = {x ∈ O : qx > 0} denote the set of available

real types under q. The set of available types is O+(q) ∪ {∅} and includes the null object, which is

available at any problem.

Each agent i is to be allocated exactly one object in O ∪ {∅} taking capacity constraints into

account. An allocation for (capacity vector) q is a list a = (ai)i∈N such that for all i ∈ N ,

ai ∈ O ∪ {∅}, and any real type x ∈ O is not assigned more than qx times, i.e., for all x ∈ O,

|{i ∈ N : ai = x}| ≤ qx. Note that ∅, the null object, can be assigned to any number of agents

and that not all real objects have to be assigned. Let Aq denote the set of all allocations for q and

A =
⋃
q∈QAq set of all allocations. Given a problem (R, q) and a ∈ Aq, allocation a is individually

rational if for all i ∈ N , ai Ri ∅.

An mechanism is a function ϕ : RN × Q → A such that for all problems (R, q) ∈ RN × Q,

ϕ(R, q) ∈ Aq. Given i ∈ N , we call ϕi(R, q) the allotment of agent i at ϕ(R, q).

3 Multiple Tie-Breaking and Real Life Mechanisms

For the application of the real-life mechanisms we introduce in this section, we first have to resolve

or break ties. In other words, these mechanisms require the transformation of a weak priority

6By introducing “global upper bounds” via qx (x ∈ O) we can, for instance, specify the house allocation model
where at most one object of each type is available, i.e., for all x ∈ O, qx = 1.
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structure �̂ into a strict priority structure �. In applications this is typically done by breaking

the ties for any type. A strict priority structure � is a multiple tie-breaking (MTB) of the (weak)

priority structure �̂ if for any type x and any i, j ∈ N : if i �̂x j, then i �x j. Note that then any

tie in �̂ is broken and � respects all strict priorities of �̂. Any MTB of �̂ is strict and we often

use the terminology “for any MTB � of �̂.”

3.1 Priority Mechanisms

Below we describe the large class of priority mechanisms. Any priority mechanism, for each prefer-

ence profile R and any MTB � of �̂, matches sequentially all student-type pairs that have highest

“priority” among all remaining pairs. First, the priority mechanism checks whether there are (1,1)-

matches (i.e., an agent-type pair who ranks each other first). If there are any (1,1)-matches, then

they are realized. Second, the priority mechanism checks whether there are matches that have the

second highest priority (i.e., (1,2)- or (2,1)-matches) and matches any such pair. And so on. Of

course, a match is only realized if the agent prefers his matched object to the null object. Be-

cause priority mechanisms differ in how they exactly prioritize matches, we have just sketched a

class of mechanisms (note the indeterminacy in the above description when mentioning (1,2)- or

(2,1)-matches as having the second highest priority). In particular, the Edinburgh 1967 mechanism

ordered matches lexicographically according to the types’ priorities, that is, (1,1)-matches have first

priority, followed by (2,1), (3,1), and so on. Only when all types’ first choices are exhausted, other

matches ((1,2), (2,2), (3,2), . . .) are considered. We will call any mechanism that orders matches

lexicographically in types’ priorities or in students’ preferences, a lexicographic priority mechanism.

The Boston mechanism for public school choice is a lexicographic priority mechanism (Ergin and

Sönmez, 2006).

Given an agent’s preference relation Ri, we say that agent i’s most preferred real type has rank 1,

his second most preferred real type has rank 2, etc.. For each x ∈ O, we denote by rank(x,Ri) the

rank of x in Ri. Note that we do not rank the null object. Similarly we define rank(i,�x). Given

(R,�), we call (i, x) an (a, b)-match if rank(x,Ri) = a and rank(i,�x) = b.

A priority function is a one-to-one function g : N× N→ N such that

(i) for all (a, b), (a′, b) ∈ N× N, if a < a′, then g(a, b) < g(a′, b), and

(ii) for all (a, b), (a, b′) ∈ N× N, if b < b′, then g(a, b) < g(a, b′).

The function g associates with each (a, b)-match its priority g(a, b). Hence, in our terminology

an (a, b)-match has higher priority than an (a′, b′)-match if g(a, b) < g(a′, b′).

For each problem (R, q), we will only consider the ranks of available real types under q. Thus,

the priority function will take as inputs the rank information based on the reduced preference profile

R|O+(q)∪{∅}. Then, for each problem (R, q) and any MTB � of �̂, the MTB-priority mechanism
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based on g and � operates on the restricted problem (R|O+(q)∪{∅}, q) and matches sequentially all

agent-type pairs that have the highest priority according to g subject to individual rationality and

the quotas. Let M (g,�)(R, q) denote the resulting allocation and let M (g,�) denote the priority

mechanism based on g and �.

3.2 Linear Programming Mechanisms

A linear programming mechanism assigns to each possible (a, b)-match a positive weight. These

weights are strictly decreasing in both components. A weighting function is a function h : (N ×
N) ∪ {(0, 0)} → R+ such that

(i) h(0, 0) = 0,

(ii) for all (a, b), (a′, b) ∈ N× N, if a < a′, then h(a, b) > h(a′, b), and

(iii) for all (a, b), (a, b′) ∈ N× N, if b < b′, then h(a, b) > h(a, b′).

Recall that rank(x,Ri) denotes the rank of real type x ∈ O in Ri and rank(i,�x) the rank of

i ∈ N in �x. For all i ∈ N , we now also define rank(∅, Ri) = 0 and rank(i,�∅) = 0. Given a

profile R ∈ R and an individually rational allocation a, the score of a is the sum of the weights of

the matched agent-type pairs, i.e.,

s(h,�)(a,R) =
∑
i∈N

h(rank(ai, Ri), rank(i,�ai)).

Given a weighting function h, the linear programming mechanism M (h,�) chooses for each

problem (R, q) an individually rational allocation for q with maximal score among all individually

rational allocations for q. Let arg max s(h,�)(·, R) denote the set of all individually rational alloca-

tions for q that maximize the weighted score s(h,�) among all individually rational allocations for q.

We will assume that if there are several allocations maximizing the score under a submitted profile,

then the linear programming mechanism breaks ties uniformly, i.e., each of these maximizers is

chosen with equal probability. In such a case a linear programming mechanism chooses a lottery

over allocations. It is easy to see that this does not create any significant problem and our analysis

can be extended to mechanisms choosing a lottery for each profile.

Let M denote a random mechanism choosing for each problem (R, q) a lottery over Aq. Given

an allocation a for q, let Pr{M(R, q) = a} denote the probability that M assigns to allocation a.

Similarly, given i ∈ N and y ∈ O ∪ {∅}, let Pr{Mi(R, q) = y} denote the probability that i is

assigned to y under the lottery M(R, q).

For each problem (R, q), we will only consider the ranks of available real types under q. Thus,

the weighting function will take as inputs the rank information based on the reduced preference
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profile R|O+(q)∪{∅}. Then, for each problem (R, q) and any MTB � of �̂, the MTB-linear program-

ming mechanism based on h and � operates on the restricted problem (R|O+(q)∪{∅}, q) and for all

individually rational allocations a for q such that

s(h,�)(a,R|O+(q)∪∅) = max
a′∈Aq is individually rational

s(h,�)(a′, R|O+(q)∪∅),we have

Pr{M (h,�)(R, q) = a} = 1
| arg max s(h,�)(·,R|O+(q)∪∅)|

(where |S| denotes the cardinality of set S).

3.3 Stability and Agent-Proposing Responsive DA-Mechanisms

Given the priority structure �̂ and a problem (R, q), we can interpret (R, �̂, q) as a college ad-

missions problem (Gale and Shapley, 1962; Roth and Sotomayor, 1990) where the set of agents

N corresponds to the set of students, the set of real types O corresponds to the set of colleges,

the capacity vector q describes colleges’ quota, preferences R correspond to students’ preferences

over colleges and not receiving any college, and the priority structure �̂ is taken to represent col-

leges’ responsive preferences over students. Stability is an important requirement for many real-life

matching markets and it turns out to be essential in our context of allocating indivisible objects to

agents.

Stability under �̂: Given (R, q) ∈ RN ×Q, an allocation a ∈ Aq is stable under �̂ if there exists

no agent-type pair (i, x) ∈ N × O ∪ {∅} such that x Pi ai and (s1) |{j ∈ N : aj = x}| < qx or

(s2) there exists k ∈ N such that ak = x and i�̂xk.

Note that (s1) implies individual rationality because q∅ = ∞. Furthermore, mechanism ϕ is

stable if there exists a priority structure � such that for each problem (R, q) ∈ RN × Q, ϕ(R, q)

is stable under �. When � is strict, we suppose that colleges’ priorities over sets of students are

responsive with respect to � (we discuss responsiveness in detail below in Remark 1).

For any college admissions problem with strict and responsive priorities (R,�, q), we denote by

DA�(R, q) the agent-optimal stable allocation that is obtained by using Gale and Shapley’s (1962)

agent-proposing deferred-acceptance algorithm, DA-algorithm for short:7 let (R, q,�) be given.

Then,

• at the first step of the DA-algorithm, every agent applies to his favorite acceptable type. For

each real type x, the qx applicants who have the highest priority for x (all applicants if there

are fewer than qx) are placed on the waiting list of x, and all others are rejected.

• At the r-th step of the DA-algorithm, those applicants who were rejected at step r− 1 apply

to their next best acceptable type. For each real type x, the qx applicants among the new

7Analogously we may define the type-proposing deferred-acceptance algorithm where each type applies at each
step to as many agents as there are objects of this type available.
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applicants and those on the waiting list who have the highest priority for x are placed on the

updated waiting list of x, and all others are rejected.

The DA-algorithm terminates when every agent is on a waiting list or has applied to all ac-

ceptable types. Once the algorithm ends, objects are assigned to the agents on the respective type

waiting lists and the null object is assigned to the agents who are not on any waiting list. The

resulting allocation is the agent-optimal stable allocation for the problem (R, q,�), denoted by

DA�(R, q).

Responsive DA-Mechanisms: A mechanism ϕ is a responsive DA-mechanism if there exists a

strict priority structure � such that for each (R, q) ∈ RN ×Q, ϕ(R, q) = DA�(R, q).

In real life we often take a MTB � of �̂ before applying the DA-mechanism DA�. We will call

such a mechanism a responsive MTB-DA-mechanism.

Note that the above condition of stability under � takes only blocking by individual agents and

by agent-type pairs into account. This is sometimes referred to as “pairwise” stability. However,

one may also consider group stability where blocking is allowed by arbitrary groups of agents and

types. For college admissions problems with responsive preferences, pairwise stability and group

stability coincide. In such environments it suffices to know the priority orderings over individual

agents and the implementation of responsive DA-mechanisms is much easier than it would be for

more general college preferences (e.g., substitutable preferences). From now on, we will assume that

priorities are responsive, i.e., we assume that college preferences are responsive in the associated

college admissions problem.8

Remark 1. Responsiveness of Priorities

Let x ∈ O, 0 < qx ≤ |N |, and �x be a priority ordering. Let 2Nqx denote the set of all subsets of

N that do not exceed the capacity qx, i.e., 2Nqx ≡ {S ⊆ N : |S| ≤ qx}. Let Px denote a priority

relation on 2Nqx , i.e., Px strictly orders all sets in 2Nqx . Then, Px is responsive to �x if the following

two conditions hold: (r1) for all S ∈ 2Nqx such that |S| < qx and all i ∈ N \ S, S ∪ {i} Px S and

(r2) for all S ∈ 2Nqx such that |S| < qx and all i, j ∈ N \ S, (S ∪ {i}) Px (S ∪ {j}) if and only if

i �x j. When formulating (r1) we implicitly assume that each object finds all agents acceptable.

Let P(�x) denote the set of all priority relations that are responsive to �x.

Now, given (R, q) ∈ RN × Q and a priority relation profile PO ∈ ×x∈OP(�x), an allocation

a ∈ Aq is group stable under PO if there exists no coalition (consisting possibly of both agents and

types) that blocks allocation a.9

8Correspondingly, priorities would be substitutable if college preferences are substitutable in the associated college
admissions problem.

9Formally, given (R, q) and PO, a coalition S ⊆ N ∪O blocks a ∈ Aq if there exists an allocation b ∈ Aq such that
(g1) for all i ∈ S ∩N , bi ∈ S ∩O, (g2) for all i ∈ S ∩N , bi Ri ai, (g3) for all x ∈ S ∩O, i ∈ {j ∈ N : bj = x} implies
i ∈ S ∪ {j ∈ N : aj = x}, (g4) for all x ∈ S ∩ O, {j ∈ N : bj = x} Rx {j ∈ N : aj = x}, and (g5) for at least one
member of S, (g2) or (g4) holds with strict preference.
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It is known that given (R, q) ∈ RN × Q and a responsive priority relation profile PO ∈
×x∈OP (�x), an allocation a ∈ Aq is group stable under PO if and only if a ∈ Aq is stable

under �. In other words, group stability is identical with stability for responsive priorities and the

set of group stable matchings is invariant with respect to the responsive preference extensions of

�. This implies that for the implementation of any responsive DA-mechanism, we only need to

know the priority orderings over individual agents and not the complete priority relations over sets

of agents. This makes the application of responsive DA-mechanisms very easy and convenient in

real-life matching markets. �

4 Simple and Intuitive Properties

A natural requirement for a mechanism is that the chosen allocation depends only on preferences

over the set of available types. Given a capacity vector q, a type x is unavailable if qx = 0.

Unavailable Type Invariance: For all (R, q) ∈ RN×Q and all R′ ∈ RN such that R|O+(q)∪{∅} =

R′|O+(q)∪{∅}, ϕ(R, q) = ϕ(R′, q).

By individual rationality each agent should weakly prefer his allotment to the null object (which

may represent an outside option such as off-campus housing in the context of university housing

allocation, or private schools or home schooling in the context of student placement in public

schools).

Individual Rationality: For all (R, q) ∈ RN ×Q and all i ∈ N , ϕi(R, q)Ri ∅.

Next, we introduce two properties that require a mechanism to not waste any resources. First,

non-wastefulness (Balinski and Sönmez, 1999) requires that no agent prefers an available object

that is not assigned to his allotment. Note that non-wastefulness corresponds to the first part (s1)

of stability (for any arbitrary priority structure).

Non-Wastefulness: For all (R, q) ∈ RN ×Q, all x ∈ O+(q), and all i ∈ N , if x Pi ϕi(R, q), then

|{j ∈ N : ϕj(R, q) = x}| = qx.

Non-wastefulness is not a weak efficiency requirement in environments where priorities can be

interpreted as preferences because types (or colleges or schools) may be worse off after the departure

of some agents. Or in other words, each type may prefer to have assigned as many objects of this

type as possible (not caring of the identities of the students receiving this type).10 Next, we weaken

non-wastefulness by requiring that no agent receives the null object while he prefers an available

object that is not assigned.

Weak Non-Wastefulness: For all (R, q) ∈ RN ×Q, all x ∈ O+(q), and all i ∈ N , if x Pi ϕi(R, q)

and ϕi(R, q) = ∅, then |{j ∈ N : ϕj(R, q) = x}| = qx.

10This may be due to avoiding the closure of a school or a college and if more positions are filled, then this may
increase the prestige or visibility of the institution.
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Weak non-wastefulness is a limited efficiency requirement. For example, suppose that a central

agency registers all agents who did not receive anything (or are unemployed) and all those agents

report all real types (or jobs) which are acceptable to them. Then it should not be the case that

some agent who receives nothing prefers one of the available real objects (or available jobs) to the

null object.

Many mechanisms that are used in real life ignore agents’ preferences below their allotments

(e.g., all mechanisms mentioned in Section 3). That is, an allocation does not change if an agent

changes his reported preferences below his allotment. We formulate a weaker version of this invari-

ance property by restricting agents’ changes below their allotments to truncations.

A truncation strategy is a preference relation that ranks the real types in the same way as

the corresponding original preference relation and each real type which is acceptable under the

truncation strategy is also acceptable under the original preference relation. Formally, given i ∈ N
and Ri ∈ R, a strategy R̄i ∈ R is a truncation (strategy) of Ri if (t1) R̄i|O = Ri|O and (t2) A(R̄i) ⊆
A(Ri). Loosely speaking, a truncation strategy of Ri is obtained by moving the null object “up.”

If an agent truncates his preference relation in a way such that his allotment remains acceptable

under the truncated preference relation, then truncation invariance requires that the allocation is

the same under both profiles. The property is quite natural on its own in the sense that the chosen

allocations do not depend on where any agent, who receives a real object, ranks the null object

below his allotment.

Truncation Invariance: For all (R, q) ∈ RN × Q, all i ∈ N , and all R̄i ∈ Ri, if R̄i is a

truncation of Ri and ϕi(R, q) is acceptable under R̄i (i.e., ϕi(R, q) ∈ A(R̄i)) and R̄ = (R̄i, R−i),

then ϕ(R̄, q) = ϕ(R, q).

Our last property applies to problems when two agents compete for the same object in a maximal

conflict situation, i.e., they have the same preference relation with only one acceptable real type

x ∈ O and for the two problems under consideration the preference profiles are identical. Two-agent

consistent conflict resolution then requires that if in these problems one of them receives the object,

the conflict is resolved consistently in that it has to be the same agent in both problems who “wins

the conflict” and receives the object.

We denote a preference relation with only one acceptable type x ∈ O by Rx, i.e., A(Rx) = {x}.
We denote the set of all preference relations that have x ∈ O as the unique acceptable type by Rx.

Two-Agent Consistent Conflict Resolution: For all R ∈ RN , all q, q′ ∈ Q, and all Rx ∈ Rx,

if Ri = Rj = Rx and {ϕi(R, q), ϕj(R, q)} = {ϕi(R, q′), ϕj(R, q′)} = {x, ∅}, then for k ∈ {i, j},
ϕk(R, q) = ϕk(R, q

′).

One can interpret this property as a weak tie-breaking property because it only imposes that the

tie between two agents in very specific maximal conflict situations is broken consistently in favor
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of the same agent. In particular, when considering two different preference profiles R,R′ ∈ RN

where agents i and j have a maximal conflict for type x (i.e., Ri = Rj = R′i = R′j ∈ Rx and

{ϕi(R, q), ϕj(R, q)} = {ϕi(R′, q′), ϕj(R′, q′)} = {x, ∅}), two-agent consistent conflict resolution does

not imply that the same agent (out of i and j) receives object x because the assignment of x may

depend on the other agents’ preferences (i.e., for k ∈ {i, j}, ϕk(R, q) 6= ϕk(R
′, q′) is possible).

5 Strategy-Proofness makes the Difference

The properties we have introduced up to now are simple and intuitive. Indeed, our first result

confirms this since all the real-life mechanisms we have described so far satisfy them.

Proposition 1. Let � be a strict priority structure.

(i) For any priority function g, the priority mechanism based on (g,�) satisfies unavailable

type invariance, individual rationality, weak non-wastefulness, two-agent consistent conflict

resolution, and truncation invariance.

(ii) For any weighting function h, the linear programming mechanism based on (h,�) satisfies un-

available type invariance, individual rationality, weak non-wastefulness, two-agent consistent

conflict resolution, and truncation invariance.

(iii) The responsive DA-mechanism based on � satisfies unavailable type invariance, individual

rationality, weak non-wastefulness, two-agent consistent conflict resolution, and truncation

invariance.

Note that all the properties introduced in Section 4 and used in Proposition 1 ignore the priority

structure �̂. We prove Proposition 1 in Appendix A.

Next we characterize the class of all responsive DA-mechanisms (and not only MTB-DA-

mechanisms). For our characterization of responsive DA-mechanisms we need one more property.

The well-known non-manipulability property strategy-proofness requires that no agent can ever

benefit from misrepresenting his preferences.

Strategy-Proofness: For all (R, q) ∈ RN × Q, all i ∈ N , and all R̄i ∈ R, ϕi(R, q) Ri

ϕi((R̄i, R−i), q).

It turns out that the class of mechanisms satisfying our simple and intuitive properties and

strategy-proofness is very small. With the following characterization, we establish the first norma-

tive foundation for the class of responsive DA-mechanisms.

Theorem 1. Responsive DA-mechanisms are the only mechanisms satisfying unavailable type

invariance, individual rationality, weak non-wastefulness, two-agent consistent conflict resolution,

truncation invariance, and strategy-proofness.
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It is important to note that priority mechanisms and linear programming mechanisms satisfy all

properties of Theorem 1 except for strategy-proofness. This demonstrates how weak all properties

in Theorem 1 are, except for strategy-proofness. It is the incentive compatibility property that fa-

vors responsive DA-mechanisms over all other mechanisms. We prove Theorem 1 in Appendix B.11

Appendix C contains a second characterization (Theorem 4) of responsive DA-mechanisms in a

variable agents environment based on individual rationality, weak non-wastefulness, weak consis-

tency, and strategy-proofness. Here weak consistency requires that agents receiving the null object

should still receive the null object if some agents leave the economy with their allotments.

Remark 2. (Weak) Non-Wastefulness

Note that if a mechanism is non-wasteful, then (s1) in the definition of stability can never occur and

therefore, non-wastefulness is a partial stability property. However, weak non-wastefulness, even

together with individual rationality, does not imply (s1) and therefore, it is not a partial stability

property. Any mechanism satisfying the properties of Theorem 1 must be stable (under a strict

priority structure). The combination of the properties in Theorem 1 includes weak non-wastefulness

as a partial efficiency requirement, but not as a partial stability property. However, in the above

characterization (and in Theorem 4, Appendix C), weak non-wastefulness may be replaced by non-

wastefulness (without shortening the proofs or altering the independence of the axioms). Note that

similarly to responsive DA-mechanisms, priority mechanisms and linear programming mechanisms

satisfy weak non-wastefulness, but in contrast to them, they do not satisfy non-wastefulness. �

6 Stability makes a Difference as well

We have seen that among all the mechanisms discussed in this article, responsive DA-mechanisms

are the only strategy-proof mechanisms. However, they are in fact also the only ones that respect

the stability with respect to priorities. Another strategy-proof mechanism that has been discussed

in school choice redesigns is the so-called top-trading cycles mechanism (Shapley and Scarf, 1974).

While in most school choice redesigns (e.g., Boston and New York City) stable DA-mechanisms are

implemented, only San Francisco so far has announced plans to adopt an unstable top-trading cycles

based mechanism. In many applications, stability seems to be an extremely important criterium

as well and it differentiates DA-mechanisms from top-trading mechanisms.

As already mentioned in our introduction, many real life applications of market design, e.g.,

school choice problems, have weak priority structures as inputs (see Abdulkadiroğlu, Pathak, and

Roth, 2009; Erdil and Ergin, 2008). Given a weak priority structure �̂, stability under �̂ imme-

diately implies non-wastefulness and individual rationality. Thus, we obtain the following first

normative foundation for responsive MTB-DA-mechanisms.

11We discuss the independence of properties in Theorem 1 in the Supplementary Appendix.
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Theorem 2. Let �̂ be a (weak) priority structure. Responsive MTB-DA-mechanisms are the only

mechanisms satisfying stability under �̂, unavailable type invariance, two-agent consistent conflict

resolution, truncation invariance, and strategy-proofness.

A special case of a weak priority structure is the one where all agents have equal priorities for

all objects (or there are no priorities given), which we denoted by ∼̂. Then any problem reduces

to an allocation problem with no priorities. Furthermore, it is easy to see that stability under ∼̂
is equivalent to non-wastefulness and individual rationality (and the properties in Theorem 2 are

independent because the properties in Theorem 1 are independent).

When applying responsive DA-mechanisms to problems with weak priorities, ties have to be

broken (in the special case of no priorities, all ties have to be broken). Essentially, whenever ties

are present in school choice, we face trade-offs between efficiency, stability, and strategy proofness.

Abdulkadiroğlu, Pathak, and Roth (2009) show that simulations with field data from the New York

City high school match and the theory favor single tie-breaking rules, i.e., indifferences are broken

the same way at every school. Formally, a MTB � of �̂ is a single tie-breaking (STB) if for all

x, y ∈ O and all i, j ∈ N , if i∼̂xj and i∼̂yj, then either [i �x j and i �y j] or [j �x i and j �y i].

Now, it is interesting to ask what exactly characterizes the subclass of responsive STB-DA-

mechanisms. Clearly, two-agent consistent conflict resolution in Theorem 2 adds an element of

decisiveness that, together with all other properties, helps to pins down the priority structure

for the underlying DA-mechanism. In order to characterize responsive STB-DA-mechanisms, the

priority ordering will have to be the same for all objects and therefore we will strengthen the

two-agent consistent conflict resolution property by extending the decisiveness requirement to two

(possibly distinct) objects.

Strong two-agent consistent conflict resolution applies to two problems when two agents compete

for two (possibly distinct) objects in maximal conflict situations, i.e., in each problem they have

the same preference relation such that in one problem they find only x ∈ O acceptable and in

another problem they find only y ∈ O acceptable: it then requires that if in these problems one

agent receives the acceptable object and the other receives the null object, the conflict is resolved

consistently in that it has to be the same agent in both problems who “wins the conflict” and

receives the acceptable object.

Strong Two-Agent Consistent Conflict Resolution: For all R,R′ ∈ RN , all q, q′ ∈ Q, all

Rx ∈ Rx, and all Ry ∈ Ry, if Ri = Rj = Rx, i∼̂xj and {ϕi(R, q), ϕj(R, q)} = {x, ∅}, and R′i = R′j =

Ry, i∼̂yj and {ϕi(R′, q′), ϕj(R′, q′)} = {y, ∅}, then for k ∈ {i, j}, ϕk(R, q) = ∅ ⇔ ϕk(R
′, q′) = ∅.

Now a straightforward consequence of Theorem 2 is the following normative foundation for

responsive STB-DA-mechanisms.
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Theorem 3. Let �̂ be a (weak) priority structure. Responsive STB-DA-mechanisms are the only

mechanisms satisfying stability under �̂, unavailable type invariance, strong two-agent consistent

conflict resolution, truncation invariance, and strategy-proofness.

7 Conclusion

Our model is that of assigning types (school seats) to a set of agents (students). Agents have strict

preferences over types and whenever we consider agents’ strict priorities for a certain type, we

capture them by an ordering of all agents. Of course, since sets of agents are assigned to an type, in

general priorities may depend on the whole set of agents and not only on the ordering of individual

agents. However, if priorities over sets of agents are responsive with respect to the strict priority

ordering over individual agents, then in determining stable allocations we only need to know the

priority orderings over individual agents. It is exactly this responsiveness-to-individual-priorities

feature that makes the agent-proposing deferred-acceptance mechanism easily applicable in practice

(Roth, 2008).

Kojima and Manea (2010) provide two characterizations of deferred acceptance mechanisms

with so-called acceptant substitutable priorities (a larger class of mechanisms than the class of

responsive DA-mechanisms which is based on priorities that are determined by a choice function

that reflects substitutability in priorities over sets of agents; see also Hatfield and Milgrom, 2005).

For this class of DA-mechanisms, priority orderings over individual agents do not suffice—the

priorities over sets of agents must be known. Furthermore, their characterizations use two new

monotonicity properties which are violated by priority mechanisms and linear programming mech-

anisms. Indeed, it can be seen that those classes of mechanisms violate all their properties in their

first characterization and two of the three properties in their second characterization. While the

class of DA-mechanisms with acceptant substitutable priorities is sometimes employed in real-life

markets, many applications involving DA-mechanisms are based on responsive priorities or slight

generalizations thereof. Thus, providing a rationale for this class of mechanisms is important. We

characterized responsive DA-mechanisms using very simple and intuitive properties plus strategy-

proofness.
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Appendix

A Proof of Proposition 1

Let � be a strict priority structure.

In showing (i), let g be a priority function and consider the priority mechanism M (g,�) based

on g and �. By definition, M (g,�) satisfies unavailable type invariance and individual rationality.

For weak non-wastefulness, suppose that for (R, q), x ∈ O+(q) and i ∈ N we have

x Pi M
(g,�)
i (R, q) and M

(g,�)
i (R, q) = ∅. If |{j ∈ N : M

(g,�)
j (R, q) = x}| < qx, then (i, x) is

an individually rational (a, b)-match and the priority mechanism M (g,�) could not have stopped

without matching i and x.

For two-agent consistent conflict resolution, let (R, q) and (R, q′) be such that Ri = Rj = Rx

and {M (g,�)
i (R, q),M

(g,�)
j (R, q)} = {M (g,�)

i (R, q′),M
(g,�)
j (R, q′)} = {x, ∅}. Since rank(x,Ri) =

1 = rank(x,Rj), (i, x) is an (1, b)-match and (j, x) is an (1, b′)-match where b = rank(i,�x) and

b′ = rank(j,�x). Because �x is strict, b 6= b′ and we obtain from {M (g,�)
i (R, q),M

(g,�)
j (R, q)} =

{M (g,�)
i (R, q′),M

(g,�)
j (R, q′)} = {x, ∅} both M

(g,�)
i (R, q) = M

(g,�)
i (R, q′) and M

(g,�)
j (R, q) =

M
(g,�)
j (R, q′), the desired conclusion.

For truncation invariance, let (R, q), i ∈ N , and R̄i be such that M
(g,�)
i (R, q) ∈ A(R̄i) and

R̄i is a truncation of Ri. Note that this implies M
(g,�)
i (R, q) 6= ∅. Hence, under (R, q) and
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(R̄i, R−i, q) the priority mechanism M (g,�) matches identically all agent-type pairs and we obtain

M (g,�)(R, q) = M (g,�)(R̄i, R−i, q).

In showing (ii), note that all properties can be easily formulated for random mechanisms (for

instance by putting positive probability only on individually rational allocations). Let h be a

weighting function and consider the linear programming mechanism M (h,�) based on h and �. By

definition, M (h,�) satisfies unavailable type invariance and individual rationality.

For weak non-wastefulness, suppose that for (R, q), x ∈ O+(q) and i ∈ N we have

x Pi M
(h,�)
i (R, q) and M

(h,�)
i (R, q) = ∅. If |{j ∈ N : M

(h,�)
j (R, q) = x}| < qx, then (i, x) is some

individually rational (a, b)-match with h(a, b) > 0. Now M (h,�)(q,R) could not have maximized

the score among all individually rational allocations.

For two-agent consistent conflict resolution, let (R, q) and (R, q′) be such that Ri = Rj = Rx

and {M (h,�)
i (R, q),M

(h,�)
j (R, q)} = {M (h,�)

i (R, q′),M
(h,�)
j (R, q′)} = {x, ∅}. Since rank(x,Ri) =

1 = rank(x,Rj), (i, x) is an (1, b)-match and (j, x) is an (1, b′)-match where b = rank(i,�x)

and b′ = rank(j,�x). Because �x is strict, b 6= b′ and h(1, b) 6= h(1, b′). Thus, we obtain

from {M (h,�)
i (R, q),M

(h,�)
j (R, q)} = {M (h,�)

i (R, q′),M
(h,�)
j (R, q′)} = {x, ∅} both M

(h,�)
i (R, q) =

M
(h,�)
i (R, q′) and M

(h,�)
j (R, q) = M

(h,�)
j (R, q′), the desired conclusion.

For truncation invariance, let (R, q), i ∈ N , and R̄i be such that M
(h,�)
i (R, q) ∈ A(R̄i) and R̄i

is a truncation of Ri. Note that this implies M
(h,�)
i (R, q) 6= ∅. Hence, under (R, q) and (R̄i, R−i, q)

the allocation M (h,�)(R, q) maximizes the score among all individually rational allocations and

we obtain M (h,�)(R, q) = M (h,�)(R̄i, R−i, q) (we refer to Ehlers (2008) for random mechanisms

satisfying truncation invariance).

In showing (iii), consider the responsive DA-mechanism based on �. It is easy to see that

DA� satisfies unavailable type invariance, individual rationality, weak non-wastefulness, two-agent

consistent conflict resolution, and truncation invariance.

B Proof of Theorem 1

It is easy to verify that responsive DA-mechanisms satisfy the properties of Theorem 1. Conversely,

let ϕ be a mechanism satisfying the properties of Theorem 1. First, we “calibrate/construct the

priority structure using maximal conflict preference profiles.”

Let x ∈ O and let Rx ∈ Rx (i.e., A(Rx) = {x}). Let R∅ ∈ R be such that A(R∅) = ∅.

For any S ⊆ N , let RxS = (Rxi )i∈S such that for all i ∈ S, Rxi = Rx, and similarly R∅S = (R∅i )i∈S

such that for all i ∈ S, R∅i = R∅.

Let 1x denote the capacity vector q such that qx = 1 and for all z ∈ O\{x}, qz = 0. Similarly, for

y ∈ O \ {x} let 1xy denote the capacity vector q such that qx = 1, qy = 1, and for all z ∈ O \ {x, y},
qz = 0.
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Consider the problem (RxN , 1x). By weak non-wastefulness, for some j ∈ N , ϕj(R
x
N , 1x) = x,

say j = 1. Then, for all i ∈ N \ {1}, we set 1 �x i.

Next consider the problem ((R∅1, R
x
−1), 1x). By weak non-wastefulness and individual rationality,

for some j ∈ N \ {1}, ϕj((R∅1, Rx−1), 1x) = x, say j = 2. Then, for all i ∈ N \ {1, 2}, we set 2 �x i.

By induction, we obtain �x for any type x and thus a priority structure �= (�x)x∈O.

Lemma 1. For all R ∈ RN and all x ∈ O, if for some j ∈ N , ϕj(R, 1x) = x, then for all

i ∈ N \ {j}, x ∈ A(Ri) implies j �x i.

Proof. Let R ∈ RN and x ∈ O. Without loss of generality, suppose 1 �x 2 �x · · · �x n. Let

S = {i ∈ N : x ∈ A(Ri)} and let j = minS. We prove Lemma 1 by showing that ϕj(R, 1x) = x. In

the sequel, when using two-agent consistent conflict resolution we often also implicitly apply weak

non-wastefulness and individual rationality.

Note that for all i ∈ N\S, ∅Pix. We partition the set N\S into the “lower” set L = {1, . . . , j−1}
(possibly L = ∅) and the “upper” set U = N \ (L ∪ S) (possibly U = ∅). Note that by unavailable

type invariance, ϕ(R, 1x) = ϕ((R∅L, R
x
S , R

∅
U ), 1x).

By the construction of �x, ϕj((R
∅
L, R

x
S∪U ), 1x) = x. Hence, if U = ∅, then ϕj(R, 1x) = x and

for all i ∈ N , x ∈ A(Ri) implies j �x i.

Step 1 : Let k ∈ U . We prove that ϕj((R
∅
L, R

x
S∪(U\{k}), R

∅
k), 1x) = ϕj((R

∅
L, R

x
S∪U ), 1x) = x.

Let y ∈ O \ {x}. By two-agent consistent conflict resolution, ϕj((R
∅
L, R

x
S∪U ), 1xy) = x. Let

R′k ∈ R be such that R′k : y x ∅ . . .. By strategy-proofness, ϕk((R
∅
L, R

x
S∪(U\{k}), R

′
k), 1xy) 6=

x. If S ∪ (U \ {k}) = {j}, then by weak non-wastefulness and individual rational-

ity, ϕj((R
∅
L, R

x
S∪(U\{k}), R

′
k), 1xy) = x. Otherwise, by two-agent consistent conflict resolu-

tion, ϕj((R
∅
L, R

x
S∪(U\{k}), R

′
k), 1xy) = x. By weak non-wastefulness and individual rationality,

ϕk((R
∅
L, R

x
S∪(U\{k}), R

′
k), 1xy) = y.

Let R′′k ∈ R be such that R′′k : y ∅ x . . . and R′′k|O = R′k|O. By strategy-proofness,

ϕk((R
∅
L, R

x
S∪(U\{k}), R

′′
k), 1xy) = y. By weak non-wastefulness and individual rationality, for some

l ∈ S ∪ (U \ {k}), ϕl((R∅L, RxS∪(U\{k}), R
′′
k), 1xy) = x.

Now R′′k is a truncation of R′k and both y ∈ A(R′′k) and ϕk((R
∅
L, R

x
S∪(U\{k}), R

′
k), 1xy) =

y. Thus, ϕ((R∅L, R
x
S∪(U\{k}), R

′′
k), 1xy) = ϕ((R∅L, R

x
S∪(U\{k}), R

′
k), 1xy). Hence, j = l and

ϕj((R
∅
L, R

x
S∪(U\{k}), R

′′
k), 1xy) = x.

By individual rationality, ϕk((R
∅
L, R

x
S∪(U\{k}), R

′′
k), 1x) 6= x. If S ∪ (U \ {k}) = {j}, then by

weak non-wastefulness and individual rationality, ϕj((R
∅
L, R

x
S∪(U\{k}), R

′′
k), 1x) = x. Otherwise, by

two-agent consistent conflict resolution, ϕj((R
∅
L, R

x
S∪(U\{k}), R

′′
k), 1x) = x. Thus, by unavailable

type invariance, ϕj((R
∅
L, R

x
S∪(U\{k}), R

∅
k), 1x) = ϕj((R

∅
L, R

x
S∪(U\{k}), R

′′
k), 1x) = x.

Steps 2, . . . l: Let U = {k1, . . . , kl}. Then using the same arguments as above, it follows that

x = ϕj((R
∅
L, R

x
S∪U ), 1x) = ϕj((R

∅
L, R

x
S∪(U\{k1}), R

∅
k1

), 1x) = ϕj((R
∅
L, R

x
S∪(U\{k1,k2}), R

∅
{k1,k2}), 1x) =
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. . . = ϕj((R
∅
L, R

x
S∪{kl}, R

∅
U\{kl}), 1x) = ϕj((R

∅
L, R

x
S , R

∅
U ), 1x) = ϕj(R, 1x). Hence, we obtain the

desired result that ϕj(R, 1x) = x.

For any number qx ∈ {0, 1, . . . , qx}, let qx ◦ 1x = (qx, 0O\{x}) denote the capacity vector with

exactly qx copies of object x. The following lemma is the extension of Lemma 1 to the general

capacity case.

Lemma 2. For all R ∈ RN and all qx ∈ {1, . . . , qx}, if T = {j ∈ N : ϕj(R, qx ◦ 1x) = x}, then for

all j ∈ T and all i ∈ N \ T , x ∈ A(Ri) implies j �x i.

Proof. Let R ∈ RN , qx ∈ {1, . . . , qx}, T = {j ∈ N : ϕj(R, qx ◦ 1x) = x}, and S = {i ∈ N :

x ∈ A(Ri)}. By individual rationality, T ⊆ S. Let j ∈ T and i ∈ S \ T . We prove Lemma 2 by

showing that j �x i. In the sequel, when using two-agent consistent conflict resolution we often

also implicitly apply weak non-wastefulness and individual rationality.

If qx = 1, then by Lemma 1, j �x i.

Next, suppose that qx = 2. Note that by unavailable type invariance, ϕ(R, qx ◦ 1x) =

ϕ((RxS , R
∅
−S), qx ◦ 1x). Let k ∈ S be such that ϕk((R

x
S , R

∅
−S), 1x) = x. By Lemma 1, k �x i.

By two-agent consistent conflict resolution, ϕk((R
x
S , R

∅
−S), qx ◦ 1x) = x. Hence, k ∈ T and k �x i.

By weak non-wastefulness and individual rationality, there exists h ∈ T \ {k} such that

ϕh((RxS , R
∅
−S), qx ◦ 1x) = x. Let y ∈ O \ {x} and R′k ∈ R be such that R′k : y x ∅ . . ..

By unavailable type invariance, ϕ((RxS\{k}, R
∅
−S , R

′
k), qx ◦ 1x) = ϕ((RxS , R

∅
−S), qx ◦ 1x). Hence,

ϕh((RxS\{k}, R
∅
−S , R

′
k), qx ◦ 1x) = x.

Next, we replace one object of type x by one object of type y. By weak non-wastefulness and

individual rationality, ϕk((R
x
S\{k}, R

∅
−S , R

′
k), 1xy) = y. By two-agent consistent conflict resolution,

ϕh((RxS\{k}, R
∅
−S , R

′
k), 1xy) = x. By truncation invariance, ϕh((RxS\{k}, R

∅
−S , R

y
k), 1xy) = x. By two-

agent consistent conflict resolution, ϕh((RxS\{k}, R
∅
−S , R

y
k), 1x) = x. Hence, by Lemma 1, h �x i.

Now by induction on qx the conclusion of Lemma 2 follows.

Lemma 3. For all (R, q) ∈ RN ×Q, ϕ(R, q) is stable under �.

Proof. Let (R, q) ∈ RN ×Q and assume that ϕ(R, q) is not stable under �. Then, there exists an

agent-object pair (i, x) ∈ N ×O∪{∅} such that xPiϕi(R, q) and (s1) |{j ∈ N : ϕj(R, q) = x}| < qx

or (s2) there exists k ∈ N such that ϕk(R, q) = x and i �x k. By individual rationality, x 6= ∅.

Let R̄ ∈ RN be such that (a) for all j ∈ N such that ϕj(R, q) 6= ∅, R̄j is a truncation of Rj

such that there exists no y ∈ O \ {ϕj(R, q)} with ϕj(R, q) R̄j y R̄j ∅ and (b) for all j ∈ N such

that ϕj(R, q) = ∅, R̄j = Rj . (By individual rationality, R̄j in (a) is well-defined as truncation of

Rj .) By truncation invariance, ϕ(R̄, q) = ϕ(R, q) and (i, x) ∈ N ×O is such that x P̄i ϕi(R̄, q) and

(s1’) |{j ∈ N : ϕj(R̄, q) = x}| < qx or (s2’) there exists k ∈ N such that ϕk(R̄, q) = x and i �x k.
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Let S = {j ∈ N : x P̄j ϕj(R̄, q)}. Note that i ∈ S. Let T = {j ∈ N : ϕj(R̄, q) = x}. By

unavailable type invariance, ϕ(R̄, qx ◦ 1x) = ϕ((R̄xS∪T , R̄
∅
N\(S∪T )), qx ◦ 1x).

Step 1 : Assume that for j ∈ S, ϕj(R̄, qx ◦ 1x) = x. Then, by strategy-proofness and in-

dividual rationality, ϕj((R̄−j , R
x
j ), qx ◦ 1x) = x and ϕj((R̄−j , R

x
j ), q) = ∅. By weak non-

wastefulness, |{k ∈ N : ϕk((R̄−j , R
x
j ), q) = x}| = qx. By individual rationality there

exists l ∈ N such that x ∈ A(R̄l), and ϕl((R̄−j , R
x
j ), q) = x and ϕl((R̄−j , R

x
j ), qx ◦

1x) = ∅. By Lemma 2, j �x l. Next, by strategy-proofness, ϕl((R̄−{j,l}, R
x
j , R

x
l ), q) =

x. By unavailable type invariance, ϕ((R̄−{j,l}, R
x
j , R

x
l ), qx ◦ 1x) = ϕ((R̄−j , R

x
j ), qx ◦ 1x);

in particular, ϕj((R̄−{j,l}, R
x
j , R

x
l ), qx ◦ 1x) = x and ϕl((R̄−{j,l}, R

x
j , R

x
l ), qx ◦ 1x) = ∅.

Thus, ϕj((R̄−{j,l}, R
x
j , R

x
l ), q) = ∅ would contradict two-agent consistent conflict resolu-

tion because then {ϕj((R̄−{j,l}, Rxj , Rxl ), q), ϕl((R̄−{j,l}, R
x
j , R

x
l ), q)} = {ϕj((R̄−{j,l}, Rxj , Rxl ), qx ◦

1x), ϕl((R̄−{j,l}, R
x
j , R

x
l ), qx ◦ 1x)} = {x, ∅}. Hence, ϕj((R̄−{j,l}, R

x
j , R

x
l ), q) = x. Thus, there ex-

ists an agent j2 ∈ N \ {j, l} such that ϕj2((R̄−{j,l}, R
x
j , R

x
l ), q) = ∅ and ϕj2((R̄−{j,l}, R

x
j , R

x
l ), qx ◦

1x) = x. However, R̄j2 = Rxj2 would contradict two-agent consistent conflict resolu-

tion because then {ϕj2((R̄−{j,l}, R
x
j , R

x
l ), q), ϕl((R̄−{j,l}, R

x
j , R

x
l ), q)} = {ϕj2((R̄−{j,l}, R

x
j , R

x
l ), qx ◦

1x), ϕl((R̄−{j,l}, R
x
j , R

x
l ), qx ◦ 1x)} = {x, ∅}. Hence, R̄j2 6= Rxj2 .

Steps 2, . . . : Step 2 replicates Step 1 with the starting preference profile (R̄−{j,l}, R
x
j , R

x
l ) and with

agent j2 in the role of agent j. Throughout the step, we strictly increase the number of agents with

preferences Rx (at least by agent j2). Furthermore, the step ends with the existence of another

agent j3 with R̄j3 6= Rxj3 with whom we proceed to Step 3. Since the number of agents is finite, we

obtain a contradiction in finitely many steps.

Final Step: With the previous steps we have established that for all j ∈ S, ϕj(R̄, qx ◦1x) = ∅. Note

that by construction of R̄, for all j ∈ N \ (S ∪ T ), ∅ P̄j x. Hence, by individual rationality, for all

j ∈ N \ (S ∪ T ), ϕj(R̄, qx ◦ 1x) = ∅. Note that by individual rationality, for all j ∈ T , x ∈ A(R̄j).

Hence, by weak non-wastefulness, for all j ∈ T , ϕj(R̄, qx ◦ 1x) = x and |T | = qx. By Lemma 2, we

have that (∗) for all j ∈ T and all l ∈ S, j �x l.

Recall that T = {j ∈ N : ϕj(R̄, q) = x}. Hence, (s1’) cannot be the case. Thus, by (s2’) there

exists k ∈ N such that ϕk(R̄, q) = x and i �x k. Recall that i ∈ S and that ϕk(R̄, q) = x implies

that k ∈ T so that i �x k contradicts (∗).

So far we have established that for any mechanism ϕ that satisfies the properties of Theorem 1,

there exists a priority ordering � such that for any (R, q) ∈ RN × Q, ϕ(R, q) is stable under �.

Hence, in the terminology of two-sided matching, the mechanism ϕ picks a stable allocation for

the many-to-one two-sided market where types have responsive preferences over sets of agents who

consume the objects based on the priority structure� and agents have strict preferences over objects

based on preferences R (see Roth and Sotomayor, 1990, Chapter 5). For these markets it is well-

known that the responsive DA-mechanism is the only strategy-proof stable matching mechanism.
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For completeness, we provide a proof which uses some standard results from many-to-one two-sided

markets with responsive preferences.

Lemma 4. For all (R, q) ∈ RN ×Q, ϕ(R, q) = DA�(R, q).

Proof. Let (R, q) ∈ RN ×Q and assume that ϕ(R, q) 6= DA�(R, q). By Lemma 3, ϕ(R, q) is stable

under �. Thus, since DA�(R, q) is the agent-optimal stable matching (Roth and Sotomayor, 1990,

Corollary 5.9), for all i ∈ N , DA�i (R, q)Riϕi(R, q). Since ϕ(R, q) 6= DA�(R, q), there exists j ∈ N
such that DA�j (R, q) Pj ϕj(R, q). By individual rationality, ϕj(R, q)Rj ∅. Thus, DA�j (R, q) 6= ∅.

Let R̄j be such that R̄j |O = Rj |O and there is no x ∈ O \ {DA�j (R, q)} such that DA�j (R, q) R̄j

xR̄j ∅. Since R̄j is a truncation of Rj and DA� satisfies truncation invariance, DA�((R̄j , R−j), q) =

DA�(R, q). Thus, DA�j ((R̄j , R−j), q) 6= ∅.

By Lemma 3, ϕj((R̄j , R−j), q) is stable under �. By Roth and Sotomayor (1990, Corollary 5.9),

DA�j ((R̄j , R−j), q)Rjϕj((R̄j , R−j), q). By DA�j ((R̄j , R−j), q) 6= ∅ and the fact that the set of agents

receiving the null object is identical for any two stable matchings (Roth and Sotomayor, 1990,

Theorem 5.12), we have ϕj((R̄j , R−j), q) 6= ∅. Now, by the definition of R̄j , ϕj((R̄j , R−j), q) =

DA�j ((R̄j , R−j), q). Hence, ϕj((R̄j , R−j), q) = DA�j ((R̄j , R−j), q) = DA�j (R, q) Pj ϕj(R, q), which

contradicts strategy-proofness.

C Variable Agents and Weak Consistency

Let N again denote the finite set of agents, but the set of agents who are present in a problem can

vary. We define the set of all nonempty subsets of N by N ≡ {M : M ⊆ N and M 6= ∅}. An

(allocation) problem (with capacity constraints) now consists of a set N ′ ∈ N of agents, a preference

profile R ∈ RN ′ , and a capacity vector q. We denote the set of all problems by
⋃
N ′∈N RN

′×Q. We

adjust our previous model, definitions, and properties by simply replacing the domain of problems

RN ×Q by the variable population domain
⋃
N ′∈N RN

′ ×Q. Given N ′ ∈ N and R ∈ RN ′ , for any

M ′ ∈ N such that M ′ ⊆ N ′, let RM ′ denote the profile (Ri)i∈M ′ .

A requirement for a mechanism that is very much in the spirit of unavailable type invariance

is unassigned type invariance: the chosen allocation does not depend on the unconsumed or unas-

signed objects. Given a problem (R, q) ∈
⋃
N ′∈N RN

′ × Q, we define by q(ϕ(R, q)) the capacity

vector of assigned objects: for all x ∈ O, qx(ϕ(R, q)) = |{j ∈ N ′ : ϕj(R, q) = x}|.

Unassigned Type Invariance: For all (R, q) ∈
⋃
N ′∈N RN

′ ×Q, ϕ(R, q) = ϕ(R, q(ϕ(R, q))).

Consistency is one of the key properties in many frameworks with variable population scenarios.

Thomson (2009) provides an extensive survey of consistency in various applications. Consistency

requires that if some agents leave a problem with their allotments, then the mechanism should

allocate the remaining objects among the agents who did not leave in the same way as in the

original problem.
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Consistency: For all M ′, N ′ ∈ N such that M ′ ⊆ N ′, all R ∈ RN ′ , all q ∈ Q, and all i ∈ M ′,
ϕi(R, q) = ϕi(RM ′ , q̃) where q̃x = qx − |{j ∈ N ′ \M ′ : ϕj(R, q) = x}| for all x ∈ O.

It follows from Ergin (2002, Theorem 1)—for a fixed capacity vector q—that the only responsive

DA-mechanisms satisfying consistency are the ones with an “acyclic” priority structure.12

The following property is a weak consistency property that all responsive DA-mechanisms sat-

isfy. It requires that if some agents leave a problem with their allotments, then an agent who did

not leave and who received the null object, still receives the null object. In other words, allocations

only need to be consistent with respect to the agents who receive the null object.

Weak Consistency: For all M ′, N ′ ∈ N such that M ′ ⊆ N ′, all R ∈ RN ′ , all q ∈ Q, and all

i ∈ M ′, if ϕi(R, q) = ∅, then ϕi(RM ′ , q̃) = ∅ where q̃x = qx − |{j ∈ N ′ \M ′ : ϕj(R, q) = x}| for all

x ∈ O.

Theorem 4. Responsive DA-mechanisms are the only mechanisms satisfying unassigned type in-

variance, individual rationality, weak non-wastefulness, weak consistency, and strategy-proofness.

Below we adjust the definition of priority mechanisms and linear programming mechanisms to

the variable population framework such that they satisfy all properties in Theorem 4 except for

strategy-proofness (like Proposition 1 for Theorem 1).

For a strict priority structure � and a priority function g, the priority mechanism based on

(g,�) matches for any problem (R, q) ∈
⋃
N ′∈N RN

′ ×Q all agent-type pairs that have the highest

priority according to g subject to individual rationality and the quotas. Note that the ranking of

unavailable objects is maintained in the agents’ preferences and the ranking of agents belonging to

N\N ′ is maintained in �.

Similarly, for a strict priority structure � and a weighting function h, the linear programming

mechanism based on (h,�) chooses for any problem (R, q) ∈
⋃
N ′∈N RN

′ × Q an individually

rational allocation with maximal score among all individually rational allocations. Note that here

again the ranking of unavailable objects is maintained in the agents’ preferences and the ranking

of agents belonging to N\N ′ is maintained in �.

Analogously to Theorem 2 we obtain a foundation of responsive MTB-DA-mechanisms using

the previous characterization (Theorem 4).

Theorem 5. Let �̂ be a (weak) priority structure. Responsive MTB-DA-mechanisms are the

only mechanisms satisfying stability under �̂, unassigned type invariance, weak consistency, and

strategy-proofness.

12Ehlers and Erdil (2010) generalize this result from strict priorities to weak priorities.
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Proof of Theorem 4

It is easy to verify that responsive DA-mechanisms satisfy the properties of Theorem 4. Conversely,

let ϕ be a mechanism satisfying these properties. First, we “calibrate/construct the priority struc-

ture using maximal conflict preference profiles.”

Let x ∈ O and let Rx ∈ Rx (i.e., A(Rx) = {x}). Let R∅ ∈ R be such that A(R∅) = ∅.

For any S ⊆ N , let RxS = (Rxi )i∈S such that for all i ∈ S, Rxi = Rx, and similarly R∅S = (R∅i )i∈S

such that for all i ∈ S, R∅i = R∅.

Let 1x denote the capacity vector q such that qx = 1 and for all z ∈ O \ {x}, qz = 0.

Consider the problem (RxN , 1x). By weak non-wastefulness, for some j ∈ N , ϕj(R
x
N , 1x) = x,

say j = 1. Then, for all i ∈ N \ {1}, we set 1 �x i.

Next consider the problem (RxN\{1}, 1x). By weak non-wastefulness and individual rationality,

for some j ∈ N \ {1}, ϕj(RxN\{1}, 1x) = x, say j = 2. Then, for all i ∈ N \ {1, 2}, we set 2 �x i.

By induction, we obtain �x for any type x and thus a priority structure �= (�x)x∈O.

Lemma 5. For all N ′ ∈ N , all R′ ∈ RN ′, and all x ∈ O, if for some j ∈ N , ϕj(R
′, 1x) = x, then

for all i ∈ N ′ \ {j}, x ∈ A(R′i) implies j �x i.

Proof. Let N ′ ∈ N , R′ ∈ RN ′ , and x ∈ O. Without loss of generality, suppose 1 �x 2 �x · · · �x n.

Let S = {i ∈ N ′ : x ∈ A(R′i)} and let j = minS. We prove Lemma 5 by showing that ϕj(R
′, 1x) =

x.

By weak non-wastefulness and individual rationality, for some l ∈ S, ϕl(R
′, 1x) = x. Assume, for

a contradiction, that l 6= j. Thus, ϕj(R
′, 1x) = ∅. Hence, by weak consistency, ϕj(R

′
{j,l}, 1x) = ∅.

By weak non-wastefulness, ϕl(R
′
{j,l}, 1x) = x. By strategy-proofness, ϕl((R

′
j , R

x
l ), 1x) = x and

ϕj((R
x
j , R

x
l ), 1x) = ∅. By weak non-wastefulness, ϕl((R

x
j , R

x
l ), 1x) = x.

Let L = {1, . . . , j − 1} (possibly L = ∅). By the construction of �x, ϕj(R
x
N\L, 1x) = x. Thus,

ϕl(R
x
N\L, 1x) = ∅. Hence, by weak consistency, ϕl(R

x
{j,l}, 1x) = ∅. By weak non-wastefulness,

ϕj(R
x
{j,l}, 1x) = x. Since Rx{j,l} = (Rxj , R

x
l ) and l 6= j, we have established a contradiction. Thus,

l = j and ϕj(R
′, 1x) = x.

Let R̂ = {Ri ∈ R : |A(Ri)| ≤ 1}.

Lemma 6.

(a) For all N ′ ∈ N and all (R, q) ∈ RN ′ ×Q, if |N ′| = 2, then ϕ(R, q) is stable under �.

(b) For all N ′ ∈ N and all (R, q) ∈ R̂N ′ ×Q, ϕ(R, q) is stable under �.

Proof. In order to show (a), suppose that ϕ(R, q) is not stable under �. Then, there exists an

agent-object pair (i, x) ∈ N ′×O∪{∅} such that xPiϕi(R, q) and (s1) |{j ∈ N ′ : ϕj(R, q) = x}| < qx

or (s2) there exists k ∈ N ′ such that ϕk(R, q) = x and i �x k. By individual rationality, x 6= ∅.
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Without loss of generality, let i be the agent ranked highest according to �x to form such an

agent-object blocking pair.

Let N ′ = {i, k} and Rxi ∈ Rx as in the calibration/construction step used to define �x.

By strategy-proofness, ϕi((R
x
i , Rk), q) = ∅. By weak non-wastefulness and individual rationality,

ϕk((R
x
i , Rk), q) = x, x Pk ∅, and qx = 1. Let Rxk = Rxi . By strategy-proofness, ϕk((R

x
i , R

x
k), q) = x.

By individual rationality, ϕi((R
x
i , R

x
k), q) = ∅. Then, by Lemma 5 it follows that k �x i. Hence,

for ϕ(R, q) we must have (s1) |{j ∈ N ′ : ϕj(R, q) = x}| < qx.

Recall that we obtained qx = 1 and k �x i. Hence, (s1) implies that object x is not assigned at

ϕ(R, q). Because i is the agent ranked highest according to�x to form an agent-object blocking pair,

ϕk(R, q)Pk x. Let ϕk(R, q) = y ∈ O. Recall that ϕk((R
x
i , Rk), q) = x. Then, by strategy-proofness,

ϕk(R
x
i , R

y
k, q) = ∅. By individual rationality, ϕi(R

x
i , R

y
k, q) 6= y. But this is a contradiction to weak

non-wastefulness for k and y.

In order to show (b), suppose that ϕ(R, q) is not stable under �. Then, there exists an agent-

object pair (i, x) ∈ N ′ × O ∪ {∅} such that x Pi ϕi(R, q) and (s1) |{j ∈ N ′ : ϕj(R, q) = x}| < qx

or (s2) there exists k ∈ N ′ such that ϕk(R, q) = x and i �x k. By individual rationality, x 6= ∅.
Without loss of generality, let i be the agent ranked highest according to �x to form such an

agent-object blocking pair.

Since Ri ∈ R̂, we have A(Ri) = {x} and ϕi(R, q) = ∅. By weak non-wastefulness, (s1) cannot

occur, i.e., we have (s2) there exists k ∈ N ′ such that ϕk(R, q) = x and i �x k.

By weak consistency, ϕi(R{i,k}, q̃) = ∅ (where q̃z = qz − |{j ∈ N ′ \ {i, k} : ϕj(R, q) = z}| for

all z ∈ O). By weak non-wastefulness, ϕk(R{i,k}, q̃) = x. Hence, ϕ(R{i,k}, q̃) is not stable under �,

which contradicts (a).

Lemma 7. For all N ′ ∈ N and all (R, q) ∈ RN ′ ×Q, ϕ(R, q) is stable under �.

Proof. For any profile R ∈ RN ′ , let N̂(R) = {i ∈ N ′ : Ri /∈ R̂}. We prove that ϕ(R, q) is stable

under � by induction on |N̂(R)|.

Induction Basis: For |N̂(R)| = 0, Lemma 6 (b) implies that ϕ(R, q) is stable under �.

Induction Hypothesis: Assume that ϕ(R, q) is stable under� for any R ∈ RN ′ such that |N̂(R)| ≤ k.

Induction Step: Let R ∈ RN ′ be such that |N̂(R)| = k + 1. Suppose that ϕ(R, q) is not stable

under �. Then, there exists an agent-object pair (i, x) ∈ N ′ ×O ∪ {∅} such that x Pi ϕi(R, q) and

(s1) |{j ∈ N ′ : ϕj(R, q) = x}| < qx or (s2) there exists l ∈ N ′ such that ϕl(R, q) = x and i �x l. By

individual rationality, x 6= ∅. Without loss of generality, let i be the agent ranked highest according

to �x to form such an agent-object blocking pair.

If ϕi(R, q) = ∅, then by weak non-wastefulness, we have (s2) there exists l ∈ N ′ such that

ϕl(R, q) = x and i �x l. By weak consistency, ϕi(R{i,l}, q̃) = ∅ (where q̃z = qz − |{j ∈ N ′ \ {i, l} :
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ϕj(R, q) = z}| for all z ∈ O). By weak non-wastefulness, ϕl(R{i,l}, q̃) = x. Hence, ϕ(R{i,l}, q̃) is

not stable under �, which contradicts Lemma 6 (a).

Thus, ϕi(R, q) 6= ∅ and Ri /∈ R̂. Let Rxi ∈ Rx. By strategy-proofness, ϕi((R
x
i , R−i), q) = ∅.

Note that |N̂(Rxi , R−i)| = k and by the induction hypothesis, ϕ((Rxi , R−i), q) is stable under �.

For (s2) there exists l ∈ N ′ such that ϕl(R, q) = x and i �x l. Hence, by ϕi((R
x
i , R−i), q) = ∅

and stability, ϕl((R
x
i , R−i), q) 6= x. For (s1) |{j ∈ N ′ : ϕj(R, q) = x}| < qx, ϕi((R

x
i , R−i), q) = ∅

and weak non-wastefulness imply |{j ∈ N ′ : ϕj((Rxi , R−i), q) = x}| = qx. Hence, in both cases (s1)

and (s2) there exists j ∈ N ′ \ {i} such that ϕj((R
x
i , R−i), q) = x 6= ϕj(R, q).

Thus, stability, ϕj((R
x
i , R−i), q) = x, and ϕi((R

x
i , R−i), q) = ∅ imply j �x i. Because i is the

agent ranked highest according to �x to form an agent-object blocking pair, ϕj(R, q) Pj x and

Rj /∈ R̂.

Step 1 : Let ϕj(R, q) = y ∈ O and Ryj ∈ Ry. By strategy-proofness, ϕj((R
y
j , R−j), q) =

y. Recall that ϕj((R
x
i , R−i), q) = x. Then, by strategy-proofness and individual rationality,

ϕj((R
x
i , R

y
j , R−i,j), q) = ∅.

Note that both |N̂(Ryj , R−j)| ≤ k and |N̂(Rxi , R
y
j , R−i,j)| ≤ k and the induction hypoth-

esis applies to both profiles. By weak non-wastefulness, there exists h ∈ N ′ such that

ϕh((Rxi , R
y
j , R−i,j), q) = y 6= ϕh((Ryj , R−j), q). By stability and ϕj((R

x
i , R

y
j , R−i,j), q) = ∅, we

have h �y j. If y Ph ϕh((Ryj , R−j), q), then by h �y j and ϕj((R
y
j , R−j), q) = y, ϕ((Ryj , R−j), q) is

not stable under �, a contradiction.

Thus, ϕh((Ryj , R−j), q) Ph y and Rh /∈ R̂.

Step 2 : Let ϕh((Ryj , R−j), q) = z ∈ O. As in Step 1, we use strategy-proofness to replace Rh by

Rzh in the problems ((Ryj , R−j), q) and ((Rxi , R
y
j , R−i,j), q). Then again we find a new agent h′ with

Rh′ /∈ R̂, etc.

Because the set of agents is finite, continuing along the lines of Steps 1 and 2 will ultimately

lead to a contradiction.

The proof that for all N ′ ∈ N and (R, q) ∈
⋃
N ′∈N RN

′ ×Q, ϕ(R, q) = DA�(R, q) is similar to

the proof of Lemma 4 (which only uses strategy-proofness).
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Supplementary Appendix (not intended for publication)

D Discussion of Kojima and Manea (2010)

We presented two characterizations of the class of DA-mechanisms with responsive priorities, i.e.,

any of these mechanisms determines the outcome by solely using the priority orderings over in-

dividual agents (see Remark 1). In contrast, Kojima and Manea (2010) characterize the class

of DA-mechanisms with so-called acceptant substitutable priorities: a larger class of mechanisms

than the class of responsive DA-mechanisms that is based on priorities that are determined by a

choice function that reflects substitutability in preferences over sets of agents (see also Hatfield and

Milgrom, 2005).

Formally, Kojima and Manea (2010) define a priority for a type x ∈ O with capacity qx as a

(choice) correspondence Cqx : 2N → 2N satisfying for all M ⊆ N , Cqx(M) ⊆ M and |Cqx(M)| ≤
qx. Cqx is substitutable if for all M ′ ⊆ M ⊆ N , Cqx(M) ∩M ′ ⊆ Cqx(M ′). Cqx is acceptant if

for all M ⊆ N , |Cqx(M)| = min{qx, |M |}. Clearly, taking a linear order �x over agents and

defining Cqx by choosing the min{qx, |M |} best agents in M according to �x defines an acceptant

substitutable priority. This particular class of priorities coincides with the class of (acceptant)

responsive priorities employed in this paper (see Remark 1). Note that if qx = 1, then the class of

acceptant substitutable priorities coincides with our class of (acceptant) responsive priorities.

Since in our model resources can change, acceptant substitutable priorities for a type x ∈ O in

our model are modeled by a profile Cx = (Cqx)1≤qx≤q̄x . We refer to Kojima and Manea (2010) for

the definition of the DA-mechanism based on a acceptant substitutable priority structure—with

our extended notion of acceptant substitutable priorities it is straightforward how this definition

extends to our setup which allows for changing capacities and agents.13

Non-wastefulness as used by Kojima and Manea (2010)14 implies weak non-wastefulness,

and individual rationality. Note that Kojima and Manea’s (2010) non-wastefulness condition

is equivalent to individual rationality and non-wastefulness. Furthermore, non-wastefulness is

equivalent to the absence of agent-object pairs (i, x) ∈ N ∪ {∅} such that x Pi ϕi(R, q) and

(s1) |{j ∈ N : ϕj(R, q) = x}| < qx. Thus, non-wastefulness already incorporates an important part

of stability. Note that non-wastefulness already eliminates priority mechanisms and linear program-

ming mechanisms (these mechanisms do satisfy weak non-wastefulness, but not non-wastefulness).

In the characterizations obtained by Kojima and Manea (2010), next to non-wastefulness, two

monotonicity properties are employed: individually rational (IR) monotonicity and weak Maskin

13Notice that any acceptant priority structure satisfies the law of demand : for all x ∈ O and all M ′ ⊆ N ′ ⊆
N , |Cx(M ′)| ≤ |Cx(N ′)|. Hence, by Hatfield and Milgrom (2005, Theorem 11), all acceptant substitutable DA-
mechanisms satisfy strategy-proofness.

14Kojima and Manea (2010) Non-Wastefulness: For all (R, q) ∈ RN ×Q, all x ∈ O+(q)∪{∅} with |{j ∈ N :
ϕj(R, q) = x}| < qx, and all i ∈ N , ϕi(R, q) Ri x.
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monotonicity. We first define both monotonicity properties (using the equivalent “unilateral” def-

initions).15

Given i ∈ N and Ri ∈ R, a strategy R̄i ∈ R is an individually rational (IR) monotonic

transformation of Ri at ϕi(R, q) if for all x ∈ O, x P̄i ϕi(R, q) and x P̄i ∅ imply x Pi ϕi(R, q).

Individually Rational (IR) Monotonicity: For all (R, q) ∈ RN×Q, all i ∈ N , and all R̄i ∈ Ri,
if R̄i is an IR monotonic transformation of Ri at ϕi(R, q) and R̄ = (R̄i, R−i), then for all j ∈ N ,

ϕj(R̄, q) R̄j ϕj(R, q).

Given i ∈ N and Ri ∈ R, a strategy R̄i ∈ R is a monotonic transformation of Ri at ϕi(R, q) if

for all x ∈ O ∪ {∅}, x P̄i ϕi(R, q) implies x Pi ϕi(R, q).

Weak Maskin Monotonicity: For all (R, q) ∈ RN × Q, all i ∈ N , and all R̄i ∈ Ri, if R̄i

is a Maskin monotonic transformation of Ri at ϕi(R, q) and R̄ = (R̄i, R−i), then for all j ∈ N ,

ϕj(R̄, q) R̄j ϕj(R, q).

By Kojima and Manea (2010, Theorem 1) all DA-mechanisms with acceptant substitutable

priorities satisfy non-wastefulness and individually rational monotonicity. It is easily seen that the

class of priority mechanisms satisfies neither non-wastefulness nor individually rational monotonic-

ity. The same is true for the class of linear programming mechanisms.

By Kojima and Manea (2010, Theorem 2) all DA-mechanisms with acceptant substitutable

priorities satisfy non-wastefulness, population monotonicity, and weak Maskin monotonicity. It is

easily seen that the class of priority mechanisms satisfies neither non-wastefulness nor weak Maskin

monotonicity. The same is true for the class of linear programming mechanisms.

Our characterizations of responsive DA-mechanisms are based on simple and intuitive properties

except for strategy-proofness (and again, this property makes the difference). In the characteri-

zations of Kojima and Manea (2010) relatively stronger axioms are used and in each of their

characterizations, both the classes of priority mechanisms and linear programming mechanisms

violate at least two properties. Our results further support the use of responsive DA-mechanism as

a practical solution in real-life matching markets where incentive compatibility is important.

Next, we present an example of an acceptant substitutable priority that is not responsive.

Example 1. Let N = {s1, s2, j1, j2} be four economists looking for a new academic position.

Furthermore, s1, s2 are seniors with specializations 1 or 2 and j1, j2 are juniors with specializations

1 or 2. The intuition behind the priorities that we define is the following. An economics department

z has the following preferences for hiring. If only one economist can be hired the priority ranking

for hiring is s1 �z s2 �z j1 �z j2. However, if two positions can be filled, the department always

would like to fill both positions. So, q̄z = 2. Furthermore, they would like to hire the two seniors;

15It can be shown that either of the two monotonicity properties implies truncation invariance.
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but if only one senior si can be hired, then they are interested in also hiring the junior ji in the

same field. To be more specific, we assume that the department’s priority ranking for hiring two

economists is {s1, s2} �z {s1, j1} �z {s2, j2} �z {s1, j2} �z {s2, j1} �z {j1, j2}.
Note that the department loosely speaking has lexicographic preferences. Priorities Cqz based on

these preferences work as follows. For qz = 2 (the case qz = 1 is obvious) it follows that

Cqz(M) =


M if |M | ≤ 2,

{s1, s2} if {s1, s2}  M,

{si, ji} if {si, ji}  M, i ∈ {1, 2}.

It is easily verified that Cz = (Cqz)1≤qz≤2 is an acceptant and substitutable priority. Since

Cqz=2({s1, j1, j2}) = {s1, j1} and Cqz=2({s2, j1, j2}) = {s2, j2}, Cqz=2 is not responsive. �

E Independence

Note that below any mechanism satisfying weak non-wastefulness also satisfies non-wastefulness and

weak non-wastefulness may be replaced by non-wastefulness without altering the independence of

the axioms in any of our characterizations.

E.1 Independence of Properties in Theorem 1

The following example shows that on the domain of all problems, two-agent consistent conflict

resolution is independent from all other properties in Theorem 1.

Example 2. The following mechanism f , which is not a responsive DA-mechanism, satisfies un-

available type invariance, individual rationality, weak non-wastefulness, truncation invariance, and

strategy-proofness. Let N = {1, 2, 3}, O = {x, y}, and q̄x = 2 and q̄y = 1. Furthermore,

�x: 1 2 3, �′x: 1 3 2, and �y: 1 2 3. Let �= (�x,�y) and �′= (�′x,�y). Then, for each

problem (R, q) ∈ RN ×Q,

f(R, q) =

{
DA�

′
(R, q) if qx = 2 and x is agent 1’s favorite object in O+(q) and

DA�(R, q) otherwise.

It is easy to see that f satisfies unavailable type invariance, individual rationality, weak non-

wastefulness, truncation invariance, and strategy-proofness.

Not two-agent consistent conflict resolving: In Example 2, let R ∈ RN be such that yP1xP1∅
and R2 = R3 = Rx. Let q ∈ Q be such that qx = 2 and qy = 0. Then ϕ2(R, q) = ∅ and ϕ3(R, q) = x

whereas ϕ2(R, 1xy) = x and ϕ3(R, 1xy) = ∅.

In the following we consider the house allocation model, i.e., for all x ∈ O, qx = 1. Therefore,

instead of denoting capacity vectors, we simply denote the set of available real types, e.g., for

O′ ⊆ O, O′ 6= ∅, (R,O′) denotes a problem where one copy of each type in O′ is available.
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For any strict order π of agents in N , we denote the corresponding serial dictatorship mechanism

by fπ; for example, if π : 1 2 . . . (n − 1) n, then fπ works as follows: for each problem (R,O′),

first agent 1 chooses his preferred object in O′, then agent 2 chooses his preferred object from the

remaining objects O′ \ {fπ1 (R,O′)}, etc. Note that for each strict order π of N , fπ = DA�
π

where

�π equals the priority order where for all x ∈ O, �πx= π. Thus, each serial dictatorship mechanism

fπ satisfies unavailable type invariance, individual rationality, weak non-wastefulness, two-agent

consistent conflict resolution, truncation invariance, and strategy-proofness.

The following examples establish the independence of the properties (properties not mentioned

in the examples follow easily).

Not unavailable type invariant: Let n ≥ 3 and π : 1 2 3 . . . (n−1) n and π′ : 1 n (n−1) . . . 3 2.

Then, for each problem (R,O′),

ϕ(R,O′) =

{
fπ(R,O′) if A(R1) = ∅ and

fπ
′
(R,O′) otherwise.

Not individually rational: Let π : 1 2 . . . (n − 1) n. For each Rn ∈ R, let R̂n be such that

A(R̂n) = O and R̂n|O = Rn|O. Then, for each problem (R,O′),

ϕ(R,O′) = fπ((R−n, R̂n), O′).

Not weakly non-wasteful: Fix an object y ∈ O and π : 1 2 . . . (n − 1) n. Then, for each

problem (R,O′),
ϕ(R,O′) = fπ(R,O′ \ {y}).

Not two-agent consistent conflict resolving: Let π and π′ be two distinct strict orders of

agents in N . Then, for each problem (R,O′),

ϕ(R,O′) =

{
fπ(R,O′) if O′ = O and

fπ
′
(R,O′) otherwise.

Not truncation invariant: Let N = {1, 2, 3}, O = {x, y}, �x: 1 2 3, �′x: 2 1 3, and �y: 3 1 2.

Let �= (�x,�y) and �′= (�′x,�y). Then, for each problem (R,O′),

ϕ(R,O′) =

{
DA�(R,O′) if ∅ P3 x and x ∈ O′ and

DA�
′
(R,O′) otherwise.

Let R1 : x ∅ y, R2 : x ∅ y, R3 : y ∅ x, and R′3 : y x ∅. Let R = (R1, R2, R3) and R′ =

(R1, R2, R
′
3). Note that R3 is a truncation of R′3 and ϕ3(R, {x, y}) = y = ϕ3(R′, {x, y}). However,

ϕ1(R, {x, y}) = x and ϕ2(R′, {x, y}) = x; a contradiction of truncation invariance. Next, we show

two-agent consistent conflict resolution, and strategy-proofness for this mechanism.
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For two-agent consistent conflict resolution, consider (R,O′) and (R,O′′). Since the allocation

of y always follows the same priority order, two-agent consistent conflict resolution could only be

violated for x. But then x ∈ O′ and x ∈ O′′ and ϕ(R,O′) = ϕ(R,O′′).

For strategy-proofness, note that agents 1 and 2 cannot change the priority structure by re-

porting a false preference relation. Consider agent 3 and a problem (R,O′). Obviously, if |O′| = 1,

then agent 3 cannot profitably manipulate by reporting a false preference relation. Let O′ = {x, y}.
Now if agent 3’s first choice is y or ∅ (or agent 3 receives his first choice), then agent 3 receives his

first choice under (R,O′) and agent 3 cannot profitably manipulate. Let agent 3’s first choice be x.

If R3 : x ∅ y and agent 3 does not receive his first choice, then ϕ3(R, {x, y}) = ∅ and agent 3

can only change the priority structure by reporting a preference relation R′3 with ∅ P ′3 x. But then

by individual rationality, ϕ3((R−3, R
′
3), {x, y}) 6= x and agent 3 cannot profitably manipulate by

reporting a false preference relation.

If R3 : x y ∅ and agent 3 does not receive his first choice, then ϕ3(R, {x, y}) = y. Now the

same argument as above establishes that agent 3 can never receive x by reporting a false preference

relation.

Not strategy-proof : Let � be a priority structure. Then, the responsive DA-mechanism based on

the object-optimal matching that is obtained by using Gale and Shapley’s (1962) object-proposing

deferred-acceptance mechanism satisfies all properties except strategy-proofness.

E.2 Independence of Properties in Theorem 4

In the following we consider the house allocation model, i.e., for all x ∈ O, qx = 1. Therefore,

instead of denoting capacity vectors, we simply denote the set of available real objects, e.g., for

O′ ⊆ O, O′ 6= ∅, (R,O′) denotes a problem where one copy of each type in O′ is available.

For any strict order π of agents in N , we denote the corresponding serial dictatorship mechanism

by fπ; for example, if π : 1 2 . . . (n−1) n, then fπ works as follows: for each problem (R,O′) such

that R ∈ RN ′ , first agent minN ′ chooses his preferred object in O′, then agent minN ′ \ {minN ′}
chooses his preferred object from the remaining objects O′ \ {fπ1 (R,O′)}, etc. Note that for each

strict order π of N , fπ = DA�
π

where �π equals the priority order where for all x ∈ O, �πx=

π. Thus, each serial dictatorship mechanism fπ satisfies unassigned type invariance, individual

rationality, weak non-wastefulness, weak consistency, truncation invariance, and strategy-proofness.

The following examples establish the independence of the properties (properties not mentioned

in the examples follow easily).

Not unassigned type invariant: Ehlers and Klaus (2007, Example 1) introduce a mechanism

that violates unassigned type invariance, but satisfies efficiency and consistency (and the other

properties of Theorem 4).
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Not individually rational: Let π : 1 2 . . . (n − 1) n. For each Rn ∈ R, let R̂n be such that

A(R̂n) = O and R̂n|O = Rn|O. Then, for each problem (R,O′) such that R ∈ RN ′ ,

ϕ(R,O′) =

{
fπ((R−n, R̂n), O′) if n ∈ N ′ and

fπ(R,O′) otherwise.

Not weakly non-wasteful: Fix an object y ∈ O and π : 1 2 . . . (n − 1) n. Then, for each

problem (R,O′) such that R ∈ RN ′ ,

ϕ(R,O′) = fπ(R,O′ \ {y}).

Not weakly consistent: Let π : 1 2 3 . . . (n− 1) n and π′ : 1 n (n− 1) . . . 3 2. Then, for each

problem (R,O′) such that R ∈ RN ′ ,

ϕ(R,O′) =

{
fπ(R,O′) if 1 ∈ N ′ and

fπ
′
(R,O′) otherwise.

Not strategy-proof : Let � be a priority structure. Then, the responsive DA-mechanism based on

the object-optimal matching that is obtained by using Gale and Shapley’s (1962) object-proposing

deferred-acceptance mechanism satisfies all properties except strategy-proofness.
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