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Abstract

A principal-agent model is considered in which the principal decides how much
private information to acquire before making an offer to the agent (e.g., an insurer
decides whether to gather information about the risk status of a potential client through
medical testing before offering the client a policy). I prove in a general environment
that there is a nontrivial set of parameters for which it is strictly suboptimal for
the principal to be completely informed, regardless of the continuation equilibrium
following any information acquisition choice. This result is robust to the notion that
an informed principal could select any desired equilibrium via persuasion over the
agent’s beliefs. The intuition is that to convince the agent that she is contracting
honestly given her private information, the principal may need to severely distort the
allocation. This distortion can be very costly ex ante. Choosing to be partially ignorant
frees the principal from these incentive constraints and partially mitigates the damage
to her ex ante payoff. I also determine in a quasilinear, three state case the optimal
information acquisition choice for the principal as a function of the parameters of the
model. In particular, I characterize when it is optimal to be fully ignorant of the
state, when partial ignorance is preferred and when the principal wants to know the
state precisely. Although a small literature has looked at the principal’s information
acquisition problem in specific environments or for restricted mechanisms, this paper is
the first to take a mechanism design approach to the problem in a general environment.
This generality is important since it allows the principal to make full strategic use of
any information she acquires. Outside of this literature, the principal is assumed
to have acquired information; this paper demonstrates that this assumption may be
undesirable.
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1 Introduction

The problem of a privately informed principal contracting with an agent is known to be

relevant to many real world situations, as noted by Akerlof [1], Myerson [15], Maskin and

Tirole [12, 13] and Segal and Whinston [20]. For example, an insurer may know more than

the client about the risks she faces, or a franchiser may have private access to data about

demand in the territory of a franchisee. As observed in this literature, a privately informed

principal’s payoff can be constrained by her need to convince the agent that she is contracting

honestly, which can require inefficient contracts (c.f. Akerlof [1] and Maskin and Tirole [13]).

This paper studies the advantages to the principal of bypassing these constraints by

making the strategic choice to be ignorant. We consider a standard principal-agent model

and extend it by allowing the principal to costlessly learn about the state before making

an offer to the agent.1 Importantly, we allow the principal to offer a menu of contracts

from which she chooses one to implement after the agent has accepted (à la Segal and

Whinston [20]).2 This approach favours the acquisition of information; by contrast, the

simpler alternative of the point-contact leaves the principal no discretion once a contract is

accepted and thus subjects her to the agent’s arbitrary off-path posterior beliefs which can

deter her from exploiting her private information. For example, very inefficient contracts can

be supported in equilibrium by punishing deviations from said contracts with agent’s beliefs

that put probability 1 on the worst possible state. Despite giving the principal full strategic

flexibility to exploit her information, we prove that there is a nontrivial set of parameters

such that it is strictly suboptimal for the principal to acquire full information. This holds

even if an informed principal can choose the continuation equilibrium she most desires.

In our framework, both the principal and the agent care about the state of the world and

all choices, including the information acquisition choice, are observable.3 For example, one

could have in mind the market for term-life insurance, where an insurance policy can either be

guaranteed renewable or renewable subject to requalification. In the latter, the period before

the renewal and the requalification process may allow the insurer to accumulate information

about the policy holder that the policy holder cannot access.4 After the insurance policy is

1We use the terminology of the literature by naming the actor that makes offers the principal while the
actor who responds the agent. The principal is labelled as such because she controls mechanism to be played
and the opposing party must accept this choice passively. A more informative, though less standard, label
for the agent may be the subordinate as used in Myerson [15].

2Menu contracts are fully general trading mechanisms due to the revelation principle.
3Formally, we study an adverse selection model with common values as in Maskin and Tirole [13]. We

relax the observability of the information choice in Section 6.
4The insurer employs a team of actuaries and underwriters that can make accurate predictions of mor-

tality (Black and Skipper, [4]); even if the policy holder has access to the same information, she lacks the
expertise to assess the net benefits of holding a policy.
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renewed, the discretion that an insurer typically has in adjusting premiums and approving

or denying claims (Macedo, [11]) indicates that the contract has features of a menu-contract.

Thus, contracts subject to requalification could correspond to the choice of the principal

to be privately informed. By contrast, a guaranteed renewable contract would take away

the insurer’s option to exploit any private information that it accumulates over the first

term of the contract. Hence it resembles, to some extent, the choice of the principal to be

strategically ignorant in our model.

Our first result, Theorem 1, proves under general conditions that there are always pref-

erences such that the distortions required to make the menu offer incentive compatible are

so severe that for nontrivial priors the principal finds it strictly suboptimal to be fully in-

formed, regardless of continuation equilibria following any information acquisition choice.5

This results holds despite the fact that information is free in our model and would thus hold

a fortiori under the more realistic assumption that it is costly to acquire information.

While the proof of this strategic ignorance result is technically complicated, the intuition

is straightforward. We choose preferences for the principal such that the difference in payoff

functions between two adjacent states is small. This creates an incentive for the principal to

lie in one of these states, requiring distortion in the menu-contract to maintain the princi-

pal’s incentive compatibility. The principal prefers to be uninformed in order to avoid this

distortion ex ante. For tractability, this theorem is based on a set of priors under which the

equilibrium payoff of the fully informed principal’s continuation game is uniquely the lower

bound equilibrium payoff of the game. Its formal proof and those of subsequent results are

presented in the Appendix.

We next ask the question of whether ignorance can be an optimal strategy when there

are other equilibria in the fully informed principal’s continuation game that deliver payoffs

greater than the lower bound. In the general case, only these lower bound payoffs can

be computed; to establish the entire set of expected equilibrium payoffs we specialize to

a quasilinear, binary state environment in Section 4. We go beyond Theorem 1 to prove

not only that the answer to this next question is yes, but that ignorance is optimal for

nontrivial set of parameters of the model even when the principal expects to attain her

highest ex ante payoff conditional on becoming informed. Thus, ignorance can be optimal

even when the principal has a nontrivial opportunity to choose which equilibrium is played, à

la Myerson [15]. Moreover, we prove that the restrictions on preferences needed for Theorem 1

to hold are compatible with quasilinearity, and provide more precise restrictions on the

5Our strategic ignorance result is not to be confused with Myerson’s [15] inscrutability principle. Myerson
notes that the principal can never be worse off by not revealing private information when offering her menu
of contracts (thus remaining inscrutable to the agents at this stage), whereas our result claims that foregoing
the acquisition of private information can strictly improve payoffs.
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preferences and priors for which the ignorance result holds.

In Section 5 we consider the three state case to examine the subtleties of the model when

the principal is no longer restricted to being either fully informed or completely uninformed.

We prove that complete ignorance is optimal for the principal in a nonempty open set of

priors for nontrivial preferences when there are three states of the world.6 More generally, we

characterize the optimal information acquisition choice depending on preferences and priors.

Finally, we show that when the information choice of the principal is not observed by

the agent, there is still a nontrivial set of parameters of the model under which ignorance is

chosen with positive probability in equilibrium.

1.1 Related Literature

The seminal work on the informed principal problem asks whether and how the principal

can exploit her informational asymmetry (Myerson [15]; Maskin and Tirole [12, 13]). These

papers endow the principal with information and do not consider her decision to acquire it.

Since, a handful of papers have looked at the principal’s information acquisition problem.

Nosal [17] and Crémer [6] study finite horizon principal-agent problems in which a principal

can acquire information before offering a contract. In both papers, the information acquired

by the principal becomes public before the contract is implemented; the principal therefore

does not face the same distortionary incentive compatibility constraints that drive our results.

Finkle [8] also studies the information acquisition decision of a principal. His principal

covertly acquires private information for a cost after a contract has been signed but before

the contract is implemented. Finkle considers only contracts that induce full information

acquisition. Our focus is different since we are concerned about how distortionary contracts

can be improved upon by acquiring less than perfect information.

A number of recent papers study the informed principal problem in other environments.

With multiple agents with stochastically dependant (privately known) types, Severinov [21]

provides a construction that allows a privately informed principal to extract all social sur-

plus. Thus, in this environment, the principal always wishes to obtain as much information

as possible. Mylovanov and Tröger [16] focus on a linear, independent private values envi-

ronment. In contrast to our common values environment, the principal can never lose by

having private information but Mylovanov and Tröger determine when the principal is not

strictly better off than when her information is public.

Particularly related to the current paper, Silvers [22], Kaya [10], Chade and Silvers [5],

6This result is nontrivial since there is always a nonempty open set of priors such that complete knowledge
is optimal for any preferences and there are always preferences such that complete knowledge is optimal for
all priors.
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and Beaudry [2] study the value of the principal’s private information in games with moral

hazard and identify parameters when the principal prefers to be ignorant. While we focus on

pure adverse selection and do not consider moral hazard, we provide a deeper consideration

of the incentives for a principal to acquire information. In each case, these authors restrict

the principal to offer only point-contracts to the agent, which leaves her no discretion once

a contract is accepted. In contrast we allow the principal to offer menu-contracts, which are

fully general trading mechanisms in our framework. By Myerson’s inscrutability principle,

menu-contracts allow the principal to reveal no information until the agent has accepted

the contract then reveal the state afterwards. This is more than a matter of technical

generality. Menu-contracts preserve the strategic nature of the informed principal problem

captured in the seminal work by Myerson [15] and Maskin and Tirole [12, 13], giving the

principal the best opportunity to capitalize on her informational advantage. Moreover, a

restriction to point-contracts can be used to exploit mistrust in the trading relationship

by using pessimistic posteriors to support very inefficient equilibria, thus increasing the

relative value of ignorance. Allowing the principal to offer menu-contracts eliminates these

mistrustful equilibria from the game.7

2 An Example

The following example illustrates the main results of this paper as well as demonstrates the

importance of considering fully general menu-contracts instead of simpler point-contracts.

Consider a car manufacturer (the principal) who is negotiating the sale of cars pro-

duced via a new production process to a dealership (the agent) who then resells the cars

to consumers. Suppose there is some uncertainty in the new production process about how

effectively paint can be applied to the cars: in state 1, the standard paint does not adhere

properly and requires an additive that is only effective with black paint; in state 2, the

standard paint can be applied successfully in the manufacturing process, allowing cars to be

painted in any colour. Using the additive raises the cost of painting each car and the lack

of variety reduces the demand for the car. Formally, in state i the cost to the manufacturer

of producing y units of the good is Ci(y) := ciy with 0 < c2 < c1 < 8; in state 1, the

downstream inverse demand for the car is P 1(y) := 8−y while in state 2 it is P 2(y) := 9−y.

7The importance of allowing more general mechanisms here is analogous to the work of Segal and
Whinston [20]. By generalizing offers in a family of bilateral contracting games to allow for menu contracts,
these authors are able to make robust predictions about the game in the sense that they must be satisfied
by all equilibria in all such games. Whether restricting the principal to point-contracts has bite depends on
the specific environment. In a separate note (Bedard [3]) we characterize moral hazard environments where
the principal can get strictly higher ex ante payoffs when allowed to use more general mechanisms.
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Thus, given contract (y, t), the payoff to the manufacturer in state i is V i(y, t) = t − ciy

while the payoff to the dealership is W i(y, t) = P i(y)y− t. Let π be the common prior belief

that the state of the world is 1.

Consider the case where the manufacturer is informed of the state of the world and

suppose the manufacturer can only offer a point-contract: a single pair (y, t). Further,

suppose that the dealership is highly mistrustful of the manufacturer and rejects any offer

that would give her negative payoff in at least one state of the world. Formally, she believes

the state is 1 with probability 1 for any offer (y, t) such that P 1(y)y − t < 0 and maintains

her prior belief π otherwise. The optimal equilibrium point-contract for the manufacturer

given these beliefs is
(
yPC , tPC

)
=
(
8−c1
2
,
(
8− 8−c1

2

)
8−c1
2

)
regardless of the state. Note that(

yPC , tPC
)

gives the dealership zero payoff in state 1 and strictly positive payoff in state 2.

The game where the manufacturer can offer point-contracts has other equilibria, some

of which are better for the her than the one described above. For example, there is an

equilibrium where the manufacturer offers
(
yLCS1 , tLCS1

)
:=
(
8−c1
2
,
(
8− 8−c1

2

)
8−c1
2

)
in state 1

and

(yLCS2 , tLCS2 ) := argmax
(y,t)

{
t− c2y : V 1(yLCS1 , tLCS1 ) ≥ V 1(y, t), P 2(y)y = t

}
(1)

in state 2. This is the least-cost separating equilibrium and is the best equilibrium for the

manufacturer when she can only offer point-contracts.

Now consider the case where the manufacturer can offer menu-contracts. A menu-contract

is a list of point-contracts offered to the retailer that gives the manufacturer the discretion

to choose which contract to implement after the retailer has accepted. Menu-contracts

guarantee that the manufacturer’s payoff is at least as high as in the least-cost separat-

ing equilibrium; in particular, menu-contracts allow us to get rid of equilibrium contracts

based on mistrust like (yPC , tPC). To see this, suppose the manufacturer offers the menu{(
yLCS1 , tLCS1

)
,
(
yLCS2 , tLCS2

)}
in both states the world. This menu is acceptable to the re-

tailer regardless of her belief : it gives her nonzero payoff in each state of the world, assuming

the manufacturer chooses optimally from the menu. Since we have imposed an incentive com-

patibility constraint for the manufacturer, this assumption is valid.8 Thus, the manufacturer

can always offer this menu-contract and obtain its payoff. It therefore provides a lower bound

on the payoff the manufacturer expects to earn when she is able to offer menu-contracts.

This menu-contract is called the RSW menu-contract. It is introduced by Maskin and Ti-

role [13, p11] and it plays a important role in our analysis below. We present its technical

definition and discuss its significance in Section 3.

We will now determine when the manufacturer prefers to learn the state of her production

8See problem (1).
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process and when she would rather be uninformed. Let c1 = 4 and c2 = 2.9. The uninformed

principal solves the problem

max
(y,t)
{t− (8π + 9(1− π))y − 4π − 2.9(1− π) | (8π + 9(1− π)− y)y − t ≥ 0}.

The value of this problem is (
4π + 6.9(1− π)

2

)2

. (2)

The informed manufacturer’s problem potentially has multiple equilibria depending on priors

which can give her higher payoffs than the RSW menu. Nevertheless, we will start with the

RSW lower bound menu. The RSW menu is given by {(2, 12), (3.05, 18.15)} and gives

expected payoff

4π + 9.3(1− π). (3)

Notice that yLCS2 is inefficient: marginal cost is greater than marginal revenue; because the

manufacturer’s incentive constraint is violated at the efficient state 2 production level, pro-

duction in this state must be increased so that the constraint just binds. State 1 production

is always efficient because the manufacturer will never want to pretend to be in state 1 when

it is state 2 (i.e. the downward incentive constraint for the manufacturer will never bind).

Expression (2) is strictly greater than (3) if and only if π < 0.82. So ignorance is preferred

when the manufacturer expects the RSW menu to be played in equilibrium as long as the

prior is below a cut-off value. This is because the inefficiency in the RSW menu occurs only

in state 2; the manufacturer has to expect that state 2 is sufficiency likely to occur to prefer

ignorance.

Depending on priors, other menu-contract equilibria can exist that give higher payoffs to

the informed manufacturer ex ante. In particular, in Section 4 we characterize the highest

payoff the informed manufacturer can expect. Although the details are beyond the scope of

this section, one can show that being ignorant of the state delivers strictly higher payoffs for

the manufacturer ex ante than any equilibrium menu-contract if and only if π ∈ (0.62, 0.82).

We have discussed why this interval has an upper cut-off. To understand the lower

bound on this interval consider that for low π the manufacturer can mitigate the inefficiency

in state 2. To see this, first notice that we can assume without loss of generality that the

manufacturer offers the same menu in both states of the world.9 This implies that dealership

evaluates the menu offer using her prior belief: i.e. she accepts the offer if and only if her

9This is due to Myerson’s [15] inscrutability principle.
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participation constraint is satisfied on average:

π[(8− y1)y1 − t1] + (1− π)[(9− y2)y2 − t2] ≥ 0. (4)

Now suppose we set y2 to be efficient and at the same time increase t1 and decrease t2 until

the manufacturer’s incentive constraint is just satisfied. When we do this, the first term of

(4) becomes negative but the second term becomes positive. For small enough π, (4) will be

satisfied and the dealership will accept the menu. Meanwhile, the manufacturer earns the

full expected trade surplus at this prior and therefore chooses to become informed. As π

increases, eventually full efficiency will not be attainable. In this example, when π = 0.62,

it is just low enough that the closest the manufacturer can get to the efficient y2 generates

ex ante payoffs that are equal to the uninformed manufacturer’s payoff.

Finally, in this example the highest payoff the informed manufacturer can achieve under

point-contracts is the RSW payoff, by definition the least cost separating equilibrium.10 For

π < 0.82, even this payoff is less than the uninformed equilibrium payoff (2). In contrast,

we can show that if c2 < 2.73 (with c1 = 4), there exists at least one menu-contract for any

prior such that it is better to be informed. Thus, if we were only to look at point-contracts

in this case (with c2 < 2.73 and low enough π) we would conclude that the principal has a

negative value of information whereas this value can be positive when menu-contracts are

allowed.

3 The Model and Suboptimality of Full Information

The state space is N = {1, . . . , n} for n < ∞. The game proceeds in four stages. First,

the principal makes an information acquisition choice: a partition of the state space. This

choice is observable and verifiable and the principal privately observes the partition cell to

which the state belongs. There is no cost associated with the information choice. Second,

she offers a menu of contracts. Third, the agent accepts or rejects the offer. Rejection leaves

all parties with zero payoff. Acceptance leads to the final stage where the principal chooses

a contract from the menu and said contract is implemented. The principal and agent can

commit to the menu-contract which the agent accepted.

A contract specifies an action-transfer pair (y, t) ∈ R2. In state i ∈ N , when contract (y, t)

is implemented, the principal earns payoff V i(y, t) and the agent earns payoff W i(y, t). We

follow the notational convention of Maskin and Tirole [13] by having superscripts on payoff

10It can be shown that no pooling equilibrium can ever be sustained: the state 1 manufacturer will always
wish to deviate.
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functions indicate the state. Both functions V i and W i are continuously differentiable and

concave in (y, t). Function V i is increasing in t and decreasing in y while W i is increasing

in y and decreasing in t. In addition, W i is increasing in state i for almost all (y, t). We

make no explicit assumptions about the principal’s preferences over states although item

(iii) in Assumption 1 below puts some structure over how the principal’s marginal rates of

substitution varies by state. Both parties are expected utility maximizers.

We adopt the following standard sorting assumption on preferences from Maskin and

Tirole [13]. Subscripts on payoff functions denote partial derivatives: V i
y (y, t) = ∂V i(y, t)/∂y,

V i
t (y, t) = ∂V i(y, t)/∂t with agent’s marginal payoffs defined analogously.

Assumption 1 (Sorting) (i) W i
y(y, t) ≥ 0 for all (y, t) ∈ R2 and there is an ε > 0 such

that V i
y (y, t) < −ε, V i

t (y, t) > ε, W i
t (y, t) < −ε for all i ∈ N and all (y, t) ∈ R2;

(ii) −W i
y(y, t)/W

i
t (y, t) → 0 as y → ∞ for all t ∈ R; and −W i

y(y, t)/W
i
t (y, t) → ∞ as

y → −∞ for all t ∈ R;

(iii) −V i
y (y, t)/V i

t (y, t) > −V j
y (y, t)/V j

t (y, t) for all i < j ∈ N and all (y, t) ∈ R2.

In this framework, the menu contracts described above are direct revelation mechanisms:

a list of n contracts {(yi, ti)}ni=1 such that the principal offers the menu-contract in stage two

of the game and chooses a contract from the menu to implement in stage four of the game.

Due to the revelation principle, menu-contracts are fully general trading mechanisms.

An important menu-contracts in the informed principal game is the RSW menu.11 Intro-

duced by Maskin and Tirole [13, p11], it generates the lower bound payoff for the informed

principal and it plays a large role in our analysis below. We now present its technical defi-

nition then provide intuition about why it is the principal’s lower bound payoff.

Definition 1 The RSW payoff for the principal in state j is the principal’s lower bound

payoff in that state. It is attained by solving the problem

V j
r := max

{(yk,tk)}k∈N
V j(yj, tj)

s.t. (RSW-IC[l,k]) V l(yl, tl) ≥ V l(yk, tk) for all l, k ∈ N ; and

(RSW-IR[k]) W k(yk, tk) ≥ 0 for all k ∈ N .

Denote by
(
yrj , t

r
j

)
the state j principal’s contract in her solution to this problem. Let

{(yrk, trk)}k∈N denote the menu such that each (yrk, t
r
k) solves the RSW problem for all k ∈ N .

11RSW is an acronym for Rothchild-Stiglitz-Wilson, a reference to the similar least cost separating con-
tracts developed in the insurance models of Rothschild and Stiglitz [18] and Wilson [24].
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The RSW problem generates lower bound payoffs for the principal in state j since the

agent will accept any RSW menu regardless of her belief about the state of the world.12 To

see this, note first that the RSW problem for the principal in state j specifies an entire menu:

a contract for each state k ∈ N . This menu must be incentive compatible in every state

k ∈ N , not just state j. Finally, this menu must guarantee the agent her reservation payoff

ex post in every state. Thus, the agent will always accept an RSW menu. The principal in

any state j ∈ N can always deviate to her RSW menu and get payoff V j
r .13

Theorem 1 Suppose Assumption 1 holds. Then, for any set of payoffs (W 1, . . . ,W n) for

the agent, there are payoffs functions (V 1, . . . , V n) for the principal and a nonempty open

set of priors such that for any priors in this set, the principal finds it strictly suboptimal

to be fully informed regardless of the continuation equilibria (in pure strategies) following

information acquisition.

The formal proof of this theorem and all subsequent results appear in Section A. To prove

this theorem, we restrict priors such that within the restricted set the equilibrium payoff of

the fully informed principal’s continuation game is uniquely the RSW payoff. That is, under

the set of priors referred to in the theorem, the principal’s payoff when fully informed is

unique and is her lower bound payoff for the fully informed continuation game. In the next

section we show that the strategic ignorance result holds when there are multiple equilibria

with payoffs that are greater than the RSW payoff for the principal in all states.

4 Strategic Ignorance Despite Multiple Equilibria

In this section we specialize to the quasilinear, binary state environment. Here, we are able

to characterize the entire set of equilibrium payoffs. We therefore go beyond Theorem 1 to

prove that ignorance can be optimal even when there exist equilibrium payoffs higher than

the RSW lower bound, and in particular that ignorance is optimal for nontrivial parameters

of the model even when the principal expects to attain her highest ex ante payoff conditional

on becoming informed. This is shown in Theorem 2. Thus ignorance can be optimal even

when principal can choose from among multiple equilibria, conditional on being informed,

via persuasion over the agent’s beliefs (à la Myerson [15]).

12In terms of Myerson [15], any feasible solution to the RSW problem is safe. The RSW menu for the
principal in state j is the best safe menu in state j.

13For further discussion of RSW menus and a general characterization of equilibrium menus in this
framework, see Maskin and Tirole [13]
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4.1 Preferences and Supplemental Assumptions

Let n = 2. Given contract (y, t), the principal gets payoff V i(y, t) = t− Ci(y) for i ∈ {1, 2}
and the agent gets payoff W i(y, t) = U i(y) − t. Let MCi := dCi/dy and MU i := dU i/dy

for all i ∈ {1, 2}. We will refer to Ci as the principal’s cost in state i and U i as the agent’s

revenue in state i.

We assume these payoff functions have the same properties as defined in the Introduction

and satisfy Assumption 1. We make the following further assumptions on the principal’s cost

function.

Assumption 2 For all states i ∈ {1, 2}: (i) Ci is strictly decreasing in i for all y 6= 0; and

(ii) dMCi(·)/dy is nondecreasing in i.

Item (i) says that the principal and the agent agree about which state is the good state.14

Item (ii) ensures that the RSW contract is unique and deterministic. For example, Ci(y) =

y2 − iy + 2− i satisfies all our assumptions for y > 0.

For n = 2 the principal is either fully informed or completely ignorant. If the principal

chooses not to learn the state, the offer in stage two is a single contract. Define π := π1 as

the probability that the state is 1. In this case, the contract is the solution to the uninformed

principal’s problem:

Vu(π) := max
(y,t)

{
t− πC1(y)− (1− π)C2(y) | πU1(y) + (1− π)U2(y)− t ≥ 0

}
. (5)

An equilibrium consists of an information acquisition choice (either ignorance or knowl-

edge) together with a contract for each known state and a list of accept/reject decisions from

the agent corresponding to any information choice and menu offered such that the informa-

tion strategy, the offer, and list of the agent’s decisions constitute a perfect Bayesian Nash

equilibrium.

Define

κ := sup
y
MC1(y)/MC2(y) > 1.

The parameter κ measures the severity of distortions needed in an informed principal’s menu

to maintain incentive compatibility as a function of preferences.

14This eases incentive compatibility requirements relative to the case where they disagree. We therefore
expect the results to carry over to the latter case.
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4.2 Ignorance and the Best Ex Ante Informed Payoff

The following problem delivers the highest equilibrium payoff the principal can expect ex

ante conditional on becoming informed. The ex ante optimal informed principal’s

problem is

V ∗(π) := max
{(yi,ti)}i∈{1,2}

∑
i∈{1,2}

πi
(
ti − Ci(yi)

)
(6)

s.t. (IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ {1, 2}

(IR)
∑
i∈{1,2}

πi
(
U i(yi)− ti

)
≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ {1, 2}.

The constraints NB[i] for i ∈ N are the non-blocking constraints. They state that the

informed principal cannot commit to a contract that gives her a payoff lower than her RSW

payoff in any state. Maskin and Tirole’s [13, p19] Theorem 1 proves that these constraints

form sufficient and necessary conditions for a menu-contract to be an equilibrium.

Next, we define an ordering for menus among the principal in different states. One menu

is superior to another if it delivers strictly higher payoff to the principal in at least one state

and at least as high a payoff in the other.

Definition 2 A menu {(yi, ti)}i∈N is superior to another menu {(y′i, t′i)}i∈{1,2} if ti −
Ci(yi) ≥ t′i − Ci(y′i) for all i ∈ {1, 2} and there exists j ∈ {1, 2} such that tj − Cj(yj) >

t′i − Cj(y′j).

Our main result of this section says that there exist preferences such that even when the

principal expects to earn V ∗ and that payoff is superior to her RSW payoff, she will still

wish to remain ignorant of the state for a nontrivial set of priors.

Theorem 2 Suppose Assumptions 1 and 2 hold. If κ is sufficiently close to 1, there exists

a nonempty, open interval of priors such that, for any priors in this interval, the principal

is uninformed regardless of the continuation equilibrium played following information acqui-

sition and there are multiple continuation equilibria following information acquisition that

are superior to the informed principal’s RSW lower bound.

In particular, for any preferences and priors π specified in the theorem, choosing to be

ignorant delivers strictly higher payoff than becoming informed and earning payoff V ∗(π).

To discuss the intuition of Theorem 2 we define the first best menu of contracts.
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Definition 3 Let action yEi be called efficient in state i ∈ {1, 2} if MC(yEi ) = MU(yEi ). A

menu is first best if it is efficient in both states. Define

V FB(π) := π
(
U1(yE1 )− C1(yE1 )

)
+ (1− π)

(
U2(yE2 )− C2(yE2 )

)
to be the value of the first best menu to the principal ex ante.

Figure 1 illustrates the following intuition behind Theorem 2. We show in Lemma 11 in

Section A.2 that when κ is close to 1, RSW-IC[1,2] binds and as a result yr2 > yE2 . The RSW

menu in the continuation game following full information acquisition is thus distorted away

from the first best. For low π (lower than πFB in Figure 1), the menu that solves problem (6)

can completely mitigate this inefficiency and the principal can attain the first best payoff ex

ante. As π increases, however, this become impossible to do and V ∗ eventually settles to the

RSW lower bound payoff Vr(π) := πV 1
r + (1− π)V 2

r . We label this point πr.

In Proposition 1 (to follow), we show that there exists preferences and π∗ ≤ 1 such that

Vu(π) > Vr(π) for all priors π ∈ (0, π∗): ignorance generates a higher payoff than the expected

RSW payoff for the principal. This can be seen in Figure 1. Further, in Proposition 2 we

show that that V ∗ is continuous and that there exists preferences such that πr < π∗. Thus,

Vu(π)−V ∗(π) < 0 for π ∈
(
0, πFB

]
and Vu(π)−V ∗(π) > 0 for π ∈ [πr, π∗). Since both Vu and

V ∗ are continuous, the intermediate value theorem states there must be some π′ ∈ (πFB, πr)

such that Vu(π
′) = V ∗(π′).15 Thus, for π ∈ (π′, πr), we have Vu(π) > V ∗(π) > Vr(π): the

statements of Theorem 2 hold.

Figure 1: This figure illustrates Theorem 2. Note the nonempty, open set of priors such that Vu(π) >

V ∗(π) > Vr(π).

The next proposition establishes the value of the ignorant principal’s problem (5) relative

15If there are multiple such π′, choose the largest.
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to the ex ante RSW payoff and characterizes this relative value in terms of preferences and

priors.

Proposition 1 Suppose Assumptions 1 and 2 hold. If κ is sufficiently close to 1 then

there exists π∗ ∈ (0, 1] such that for any priors π ∈ (0, π∗), Vu(π) > Vr(π): the principal

strictly prefers her ignorant payoff to her informed ex ante RSW payoff; if π ∈ (π∗, 1), then

Vu(π) < Vr(π). Moreover, there exists κ such that π∗ = 1 if κ < κ.

Figure 2 illustrates the following intuition behind Proposition 1. Figure 2(a) plots, in

(y, t)-space, the informed RSW solution when the informed principal is constrained by incen-

tive compatibility. It illustrates how the RSW contract entails inefficiently high y in state 2

and efficient y in state 1. To see why the RSW action is efficient in state 1, note that the prin-

cipal can offer the menu-contract
{(
yE, U(yE)

)
,
(
yE, U(yE)

)}
. It is straight forward to check

that this menu is ex post incentive compatible (i.e. satisfies RSW-IC[1,2] and RSW-IC[2,1])

and is individually rational for the agent in both states. Thus,
{(
yE, U(yE)

)
,
(
yE, U(yE)

)}
is an RSW menu for the principal in state 1. Since

(
yE, U(yE)

)
is a tangency point on the

agent’s indifference curve at her reservation utility, it is the unique state contract that gives

the state 1 principal her efficient payoff U1(yE) − C1(yE) and therefore the unique state 1

contract in the RSW menu. The state 2 contract in the RSW menu is then the least cost

separating equilibrium, as plotted in the figure. The Figure 2(b) plots the functions Vu and

Vr when κ is sufficiently close to 1 that the state 2 RSW contract is inefficient.

(a) V i indicates the RSW indifference curve for the
principal in state i.

(b) V E
2 := U2(yE2 ) − C2(yE2 ) is the value of the

efficient contract payoff to the principal in state 2.

Figure 2: Example of informed principal RSW solution and value function and uninfored value function

when the principal is constrained by incentive compatility

Notice that the state i RSW problem is independent of priors; this implies that, even as

the probability of state 2 approaches 1, the value of the RSW problem for the state 2 principal
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will be less than the value of the first-best menu. Meanwhile, the uninformed principal is

unburdened by incentive compatibility constraints and her ex post payoff approaches efficient

levels as π approach 0 and 1. Further, the uninformed value function is convex in π. Since

Vr is linear in π, these value functions must intersect at most twice as a function of π: once

at π = 1, since the state 1 contract is always efficient when the principal is informed, and

once at some π ≥ 0. Denote the first intersection as π increases from 0 to 1 by π∗. As

Proposition 1 asserts, π∗ > 0 for κ close enough to 1. For all priors π < π∗, the uninformed

principal’s payoff will be higher ex ante than the informed principal RSW payoff.

Our next proposition states that there exists preferences and priors such that the optimal

ex ante equilibrium payoff is achieved by being ignorant of the state, even when the principal

expects to attain V ∗ upon becoming informed.

Proposition 2 Suppose Assumptions 1 and 2 hold. If κ is sufficiently close to 1 then there

exists πr < π∗ such that for any priors π ∈ (πr, π∗), Vu(π) > V ∗(π) = Vr(π): the unique

ex ante optimal informed payoff is the RSW payoff and the uninformed principal’s payoff is

strictly larger.

Remark 1 While Propositions 1 and 2 may appear to be corollaries of Theorem 1, they are

making stronger statements than such a corollary could make. First, our assumptions on

preferences (i.e. that κ is sufficiently close to 1) restrict only the second order properties of

the payoff functions rather than the entire function as in Theorem 1. Moreover, Theorem 1

could not be specific about which priors admit ignorance as an optimal strategy whereas the

results in this section can.

The main task in the proof of Proposition 2 is to characterize the ex ante optimal informed

principal problem (6). This allows us to prove the existence of πr and, importantly, that it

is strictly less than 1. Further, we show that V ∗ is continuous.

The existence of πr is proved by demonstrating that for high enough π the state 2 RSW

contract cannot be altered at all without violating either the state 1 principal’s incentive

compatibility constraint or the agent’s individual rationality constraint. Thus, V ∗ must

equal the ex ante RSW payoff for such priors. To see this, note that to improve on the

RSW payoff we must reduce yr2 closer to its efficient level: since the principal gets all gains

from trade in the RSW payoff, the only way to increase her payoff is to increase the gains

from trade. Decreasing y2 requires that we deliver a higher payoff to the state 1 principal

to maintain incentive compatibility. Since yr1 is efficient, however, U1 is tangent to C1 at

(yr1, t
r
1). This implies that the agent’s payoff must be less than her reservation value in state

1. We can give the agent a payoff higher than her reservation value in state 2 as we move y2
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closer to yE2 to balance out this state 1 deficit ex ante; if π is too large, however, we cannot

give the agent a high enough surplus in state 2 to make up for the deficit in state 1 that is

required to maintain incentive compatibility. We label πr as the prior at which this point

is just hit as π increases from 0 to 1 and we note that πr < 1 since the state 1 indifference

curve is everywhere steeper than the state 2 indifference curve. Hence, for π ∈ [πr, 1), we

have V ∗(π) = Vr(π). Finally, we can appeal to Proposition 1 and choose κ close enough to

1 such that π∗ > πr. Then for π ∈ (πr, π∗), we have V ∗(π) = Vr(π) < Vu(π).

The results in this section have so far used the distortionary effects of the incentive

constraints conditional on the principal being informed as a sufficient condition for ignorance

of the state to be of strategic advantage. The final proposition of this section shows that

binding incentive constraints in the menu offered by the informed principal are also necessary.

Proposition 3 If RSW-IC[1,2] does not bind, then ignorance will never be chosen in equi-

librium. Moreover, the informed RSW problem generates the first best menu and the unique

equilibrium payoff for all priors.

5 Optimal Information Structure: Three States

In this section we consider the three state case to examine the subtleties of the model when

the principal no longer faces a binary choice of information acquisition. She can now choose

how informed or how ignorant she wishes to be. We show that complete ignorance of the state

is optimal for the principal in a nonempty open set of priors for nontrivial preferences. More

generally, we characterize optimal information acquisition choice depending on preferences

and priors. Further, we find that if the principal is exogenously restricted to choosing

between complete knowledge of the state or complete ignorance, there are preferences and a

nonempty open set of priors such that complete ignorance is preferred.

5.1 General Information Structures

An information choice by the principal consists of any partition of the set N . Let P be

the set of all partitions of N . We will refer to p ∈ P as an information acquisition option;

the ith cell of p is denoted pi and is referred to as an information set. Given information

acquisition option p, the state space becomes p in a new informed principal problem with

typical state pi. A choice of information option p generates payoff functions

Cpi(y) :=

(
1∑

j∈pi πj

)∑
j∈pi

πjC
j(y)
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Upi(y) :=

(
1∑

j∈pi πj

)∑
j∈pi

πjU
j(y)

for each information set pi ∈ p. Associated with each p ∈ P there is an RSW menu which

we denote the p-RSW menu.16

Our goal is to analyze the optimal information acquisition options in this environment.

As in the case of two states, we use the closeness of the relative marginal costs between states

to measure the severity of the distortions introduced by the incentive constraints. Since the

information acquisition choice is no longer binary, however, we require a second parameter.

The second measures the separateness of the relative marginal costs between states. Whereas

the first provided us with sufficient conditions for ignorance between two states, the second

will provide sufficient conditions for the principal to be informed of the two states. Define

the following

κSi := sup
y

MCi(y)

MC i+1(y)
; and (7)

κIi := inf
y>yEi

MCi(y)

MC i+1(y)
(8)

for all i ∈ N \ {n} where yEi satisfies MU i(yEi ) = MCi(yEi ).

5.2 Three states of the world

Our result in this section identifies sufficient conditions for certain information acquisition

strategies to be optimal. Figure 3, panels (a) to (c) indicate (the shaded areas) the priors

under which Proposition 4 parts (A) to (C) apply respectively in a 3 dimensional simplex.

Proposition 4 Suppose Assumptions 1 and 2 hold. Let ∆3
o := {π ∈ (0, 1)3|

∑
i πi = 1} be

the set of non-degenerate priors and p1 = {{1, 2} , {3}} , p2 = {{1} , {2, 3}} , p3 = {{1, 2, 3}} ,
p4 = {{1} , {2} , {3}} , and p5 = {{1, 3} , {2}} .

(A) There exists κ̄S1 > 1 and κI2 such that for κS1 < κ̄S1 and κI2 > κI2, there exists π̂ ∈ ∆3
o

such that for any

π ∈

π′ ∈ ∆3
π1 ∈ (π′1, 1),

π′1
π′1+π

′
2
∈
(

π̂1
π̂1+π̂2

, 1
)
,

π′2
π′2+π

′
3
∈
(

π̂2
π̂2+π̂3

, 1
)

π′1 + π′3 ∈ (π̂1 + π̂3, 1),
π′1

π′1+π
′
3
∈
(

π̂1
π̂1+π̂3

, 1
) 

the optimal information acquisition option is p1;

16See Section A.3 for a formal description of the p-RSW menu.
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(B) There exists κ̄S2 > 1 and κI1 such that for κS2 > κ̄S1 and κI1 < κI2, then there exists π̂ ∈ ∆3
o

such that for any

π ∈

π′ ∈ ∆3
π′2 ∈ (π̂2, 1),

π′2
π′2+π

′
3
∈
(

π̂2
π̂2+π̂3

, 1
)
,

π′1
π′1+π

′
2
∈
(

0, π̂1
π̂1+π̂2

)
,

π′1
π′1+π

′
3
∈
(

0, π̂1
π̂1+π̂3

) 
the optimal information acquisition option is p2; and

(C) There exists κS1 > 1 and κS2 > 1 such that if κS1 < κS1 and κS2 < κS2 , then there exists

π̂ ∈ ∆3
o such that for any

π ∈

{
π′ ∈ ∆3

π′1 + π′2 ∈ (π̂1 + π̂2, 1) , π′1 ∈ (π̂1, 1) ,
π′1

π′1+π
′
2
∈
(

π̂1
π̂1+π̂2

, 1
)
, π′1 ∈ (π̂1, 1) ,

π′1
π′1+π

′
3
∈
(

π̂1
π̂1+π̂3

, 1
) }

the optimal information acquisition option is p3.

(D) There exists κ̄I1 > 1 and κ̄I2 > 1 such that if κI1 > κ̄I1 and κI2 > κ̄I2 then the optimal

information acquisition option is p4. Moreover, there exists π̂ ∈ ∆3
o such that if π3 ∈

(π̂3, 1) then the optimal information acquisition option is p4.

Notice that information acquisition options p1, p2 and p5 are two-cell partitions. In the

proof of Proposition 4, we treat these as two state informed principal problems to which we

can apply Proposition 2 to compare their values to the fully ignorant information acquisition

strategy p3 and characterize the priors and preferences under which they are preferred to p3

or vice versa. This is straightforward for p1 and p2 – they induce preferences that conform

to Assumptions 1 and 2 – but to use Proposition 2 on p5 we must first ensure that the payoff

functions it generates conform to Assumptions 1 and 2. For parts (A) and (C) this is done

by restricting priors such that π1 is large relative to π3 so that event {1, 3} is analogous

to state 1 in Section 4 and for part (B) we restrict priors such that π1 is small relative to

π3 so that event {1, 3} is analogous to state 2. Comparing the values from these two-cell

partitions to the fully informed information acquisition strategy p4 and characterizing the

priors and preferences under which they are preferred to p4 or vice versa uses techniques

similar to those used to prove Theorem 1.

We have no theory to directly compare the value of the two-cell partitions to each other,

or to directly compare the fully informed payoff to the fully ignorant payoff. To characterize

the priors and preferences under which one is preferred to the other in each case, we use

indirect comparisons over which Proposition 2 can be used.
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(a) p1 optimal information acquisition
option (κS1 close to 1, κI2 large).

(b) p2 optimal information acquisition
option (κS2 close to 1, κI1 large).

(c) p3 optimal information acquisition
option (both κS1 and κS2 close to 1).

(d) Full ignorance preferred to full
knowledge in restricted game (κS1 close
to 1, κI2 large).

Figure 3: Proposition 4 and Corollary 1 are illustrated in this figure. The labels on the vertices indicate the
probability-one state. The dashed lines represent the restrictions on priors stipulated in the propositions.
Panels (a) to(c) demonstrate the priors under which Proposition 4 (A), (B), and (C) apply respectively.
Panel (d), indicate priors under which Corollary 1 applies if κS1 close to 1 and κI2 large.

Take for example item (A) of Proposition 4. We first note that in the continuation

game following information acquisition option p1 is a two state informed principal game

and the p1-RSW menu is first best, given the information acquisition option. Therefore,

by Proposition 3, the principal must prefer p1 to the fully ignorant option p3. Next we

characterize priors under which the p4-RSW payoff is the unique payoff following information

acquisition option p4 and the p4-RSW payoff is strictly lower than any p1 equilibrium payoff

using Proposition 2; this requires that π1 is sufficiently close to 1 and sufficiently larger than

π2 respectively.

The next two steps compare the value of choosing information acquisition strategy p1

to p2 and p5 indirectly by comparing the latter values to information acquisition option p3.

The p2-RSW payoff is the unique payoff following information acquisition option p2 and the

p2-RSW payoff is strictly lower than any p3 equilibrium payoff if π1 is sufficiently close to

1 and π2 sufficiently larger than π3. To use Proposition 2 to compare p5 to p3 we need to
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ensure that p5 conforms to Assumptions 1 and 2. This is so if π1 is sufficiently larger than π3.

Then, applying Proposition 2, the p5-RSW payoff is the unique payoff following information

acquisition option p5 and the p5-RSW payoff is strictly lower than the p3 payoff if π1 + π3 is

sufficiently close to 1.

Thus, we have developed a set of restriction on priors such that within this set of priors,

ex ante, the principal knows that if she chooses any information acquisition option other

than p1, she will attain her RSW payoff for that information acquisition option and this

payoff is necessarily less than the payoff to choosing information acquisition option p1. We

note that this intersection is open and nonempty, since any priors such that π1 is sufficiently

large (but less than 1) and π2 is sufficiently larger than π3 is in this intersection.

In the final result in this section, we present a corollary to Proposition 4 where we

consider an environment in which it is technologically infeasible for the principal to choose

any partition of N . In particular, we suppose that she is restricted to choosing either to

acquire full information or no information.

Corollary 1 Suppose the principal was restricted to choose between complete knowledge and

complete ignorance. If either κS1 or κS2 is close to 1, (so some ignorance is desired in the

unrestricted game) there is a nonempty set of priors for which the principal prefers complete

ignorance.

Figure 3, panel (d) indicate the priors under which Corollary 1 applies in a 3 dimensional

simplex if κS1 close to 1 and κI2 large.

6 Information Acquisition as Hidden Action

In this section we examine the case where the principal’s information acquisition decision is

her private information. The problem becomes one of an informed principal with three states

in which one of the states is endogenously chosen by the principal: the informed principal

in each of the two states and the uninformed state of the principal.

A menu-contract is a list {(y0, t0), (y1, t1), (y2, t2)} where state 0 is the uninformed state.

Let α ∈ [0, 1] denote the probability that the principal becomes informed. Thus, α is the

principal’s information acquisition strategy. Finally, define C0(y) := πC1(y) + (1− π)C2(y)

to be the expected cost of implementing effort y for the principal and U0(y) := πU1(y) +

(1− π)U2(y) to be the expected revenue of effort y for the agent.

Our first result shows that there is always an equilibrium where the principal is informed

with zero probability.

Lemma 3 There always exists an equilibrium with α = 0.
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On the other hand, we assert in our next proposition that a payoff equivalent equilibrium

exists in which the principal is uninformed with strictly positive probability if κ is close

enough to 1.

Proposition 5 Suppose Assumptions 1 and 2 hold. If κ is sufficiently close to 1, then

there exists a nonempty open interval of priors such that the principal remains ignorant with

positive probability.

As shown in the proof of Lemma 3, incentive compatibility ensures that the payoff to

the uninformed principal will never be larger than that of the informed principal in expec-

tation. To prove Proposition 5, we start with an equilibrium where the principal acquires

information with zero probability and construct a payoff equivalent equilibrium where she

acquires information with strictly positive probability. As long as κ is sufficiently small,

there is an interval of priors such that the contract is inefficient in at least one state. This

allows us to increase the agent’s payoff while maintaining the principal’s payoff, thus creat-

ing a surplus for the agent in this state. By choosing a sufficiently low but positive α, we

can leverage this surplus to increase the payoff to the uninformed principal sufficiently high

to make her indifferent between being informed and being ignorant while maintaining the

individual rationality constraint. The formal construction of the payoff equivalent contract

is demonstrated in the proof.

7 Conclusion

We have studied a principal-agent problem where the principal can decide how much pri-

vate information to (costlessly) acquire before offering a contract to an uninformed agent.

Importantly, the state is directly payoff relevant to both the principal and the agent. In

this setting we have found that the principal will not choose to be completely informed of

the state for some priors as long as her payoffs between at least two states of the world

are sufficiently close. Indeed, this result holds regardless of the continuation equilibrium

played following any information acquisition choice and is robust to the existence of multiple

equilibria in the informed principal continuation game. We show further, in a three state,

quasilinear environment, that the principal chooses to be completely ignorant of the state for

nontrivial parameters of the model. Notably, these results were obtained in a full mechanism

design framework: the principal was given full strategic flexibility to make use of whatever

information she decides to acquire.
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A Proofs

We assume that incentive compatibility constraints are still imposed at degenerate priors.

A.1 The Suboptimality of Full Information

Proof of Theorem 1 Before we prove Theorem 1, we first describe how Assumption 1

simplifies the computation of an RSW menu according to Proposition 2 in Maskin and

Tirole [13, p12].

Proposition 2, Maskin and Tirole [13] Suppose Assumption 1 holds. The RSW allocation

(within the class of deterministic solutions) is obtained by successively solving the following

programs:

max
(y1,t1)

V 1(y1, t1) (RSW1)

s.t. (RSW-IR[1]) W 1(y1, t1) = 0

and for all k = 2, . . . , n, given (y1, t1), . . . , (yk−1, tk−1)

max
(yk,tk)

V k(yk, tk) (RSWk)

s.t. (RSW-IC[k-1,k]) V k(yk−1, tk−1) ≥ V k−1(yk, tk); and

(RSW-IR[k]) W k(yk, tk) = 0

Further, yk−1 < yk and tk−1 < tk for all k = 2, . . . , n.

Remark 2 Note that, (i) the RSW individual rationality constraints in each state always

bind; (ii) of all the incentive compatibility constraints, only those of the form RSW-IC[j, j+1]

for all j ∈ {1, . . . , n− 1} can possibly bind; (iii) the constraint RSW-IC[j − 1, j] only shows

up in the RSW problem of the principal in state j; (iv) the choice variable in each state is

now a single contract rather than a full menu; and (v) (yrj , t
r
j) is strictly increasing in the

state j.

Let π ∈ ∆n :=
{
π̂ ∈ [0, 1]n :

∑
i∈N π̂i = 1

}
be the common prior belief over the state

space N . We begin by defining two information acquisition options for the principal (one

partially ignorant, one fully informed) and their payoffs. Choose any i ∈ N and consider:

(a) FI: The full information option reveals the precise state before the contract is offered;

(b) PI: The partial ignorance option reveals all states precisely unless that state is either i

or i+ 1; if the state is either i or i+ 1, it is only revealed that the state is in {i, i+ 1}.
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We refer to the continuation game following the information acquisition option FI as the

original game and the continuation game following the information acquisition option PI as

the modified game. Our goal is to compare the ex ante RSW payoffs for each game.

Consider the principal in the interim stage who knows that the state is in {i, i+ 1}; call

her the {i, i+ 1}-state principal. Let

α =
πi

πi + πi+1

.

The {i, i+ 1}-state principal’s interim expected payoff from choosing FI is

V
{i,i+1}
FI (α) := αV i

r + (1− α)V i+1
r .

Consider the modified game that treats {i, i + 1} as a single state: the state space is

N̂ = {1, . . . , i− 1, {i, i+ 1}, i+ 2, . . . , n}, the principal has payoff V j(y, t) and the agent

has payoff W j(y, t) in all states j = 1, . . . , i − 1, i + 2, . . . , n and payoffs V {i,i+1}(y, t) :=

αV i(y, t) + (1− α)V i+1(y, t) and W {i,i+1}(y, t) := αW i(y, t) + (1− α)W i+1(y, t) respectively

in state {i, i+ 1}, given contract (y, t).

The following lemma establishes the state {i, i+ 1} RSW problem for the principal who

chooses PI.

Lemma 4 The interim expected payoff for the principal from playing PI is represented by

the problem

V i,i+1
PI (α) := max

(y,t)
αV i(y, t) + (1− α)V i+1(y, t) (9)

s.t αW i(y, t) + (1− α)W i+1(y, t) = 0

V i−1(yri−1, t
r
i−1) ≥ V i−1(y, t).

Proof The result follows from Proposition 2 of Maskin and Tirole [13] if we can show that

the modified game with state space N̂ = {1, . . . , {i, i + 1}, . . . , n} satisfies the associated

Sorting Assumption 1. In the modified game, we treat the combined states {i, i + 1} as a

single state.

By inspection, items (i) and (ii) of Sorting Assumption 1 are satisfied in the modified

game. For item (iii) we need to show that −V i+2
y

V i+2
t

< −αV i
y+(1−α)V i+1

y

αV i
t +(1−α)V i+1

t

< −V i−1
y

V i−1
t

.17 Recall that

Vt > 0 and Vy < 0. Assumption 1 for the original game has

−
V i
y

V i
t

> −
V i+1
y

V i+1
t

⇔ −V i
yV

i+1
t > −V i+1

y V i
t . (10)

17Recall that the subscripts on the payoff functions indicate partial derivatives.
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Then

−
αV i

y + (1− α)V i+1
y

αV i
t + (1− α)V i+1

t

=−
αV i

y + (1− α)V i+1
y

αV i
t + (1− α)V i+1

t

· V
i+1
t

V i+1
t

>
−αV i+1

y V i
t − (1− α)V i+1

y V i+1
t

αV i
t + (1− α)V i+1

t

· 1

V i+1
t

=−
V i+1
y

V i+1
t

> −
V i+2
y

V i+2
t

(11)

where the first inequality follows from inequality (10) and the second results from the Sorting

Assumption 1. And, by a symmetric argument −αV i
y+(1−α)V i+1

y

αV i
t +(1−α)V i+1

t

< −V i−1
y

V i−1
t

as needed.

Denote by (y(α), t(α)) the solution to this problem. The following four lemmas charac-

terize V
{i,i+1}
PI and bound it from below.

Lemma 5 V
{i,i+1}
PI (1) = V i

r .

Proof By Proposition 2 of Maskin and Tirole [13],

V i
r = max

(yi,ti)

{
V i(yi, ti) : V i−1(yri−1, t

r
i−1) ≥ V i−1(yi, ti) and W i(yi, ti) = 0

}
.

Problem (9) at α = 1 is

V
{i,i+1}
PI (1) = max

(y,t)

{
V i(y, t) : V i−1(yri−1, t

r
i−1) ≥ V i(y, t) and W i(y, t) = 0

}
due to the previous lemma. These problems are equivalent.

Lemma 6 The payoff to the information acquisition option PI can be expressed as

V i,i+1
PI (α) = V i

r −
∫ 1

α

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da.

Proof Consider the optimization problem (9). By the integral form of the envelope theorem

(Milgrom and Segal, Corollary 5, [14]), its value is

V
{i,i+1}
PI (α) = V i+1(y(0), t(0)) +

∫ α

0

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da (12)

+

∫ α

0

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da
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where λ is the multiplier on the first constraint. Simple algebra on equation (12) shows that

V
{i,i+1}
PI (α) = V i+1(y(0), t(0)) +

∫ α

0

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da (13)

+

∫ 1

0

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da.

By Lemma 5 we can plug V i
r in for V

{i,i+1}
PI (1) in equation (13) evaluated at α = 1 and

rearrange to get∫ 1

0

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da = (14)

V i
r − V i+1(y(0), t(0))−

∫ 1

0

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da

Now plug (14) into (13) to get

V
{i,i+1}
PI (α) = V i

r −
∫ 1

α

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a))

)
da.

as needed.

Lemma 7 Let V denote the set of payoff functions for the principal that satisfy all our

assumptions with typical element V = (V 1, . . . , V n). For any V ∈ V , define

M(α;V ) :=
−V {i,i+1}

t (y(α), t(α))
[
V i
y (y(α),t(α))

V i
t (y(α),t(α))

− V i−1
y (y(α),t(α))

V i−1
t (y(α),t(α))

]
−V i−1

y (y(α),t(α))

V i−1
t (y(α),t(α))

W
{i,i+1}
t (y(α), t(α)) +W

{i,i+1}
y (y(α), t(α))

,

M(V ) := min
α∈[0,1]

M(α;V ).

Choose small δ > 0 such that V̄ := {V ∈ V : M(V ) > δ} 6= ∅. Then for all V ∈ V̄ ,

λ(α) > δ for any α ∈ [0, 1].

Proof We claim that M(α;V ) is well defined and strictly positive for all α and V . To

see this, note first that by the Sorting Assumption 1 the numerator in M(α;V ) is strictly
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negative for all α ∈ [0, 1] and V ∈ V . Define

Z(α;V ) = −
V i−1
y (y(α), t(α))

V i−1
t (y(α), t(α))

W
{i,i+1}
t (y(α), t(α)) +W {i,i+1}

y (y(α), t(α))

To see that the Z(α;V ) < 0 for all α ∈ [0, 1] and all V ∈ V suppose by contradiction that

there is some α ∈ [0, 1] and some V ∈ V such that Z(α;V ) ≥ 0. Let µ be the Lagrange

multiplier on the second constraint in problem (9). To demonstrate a contradiction, consider

the Lagrangian for problem (9) evaluated at the maximum

L = V {i,i+1}(y(α), t(α))+λ(α)W {i,i+1}(y(α), t(α))+µ(α)
(
V i−1(yri−1, t

r
i−1)− V i−1(y(α), t(α))

)
and the following deviation from the optimal contract (y(α), t(α)): (ŷ, t̂) := (y(α)+δy, t(α)+ δt)

for small δy, δt > 0 such that V i−1
y (y(α), t(α))δy + V i−1

t (y(α), t(α))δt = 0.

By the Sorting Assumption 1, part (iii)

−
V i+1
y (y(α), t(α))

V i+1
t (y(α), t(α))

< −
V i
y (y(α), t(α))

V i
t (y(α), t(α))

< −
V i−1
y (y(α), t(α))

V i−1
t (y(α), t(α)

=
δt
δy

(15)

Cross multiplying and rearranging the (15) gives δyV
i
y (y(α), t(α)) + δtV

i
t (y(α), t(α)) > 0 and

δyV
i+1
y (y(α), t(α))+δtV

i+1
t (y(α), t(α)) > 0. Taking a convex combination of these expressions

gives (weighting by α and 1− α)

dV {i,i+1}(y(α), t(α)) := δyV
{i,i+1}
y (y(α), t(α)) + δtV

{i,i+1}
t (y(α), t(α)) > 0

Let L̂ denote the value of the Lagrangian at the deviation (ŷ, t̂). The net gain from the

deviation is

L̂ −L = dV {i,i+1}(y(α), t(α)) + λ(α)
[
δyW

{i,i+1}
y (y(α), t(α)) + δtW

{i,i+1}
t (y(α), t(α))

]
= dV {i,i+1}(y(α), t(α)) + δyλ(α)

[
W {i,i+1}
y (y(α), t(α)) +

δt
δy
·W {i,i+1}

t (y(α), t(α))

]
= dV {i,i+1}(y(α), t(α)) + δyλ(α)Z(α;V ) > 0

where the third equality follows from the equality in (15) and the definition of Z and the

inequality follows since we have assumed Z(α;V ) ≥ 0. If δy, δt are sufficiently small, the

deviation contract (ŷ, t̂) strictly increases the Lagrangian which contradicts the supposition

that (y(α), t(α)) is an optimum. Thus, Z(α;V ) < 0 so M(α;V ) > 0 for all α ∈ [0, 1] and

V ∈ V and so M(V ) > 0 for all V ∈ V . Thus, V̄ is a nonempty for sufficiently small δ > 0.
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To see that λ(α) > δ for any V ∈ V̄ , suppose there exists V ∈ V̄ such that λ(α) ≤ δ and

consider the same deviation proposed above. Choose any α ∈ [0, 1]. From equality in (15)

δyV
i
y (y(α), t(α)) + δtV

i
t (y(α), t(α)) = M(α;V ) · Z(α;V ) ·

[
−V

{i,i+1}
t (y(α), t(α))

δyV i
t (y(α), t(α))

]−1
= −δyV i

t (y(α), t(α)) ·M(α;V )
Z(α;V )

V
{i,i+1}
t (y(α), t(α))

and due to the first inequality and the equality in (15)

δyV
i+1
y (y(α), t(α)) + δtV

i+1
t (y(α), t(α)) > M(α;V ) · Z(α;V ) ·

[
−V

{i,i+1}
t (y(α), t(α))

δyV
i+1
t (y(α), t(α))

]−1
= −δyV i+1

t (y(α), t(α)) ·M(α;V )
Z(α;V )

V
{i,i+1}
t (y(α), t(α))

.

Summing the last two expressions (weighted by α and 1− α) we get

dV {i,i+1}(y(α), t(α)) > −δyM(α;V )Z(α;V )

= −M(α;V )
[
δtW

{i,i+1}
t (y(α), t(α)) + δyW

{i,i+1}
y (y(α), t(α))

]
> −M(V )

[
δtW

{i,i+1}
t (y(α), t(α)) + δyW

{i,i+1}
y (y(α), t(α))

]
> −δ

[
δtW

{i,i+1}
t (y(α), t(α)) + δyW

{i,i+1}
y (y(α), t(α))

]
.

The equality follows from the definition of Z and the equality in (15). The last two inequal-

ities follow since the term in the square brackets is negative.18 Using this last inequality, the

gain from deviation is

L̂ −L = dV {i,i+1}(y(α), t(α)) + λ(α)
[
δyW

{i,i+1}
y (y(α), t(α)) + δtW

{i,i+1}
t (y(α), t(α))

]
> − (δ − λ(α))

[
δyW

{i,i+1}
y (y(α), t(α)) + δtW

{i,i+1}
t (y(α), t(α))

]
≥ 0.

where the final inequality is due to our assumption that δ ≥ λ(α). If δy, δt are sufficiently

small, the deviation contract (ŷ, t̂) strictly increases the Lagrangian which contradicts the

supposition that (y(α), t(α)) is an optimum. Thus, λ(α) > δ for any V ∈ V̄ . Since α was

chosen arbitrarily, this holds for all α ∈ [0, 1].

18Otherwise, the deviation is strictly better for the {i, i+ 1} principal, at least a good for the agent and
maintains the incentive compatibility constraint, a contradiction that (y(α), t(α)) is an optimum.
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Lemma 8 There exists a ξ > 0 such that for any specification of preferences

W i(y(α), t(α))−W i+1(y(α), t(α)) < −ξ for any α ∈ [0, 1].

Proof Since 0 < yri < y(α) < yri+1 and 0 < tri < t(α) < tri+1 and we assume that W i is

strictly increasing in i19

W i(y(α), t(α))−W i+1(y(α), t(α)) ≤ max
(y,t)∈[yri ,yri+1]×[tri ,tri+1]

W i(y, t)−W i+1(y, t) < −ξ

as needed.

Lemma 9 For any V ∈ V̄ such that ‖V i − V i+1‖∞ < 1
2
δξ, we have for any α ∈ [0, 1),

V
{i,i+1}
PI (α) > V

{i,i+1}
FI (α).

Proof Using Lemma 6

V i,i+1
PI (α)− V i,i+1

FI (α) ≥ (1− α)
(
V i(yri+1, t

r
i+1)− V i+1(yri+1, t

r
i+1)
)

(16)

−
∫ 1

α

(
V i(y(a), t(a))− V i+1(y(a), t(a))

)
da

−
∫ 1

α

λ(a)
(
W i(y(a), t(a))−W i+1(y(a), t(a)

)
da

> −(1− α)δξ + (1− α)δξ = 0

where the first inequality due to the RSW-IC[i,i+1] constraint, the second holds due to

Lemmas 7 and 8 and since ‖V i − V i+1‖ < 1
2
δξ.

Lemma 10 Let V j
r (PI) denote the RSW payoff of the principal in state j 6= {i, i + 1} in

the continuation game following information acquisition option PI and let (yrj (PI), trj(PI))

be the associated RSW contract.20 Then V j
r (PI) ≥ V j

r for all j 6= {i, i+ 1}.

Proof Take j 6= {i, i+ 1}. For j < i, V j
r (PI) = V j

r due to item (iii) in Remark 2.

We claim that the incentive compatibility constraint in the state j ≥ i + 2 PI-RSW

problem is weaker than in the state j FI-RSW problem. The argument is illustrated in

Figure 4.

If j = i+ 2, then the incentive compatibility constraint is weaker. To see this, define the

indifference curve of any principal in state l ∈ N ∪ {i, i+ 1} at payoff K to be t̄l(y;K) such

that V l(y, t̄l(y;K)) = K for any y.21 Note that the slope of the curve t̄l(y;K) with respect

19The ordering of RSW actions and transfers is stated in Proposition 2 of Maskin and Tirole [13].
20We have suppressed the dependence of these objects on α for clarity.
21The existence of such a t̄ is guaranteed by the implicit function theorem.
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Figure 4: If the original game is incentive compatible, we can replace states i and i+ 1 with {i, i+ 1} and

maintain incentive compatibility.

to y is −V l
y (y, t)/V l

t (y, t) and t̄l(y;K) is strictly increasing in K since V l is strictly increasing

in t for all l ∈ N ∪ {i, i+ 1}.
By inequality (11) we have

t̄{i,i+1}(y;V {i,i+1}(yri+1, t
r
i+1))


= t̄i+1(y;V i+1

r ) if y = yri+1

> t̄i+1(y;V i+1
r ) if y > yri+1

< t̄i+1(y;V i+1
r ) if y < yri+1

(17)

Since yri+2 > yri+1, by the middle line of (17) we have

t̄{i,i+1}(yri+2;V
{i,i+1}(yri+1, t

r
i+1)) > t̄i+1(yri+2;V

i+1
r )) ≥ tri+2 (18)

where the last inequality follows since V i+1(yri+1, t
r
i+1) ≥ V i+1(yri+2, t

r
i+2) by the definition of

the RSW menu.

Finally, note that V {i,i+1}(α) ≥ V {i,i+1}(yri+1, t
r
i+1) since (yri+1, t

r
i+1) is a feasible solution

for problem (9) for all α ∈ (0, 1). Then, by (18) t̄{i,i+1}(yri+2;V
{i,i+1}(α)) > tri+2 so that the

principal in state {i, i+1} will not misrepresent the state as i+2 when the state i+2 principal

gets her RSW contract
(
yri+2, t

r
i+2

)
: V {i,i+1}(α) > αV i(yri+2, t

r
i+2) + (1− α)V i+1(yri+2, t

r
i+2).

Moreover, by the Sorting Assumption 1, for j = i + 2, . . . , n, if we assign to the state j

principal (yrj , t
r
j), the state {i, i+ 1} principal will not misrepresent the state as j.

Thus, if {(yrk, trk)}k∈N is an RSW menu for the continuation game following the full infor-

mation acquisition option, then
{

(yr1, t
r
1), . . . , (y

r
i−1, t

r
i−1), (y(α), t(α)), (yri+2, t

r
i+2), . . . , (y

r
n, t

r
n)
}

is a safe menu: it is incentive compatible and the agent will accept it regardless of her be-
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liefs.22 Therefore, the RSW payoff in each state for the modified game is at least as high as

that in the original game.

Maskin and Tirole [13] show that there is a nonempty set of priors such that the RSW

payoff
∑

j πjV
j
r is the unique equilibrium payoff when the principal is perfectly informed of

the state. Choose any prior π′ in this set; π′ determines some α′. Then, by Lemma 9, for

‖V i − V i+1‖∞ sufficiently small

∑
j

π′jV
j
r −

[ ∑
j 6=i,i+1

π′jV
j
r (PI) + (π′i + π′i+1)V

{i,i+1}
PI (α′)

]

≤
∑

j 6=i,i+1

π′jV
j
r + (π′i + π′i+1)V

{i,i+1}
FI (α′)−

[ ∑
j 6=i,i+1

π′jV
j
r + (π′i + π′i+1)V

{i,i+1}
PI (α′)

]
= (π′i + π′i+1)

(
V
{i,i+1}
PI (α′)− V {i,i+1}

FI (α′)
)
< 0.

The first term in both lines is the expected (unique) equilibrium payoff for the fully informed

principal. The second term is expected equilibrium payoff if she confounds states i and i+1.

The first inequality follows from Lemma 10, the second from Lemma 9.

A.2 Strategic Ignorance Despite Multiple Equilibria

Proof of Proposition 1

We begin by showing that if κ is small, the RSW-IC[1,2] binds.

Lemma 11 If κ is sufficiently close to 1, then tr1 − C1(yr1) = tr2 − C1(yr2).

Proof By way of contradiction, assume that tr1 − C1(yr1) > tr2 − C1(yr2). Let (ŷ1, t̂1) denote

the optimal contract for the principal in state 1 when she has convinced the agent that she

is in state 2:

(ŷ1, t̂1) = arg max
y1,t1
{t1 − C1(y1)|t1 = U2(y1)} (19)

This solution is uniquely characterized by MC1(ŷ1) = MU2(ŷ1) and t̂1 = U2(ŷ1. Further, the

state 1 principal’s RSW contract is characterized by MC1(yr1) = MU1(yr1) and tr1 = U1(yr1)

and since RSW-IC[1,2] does not bind, the state 2 principal’s RSW contract is characterized

by MC2(yr2) = MU2(yr2) and tr2 = U2(yr2). Now,

MC2(ŷ1) <MC1(ŷ1) = MU2(ŷ1) = MC1(ŷ1)

(
MC2(ŷ1)

MC2(ŷ1)

)
≤ κMC2(ŷ1).

22Recall that the solution to problem (9) requires that the state i− 1 principal not wish to misrepresent
the state as {i, i+ 1}.
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So, if κ is close enough to 1, since costs are convex, we can bound the difference between the

two maximizers for some small δa > 0: yr2 − ŷ1 < δa. In a similar way, we can show there

exists small δby > 0 such that ŷ1− yr1 < δb. Thus, we can choose κ sufficiently close to 1 such

that yr2 − y1r < δa + δb and hence C1(yr2)− C1(yr1) < δc := miny{U2(y)− U1(y)}. Then

0 > U2(yr2)− C1(yr2)− [U1(yr1)− C1(yr1)] = U2(yr2)− U1(yr1)−
[
C1(yr2)− C1(yr1)

]
> δc −

[
C1(yr2)− C1(yr1)

]
> 0

where the first inequality follows from the fact that we have assumed RSW-IC[1,2] does not

bind. This is a contradiction so we must have RSW-IC[1,2] bind for κ close to 1.

Now we characterize payoffs for the ignorant strategy and the informed strategy. Note

that the uninformed principal’s problem (5) can be expressed as Vu(π) = maxy π[U1(y) −
C1(y)] + (1− π)[U2(y)− C2(y)] since IG-IR constraint always binds.

Fix κ such that RSW-IC[1,2] binds. The first statement of Proposition 1 results from

the following properties of the payoff functions: (a) V 1
r = Vu(1) since the maximand and

constraints are identical in the RSW and uninformed problems at π = 1; (b) V r
2 < Vu(0) since

the state 2 RSW problem is more constrained (i.e. by RSW-IC[1,2]) than the uninformed

principal’s problem at π = 0 by our choice of κ; (c) Vu(π) is convex and downward sloping

in π since the maximand is linear in π; and (d) Vr(π) is linear and downward sloping in π.

Properties (c) and (d) imply that the equation Vu(π) = Vr(π) has at most two solution.

Clearly, one solution is always π = 1. Due to properties (b) - (d), a second solution π∗ > 0

exists and Vu(π) > Vr(π) for all π ∈ (0,min(1, π∗)).

The following lemma completes the proof of Proposition 1.

Lemma 12 Fix C1 and U i for i ∈ {1, 2}. There exists κ∗ such that if κ < κ∗, then Vu(π) >

Vr(π) for all π ∈ (0, 1).

Proof Define Si(y) := U i(y)−Ci(y). By the integral form of the envelope theorem (Milgrom

and Segal, [14]) Vu(π) = Vu(0) +
∫ π
0

(S1(y(π)) − S2(y(π)))dπ. As in Lemma 6 we can write

Vu(π) = V 1
r −

∫ 1

π
(S1(y(π))− S2(y(π)))dπ and so

Vu(π)− Vr(π) = (1− π)(V 1
r − V 2

r )−
∫ 1

π

(S1(y(π))− S2(y(π)))dπ. (20)
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Note that

S1(y(π))− S2(y(π)) < S1(yr1)− S2(yr1) (21)

= V 1
r − (U2(yr1)− C2(yr1))

= −(U2(yr1)− U1(yr1))− (C1(yr1)− C2(yr1))

≤ −(U2(yr1)− U1(yr1))−∆C(0).

for all π ∈ (0, 1) where ∆C(0) = C1(0)−C2(0) is the difference in fixed costs between states.

Further,

V 1
r − V 2

r = tr2 − C1(yr2)− (tr2 − C2(yr2)) (22)

= −(C1(yr2)− C2(yr2)))

= −
∫ yr2

0

[
MC1(y)−MC2(y)

]
dy − (C1(0)− C2(0))

≥ −(κ− 1)
[
C2(yr2)− C2(0)

]
−∆C(0)

The first equality follows from the fact that tr1 − C1(yr1) = tr2 − C1(yr1).

Now, applying inequalities (21) and (22) to equation (20) we have

Vu(π)− Vr(π) ≥ −(κ− 1)
[
C2(yr2)− C2(0)

]
−∆C(0) + U2(yr1)− U1(yr1) + ∆C(0)

= −(κ− 1)
[
C2(yr2)− C2(0)

]︸ ︷︷ ︸
A

+U2(yr1)− U1(yr1) (23)

The RSW actions yri for all i = 1, 2 will be the same for all κ: both are determined solely

by the cost function of the state 1 principal. The term A in (23) can be made arbitrarily small

by taking κ close to 1 since C2(yr2) < C1(yr2). Moreover, the term U2(yr1)− U1(yr1) > 0 and

does not change with κ. Therefore 3 for κ > 1 sufficiently close to 1, we have Vu(π) > Vr(π)

for all π ∈ (0, 1). Define κ := sup{κ|Vu(π) > Vr(π) for all π ∈ (0, 1)} > 1.

Proof of Proposition 2 We begin by proving three useful lemmas. Then, in Lemma 16,

we characterize V ∗. The important fact derived in this lemma is that the RSW payoff is the

unique equilibrium payoff for all π ∈ [πr, 1) for some πr < 1.

Lemma 13 If RSW-IC[i, i+1] is strictly binding, for any i = 1, . . . , n−1 (i.e. tri−Ci(yri ) =

tri+1−Ci(yri+1)) then the state i+1 RSW contract is inefficient: MCi+1(yri+1) > MU i+1(yri+1).

Proof Suppose MCi+1(yri+1) < MU i+1(yri+1) and consider the following deviation for type 2

in the RSW problem: y′ = yri+1+ε; and t′ ∈
(
tri+1 + εMC2(yri+1), t

r
i+1 + εmin

{
MU2(yri+1),MCi(yri+1)

})
.
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Then for sufficiently small ε > 0, this deviation is profitable and feasible:

t′ − Ci(y′) < tri+1 − Ci(yri+1) = tri − Ci(yri );

t′ − Ci+1(y′) > tri+1 − Ci+1(yri+1); and

U i+1(y′)− t′ > U i+1(yri+1)− tri+1.

If MCi+1(yri+1) = MU i+1(yri+1), then RSW-IC[i, i+ 1] is not strictly binding.

Lemma 14 If {(yi, ti)}∈N is an equilibrium of the informed principal problem, then y2 ≤ yr2.

Proof Suppose y2 > yr2. If RSW-IC[1,2] is not binding, then the first best contract is

possible and y2 = yr2; this is a contradiction.

If RSW-IC[1,2] is binding, first note that since C1(yr1) is tangent to U1(yr1) (so that

tr1 = U1(yr1)), any state 1 contract that satisfies NB1 must have tr1 ≥ U1(yr1). By Lemma 13,

MC2(yr2) > MU2(yr2). This implies, that since C2 is convex and increasing and U2 is concave

and increasing, if t2−C2(y2) ≥ V 1
r = U2(yr2)−C2(yr2) then t2 > U2(y2) for y2 > yr2. But this

violates the individual rationality constraint of the agent, a contradiction that y2 > yr2 can

occur in equilibrium.

Lemma 15 V ∗(π) is continuous.

Proof Consider the ex ante optimal informed principal’s problem (6) and its value function

V ∗(π). Let y = (y1, y2) and t = (t1, t2). We will show that the feasibility correspondence

Γ(π) =

(y, t) ∈ R4

∣∣∣∣∣
(IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ N
(IR)

∑
i πi (U

i(yi)− ti) ≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ N


is both upper and lower hemi-continuous in π.

Due to Lemma 14 and Assumption 2, without lost of generality we can restrict the

feasibility correspondence to

Γ′(π) =

(y, t) ∈ [0, yr2]
2 × [0, T ]2

∣∣∣∣∣
(IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ N
(IR)

∑
i πi (U

i(yi)− ti) ≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ N


for some large finite T . Then the graph of Γ′

Gr(Γ′) =
{

(π, {(yi, ti)}2i=1) ∈ [0, 1]× [0, yr2]
2 × [0, T ]2 : {(yi, ti)}2i=1 ∈ Γ′(π)

}
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is closed. Moreover, for any closed interval Π ⊆ [0, 1], Γ′(Π) is bounded. So by Theorem 3.4

in Stokey and Lucas [23], Γ′ is upper hemi-continuous.

As for lower-hemicontinuity, we first note, that of the five possible constraints, at most

four will bind. To see this, suppose there is (y, t) ∈ Γ(π) for some π such that all five

constraints bind. Then we have the following series of implications

(a) NB[i] binds for i = 1, 2 implies that state i contract is on the state i principal’s RSW
indifference curve;

(b) IC[1,2] binds implies that (y2, t2) is on the state 1 principal’s indifference;

(c) IC[21] binds implies that (y1, t1) is on the state 1 principal’s indifference;

(d) Items (b) and (c) imply that y1 = y2 =: y′ and t1 = t2 =: t′ since the indifference curves
cross only once due to item (a.iii) of Assumption 2

(e) Items (a), (b) and (d) imply that y′ = yr2, t
′ = U2(yr2) since yr2 is defined such that

U2(yr2)− C1(yr2) = V 1
r ;

(f) U1(y′)− t′ < 0 since U1(·) is tangent to C1(·) at y1r and therefore any y 6= yr1 results in
U1(y)− t < 0;

(g) Items (e) and (f) imply IR is violated: π(U1(y)−t)+(1−π)(U2(y)−t) = π(U1(y)−t) < 0.

The final item contradicts the assumption that (y, t) ∈ Γ(π). Thus, for any π at most

four constraints are active.

The following argument is due to Duggan and Kalandrakis [7]. Suppose four constraints

bind at π0 ∈ (0, 1). Take any (y0, t0) ∈ Γ(π0). Let fs(y, t, π) for s = 1, . . . , 4 denote the four

binding constraints. Then the Jacobian matrix of F (y, t, π) := (fs(y, t, π))4s=1 is invertible

at (y0, t0, π0). So, by the implicit function theorem there exists a continuous function h(π)

such that h(π0) = (y0, t0) and F (h(π), π) = 0 in an open neighbourhood around π0. Since

the remaining constraint is slack at π0, it is also slack in an open neighbourhood around

π0. Thus, there is an open neighbourhood of π0 such that h(π) ∈ Γ(π) for all π in this

neighbourhood and we conclude that Γ is lower hemi-continuous at π0.

If only d < 4 constraints bind at π0, then let fs(y, t, π), for s = 1, . . . , d denote the d

binding constraints and define gs(y, t, π), for s = d + 1, . . . , 4 as affine linear functions that

are constant in π, satisfy gs(y
0, t0, π0) = 0 for all s = d+ 1, . . . , 4, and have total derivative

D(y,t)gs(y, t, π) = vs such that the matrix((
D(y,t)fs(y

0, t0, π0)
)d
s=1

, (vs)
4
s=d+1

)
has full rank and is invertible. As above, we can apply the implicit function theorem to

conclude that Γ is lower hemi-continuous at π0.
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So by the Theorem of the Maximum (Stokey and Lucas [23, Theorem 3.6]), V ∗(π) is

continuous in π.

Lemma 16 If RSW-IC[1,2] binds, there are two cutoff points 0 < πFB < πr < 1 such that

V ∗(π) is the first best payoff if π ≤ πFB and the ex ante RSW payoff if π ≥ πr.

Proof Claim 1 If π is close enough to 1, V ∗(π) = Vr(π). This holds by Lemma 17 below:

i∗ = 1. �

Claim 2 If π is sufficiently small, then V ∗(π) = VFB(π). Recall that the superscript E

indicates the efficient action. To see that the first best solution is attainable for small π

set y∗i = yEi , set t∗2 such that t∗2 − C2(yE2 ) = V 2
r and set t∗1 sufficiently high such that

IC[1,2] is satisfied. To see that we can do this last step while satisfying the IR constraint,

note that, by Lemma 13, yE2 < yr2 which implies that t∗2 < tr2. Finally, since U2(yr2) = tr2,

Lemma 13 implies that U2(yE2 ) − t∗2 > 0. Thus, we can find small enough π such that

π(U1(yE1 )− t∗1) + (1− π)(U2(yE2 )− t∗2) = 0. �

Define πr := inf {π ∈ [0, 1] : V ∗(π) = Vr(π)}. This infimum is attained in [0, 1) due to

Claim 1 above and Proposition 4 of Maskin and Tirole [13] which says that the set of beliefs

relative to which the RSW payoff is the unique equilibrium payoff consists entirely of strictly

positive vectors. As a result, πr < 1 regardless of κ so [πr, 1) is always well defined and

nonempty. By definition, V ∗(π) = Vr(π) if and only if π ∈ [πr, 1).

Further, by assumption, RSW-IC[1,2] binds which implies, by Lemma 13, that the state

2 contract is inefficient. Thus, V FB(π) > Vr(π) for all π ∈ (0, 1). Given Claim 2, we must

have πr > 0; otherwise, V FB(π) and Vr(π) must coincide, which is a contradiction.

Define πFB := sup
{
π ∈ [0, 1] : V ∗(π) = V FB(π)

}
. This supremum is attained in (0, 1)

by Claim 2. By definition V ∗(π) = VFB(π) if and only if π ∈
(
0, πFB

]
. This point exists and

is strictly greater than 0 by Claim 3. Further, πFB < πr. To see this, suppose πFB ≥ πr.

Then there exists π̃ ∈ [πr, πFB]. But, by the definitions of πr, πFB this implies

V ∗(π̃) = VFB(π̃) = Vr(π̃) a contradiction, since by Lemma 13 the state 2 contract is ineffi-

cient. Thus, 0 < πFB < πr < 1. Figure 1 plots V ∗, Vu, Vr and V FB.

Since πr < 1, due to Proposition 1 (item (ii) of the second statement) there is κ close

enough to 1 such that πr < π∗ and for all π ∈ (πr, π∗) Proposition 2 holds.

Proof of Theorem 2 By Lemma 11 RSW-IC[1,2] binds since κ is assumed to be sufficiently

close to 1. Recall that for such κ, 0 < πFB < πr < π∗ ≤ 1 (see proof of Proposition 2).

Consider the following facts

(a) V ∗ and Vu are continuous: the former is proved in Lemma 16 (Claim 1), the latter is
immediate by inspection of problem (5);
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(b) V ∗(π) > Vu(π) for all π ∈
(
0, πFB

]
: this holds since Vu(π) cannot be efficient in both

states where as V ∗(π) is first best by definition in this domain;

(c) V ∗(π) < Vu(π) for all π ∈ [πr, π∗): established by Proposition 2;

(d) V ∗(π) > Vr(π) for all π ∈ (0, πr): by definition of πr in Lemma 16 (Claim 2).

Due to items (a) through (c), the intermediate value theorem guarantees the existence

of a π̂ ∈
(
πFB, πr

)
such that for all π ∈ (π̂, πr), Vu(π) > V ∗(π). This confirms the first

statement of Theorem 2. Since π̂ ∈ (0, πr), by item (d) we also have that V ∗(π) > Vr(π)

thus confirming the second statement of Theorem 2.

Proof of Proposition 3 When RSW-IC[1,2] does not bind, the RSW contract in both

states is efficient. To see this, recall that the state 1 contract is always efficient and note that,

according to Proposition 2 of Maskin and Tirole [13], the problem of the state 2 principal in

this case is max(y2,t2) {t2 − C2(y2) : U2(y2)− t2 = 0}. So Vu(0) = V 2
r and Vu(1) = V 1

r . Since

Vu is convex and Vr is linear (see the proof of Proposition 1, items (c) and (d)), Vu(π) < Vr(π)

for all π ∈ (0, 1).

A.3 Optimality of Complete Ignorance: Three States

Before proving the results of this section, we define the principal’s problems and strategies

relative to p. For this, we need some additional notation.

The RSW problem relative to information strategy p for principal in p-state i is to choose

{(yi, ti)}i∈I(p) to solve

max ti − Cpi(yi)

s.t. (p-RSW-IC[i, j]) tj − Cpj(yj) ≥ tk − Cpj(yk) for all j, k ∈ I(p); and

(p-RSW-IR[j]) Upj(yj) ≥ tj for all j ∈ I(p).

We will refer to this problem as the p-RSW problem for p-state i or the pi-RSW problem.

Let V pi
r (π; p) denote the pi-RSW given priors π.

Our first lemma in this section characterizes the priors under which the RSW payoff is

unique for the fully informed principal problem.

Lemma 17 Consider the problem of the fully informed principal when there are either two

or three states. Let E ⊂ N denote the set of states for which the RSW contracts are ef-

ficient. Define I := N/E to be the set of states with inefficient RSW contracts and let

i∗ = max {i ∈ E|i < min I}.
Then: (i) If I = ∅, the RSW payoff is the unique payoff for all priors; (ii) if |I| = 1,

then if πi∗ is sufficiently large, the RSW payoff is the unique equilibrium payoff; and (iii) if
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|I| = 2, then if π1 and π2/(π2 + π3) are sufficiently close to 1, the RSW payoff is the unique

equilibrium payoff. Moreover, all of these bounds on priors are strictly less than 1.

Proof First note that 1 ∈ {i ∈ E|i < min I} since state 1 is always efficient. Therefore, i∗

is always well defined.

If I = ∅, then all states are efficient and the RSW contract is first best (see Proposition 3).

The RSW payoff is therefore the unique payoff for all priors.

Now suppose I 6= ∅. By Theorem 1 in Maskin and Tirole [13] {ŷi, t̂i}i∈N is an equilibrium

menu if and only if it satisfies the following conditions
(IC[i, j]) ti − Ci(yi) ≥ tj − Cj(yj) for all i 6= j ∈ N
(IR)

∑
i πi (U

i(yi)− ti) ≥ 0

(NB[i]) ti − Ci(yi) ≥ V r
i for all i ∈ N.

Suppose there exists a menu {ŷi, t̂i}i∈N gives payoff strictly higher than the RSW menu

in equilibrium. For each i ∈ I, the action in the state i RSW contract is higher than the

efficient level (see Lemma 13). For all i ∈ I, define δi = U i(ŷi)− t̂i. This is the surplus given

to the agent in state i by the proposed menu.

If the proposed menu delivers strictly higher payoff than the RSW menu, there must exist

at least one i ∈ I such that δi > 0. To see this, suppose not: for all i ∈ I, U i (ŷi) − t̂i = 0.

Call this assumption (?). Note that for all k ∈ E, Ck is tangent to Uk at (yrk, t
r
k). This implies

that for all (y′k, t
′
k) such that t′k−Ck(y′k) > V r

k , Uk(y′k)− t′k < 0. This last implication, along

with (?) and the equilibrium condition IR implies that (ŷk, t̂k) = (yrk, t
r
k) for all k ∈ E. So,

we have that {ŷi, t̂i}i∈N satisfies IC[i, j] for all i, j ∈ N and U i (ŷi) − t̂i = 0 for all i ∈ N .

But the RSW menu is the best of all menus that satisfy these assumptions so that the menu

{ŷi, t̂i}i∈N cannot give a strictly higher payoff than the RSW menu.

Thus, there exist at least one state i ∈ I such that δi > 0. Note that this implies that

ŷi < yri by Lemma 13. For each i ∈ I, define δ̄i := max(yi,ti) {U i(yi)− ti|ti − Ci(yi) ≥ V i
r }.

So, δ̄i is the largest surplus we can assign to the state i agent for i ∈ I. Note that this

maximum is achieved at the efficient state i action along the state i RSW indifference curve.

Now consider two cases.

Case 1: |I| = 1. Then i∗+ 1 ∈ I by definition and δi∗+1 > 0. We claim that if the principal

receives her RSW contract in state i∗ she will have strict incentive to lie given state i∗ + 1

contract (ŷi∗+1, t̂i∗+1). To see this first note that, by Proposition 3, RSW-IC[i∗, i∗ + 1] must

bind: tri∗ − Ci∗(yri∗) = tri∗+1 − Ci∗(yri∗). Since MCi∗ > MCi∗+1 the indifference curves of the

principal in states i∗ and i∗+ 1 cross only once and the latter crosses the former from below.
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Consider the indifference curves that pass through the RSW contracts

V i∗

r + Ci∗(y)−
(
V i∗+1
r + Ci∗+1(y)

)
< 0 if y < yri∗+1

= 0 if y = yri∗+1

> 0 if y > yri∗+1

(24)

Note that

V i∗

r + Ci∗(ŷi∗+1)−
(
V i∗+1
r + Ci∗+1(ŷi∗+1)

)
≥ V i∗

r + Ci∗(ŷi∗+1)−
(
t̂i∗+1 − Ci∗+1(ŷi∗+1) + Ci∗+1(ŷi∗+1)

)
= V i∗

r −
(
t̂i∗+1 − Ci∗(ŷi∗+1)

)
(25)

where the inequality follows from the NB[i∗ + 1] condition. Since ŷi∗+1 < yri∗+1, by the first

line of expression (24) we have that 0 > V i∗
r + Ci∗(ŷi∗+1) −

(
V i∗+1
r + Ci∗+1(ŷi∗+1)

)
which,

given (25), implies that V i∗
r < t̂i∗+1 − Ci∗(ŷi∗+1).

Thus, given the state i∗ + 1 contract
(
ŷi∗+1, t̂i∗+1

)
, to satisfy incentive compatibility we

must give the state i∗ principal payoff that is strictly higher than her RSW payoff.

Since i∗ ∈ E, Ci∗ is tangent to U i∗ at the RSW contract; thus, any contract that increases

the payoff to the principal in this state necessarily assigns a strictly positive deficit to the

agent. Denote this deficit by δi∗ := t̂i∗ − U i∗ (ŷi∗) > 0.

Without loss of generality, set (ŷi, t̂i) = (yri , t
r
i ) for all i ∈ E/{i∗} and assume the resulting

contract is incentive compatible. Then, if πi∗ is close enough to 1∑
i

πi
(
U i(yi)− ti

)
=

∑
i∈E/{i∗}

πi
(
U i(ŷi)− t̂i

)
− πi∗δi∗ + πi∗+1δi∗+1

= −πi∗δi∗ + πi∗+1δi∗+1 ≤ −πi∗δi∗ + πi∗+1δ̄i∗+1 < 0

where the first equality follows since there is zero surplus for the agent in states E/{i∗}.
This contradicts the assumption that {ŷi, t̂i}i∈N is an equilibrium.

Case 2: |I| = 2. The state 2 and three contracts are inefficient. Then RSW-IC[1,2] and

RSW-IC[2,3] bind by Proposition 3. If δ2 > 0 or δ2 = 0 and δ3 > 0 then the argument in

Case 1 can be applied in much the same way; if π1 is sufficiently large, IR cannot hold and

{ŷi, t̂i}i∈N cannot be an equilibrium.

Now suppose that δ3 > 0 and δ2 < 0. Without loss of generality, set (ŷ1, t̂1) = (yr1, t
r
1).

As above, if the state 2 principal receives her RSW contract she will have a strict incentive

to lie given the state three contract (ŷ3, t̂3). Thus, the menu {ŷi, t̂i}i∈N must give the state 2

principal strictly higher payoff than her RSW contract. Define δ2 := −δ2 > 0. If π2/(π2+π3)
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is close enough to 1, then∑
i

πi
(
U i(yi)− ti

)
= π1

(
U1(ŷ1)− t̂1

)
− π2δ2 + π3δ3

= −π2δ2 + π3δ3 ≤ (π2 + π3)

[
− π2
π2 + π3

δ2 +
π3

π2 + π3
δ̄3

]
< 0

where the first equality follows since there is zero surplus for the agent in state 1. This

contradicts the assumption that {ŷi, t̂i}i∈N is an equilibrium.

Finally note that Maskin and Tirole [13, Proposition 4] asserts that the set of beliefs

relative to which the RSW payoff is unique consists of strictly positive vectors. Thus, the

bounds we have placed on priors in this lemma are strictly less than one.

Proof of Proposition 4 Note that α is used below to denote conditional priors. Be aware

that α is redefined in subsequent lemmas. Further, any priors (conditional or unconditional)

superscripted with r are meant to be analogous to those in Propositions 1 and 2.

This proof proceeds by applying Proposition 2 to the various subgames associated with

choosing different information acquisition options. Recall that in Proposition 2, as long as

κ < κ, π∗ = 1. To ease exposition, when we apply Proposition 2 we sacrifice its generality

(i.e. allowing the upper bound on priors to be less than 1) and simply assume all the the

starred priors (conditional or unconditional) are 1.

We first characterize priors such that p5 conforms to the Assumption 2.

Lemma 18 Let

C{1,3}(·) :=
π1

π1 + π3
C1(·) +

π3
π1 + π3

C3(·)

and define U{1,3} in the same way. There exists priors π̂ ∈ ∆3 such that for all

π1
π1 + π3

∈
[

π̂1
π̂1 + π̂3

, 1

)
Assumptions 1 and 2 are satisfied for the two state informed principal game with principal

payoff functions ordered (V {1,3}, V 2) = (t−C{1,3}, t−C2) and agent payoff functions ordered

(W {1,3},W 2) = (U{1,3} − t, U2 − t).

Proof We will prove that part (iii) from Assumption 1 holds. Parts (i) and (ii) of Assump-

tion 1 are immediate. Both parts of Assumption 2 are proved in a similar manner.

Let α := π1/(π1 + π3). By Assumption 1, there exists δ > 0 such that MC1(y)
MC2(y)

, MC2(y)
MC3(y)

>

δ + 1. Define

α̂ :=
κS2 − 1

δ(δ + 1) + κS2 − 1
< 1. (26)
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Then for all α ∈ [α̂, 1) we have

MC{1,3}(y)−MC2(y) = α
(
MC1(y)−MC2(y)

)
+ (1− α)

(
MC3(y)−MC2(y)

)
> MC3(y)

[
α

(
MC1(y)

MC3(y)
− MC2(y)

MC3(y)

)
+ (1− α)

(
1− κS2

)]
= MC3(y)

[
α

(
MC1(y)

MC2(y)
− 1

)
MC2(y)

MC3(y)
+ (1− α)

(
1− κS2

)]
> MC3(y)

[
αδ(δ + 1) + (1− α)(1− κS2 )

]
> 0

where the first inequality follows from the definition of κS2 in (7) and the second follows from

the definition of α̂. The lemma is proved.

(A) The proof of the statement is in the form of a series of claims, each describing conditions

on priors such that the principal prefers information acquisition strategy p1 to each of the

others. First, we prove that the state three RSW action is efficient given either information

acquisition strategy p1 or p4, under the assumptions of claim (A).

Lemma 19 There exists κI2 such that for all κI2 > κI2, the p4-RSW and p1-RSW state 3

actions are efficient.

Proof We first prove the statement for the p4-RSW state 3 action. Let V 3
r (π; p) denote the

state three p-RSW payoff. Note that

V 3
r (π; p4) + C2(y) = U3(y) (27)

has two solutions since C2 is convex, U i is concave and V 3
r (π; p4)+C2(yr2) = U2(yr2) < U3(yr2).

Define ŷ as the larger solution to (27). As y increases in a neighbourhood around ŷ, the left

hand side of (27) crosses the right hand side from below. Since MC2(ŷ) > MU3(ŷ) we have

V 3
r (π; p4) + C2(y) > U3(y) for all y ≥ ŷ.

Since MU3(yE3 ) = MC3(yE3 ), as we increase κI2, y
E
3 increases towards infinity. Thus,

there exists a κI2 such that for all κI2 > κI2, y
E
3 > ŷ. Thus, by the previous paragraph,

V 3
r (π; p4) + C2(yE3 ) > U3(yE3 ) and therefore RSW-IC[1,2] does not bind and the lemma

holds.

To see that this holds for the p1-RSW state 3 action, define α := π1/(π1 +π2) and replace

C2 and U2 above with αC1(·) + (1− α)C2(·) andαU1(·) + (1− α)U2(·) respectively.

The next lemma characterizes priors such that information acquisition strategy p1 is

strictly preferred to information acquisition strategy p4.

Lemma 20 Define α = π1/(π1 +π2). There exists π1 < 1, αr(p4) < 1 such that for all π1 ∈
(π1, 1) and α ∈ (αr(p4), 1) the unique payoff following information acquisition strategy p4 is
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the p4-RSW payoff and any continuation payoff following information acquisition strategy p1

is strictly larger.

Proof From Lemma 11, the state 2 p4-RSW contract is inefficient for sufficiently small κS1

and from Lemma 19 we know that the state three p4-RSW contract is efficient. Thus, from

Lemma 17 part (ii), i∗ = 1 so there exists π1 such that the RSW payoff is the unique payoff

following information strategy p4 for π ∈ (π1, 1).

By Lemma 19 the state 3 p1-RSW contract is efficient. Thus, V 3
r (π; p4) = V 3

r (π; p1).

Now, consider the RSW problem of the state {1, 2} principal

V {1,2}r (π; p1) := max
(y12,t12)

{
t12 − αC1(y12)− (1− α)C2(y12) :αU1(y12) + (1− α)U2(y12) = t12

}
(28)

Since κS1 is small, we can apply Proposition 2 to conclude that there exists αr(p4) such that

αr(p4) < 1 and for all α ∈ (αr(p4), 1) we have V
{1,2}
r (π; p1) > αV 1

r (π; p4) + (1− α)V 2
r (π; p4).

So (π1 + π2)V
{1,2}(π; p1) + π3V

3
r (π; p1) >

∑
i πiV

i
r (π; p4).

The next lemma characterizes priors such that information acquisition strategy p3 is

strictly preferred to information acquisition strategy p2.

Lemma 21 Define α := π2/(π2 + π3). There exists πr(p2) < 1 and α < 1 such that for all

π1 ∈ (πr(p2), 1) and α ∈ (α, 1) the unique payoff following information acquisition strategy

p2 is the p2-RSW payoff and the p3 payoff is strictly larger.

Proof The continuation game following information strategy p2 is a two state game with

priors (π1, π2 +π3). Define κ(p2) := supyMC1(y)/ (αMC2(y) + (1− α)MC3(y)). According

to Proposition 2, if κ(p2) is sufficiently small, there exists πr(p2) such that πr(p2) < 1,

the unique payoff following information acquisition strategy p2 is the p2-RSW payoff for all

π1 ∈ (πr(p2), 1) and the p3 payoff is strictly larger.

We now show that κ(p2) can be made sufficiently small given the hypotheses of the

proposition κ(p2) < κS1 /
(
α + (1− α)/κS2

)
. For fixed κS2 , if we take α and κS1 close enough

to 1, κ(p2) can be made sufficiently small to apply Proposition 2. The lemma is proved.

The next lemma characterizes priors such that information acquisition strategy p3 is

strictly preferred to information acquisition strategy p5.

Lemma 22 Let α = π1/(π1 + π3). There exists α < 1 and πr(p5) < 1 such that for all

α ∈ (α, 1) and π1 ∈ (πr(p5), 1) the unique payoff following information acquisition strategy

p5 is the p5-RSW payoff and the p3 payoff is strictly larger.

Proof By Lemma 18, there exists an α̂ such that for α ∈ (α̂, 1) the problem for the

principal who chooses information acquisition strategy p5 = {{1, 3}, {2}} is a two state

informed principal problem with priors (π1 + π3, π2) that satisfies Assumption 2.
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Define κ(p5) := supyMC13(y)/MC2(y). Proposition 2 applies and the claim is proved if

κ(p5) is sufficiently close to 1. We now check whether κ(p5) can be sufficiently close to 1.

Note that κ(p5) ≤ ακS1 + (1− α)/κS2 < ακS1 + (1− α) where the first inequality follows from

the convexity of the supremum operator. Choosing α less than but close to 1 and small κS1 ,

we can make κ(p5) small and Proposition 2 applies.

Finally, note that for the informed game with state space p1, the first best payoff has

been achieved since each p1-state principal is producing her efficient output. It follows from

Proposition 3 that introducing further ignorance (i.e. an information strategy of p3) will not

improve payoffs. Thus, information acquisition strategy p1 is strictly preferred to information

acquisition strategy p3 for any priors.

By Lemma 21, the principal prefers p3 to p2 for appropriately restricted priors for any

equilibrium following the choice of p2; thus, she prefers p1 to p2 on these priors as well.

Moreover, by Lemma 22 the principal prefers p3 to p5 for appropriately restricted priors for

any equilibrium following the choice of p5; thus, she prefers p1 to p5 on these priors as well.

To see that the intersection of the sets characterized in Lemmas 20 to 22 is open and

nonempty, note that any priors such that π1 is sufficiently large (but less than 1) and π2 is

sufficiently larger than π3 is in this intersection.

(B) Follows same procedure as part (A).

(C) As in part (A), this part is shown in a series of lemmas each characterizing the set of

priors such that ignorance is better than each of the other information acquisition options.

The first lemma characterizes the set of priors such that information acquisition strategy p3

is strictly preferred to information acquisition strategy p1.

Lemma 23 There exists πr(p1) such that πr(p1) < 1 and for any π1 + π2 ∈ (πr(p1), 1) the

unique payoff following information acquisition strategy p1 is the p1-RSW payoff and the

completely uninformed principal’s payoff is strictly larger.

Proof Define α := π1/(π1 + π2) and κ(p1) := supy (αMC1(y) + (1− α)MC2(y)) /MC3(y).

The game following information strategy p1 is a two state informed principal problem with

priors (π1 + π2, π3). Since the supremum operator is convex κ(p1) < ακS1κ
S
2 + (1 − α)κS2 .

Thus, we choose κS1 , κ
S
2 sufficiently small to apply Proposition 2 and our claim follows.

The next lemma characterizes the set of priors such that information acquisition strategy

p3 is strictly preferred to information acquisition strategy p2.

Lemma 24 There exists πr(p2) such that πr(p2) < 1 and for any π1 ∈ (πr(p
2), 1) the unique

payoff following information acquisition strategy p2 is the p2-RSW payoff and the uninformed

principals payoff is strictly larger.
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Proof This proof is analogous to that of Lemma 21. Since κ(p2) < supy
MC1(y)
MC3(y)

≤ κS1κ
S
2 we

can choose κS1 , κ
S
2 sufficiently small to apply Proposition 2.

The next lemma characterizes the set of priors such that information acquisition strategy

p1 is strictly preferred to information acquisition strategy p4.

Lemma 25 Define α = π1/(π1 + π2). There exists αr(p4) < 1 and π1 such that for any

α ∈ (αr(p4), 1) and π1 ∈ (π1, 1) the unique payoff following information acquisition strategy

p4 is the p4-RSW payoff and the p1-RSW payoff is strictly larger.

Proof From Lemma 11, we know that the state 2 and 3 p4-RSW contracts are inefficient

for sufficiently small κS1 and κS2 respectively. Thus, from Lemma 17 item (iii), there exists

priors π the p4-RSW payoff is the unique payoff following information acquisition strategy

p4 for π1 ∈ (π1, 1) and any π2/(π2 + π3) ∈ (π2/(π2 + π3), 1).

This remainder analogous to Lemma 20 except we appeal to Lemma 10 to ensure that

V 3
r (α; p1) ≥ V 3

r (α; p4) instead of Lemma 11.23

Our final lemma characterizes the set of priors such that information acquisition strategy

p1 is strictly preferred to information acquisition strategy p5.

Lemma 26 Let α = π1/(π1 + π3). There exists, α < 1 and πr(p5) such that πr(p5) < 1

and for any π1 + π3 ∈ (πr(p
5), 1) and α ∈ (α, 1) the unique payoff following information

acquisition strategy p5 is the p5-RSW payoff and the uninformed principals payoff is strictly

larger.

Proof This follows immediately from Lemma 22. Although Lemma 22 is proved under the

assumptions of claim (A), only the hypothesis that kS1 is sufficiently small was used in the

proof. Since claim (C) shares this hypothesis, the lemma applies here as well.

To see that the intersection of the sets characterized in Lemmas 23 to 26 is nonempty

and open, note any priors with π1 sufficiently large (but less than 1) is in this intersection.

(D) If π1 is small enough, we can achieve the first best ex ante payoff using the same

technique as in Claim 2 of Lemma 16. If κI1 and κI2 are large enough, we can show that the

p4-RSW menu is efficient and therefore achieves the first best ex ante payoff using the same

technique as in Lemma 19.

Proof of Corollary 1 If both κS1 and κS2 are close to 1, simply apply Proposition 4 (C).

Suppose κS2 is close to 1 and κI2 is large so that p1 is optimal on the set of priors described

in Proposition 4 (A): V (π; p1) := (π1 + π2)V
{1,2}
r (α; p1) + π3V

3
r >

∑
πiV

i
r . Since V (π; p1) is

continuous in π, V (π; p1)→ V (π; p3) := V
{1,2,3}
r (π, p3) as π3 → 0. So for small π3 there exists

δ > 0 such that V (π; p1)−V (π; p3) = δ and V (π; p3)−
∑

i πiV
i
r = V (π; p1)− δ −

∑
i πiV

i
r > 0.

For κI1 large and κS2 small close to 1, the proof is similar.

23The p4 payoffs are constant in α so the statement trivially holds for all α ∈ [0, 1].
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A.4 Information Acquisition as Hidden Action

Denote the value of the principal’s RSW problem in state k ∈ {0, 1, 2} by

V r
k := max

{(yi,ti)}i∈{0,1,2}
tk − Ck(yk)

s.t. (IC[i, j]) ti − Ci(yi) ≥ tj − Ci(yj) for all i, j ∈ {0, 1, 2} and

(RSW-IR[i]) U i(yi) = ti for all i ∈ {0, 1, 2}

Let (yri , t
r
i ) denote the RSW contract for the state i ∈ {0, 1, 2} principal.24

The following lemma gives the necessary and sufficient conditions for equilibrium in this

environment.

Lemma 27 The contract {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} and the information acquisition strategy

α is an equilibrium if and only if

(MIX) α ∈ argmax
{
α [t∗0 − C0(y∗0)] + (1− α)

∑
i=1,2 πi (t

∗
i − Ci(y∗i ))

}
(IR) α

∑
i=1,2 πi (U

i(y∗0)− t∗0) + (1− α)
∑

i=1,2 πi (U
i(y∗i )− t∗i ) ≥ 0

(IC) t∗i − Ci(y∗i ) ≥ t∗j − Ci(y∗j ) for all i, j ∈ {0, 1, 2}
(NB) t∗i − Ci(y∗i ) ≥ V r

i for all i ∈ {0, 1, 2}

Proof of Lemma 27 Sufficiency: Suppose the contract {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} and

the information acquisition strategy α satisfy MIX, IR, IC, and NB. Then, the contract

{(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} is an equilibrium contract given α by Theorem 1 in Maskin and Ti-

role [13]. Moreover, given, the contract {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)}, the MIX condition ensures

that the principal cannot deviate profitably by choosing a different α.

Necessity: Suppose, IR, IC, or NB is violated. Then by Theorem 1 in Maskin and

Tirole [13] {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} cannot be an equilibrium given α. If MIX is violated,

then the principal has a profitable deviation to another α.

Proof of Lemma 3 Due to the IC conditions of the equilibrium tr2−C2(yr2) ≥ tr0−C2(yr0)

and tr1 − C1(yr1) ≥ tr0 − C1(yr0). Weighting each of these by the appropriate prior we have∑2
i=1 π

r
i (t

r
i − Ci(yri )) ≥ tr0 − C0(yr0).

Proof of Proposition 5 Let {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} be an equilibrium contract with

information strategy α∗. Due to lemma 3, without loss of generality we can set α∗ = 0. We

are therefore considering an equilibrium in a 2 state informed principal problem (while still

respecting the extra incentive compatibility constraint of the uninformed principal). Thus,

by Proposition 2, since κ is close to 1, we know that there exists an interval of priors such

that the action is inefficient in at least one state.

24We have suppressed the dependance of the uninformed principal’s RSW strategies and payoffs on priors.
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Suppose the inefficient state is state 2. Let (y′2, t
′
2) be a contract for the state 2 principal

that lies on the same indifference curve as the contract (y∗2, t
∗
2) but is closer to the efficient

level of y. Then the agent receives a higher payoff at (y′2, t
′
2) in state 2 than at (y∗2, t

∗
2).

25

Choose (y′0, t
′
0) to be the (unique) intersection between the state 1 and state 2 indifference

curves passing through the points (y∗1, t
∗
1) and (y∗2, t

∗
2) respectively. Then t∗1 − C1(y∗1) =

t′0−C1(y′0) and t′2−C2(y′1) = t′0−C2(y′0). Weighting by the appropriate prior and summing

these two equations we get

t′0 − C0(y′0) = π
(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t′2 − C2(y′1)

)
(29)

Now we check the agents IR constraint. First note that

π(U1(y∗1)− t∗1) + (1− π)(U2(y′2)− t′2) > π(U1(y∗1)− t∗1) + (1− π)(U2(y∗2)− t∗2) ≥ 0

where the first inequality follows by our choice of (y′2, t
′
2) and the second follows since

{(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} is assumed to be an equilibrium and α∗ = 0. Thus, there exists

α′ > 0 such that α′ (U0(y′0)− t′0) + (1− α′) [π(U1(y∗1)− t∗1) + (1− π)(U2(y′2)− t′2)] = 0.

Since (y′2, t
′
2) is on the same indifference curve as (y∗2, t

∗
2)

π
(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t∗2 − C2(y∗1)

)
= π

(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t′2 − C2(y′1)

)
and due to equation (29)

α′
(
t′0 − C0(y′0)

)
+(1−α′)

[
π
(
t∗1 − C1(y∗1)

)
+ (1− π)

(
t′2 − C2(y′1)

)]
= π

(
t∗1 − C1(y∗1)

)
+(1−π)

(
t∗2 − C2(y∗1)

)
.

Thus, the expected payoff to the principal from offering contract {(y′0, t′0), (y∗1, t∗1), (y′2, t′2)}
with α′ is equal to the expected payoff from offering {(y∗0, t∗0), (y∗1, t∗1), (y∗2, t∗2)} with α∗.

If the state 1 contract is inefficient, we can similarly find a payoff equivalent menu with

positive probability of being ignorant.
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