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Summary
Bayesian inference relies heavily on numerical Markov chain Monte carlo (MCMC) meth-
ods for the estimation of the typically intractable high-dimensional posterior distributions and
requires specific inputs. In this paper we introduce a new general and efficient numerical ap-
proach to address important robustness concerns of MCMC analysis with respect to prior input
assumptions, a major obstacle to wider acceptance of Bayesian inference, including MCMC
algorithm performance (convergence) reflected in the dependence on the chain starting values.
The approach builds on recent developments in sensitivity analysis of high-dimensional nu-
merical integrals for classical simulation methods using automatic numerical differentiation
methods to compute first order derivatives of algorithmic output with respect to all inputs. We
introduce a range of new robustness measures based on Jacobian matrices of MCMC output
w.r.t. to the two sets of input parameters, prior parameters and chain starting values, to en-
able researchers to routinely undertake a comprehensive sensitivity analysis of their MCMC
results. The methods are implemented for a range of Gibbs samplers and illustrated using both
simulated and real data examples.

1 Introduction
Bayesian inference is an increasingly popular alternative approach to classical statistical infer-
ence that is based on the estimation of the posterior distribution of the model parameters. Since
the posterior distribution involves high dimensional integrals, Bayesian analysis relies heavily
on Markov Chain Monte Carlo (MCMC) methods to estimate the posterior distribution. While
recent advances in computational power have made the Bayesian approach a feasible and at-
tractive alternative tool to the classical estimation approach to analyze complex problems in
many disciplines, including many areas in economics, it is often applied hesitantly. Two main
reasons, aside from the computational complexity, are concerns regarding the robustness of
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the results with respect to the prior assumptions that are required for all model parameters and
concerns regarding algorithm performance, in particular convergence. In this paper we intro-
duce the first general and efficient numerical approach to compute sensitivities of Bayesian
MCMC ouptut with respect to different input parameters. The approach opens up the possi-
bility for a comprehensive assessment of prior robustness and algorithm performance that is
currently not possible.

Firstly, different to frequentist analysis, the Bayesian approach requires the specification of
prior assumptions for all model parameters. This extra information introduces an element of
subjectivity (Lopes and Tobias 2011) that has been long discussed in the literature preceding
the MCMC revolution (Berger et al 1994). While the choice of the prior is now typically taken
within a parametric family of distributions guided by computational concerns, researchers still
have to specify a potentially very large set of these prior input parameters. The parameters
of these prior distributions are known as hyperparameters and are often difficult to specify
reliably (O’Hagan and Luce 2003).

The importance of a comprehensive local prior sensitivity analysis is often acknowledged.
However, it is a non-trivial task given the complex form of the posterior distribution and, cur-
rently, it is not part of standard Bayesian analysis. If any hyperparameter sensitivity analysis
is undertaken, it typically is done via a bumping-type approach by rerunning the model with
a small set of different inputs and observing whether or how the outputs change. Other recent
work, such as Chib and Jacobi (2009, 2015) use a scenario-based method in connection with
a prior simulation (Del Negro and Schorfheide 2008, Chib and Ergashev 2009). The bumping
approach is very costly, as it requires re-running the MCMC estimation many times. It is also
restrictive as it only provides the effects of the particular bumps chosen and it is very unsta-
ble if the MCMC algorithm contains discontinuities, such as common updates from gamma
random variables, where a very small change in inputs can cause a large change to the output.

Secondly, the convergence of the MCMC output to the limiting posterior distribution is key
to obtaining reliable estimates of the model parameters. Several measures of non-convergence
have been put forward, but knowing when a change has converged is “as much of an art as
a science” Greenberg (2012). The estimated sensitivities with respect to the starting values
provide crucial information for the assessment of the MCMC algorithm. As the chain evolves
the dependence of the MCMC draws on the starting values should disappear since Markov
chain theory implies that after a chain has converged draws no longer depend on the starting
values. Current checks for convergence and related issue of algorithm efficiency applied in
the literature include re-running the MCMC chain with different starting values and diagnos-
tics based on the autcorrelation of the draws, such as the examination of trace plots of the
draws. However, most models studied by Bayesians are computational intensive, re-running
the samplers many times is too costly to assess the convergence of the chain.

A comprehensive sensitivity analysis based on first order derivatives of MCMC output
with respect to the hyper-parameters and starting values can provide essential information
regarding both robustness concerns. In this paper we develop methods and show how such a
comprehensive robustness analysis can be implemented, for example to obtain the Jacobian of
posterior estimate, including the posterior mean and variance of the model parameters, with
respect to all input parameters, and the Jacobian of parameters draws with respect to the vector
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of starting values at each iteration of the chain.
In order to compute these sensitivities for MCMC output arising from the high-dimensional

integral of the posterior distribution, we exploit the Automatic Differentiation approach and
extend it to the setting of dependent sampling. The basic idea consists of using automatic
algorithms to differentiate the algorithm used to compute the integral, in our case the MCMC
algorithm to evaluate the integral to obtain the posterior distribution. In the case where the
algorithm is continuous, this approach can be viewed as the small limit of finite differencing
approximations. It is therefore often called infinitesimal perturbation analysis (IPA) or the
pathwise method. The differentiation can be carried out in many ways and was originally
done analytically for derivatives pricing problems. When an automatic algorithm is used for
the differentiation due to the complexity of the computation, we shall refer to it as the auto-
matic pathwise method or Automatic Differentiation (AD).

AD is quite distinct from both numerical finite differencing and symbolic differentiation.
In particular, finite differencing gives a numerical approximation that has a bias depending
on the bump size whereas AD is exact up to floating point error. Symbolic differentiation is
exact, but requires the value to be differentiated to be input as a formula, rather than as an
algorithm, and it outputs a formula that then requires evaluation separately, and so does not
use the computation already performed to achieve acceleration whereas AD does.

Similar to the work on numerical sensitivity analysis for classical simulation output, we
apply automatic differentiation as suggested by Giles and Glasserman (2006) to compute the
Jacobian matrices of parameter draws and statistics based on these draws with respect to the
two sets of prior inputs, hyperparameters and starting values. We address a number of chal-
lenges that arise when applying AD techniques to MCMC algorithms. Firstly, automatic dif-
ferentiation methods can be memory intensive. MCMC algorithms already generate a very
large number of outputs which prohibits the use of some known AD methods. In addition,
MCMC samplers generate samples of dependent draws in contrast to the independent draws
of classical simulation methods. This further increases the computational demands to obtain
the gradients as we cannot exploit parallel computation. Further, Bayesian MCMC analy-
sis relies on a set of specific random variables that are not common in classical simulation.
Finally, it is necessary to assess which AD techniques are applicable and likely to be most
effective numerically in the context of Bayesian MCMC analysis as any numerical technique
is an approximation and some approximations are faster to converge to the true value than
others.

The AD approach enables us to introduce a range of sensitivity measures based on Jaco-
bian matrices that summarize robustness of draws and statistics, such as the posterior mean,
with respect to the different input parameters to allow researchers to assess robustness of re-
sults to prior inputs as well as the convergence behaviour of the MCMC chain. We implement
AD-based robustness approach for MCMC analysis for a range of models and Gibbs samplers.
AD-based sensitivity analysis for samplers with Metropolis-Hastings updates is discussed in a
separate paper as the inherent discontinuity of the accept-reject method it raises a different set
of issues. To illustrate the new approach we apply the methods to assess the sensitivities in var-
ious simulated and real data examples. To benchmark our sensitivity estimates we compare
our results with the sensitivities obtained via an alternative approach limited to sensitivities
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with respect to prior hyper-parameters based on the likelihood ratio-based technique that was
introduced for MCMC output in Perez et al (2006) and applied in Müller (2012) to compute
a limited set of Jacobian matrices for the posterior parameter means with respect to prior
means in the context of macroeconomic DSGE models. Our experiments show that sensitiv-
ity estimates obtained via the AD methods are more stable and faster to converge, a finding
consistent with the large evidence from the performance of these methods in the context of
classical simulation.

The remainder of the paper is organized as follows. Section 2 introduces the AD based
robustness analysis for Bayesian inference via MCMC algorithms. Section 3 shows the im-
plementation of the AD approach for a range of Gibbs samplers with commonly used Gibbs
updates and in the context of data augmentation and discusses methods for discontinuous ran-
dom variables. Section 4 compares the performance of the AD approach to the likelihood
ratio approach for hyperparameter sensitivity for a range of Gibbs sampler using simulated
data and Section 5 illustrates the new robustness measures in a real data examples. Section 6
concludes.

2 Robustness Analysis via Sensitivities of MCMC Ouptput

2.1 MCMC Inference
Consider the general setting where data Y has been generated by some data generation process
that depends on a vector of parameters θ ∈ RK . Under the Bayesian approach, inference about
θ is based on the (joint) posterior distribution π(θ|Y ). The posterior distribution combines
information from the data Y via the model likelihood f(Y |θ) and the prior distribution for all
model parameters, π(θ|η0). Here, we have the hyperparamters η0 ∈ Rp. According to Bayes
Theorem, the posterior distribution is derived from the expression

π(θ|Y,η0) =
π(θ|η0)f(Y |θ)∫
f(Y |θ)π(θ|η0)dθ

(2.1)

which involves a K-dimensional integral. The posterior distribution will depend on the set of
prior hyper-parameters which have to be specified without reference to the data used for the
current analysis.

Since the posterior distribution is with a very few exceptions of an unknown form, the
estimation relies on numerical MCMC simulation methods that have become feasible also for
complex problems as a result of recent advances in computing power. The key idea behind
Bayesian MCMC-based inference is the construction of a Markov Chain with a transition
kernel that has the posterior distribution as its limiting distribution. While Bayesian MCMC
methods employ some classical simulation techniques, they differ significantly from classical
simulation methods as they generate dependent samples. Given a set of values θ0 ∈ Rl, where
l < K, initializing the algorithm, the Markov-chain θg evolves forward with a stationary
transition kernel p(θg+1|θg,η0, Y ).

Once the Markov chain has converged it yields a sample of dependent draws from the
posterior distribution. There is therefore a burn-in period of size B. The draws following this
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Figure 1: Algorithm based on MCMC chain.

burn-in period, {θB+1,θB+2, ...,θB+G} form the basis for the computation of the reported
estimation outputs (statistics), that include the parameter means, variances and quantiles,

1

G

B+G∑
g=B+1

S(θg)
p→ Eπ̂[S(θ)|Y,θ0,η0] =

∫
S(θ)π̂(θ|Y,θ0,η0)dθ (2.2)

where the limit is as G → ∞ and π̂(θ|Y,θ0,η0) is the estimate of π(θ|Y,η0) obtained from
the MCMC algorithm for a fixed B. The MCMC sampler is constructed based on the model
likelihood, the transition kernel and the prior parametric distribution.

From an algorithmic point of view, an MCMC algorithm is simply a function taking inputs
(prior parameters, starting values) and returning a set of outputs (parameter draws, sample
statistics). Sensitivities will inform us how the numerical output depends on the input of the
sampler given a specific algorithm/transition kernel and will thus reveal key information about
the prior robustness of the output and the performance of the chain in terms of convergence to
the posterior distribution. In the next sections we introduce an approach to compute a complete
set of sensitivities via the Jacobian matrices using Automatic Forward Differentiation.

2.2 Sensitivities via Infinitesimal Perturbation Analysis (Jacobians)
Without exhausting the notation, we shall denote θg as both the gth iteration draw and the
MCMC algorithm that computes it, i.e.

θg : Rp+l → RK

We can compute the effect of a small change in each element from the prior parameter vector
ηj0 ∈ η0 on the gth draw of the parameter vector θ by “bumping” ηj0 by a small value h > 0
and rerun the chain to obtain

θg(η0 + hIp(j),θ0)− θg(η0,θ
0)

h
(2.3)
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where Ip(j) is the p-dimensional indicator vector

Ipk(j) =

{
1 if j = k

0 otherwise.
for k = 1, ..., p.

If we are interested in the sensitivity of a statistic such as the posterior mean we can compute
it based on all draws after the burning period

1

G

B+G∑
g=B+1

θg(η0 + hIp(j),θ0)− θg(η0,θ
0)

h
(2.4)

Similarly, sensitivities with respect to the starting values can be computed by bumping the
starting values θ0 and rerunning the MCMC chain. This approach to assess sensitivities is
computationally very demanding as it involves rerunning the chain for every single parameter
that we are interested in. Hence, it is then only used in practice by researchers for key statistics
to compute the effects of a discrete change a small subset of elements in η0 and/or θ0 to gage
robustness with respect to hyperparamters and starting values.

In addition to its computational demand, this method is constrained by the choice of the
bump size. Theoretically, we are interested in the case of letting h→ 0, to obtain the Jacobian
matrix

Jθg(η0,θ
0) ∈ RK×(p+l)

where the jth column for 1 ≤ j ≤ p is the first-order partial derivatives for θg with respect to
ηj0

∂θg(η0,θ
0)

∂ηj0
= lim

h→0

θg(η0 + hIp(j),θ0)− θg(η0,θ
0)

h
. (2.5)

From the Jacobian matrices of the draws {Jθg(η0,θ
0) : g = B + 1, ..., B + G} we can

obtain an estimate of the Jacobian matrix for the posterior mean of θ, Eπ̂[θ|Y ] , as

1

G

B+G∑
g=B+1

Jθg(η0,θ
0)

p→ JEπ̂[θ|Y,θ0,η0]. (2.6)

as G→∞ by the law of large numbers. More generally, applying the chain rule, an estimate
of the Jacobian matrix of any function S of the parameters can be obtained from

1

G

B+G∑
g=B+1

JS(θg)Jθg(η0,θ
0)

p→ JEπ̂[S(θ)|Y,θ0,η0] (2.7)

where JS(θg) is the Jacobian of the statistic function S evaluated as θg. These Jacobian matri-
ces that does not rely on bumping the parameters can be used for a comprehensive robustness
analysis.
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The AD method allows us to efficiently compute

Jθg(η0,θ
0) =


∂θg1
∂η0,1

. . .
∂θg1
∂η0,p

∂θg1
∂θ0

1
. . .

∂θg1
∂θ0
l

. . .

. . .
∂θgK
∂η0,1

. . .
∂θgK
∂η0,p

∂θgK
∂θ0
K

. . .
∂θgK
∂θ0
l


the Jacobian of each single parameter draw with respect to the hyper-parameters in the first
p columns and with respect to the starting value in the last l columns as shown in the above
matrix. While some of these sensitivities are of direct interest in Bayesian sensitivity analy-
sis, most of these sensitivities are used to compute the sensitivities of the summary statistics
of the posterior based on the set of draws after the Burn-in period. The sensitivity computa-
tions/algorithms we propose will therefore encompass the computation of Jacobian matrices
for both the parameter draws and statistics of the parameters, such as the posterior mean.

JŜ(θ)(η0,θ
0) =

1

G

B+G∑
g=B+1


∂S1(θg)
∂θg1

. . . ∂S1(θg)
∂θgK

. . .
∂SM (θg)
∂θg1

. . . ∂SM (θg)
∂θgK

 Jθg(η0,θ
0) (2.8)

for S : RK → RM .

2.3 Jacobian Matrices via Automatic Forward Differentiation
Automatic (or algorithmic) Differentiation (AD) takes an algorithm for computing a value,
E, and produces a new algorithm that computes the derivative of E with respect to one (or
many) of its inputs. Thus we have an algorithm that turns an algorithm into another algo-
rithm. AD has revolutionized the field of derivatives pricing, where classical Monte Carlo
simulation is widely used to evaluate integrals numerically. Since the sensitivities express risk
and hedging ratios, a large amount of work has been done on sensitivity analysis. Giles and
Glasserman (2006) first suggested using automatic differentiation to accelerate methods pre-
viously developed. Homescu (2011) provides a good survey article which demonstrates the
explosive impact of these techniques in finance. Of particular relevance for applications of
AD to MCMC sampling is the introduction of partial proxy methods (OPP) by Chan and Joshi
(2015), that combine the best aspects of the pathwise methods for smooth functions and like-
lihood ratio methods for discontinuous functions (Glasserman 2004). Joshi and Zhu (2016a,
2016b) provide important extensions of these methods for algorithms involving Gamma ran-
dom variables and rejection sampling. Both of these feature prominently in Bayesian MCMC
via the most commonly used Gibbs and Metropolis-Hastings algorithms.

AD relies on two fundamental results from computer science relating to the adjoint mode
and forward mode of differentiation.

Theorem 1 Forward mode differentiation: If a function F from Rn to Rk can be computed
with L elementary operations then its gradient with respect to l of its inputs can be computed
with 3lL elementary operations, and with no more than twice the memory required for the
original computation.
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The theorem requires a class of elementary operations. These must be differentiable with
simple derivatives. They will typically have one or two inputs. The final value has to be
computable using only these operations. A typical class would be

+, ∗,−, rec, exp, log, sin, cos, tan,

where rec z = 1/z, and we shall work with this class. These elementary operations have to
be continuous in a neighbourhood of where they are used and are usually differentiable ev-
erywhere. In practice, one can handle functions such as max which are differentiable almost
everywhere and continuous everywhere. Since our program has to be a composition of such
continuous functions, the output must be a continuous function of the inputs. Appendix 7.1
sketches out the general principles of construction a differentiated algorithm for any continu-
ous algorithm. We also refer the reader to Griewank–Walther (2008) for a detailed exposition
on Automatic Differentiation.

The forward mode theorem we have stated has two strong virtues: the additional time taken
does not depend on the number of outputs and it takes no more than double the memory. The
time taken, however, does scale linearly with the number of sensitivities to be computed. There
is a second dual approach known as the adjoint or reverse mode. While the approach is faster,
it requires storing the entire computation and so can have much greater memory costs than
the original computation and the forward mode. For most more advanced models beyond the
standard linear regression model with independent normal errors, the memory requirements
of the adjoint method prohibit its application to computing the sensitivities for MCMC output.
In the remainder of the paper we therefore focus on the forward approach.

2.4 Implementation of Automatic Differentiation via Forward Mode
To illustrate the basic idea for the implementation of AD for MCMC algorithm, let

F : Rp+K → RK such that

θg = F (η0,θ
g−1)

denote the MCMC algorithm with transition kernel p(θg|θg−1,η0, Y ) and starting values θ0

that generates draws θg given θg−1. Before starting the algorithm, one can initialize the sensi-
tivities with respecting to the starting value by setting

Jθ0(θ0) =


0 0 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . 1 . . . 0
. . . . . . 0 1 . . .
. . . . . . . . . . . . . . .
. . . . . . . . . 0 1

 ∈ Rk×l

i.e. a sparse matrix with only the last l diagonal terms are nonzero, and initialize the sensitivi-
ties with respect to the hyper-parameters Jθ0(η0) as a zero matrix of dimension K × p.
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In a typical MCMC algorithm the transition kernel consists of a number of steps to draw
several parameter blocks where each step consists of first updating the state parameter s of the
transition kernel (such as means and variances of conditional distribution) and then drawing
the model parameters from the transitional kernel with the updated state parameters.

For the clarity of the discussion we focus on the case of a one block MCMC algorithm
where all elements in θ are updated in one step and decompose this algorithm into two sub-
functions F = f 2 ◦ f 1 where

• f 1 : Rp+K → Rd calculates the state parameters sg of the transition kernel, sg ∈ Rd, i.e.

sg = f 1(η0,θ
g−1)

where f 1 only depend on the hyper-parameters and the dimension d is typically larger
than K

• f 2 : Rd → RK generates the draws given the parameters of the transition kernel, i.e.

θg = f 2(sg).

The aim is to compute the Jacobian Jθg(η0,θ
0) of dimension K× (p+ l) that contains the

partial derivatives of the parameter draws with respect to input vectors η0 and θ0. Notice that
we have

Jθg(η0,θ
0) =

[
Jθg(η0), Jθg(θ0)

]
with Jθg(η0) ∈ RK×p the sensitivities of θg with respect to the hyper-parameters and Jθg(θ0) ∈
Rk×l with respect to the starting values. Like the parameters, the sensitivities are also updated
via the chain, starting from g = 1. Firstly, we apply the chain rule to compute Jθg(η0), via

Jθg(η0) = Jf2(η
g)Jf1(η0) + Jf2(η

g)Jf1(θ
g−1)Jθg−1(η0) (2.9)

where

• Jf2(ηg) ∈ RK×d is the Jacobian of f 2

• Jf1(η0) ∈ Rd×p are the first p columns of the Jacobian of f 1, Jf1(η0,θ
g−1)

• Jf1(θg−1) ∈ Rd×K are the last K columns of the Jacobian of f 1.

• Jθg−1(η0) ∈ RK×p has already been computed in the last iteration g − 1, and it is initial-
ized the beginning of the chain as a zero matrix.

Note that the expression (2.9) contains a path-wise and a chain-rule component. The path-
wise component arises from the direct influence of hyper-parameters on the transition kernel,
p(θg+1|θg,η0, Y ), i.e. the random number generation algorithm is a function of the hyper-
parameters. At the same time, they also affect the previous draw at (g − 1) which in term
determines the state parameters of the transition kernel at the current iteration (g).
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We again apply the chain rule to compute the derivatives of θg with respects to the starting
values as

Jθg(θ0) = Jf2(η
g)Jf1(θ

g−1)Jθg−1(θ0) (2.10)

Note that the Jacobians Jf2(ηg) and Jf1(θg−1) appear in both the calculations in (2.9) and
(2.10) so only have to be computed once to compute the Jacobians for both sets of input
parameters. This substantially reduces the computational burden, contributing to the efficiency
of the AD approach.

The simpler expression for starting value sensitivities results from the fact that we only
have a chain-rule component. The influence of the starting value here is only secondary. It is
only passed through via the dependence on the last draw, since it is not a direct parameter of the
transition kernel. For practitioners, this set of sensitivities is critical, as it numerically assesses
the dependence of the chain on the starting point over the whole parameter space, i.e. shed
lights on when to stop the burning period and start to collect samples of the empirical posterior
distribution. This is not computationally feasible in the past via numerical differentiation.
Automatic Differentiation allows us to algorithmic capture these effects in an efficient manner,
that is computing them simultaneously through elementary operations.

Since f 1 computes the parameters of a transition kernel, such as means and variances,
it is typically straight forward to decompose the subfunction into elementary operations and
to compute the required Jacobians. Special care have to taken with matrix inversions and
Cholesky’s decompositions in multidimensional contexts (as shown in Appendix 7.2).

The potentially more challenging component is f 2 which involves the draw of random
variables. In the case of a Gibbs sampler the distribution of the random variables would be
determined by the conditional posterior distributions. If a random variable follows a standard
continuous distributions where we can apply the inverse transform method. In this case the
Jacobians can be computed in a straight forward manner, for example for Normal Random
variables. In section 3.1 we illustrate the implementation of these calculations in the context
of a 2-step Gibbs sampler. Two notable exceptions that commonly arise in Gibbs samplers are
Gamma and Wishart random variable. In Section 3 we discuss details regarding the differen-
tiation of such random variables. Another important exception is the case of the Metropolis
algorithm that is typically applied when the conditional distribution is not available in closed
form that we address in a different paper.

For Gibbs algorithms with more than one block, the logic behind AD is essentially the
same as what we demonstrated via F = f 2 ◦f 1. One can always decompose into the mapping
for computing the state parameters and the mapping for generating the draws as demonstrates
in Section 3.1. The only subtlety lies in the different dimensions of the mappings, typically
determined by the dimensions of each blocks. However, we believe this is a minor issue which
can be solved by an adequate programer, hence we shall not exhaust the length of the paper in
explaining the exact details of the decomposition.

2.5 Sensitivity Measures for Prior Robustness and Convergence
A key feature of the algorithmic differentiation approach is that it provides a general frame-
work to obtain the sensitivities of all MCMC output, including draws and statistics, with re-
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spect to any of the input parameters. These sensitivities computed via AD provide us impor-
tant information about two critical issue in Bayesian inference, namely prior robustness and
convergence.

2.5.1 Sensitivities for Prior Robustness

The first objective of Bayesian sensitivity analysis is to address the issue of subjectivity and
assess the robustness of the MCMC output with respect to the complete set of subjective prior
hyper-parameters set by the researcher. In general, we want to compute the sensitivities of any
function of the parameters with respect to the prior hyper-parameters

∂Eπ̂[S(θ)|Y,θ0,η0]

∂η0

where Eπ̂ reflects that the expectation of S is obtained from the estimated posterior distri-
bution. Sensitivities of posterior mean estimates are of particular interest in many empirical
applications. To assess the robustness for the posterior mean estimate

θ̂k =
1

G

B+G∑
g=B+1

θgk
p→ Eπ̂[θk|Y,θ0,η0]

we compute the gradient vector ∇θ̂k(η0) that contains the set of partial derivatives ∂θ̂k/∂η0,p
with respect to all hyper-parameters η0,p ∈ η0. The Jacobian matrix Jθ̂ summarizes the com-
plete set of sensitivities for

Jθ̂ =

∇θ̂1(η0)
...

∇θ̂K(η0)

 (2.11)

As shown further below obtaining this Jacobian matrix requires the estimation of the sensitiv-
ities of all draws, i.e. the draws after Burn-in period for any element k in the parameter vector,
summarized in the gradient vectors∇θ(g)k (η0) for g=B+1,...,B+G.

2.5.2 Sensitivities for Convergence

A key advantage of sensitivity analysis via the AD approach is that it opens up the possibility to
compute the first order derivatives of the draws and also statistics with respect to the starting
values, which is not possible via likelihood ratio type methods. As Markov chain theory
implies that after a chain has converged draws no longer depend on the starting values, we
propose a set of measures to assess to convergence directly based on the sensitivity of the
draws to the starting values. In other words, convergence would imply that derivatives of
draws, and hence also statistics, with respect to θ0 should equal to zero. Sensitivity analysis
based on AD enables us to assess the evolution of the dependence draws of the chain with
respect to the starting values by computing the sensitivities of the vector draws of draws at
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each iteration g with respect to the (
∂θ(g)

∂θ0j

)
∀ θ0j ∈ θ0

starting at g = 1. As convergence requires that these sensitivities should be tending to zero,
the required number of burn-in periods can be determined based on the (∂θ(g)/∂θ0j )’s. For
example, we propose one measure based on a threshold for the maximum observed starting
value sensitivities at each iterations.

2.5.3 Summary Robustness Measures

The AD approach enables us to compute a very large set of prior robustness and convergence
measures. For convergence we compute the first order derivatives of each element in theK×1
parameter vector θg in Jθg(θ0) and several statistics based on θg with respect to the l × 1 di-
mensional vector of starting values at each iteration of the chain. It is therefore useful to
compute some summary convergence measure that report for example the maximum of aver-
age of the set of absolute starting values sensitivities at each iteration of the chain and monitor
their evolution.In Section 5.1 we discuss a few possible summary convergence measure in the
context of our illustrative example.

For prior robustness measure the main focus in on the sensitivities of parameter based
statistics. The AD allows us to compute the sensitivities of each element in the K × 1 poste-
rior mean vector Eπ̂[g(θ)|Y,θ0,η0] with respect to the p elements in the prior hyper parameter
vector. In this case the researcher might be interested in the complete set of sensitivities to
see how important each of the prior assumptions was. However, in most models we have a
large number of prior hyper-parameters, which leads to high-dimensional gradient vectors.
We therefore also propose a summary measures of overall dependence on the prior hyper-
parameters based Euclidean norm ‖∇θ̂k(η0)‖ of the gradient vectors as discussed in the con-
text of the illustrative example in Section 5.2.

3 Sensitivities via AD for Gibbs Output
In this paper we focus on the sensitivity analysis of Bayesian output obtained from a Markov
chain where the transition kernel p(θg|θg−1,η0, Y ) is based on the Gibbs sampler. The Gibbs
algorithm is the most efficient and most commonly applied method in MCMC analysis and the
easiest to implement as it is simply a sequence of draws from full conditional distributions. In
many problems it is possible to choose suitable prior distributions, so-called conjugate priors,
that ensure that given the likelihood the full conditional posterior distributions are of a known
form.

Suppose for now that the parameter vector θ can be divided in two blocks (θ1,θ2) . If
the full-conditional distributions π(θ1|Y,θ2) and π(θ2|Y,θ1) are of a known type and can
be sampled directly, then the transition kernel consists of two steps. After initializing θ0

2,
we draw θg1 from π(θg1|Y,θ

g−1
2 ) and then θg2 from π(θg2|Y,θ

g
1). The number of blocks and
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specific form of the full conditional distributions will be problem specific. Common updates
in Gibbs algorithms are based on the Normal distribution for coefficient vectors, the Gamma
distribution for variance parameters and the Wishart distribution for covariance matrices.

3.1 Linear Model Output from Gibbs Algorithm
We introduce the concept of sensitivity analysis first for Gibbs output in the context of Linear
model with standard priors estimated via a 2-step sampler by implementing forward mode AD
as introduced in Section 2.4. Under the conjugate choices of a Normal prior distribution for
β ∈ Rk and a Gamma prior for h = σ−2 ∈ R the posterior distribution of the parameter vector
θ = (β, h), given by

π(β, h|Y,η0) ∝ Nk(β|b0,B0)G

(
h | α0

2
,
δ0
2

)
Nn(Y |Xβ, h−1 × I). (3.1)

The posterior distribution depends on the vector of hyper-parameters

η0 = (b0,B0, α0, δ0) ∈ Rp, where p = k +
k(k + 1)

2
+ 3,

and can be estimated via a two-step Gibbs sampler. We initialize the chain with a value h0 so
that

θ0 = h0 ∈ R, l = 1.

Estimation. At each iteration, g, of the chain, β is drawn from a Normal distribution
and h from a Gamma distribution. We again decomposing the algorithm in the two type of
subfunctions to compute the state values of the transition kernel (f 1) and the parameter draw
from the transition kernel (f 2) as follows:

1. Draw βg via algorithm F 1 such that

• f 1,1: Compute sg1 = (bg,Bg) ∈ Rk+ k(k+1)
2 , where

B(g) =
[
hg−1XTX + B−10

]−1
,b(g) = Bg

[
h(g−1)XTY + B−10 b0

]
.

• f 1,2: draw βg ∼ N(bg,Bg) via

βg = bg + Chol(Bg)Z for Z ∼ N(0, I)

where I is the k × k identity matrix.

2. Draw hg from F 2:

• f 2,1: Compute sg2 = (α1, δ
g) ∈ R2, where α1 = α0 + n and

δ(g) = δ0 + (Y −Xβg)T (Y −Xβg)

= δ0 + Y TY − 2Y TXβg + (βg)TXTXβg

13



• f 2,2: Draw hg ∼ G
(
α1

2
, δ

(g)

2

)
from hg = 2

δg
G with G ∼ G(α1

2
, 1).

The inverse variance h = σ−2 is Gamma distributed with hyperparameters α and δ using the
following parameterization:

δα

Γ(α)
hα−1e−δh

where E[h] = α/δ and Var[h] = α/δ2 (see Greenberg 2012 for detailed discussion). The
Gibbs sampler described above has the following chain:

h(0) → β(1) → h(1) → β(2) → h(2) · · · → β(g) → h(g) → β(g+1) → · · · → h(B+G).

Sensitivity Computations. We shall illustrate the computation of the sensitivities with re-
spect to the two sets of inputs, the prior hyper-parameters and the starting value. We initialize
the gradient vector5h0(η0, h

0) = [0, 0, . . . , 0, 1] and use the following algorithm to compute
the sensitivities Jβg(η0, h

0) and5hg(η0, h
0):

1. Obtain Jβg(η0, h
0) = [Jβg(η0), Jβg(h0)] by decomposing into sub-mappings 2

• Operation f 1,1: Obtain the distributional parameters of the normal update

– B∗ = hg−1XTX + B−10
3

JB∗(η0, h
0) = [JB∗(η0), Jb∗(h0)] = [XTX.∗5hg−1(η0)+JB−1

0
(η0),

∂hg−1

∂h0
XTX]

– Bg = (B∗)−1

JBg(η0, h
0) = [JBg(η0), JBg(h0)] = [−B∗.∗JB∗(η0).∗B∗,−B∗.∗JB∗(h0).∗B∗]

(3.2)
See the appendix for the details of this formula.

– b∗ = h(g−1)XTY + B−10 b0

Jb∗(η0, h
0) = [Jb∗(η0), Jb∗(h0)] = [XTY.∗5hg−1(η0)+JB−1

0 b0
(η0),

∂hg−1

∂h0
XTY ]

– bg = Bgb∗

Jbg(η0, h
0) = BgJb∗(η0, h

0) + b∗. ∗ JBg(η0, h
0)

• Operation f 1,2: First pass the Jacobian operator through the Cholesky decompo-
sition and obtian Jchol(Bg), which is a quite involved process. There are Matlab
packages computes such derivative (see Appendix 7.2 for more details). then

Jβg(η0, h
0) = Jbg(η0, h

0) + Z. ∗ Jchol(Bg)(η0, h
0)

2To save computational time, B−1
0 and B−1

0 b0 as well as their Jacobians JB−1
0
(η0) ∈

R(K×K)×p and JB−1
0 b0

(η0) ∈ RK×p can be pre-computed and stored.
3Strictly speaking this is creating a 3-D tensor, the .∗ operation is multiplying every element of 5hg−1(η0)

by XTX .
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2. Obtain5hg(η0, h
0)

• Operation f 2,1: update δg

5δg(η0, h
0) = Ip+l(p) + 2((bg)T (XTX)− Y TX)Jβg(η0, h

0).

• Operation f 2,2: given G

5hg(η0, h
0) = − 2

(δg)2
G5δg (η0, h

0) +
2

δg
JG(η0, h

0). (3.3)

Here the second part of the equation involves taking derivatives of a gamma ran-
dom variable with unit dispersion parameter, it is not trivial and we discuss it in
section 3.2.

3. Store sensitivities of interest from 5hg(η0, h
0) and Jβg(η0, h

0), in particular starting
values sensitivities, and accumulate sums for prior input parameter sensitivities to com-
pute Jacobians following (2.7).

4. After repeating steps 1 - 3 for B + G iterations of the algorithm, we can compute the
basic prior robustness measures, for example for the posterior means of β

1

G

B+G∑
g=B+1

Jβg(η0).

3.2 Automatic Differentiation of Discontinuous Random Variables
The automatic differentiation approach requires the algorithm to be continuous. Typically,
if we use a Gibbs sampler to estimate π(θ|Y ) that is continuous and differentiable, i.e. a
sequence of random variables generated by the inverse cumulative methods, then we can com-
pute the sensitivities of the MCMC output or any statistic g(θ) estimated based on π̂(θ|Y )
from the Gibbs algorithm. Given a random uniform u ∼ U(0, 1), we obtain Xθ = F−1(u, θ)
from the inverse of the target cumulative density function provided that F−1 can be computed
analytically. A classic example is the generation of random normal variates for the β update
in the Gibbs sampler for the linear model, where the standard random Normal z is generated
via the inverse transform method as Z = Φ−1(U), so that the β really is generated in the
computer algorithm as

β(g) = b(g) + Chol(B(g))Φ−1(u), (3.4)

where Φ is the standard normal cumulative density function. Given U ∈ [0, 1]K , this mapping
is smooth with respect to both b(g) and B(g) which allows the direct application of automatic
differentiation as shown above.

Problems occur when the random variable generators have discontinuities, such as in the
case of Gamma and Wishart random variables. For these distributions, F−1 does not exist
or is too cumbersome to work with, alternative methods such as the acceptance-rejection, the
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transform-with-multiple-root and the ratio-of-uniform methods were introduced to simulate
these variates. There are inherent discontinuities in these algorithms since a candidate outcome
is accepted as a variate from the target distribution depending on passing certain criteria that
are set by the parameter of interest. Thus, a small change in the parameter of interest can
result in a big change in the simulated variate that is a pathwise discontinuity in the simulation
algorithm. And so the application of automatic differentiation is problematic.

For our simple model, h(g) is drawn from gamma distributions with parameter α1 and
δ(g) and the inverse of its cumulative density function is not available analytically. Rejection
techniques for simulating γ(α, 1) random variates have been studied extensively and vary
according to the value of α since the qualitative properties of the distribution vary greatly with
it (Tanizaki, 2008). For our examples, α is always greater than 1. The GKM1 method (Cheng
and Feast, 1979) simulates gamma random variables with α > 1 by using a computing a
ratio of uniforms and then accepting or rejecting according to parameter values. We give the
algorithm in the appendix 7.2.

Joshi and Zhu (2016) introduced a method to resolve this pathwise discontinuity in the
classical simulation setting. They effectively use a measure change at each acceptance-rejection
point, to ensure the pathwise discontinuity is removed and the regularised pathwise estimator
satisfied the application of automatic differentiation to obtain unbiased derivative estimates.
Unfortunately, the method is not directly applicable to the dependent MCMC settings. The
induced likelihood ratio weights resulting from each measure change are carried through the
markov chain, and easily explode the variances of the derivative estimates. On the other hand,
Suri (1983) proposed a generic approach to compute derivatives of random variates X with
respect to its distributional parameters θ based on

F (F−1(u, θ), θ) = u.

One can differentiate this expression from both sides with respect to θ and obtain

∂

∂θ
F (X, θ) + f(X, θ)

∂Xθ

∂θ
= 0,

where f is the probability density function of the distribution. Thus, we have

∂Xθ

∂θ
= −

∂
∂θ
F (X, θ)

f(X, θ)
.

The method depends on the differentiability of the cumulative density function.
Glasserman and Liu(2010) applied the method for computing the derivative price sensitivi-

ties when the underlying stock process is Lévy driven. In particular, they used it for computing
derivatives of the Gamma random variate, Γ(α, 1), with respect to its shape parameter, α, using
the following formula

∂Γ(α, 1)

∂α
=
F(α−1,1)(Γ(α, 1))− ψ(Γ(α, 1))F(α,1)(Γ(α, 1))

f(α,1)(Γ(α, 1))
(3.5)

where

16



• F(α,1) and F(α−1,1) are cumulative density functions gamma distribution with dispersion
parameter one, and shape parameters α and α− 1 respectively,

• ψ(x) is the digamma function,

• f(α, 1) is the probability density function of gamma distribution with shape parameter
α and dispersion parameter one.

We use expression (3.5) to compute JG(η0, h
0) in (3.3).

Another random variable that is common in Bayesian Gibbs analysis, but not in classical
simulation analysis where AD methods have been applied, is the Wishart random variable. It
is the conjugate prior choice for the inverse of the unrestricted covariance matrices in many
models, Σ−1 ∼ W (ν0,R0), with degree of freedoms ν0 and scale matrix R0 which is defined
as follows

f(Σ−1|ν0,R0) ∝ |Σ|
− (ν0−k−1)

2

|R0|ν0/1
exp

{
−1

2
tr(R−10 Σ−1)

}
where tr refers to the trace of the matrix defined as the sum of the diagonal elements sot hat
the expression in the exponential is a scalar. This conjugate prior implies a Gibbs update from
a Wishart random variable. For the derivation of the Wishart random variables, we first reduce
it to the Gamma case via a transformation. In particular, we generate the Wishart random
matrix X ∼ Wishart(p,R) via the Bartlett decomposition,

X = LAATLT

where L is the Cholesky decomposition factor of the scale matrix R, and A is an p× p lower
triangle matrix that its off-diagonal terms are N(0, 1) and its diagonal terms are chi-squared
random variables. Since the chi-squared random variables can be treated as a special case of
Gamma random variables, the distributional derivative method is directly applicable to their
generation. The sensitivities of the Wishart random variables then follow by chaining.

3.3 Implementation and Run-time
Next we illustrate the computation time of running the MCMC algorithm and sensitivity algo-
rithm time for computing first-order sensitivities for the Normal model with a sample of size
1,000 using the methods described in the previous two sections. Theorem 1 on the forward
model of AD implies that the computational cost of the forward mode AD increases linearly
with the number of input parameters of interest and the number of operations in the original
algorithm for estimation. As some operations are very fast increases in computation time are
often less than linear.

First we focus on the change in computational time when we increase the number of in-
puts. We generate a linear increase in the number of inputs for sensitivity computations by
increasing the dimension of β ∈ Rk and focusing on the computation of the sensitivities with
respect to the prior mean vectors b0 ∈ Rk. Table A shows the changes in computational time
for estimation and the sensitivity computations for Jβg(b0) for k = 1, ..., 7. From the case
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with the basic Normal model with an intercept in the first row to the case with additional 6
covariates in the last row the run-time for the sensitivity compuations increases from 6 to 9
seconds. In Table B we investigate the change in run-time as the number of MCMC itera-

Table A: Run-time and Parameter dimension
k Estimation Sensitivity
1 1.016 6.316
2 1.085 6.771
3 1.085 7.483
4 1.059 7.291
5 1.108 7.671
6 1.151 8.032
7 1.169 9.074

Table B: Run-time and Iterations
G Estimation Sensitivity

1000 0.110 0.736
2000 0.203 1.333
3000 0.301 1.936
4000 0.394 2.602
5000 0.555 3.205
6000 0.672 3.687
7000 0.734 4.361

Table 1: Run-time for Estimation and Sensitivity Estimation Components for different dimen-
sions of the input vector (Table A withB = 1000,G = 10000 ) and different iteration numbers
(Table B with B = 0, k = 3).

tions increase to reflect an increase in the number of iterations. Run-time of the sensitivity
computations increases from 0.7 to 4.3 seconds as iterations increase from 1000 to 7000. As
we increase iterations/operations in original estimation algorithm by a factor of 7, the time to
compute sensitivities increases by a factor around 6.

The results are consistent with the theoretical computational cost of the forward mode
AD, with computation times increasing at most linearly with the number of input parame-
ters of interest and the number of operations in the original algorithm for estimation. This is
important for a wide application of an AD based sensitivities as models are typically more
complex. It also shows that while the associated computational cost for applying the bumping
method prevents the assessment of sensitivities in practice, using AD the substantial amount
of information embedded in sensitivity estimates can be obtained without exhausting the com-
putational capacity.

4 Performance and Application of AD methods for Gibbs

4.1 Settings
We consider three different set-ups to demonstrate the performance of the AD approach and
to compare the AD approach to a likelihood ratio approach for sensitivity computations of
hyper-parameters. We start out with the standard linear regression model with Normal errors

yi = x′iβ + εi , εi ∼ N(0, σ2 = h−1) with β ∼ Nk(b0,B0) , h = σ−2 ∼ G

(
α0

2
,
δ0
2

)
.

Next we consider the extension of the linear regression model with student-t errors. The fat-
tailed student-t distribution is often applied in modeling of income data and finance data (Chib
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and Jacobi 2016, Martin et al 2005, Geweke 1993) when the Normality assumption fails. In
Bayesian analysis the student-t distribution is commonly represented as a scale mixture of
normals

εi ∼ N(0, λ−1i σ2) , λi ∼ G
(ν

2
,
ν

2

)
where the scale parameters {λi} are added to set of model parameters. This type of data
augmentation in common in Bayesian MCMC estimation. While it leads to a large increase in
the dimension of the parameter space, it is applied in many cases to improve the structure of
the likelihood to allow for an estimation via Gibbs samplers.

Finally, we consider a 2-equation model with joint Normal errors

y1,i = x′1,iβ + εi , y2,i = x′2,iγ + ui , (εi, ui) ∼ N2(0,Σ)

where the prior distribution for the covariance matrix is specified Σ−1 ∼ W (ν0,R0). This
type of model is the basis of many multivariate response models such as seemingly unrelated
regressions or treatment effects models and estimation involves a common Gibbs update from
a Wishart distribution.

For each model the posterior distribution can be estimated via a Gibbs Sampler (see Green-
berg 2012 and appendices 7.3 and 7.4) based on the widely used Gibbs updates from Normal,
Gamma and Wishart distributions. The complete set of input sensitivities are computed via
embedded sensitivity algorithms based on the Automatic Differentiation methods discussed in
Section 3.

4.2 Comparison with Likelihood Ratio Approach for Prior Mean Ro-
bustness

For a subset of the sensitivities obtained via the algorithmic approach it is possible to compute
the derivatives based on the Likelihood Ratio Type approach for MCMC output introduced
in Perez et al (2006). The approach is analogous to the likelihood ratio approach in financial
mathematics (see Glasserman 2004). Müller applies the approach in the context of the expo-
nential family to obtain the prior sensitivities of the β vector with respect to its prior mean
vector b0.

Consider the posterior mean of some function of θ

Eπ[g(θ)|Y,η0] =

∫
θ

g(θ)π(θ |Y,η0) dθ.

Here, without exhausting the amount of notations, we shall work with one element of the
hyper-parameter. As shown in Perez et al (2006) the partial derivative with respect to the jth
element in the prior parameter vector η0,j ∈ η0

∂

∂η0,j
Eπ[g(θ)|Y ] =

∂

∂η0,j

[∫
g(θ)f(Y |θ) π(θ|η0) dθ∫
f(Y |θ) π(θ|η0)dθ

]
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can be re-expressed using standard operations as∫
(g(θ)− Eπ[g(θ)|Y,η0]) ∂

∂η0,j
log π(θ|η0)f(Y |θ)π(θ|η0) dθ∫

f(Y |θ) π(θ|η0)dθ

where ∂ log π(θ|η0)/∂η0,j is also referred to as the score function. This sensitivity estimate
can be computed using draws on θ from the MC sampler as

1

G

B+G∑
g=B+1

[g(θ(g))− θ̂)]
∂

∂η0,j
log π(θ(g)|η0) (4.1)

where θ̂ is the sample mean estimate. For example, under this approach, which relies on
computability of the score function of the prior distribution, the sensitivities of the posterior
mean β̂ with respect to its prior mean vector b0 is obtained from the following expression

∂

∂b0
E[β|Y ] = Σ−1p Σπ̂, (4.2)

where Σp is the prior variance B0 and Σπ̂ is the posterior covariance matrix of β. The latter
can be computed based on the MCMC draws after the burn-in.

Table 2 presents the vector of sensitivity estimates of ∂β̂/∂b0 for all three models, and
also for the coefficient vector, ∂γ̂

∂g0
, in the second equation in the joint model. We observe that

the two metholodologies give similar but not identical numbers – this difference most likely
arising from the slowness of the LR method’s convergence which we will see below.

Normal Model Student-t Model 2-Equation Model
AD LR AD LR AD LR AD LR

∂Ê[β1|Y ]
∂b0

̂∂E[β1|Y ]
∂b0

∂Ê[β1|Y ]
∂b0

̂∂E[β1|Y ]
∂b0

∂Ê[β1|Y ]
∂b0

̂∂E[β1|Y ]
∂b0

∂Ê[γ1|Y ]
∂g0

̂∂E[γ1|Y ]
∂g0

3.67E-06 3.61-06 5.04E-06 5.02E-06 0.005970 0.005759 5.43E-06 5.32E-06
-2.88E-06 -2.82-06 -3.94E-06 -3.94E-06 -0.000376 -0.000363 -4.27E-06 -4.22E-06
-3.52E-07 -3.40E-07 -4.80E-07 -4.74E-07 7.52E-05 7.22E-05 -5.22E-07 -5.25E-07
-3.99E-07 -3.93-07 -5.57E-07 -5.43E-07 7.03E-05 6.83E-05 -5.91E-07 -5.52E-07

Table 2: Sensitivities of posterior mean of β1 and γ1 with respect to their prior mean vectors.

Expression (4.1), without the θ̂ term, is well known in the financial math literature on
sensitivity estimation as the Likelihood Ratio approach. There are a number of known issues
with such Likelihood Ratio methods. Firstly, they tend to be more unstable and slower to
converge. Secondly, they have higher variance. These are also borne out in the context of our
MCMC analysis. Figures 2 and 3 show that sensitivities computed under the AD approach
converge faster and remain more stable across iterations than those computed under the LR
approach. Even in the case of the simple linear regression model the LR estimates converge
more slowly and also remain less stable.

20



Unlike our method of assessing the sensitivities of the MCMC outputs over the evolution
of the markov chain, the LR method focuses on the posterior distribution. It explore the de-
pendence of the posterior distribution on the prior hyper-parameters given the sample obtained
has converged asymptotically. On the other hand, AD allows us to focus on the dependence of
the MCMC algorithmic output on its inputs including both hyper-parameter and starting value
irregardless of convergence.
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Figure 2: Convergence AD and LR Estimates: Estimates for ∂β̂1
∂b0,1

at first iterations of the MCMC
algorithms.
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Figure 3: Stability of AD and LR Estimates: Estimates for ∂β̂1
∂b0,1

at later iterations of the MCMC
algorithms.

Note that we do not expect a large variation in the reported estimates ∂θ̂(g)
k /∂η0 as the AD

approach is known to produce sensitivity estimators with lower standard error compared to
the bumping or likelihood ratio type approaches in the context of classical simulations. Here
we also observe much lower variance in our sensitivity estimates compared to the sensitivities
computed using the Perez-type LR approach even in the linear model with simulated data.

4.3 Prior Sensitivity and Sample Size
We can use the AD approach to illustrate how the effect of η0 changes with an increase in
the sample size.As the posterior distribution combines information from the prior and the data
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(likelihood), it is well known that the effect of prior assumptions depends on sample size. The
more information about the model parameters is provided in the data, the less is the impact
of the prior hyper-parameters on the posterior estimates. In order to demonstrate how the
effect of η0 on posterior inference changes with an increase data in each of the three models,
we have estimated each model with sample sizes ranging from 100 to 1000. We consider a
summary (overall) measure of the sensitivities of the posterior estimate θ̂k with respect to all
prior hyper-parameters in η0 based on the Euclidean Norm of the gradient vector ‖∂θk

∂η0
‖. This
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Figure 4: Log of Euclidean Distance of the sensitivities for β1 under different sample sizes for different
models.

log sensitivity measures for the intercept under different sample sizes are shown in Figure 4 for
each of the three models. As expected, we observed the fastest decrease in these sensitivities
in the simulated data experiment with the linear model. The joint model sensitivities decrease
mostly until a sample size of a thousand. In the student-t model we do see an decreasing trend,
but also observe some fluctuations in the sensitivities.

5 Illustrative Example
In this section we illustrate the use of the new methods for a comprehensive input sensitivity
analysis for both prior robustness and convergence in the context of a widely studied prob-
lem in empirical labour economics regarding the earnings gain from an additional year of
schooling on Earnings. It is not easy to identify the direct effects from schooling as it is well
known that the schooling decision depends on factors unobserved in the data, such as ability
and determination, that will also directly effect earnings. Thus, the true causal effect of the
schooling decision without contamination from these unobserved confounder effects cannot
be estimated by simply regressing schooling on earnings but the econometric analysis has to
take into account this endogeneity of the schooling variable. Following previous work we rely
on an identification strategy that exploits a so-called instrumental variable based on a change
in the school leaving minimum age (Oreopoulos (2006), Oreopoulos (2008), Devereux and
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Hart (2010), Chib and Jacobi (2016)) that affected schooling but had no direct effect on earn-
ings. We follow previous work and exploit the 1947 increase in the school leaving minimum
age from age 14 to age 15. The data for analysis comes from the UK General Household
Surveys using a sample of 47016 males. 75% of the sample males turned 14 after the change
in the school leaving minimum age. The average age at survey time is 47.

We proceed with Bayesian IV approach to control for endogeneity of the schooling deci-
sion that is based on a joint/simultaneous model for earnings and schooling

yi = β1 + siβ2 + x′yobiβ3 + x′ageiβ4 + εi

si = γ1 + xliγ2 + x′yobiγ3 + x′ageiγ4 + ui

where yi as the log weekly earnings, si the age a subject left school, xyobi contains a set of
cohort control variables based on the birth year, xagei and finally xli as an indicator for the
increase in the compulsory school leaving age. To account for unobserved confounders the
error terms follow a joint normal distribution

(εi, ui) ∼ N2

0,Σ =

 σ11 σ12
σ12 σ22


where Σ is a full covariance matrix. This ensures that α1 captures the returns to an additional
year of schooling.

We proceed under standard assumptions of conjugate Normal priors for β = (β1,β1,β3,β4)
and γ = (γ1, γ2,γ3,γ4) and a Wishart prior for the inverse covariance matrix Σ−1. The joint
prior distribution for the model parameters θ = (β,γ,Σ) is

π(θ|η0) = Nk(β|b0,B0)Np(γ|g0,G0)W (Σ−1ν0,R0)

which depends on the vector of prior hyper-parameters η0 = (b0,B0,g0,G0, ν0,R0). We set
the prior mean vectors b0 and g0 as vectors of zero, which is a common choice in empirical
work. The prior covariances B0 and G0 are specified as diagonal matrices with diagonal
elements set at 100 to give us fairly uninformative prior. Finally, we set R0 as an identity
matrix and ν = 5.

The posterior distribution of the model parameters π(β,γ,Σ|Y ) defined by the model and
priors above can then be estimated via a 3-step Gibbs sampler (see Appendix 7.4) with starting
values θ0 = (Σ(0), γ0).

1. Draw β(g) from π(β|Y,γ(g−1),Σ(g−1)) = Nk(b(g),Bg)

2. Draw γ(g) from π(γ|Y,β(g),Σ(g−1)) = Nk(g(g),Gg)

3. Draw Σ−1
(g) from π(Σ−1|Y,β(g),γ(g)) = W (ν

(g)
1 ,R

(g)
1 )

Sensitivities for the output from this Gibbs samplers are computed based on the methods
described in Sections 3.1 and 3.2.
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5.1 Convergence
We start the sensitivity analysis by looking at convergence via a range of measures based on the
starting value sensitivities of the draws. Here we initialize γ0 is initialized as zero vector. For
the covariance matrix Σ0 we consider two common starting value choices, a full matrix, where
non-zero off-diagonal terms reflect confounding on unobservables, and a diagonal matrix

Σ0 =

(
1 0.2

0.2 1

)
, Σ0 =

(
1 0
0 1

)
to illustrate the potential effects of starting value choices. The first choice implies that the
earnings and schooling decisions are both affected by some common unobserved factors that
link the update the corresponding model parameters β and γ. Under the latter choice the
decisions are unrelated and the two models not connected.

These two options lead to very different convergence behavior in the chain. The two graphs
in Figure 5 below show the maximum absolute value of the elements in the Jacobian matrices
of the starting value sensitivities Jθ(g)(θ0) as the chain evolves. The left focuses on the initial
iterations while the right graph looks at the first 2000 iterations. The graphs are in the natural
logarithms to illustrate the very small elements. At the initial 15 iterations the largest observed
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Figure 5: Maximum of starting value sensitivities from Jacobian matrix of all partial derivatives of
draw θg with respect to all starting values in θ0 at iteration g under full and diagonal choices of Σ0.

sensitivities are quite high across both MCMC chains. Staring with a full covariance matrix
we observe log values above 5 which implies sensitivities around 250. Starting with a diagonal
matrix, we observed much lower sensitivity values, but still not negligible with values above
7. Figure 5 (b) shows that in the latter case the sensitivities drop-off steadily over the first
2000 iterations to a log values of -4 (0.02). In the case of the diagonal matrix 2000 Burn-in
Iterations would not be sufficient for the effects of the starting value to disappear. If we specify
Σ(0) as a full covariance matrix, we observe very slow convergence in the case of the real data
application with some very large sensitivities up to 10,000 iterations.

The reason for the faster convergence is that setting Σ0 as a diagonal matrix implies no
connection between the two equations (β and γ) at the starting of the sampler. In other words
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β1 is updated without reference to the endogenous regressor model and therefore will not
depend on γ0. If on the other hand we specify Σ0 as a full covariance matrix, this is not the
case. The reason for the slow drop is that we ”carry” along a term for the dependence from the
first iteration, all though its impact will diminish as the chain continues (G increases) and as
dependencies decrease. At iteration g, the starting value sensitivities for the parameter vector
θ with respect to the all starting values, θ0, is given by expression

Jθg(θ0) =

g∏
i=2

Jθi(θ
i−1)× Jθ1(θ0)

where the last expression is a K× l Jacobian matrix that contains sensitivities of the first draw
of θ with respect to all starting values. The terms inside the product are K × K matrices,
that represent the dependence structure embedded in the kernel. In the case of a diagonal Σ0

matrix, the matrix Jθ1(θ0) will be sparse matrix. This immediately eliminates the dependence
of the draws on the initial gamma values. More importantly, the diagonal matrix indicates the
starting value is within a region of low auto-correlation, hence it allows for a faster mixing
without clustering around the initial region. Figure 7 shows lower autocorrelations in the
draws under the diagonal Σ0 compared to those under a full Σ0 in Figure 6.

If we proceed with the full version of the starting matrix, a longer Burn-in period is re-
quired. The first rows in Table 3 below show two summary measures of starting value de-
pendence in term of the maximum and average starting values sensitivities with respect to the
complete vector of starting values (γ0 and Σ0). Each measure is reported at the first iteration
following Burn-in Periods between 2,000 and 30,000 for the complete parameter vector θ and
the first two elements in the β vector, the intercept and the coefficient on the endogenous
regressor.

Convergence Measures based on Starting Value Sensitivities
B = 2, 000 B = 4, 000 B = 6, 000 B = 8, 000 B = 10, 000 B = 20, 000 B = 30, 000

θ max(|J (B+1)
θ |) 140.378 547.098 1049.58 97.924 0.13307 7.95221E-04 7.8078E-04

Aver(J
(B+1)
θ ) 5.68456 17.9786 23.6727 3.0054 3.02134E-03 3.6818E-06 3.70973E-06

β1 max(| ∂β
(B+1)
1
∂η0

|) 94.70852 227.1879 297.2609 0.197087 0.032546 9.39954E-07 3.92757E-06

Aver(
∂β

(B+1)
1
∂η0

) -18.1531 -43.7185 -50.3356 0.033583 0.00563 -6.71396E-08 -2.8054E-07

β2 max(| ∂β
(B+1)
2
∂η0

|) 29.38193 130.1667 206.4557 83.95459 0.40879 1.33207E-05 7.89301E-06

Aver(
∂β

(B+1)
2
∂η0

) -5.66511 -24.1972 -35.1668 14.23689 0.070612 9.51476E-07 -5.63786E-07

Table 3: Evolution of Starting Value Sensitivities (summary measures) between 2,000 and
30,000 Burn-in Periods with full Σ(0) matrix.

All measures show that starting values sensitivities remain high and somewhat volatile
over the first 8,000 iterations before they start to decrease. 4 Over 10,000 iterations the overall

4The fact that the sensitivity to the initial state can actually increase is a little curious. One possible expla-
nation is that for certain densities and certain inputs, inverse cumulative sampling algorithms have very large
dependence of output on input. So if the Markov chain enters a domain where such dependence is present this
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sensitivities measures based on all elements in θ are reasonably small with the average sen-
sitivity at 0.003 and the maximum sensitivity close to 0.1. Both measures drop further, and
drop further off to 3.7E-06 and 0.04 at 20,000 iterations respectively. Increasing the burn-in
period further does not appear to yield any additional decrease in starting value sensitivities.
The overall convergence measures presented in the remaining rows in Table 3 for β1 and β2
reflect large staring value sensitivities initially but we see a faster drop-off for β1 with very
low sensitivities after 6000 iterations. For β2 we still see high values at 8000 iterations. Since
both measures are reasonably small at 10,000 iterations, we set B to 10,000 for the posterior
analysis reported in the next section.

While no overall convergence measure for the chain currently exists in the literature , we
can look at the autocorrelation and the trace plots of particular draws to help assess the mixing
of the chain and convergence. In Figure 6we present graphs of each for two elements in the
β vector, the intercept and the coefficient on the endogenous schooling variable. The trace
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Figure 6: Autocorrelations up to lag 1000 and trace plots when Σ0 is set as full matrix.

plots also reflect the slow convergence of the chain, but would suggest convergence has been
reached even before 5000 iterations. Both the trace plots and the autocorrelation plots show
that have good mixing in the for β1, but poor mixing for β2. This is also reflected in the trace
plots where we see lots of clustering in the β2 draws.

For both parameters we observe lower autocorrelations and better mixing under the diag-
onal matrix choice for Σ0. This results reflects the pattern of the lower convergence measured
as higher starting value sensitivities as presented in Figure 5. We would expect to see higher
autocorrelation of draws for in the draws from the algorithm starting with full diagonal matrix
as slower mixing of the chain reflected in high autocorrelation of the draws would lead to
slower convergence of the chain. Figure 7 presents the trace plots and autocorrelations for β1
and β2. In each case the plots reflect better mixing and faster convergence than in the plots in
Figure 6 for the algorithm run with the full matrix for Σ0 . We observe inefficiency factors
above 400 for β1 and two elements in the Σ matrix, σ11 and σ12. For the remaining parameters
the inefficiency factors are close to 1 (complete set of results available upon request).

may increase the numbers. For an example of such large dependence in the context of the Heston model see
Chan, Joshi, Zhu (2015).
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Figure 7: Autocorrelations up to lag 1000 and trace plots when Σ0 is set as diagonal matrix.

5.2 Posterior Estimates and their Prior Robustness
Table 4 presents the estimates of the posterior means and standard deviations. Of particular
interest is the posterior mean estimate of β2 which suggests a 5.6% earnings increase from an
additional year of schooling. The estimate of 0.47 for γ2 reflects a strong effect of the law
change on the schooling intake.

To assess the sensitivity of the reported posterior mean estimates to the prior hyper-parameters,
the table presents a new measure of the “overall” prior sensitivity of each posterior mean es-
timates,

∥∥∥∂θk∂η0

∥∥∥ with respect to all prior hyper-parameters that is computed in terms of the
Euclidean distance/norm as

‖∂θk
∂η0
‖ =

√√√√ p∑
l=1

(
∂θk
∂η0,l

)2

The sensitivity measures range from 0.09 for the intercept γ1, followed by 0.045 for the

Posterior Mean Estimates, Standard Deviations and Total Sensitivities
β (Mean) -3.6448 0.0583 0.5866 -1.6811 0.2264 -0.0119 0.0350 -0.0253 0.0119 -0.0017
β (STD) 1.3992 0.0339 0.1269 0.4259 0.0625 0.0034 0.0099 0.0140 0.0062 9.0E-04
‖ ∂β
∂η0
‖ 0.0488 0.0053 0.0034 0.0108 0.0015 7.92E-05 9.6E-04 0.0017 7.4E-04 1.1E-04

γ (Mean) 8.7855 0.4696 0.4589 -1.4171 0.1933 -0.0097 -0.0346 0.1058 -0.0495 0.0075
γ (STD) 2.9700 0.0381 0.2707 0.9095 0.1335 0.0072 0.0211 0.0265 0.0116 0.0017
‖ ∂γ
∂η0
‖ 0.0928 0.0012 0.0084 0.0282 0.0041 2.2E-04 3.6E-04 5.2E-04 2.3E-04 3.1E-05

Σ (Mean) 0.2628 0.1245 1.3335
Σ (STD) 0.0093 0.0453 0.0087
‖ ∂Σ
∂η0
‖ 0.0013 0.0070 2.1E-05

Table 4: Posterior Estimates and Overall Prior Sensitivity Measures of Model Parameters

intercept β1 to 2.1E-05, for the variance estimate σ22. Both the magnitude of the overall
sensitivity measures and the magnitude of the posterior estimates varies across the model
parameters. These are absolute magnitudes. We can also look at relative numbers that we
can scale the overall norm measure in terms of the absolute value of the posterior mean esti-
mate. For example, we would obtain ‖ ∂β1

∂η0
‖/− 3.6448 = −0.01339 for the intercept term and
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‖ ∂β2
∂η0
‖/0.0583 = 0.0909 for the coefficient on schooling.

Table 5 reports the Jacobian matrices JE(β1|Y ) and JE(β2|Y ) with the derivatives of the
posterior mean estimates with respect to the prior hyper-parameters. The derivatives with
respect to the off-diagonal elements in B0 and G0 have been omitted for space reasons. As

Prior Hyper-Parameter Sensitivities for β1 and β2
∂β1
∂b0

2.0E-02 -1.1E-04 -1.6E-03 5.5E-03 -8.0E-04 4.3E-05 -1.5E-05 2.3E-05 -8.8E-06 1.1E-06
∂β1

∂Bkk,0
-7.1E-04 -6.2E-08 -9.6E-06 -9.2E-05 -1.8E-06 -5.1E-09 -5.2E-09 -5.8E-09 -1.0E-09 -1.8E-11

∂β1
∂g0

8.0E-03 -2.3E-05 -7.3E-04 2.4E-03 -3.5E-04 1.9E-05 -5.1E-06 5.6E-06 -1.8E-06 1.4E-07
∂β1

∂Gkk,0
7.1E-04 -1.1E-07 -3.3E-06 -3.4E-05 -6.8E-07 -1.8E-09 1.8E-09 6.1E-09 8.7E-10 1.1E-11

∂β1
∂Σ0

-1.4E-05 -4.3E-02 4.0E-03

∂β2
∂b0

-1.1E-04 1.3E-05 -6.9E-06 2.2E-05 -3.0E-06 1.5E-07 2.4E-06 -4.2E-06 1.8E-06 -2.6E-07
∂β2

∂Bkk,0
3.8E-06 7.5E-09 -4.1E-08 -3.7E-07 -6.9E-09 -1.9E-11 8.2E-10 1.0E-09 2.2E-10 4.4E-12

∂β2
∂g0

-1.8E-06 2.8E-06 3.5E-08 -8.4E-08 9.3E-09 -3.8E-10 8.6E-07 -1.2E-06 5.4E-07 -7.4E-08
∂β2

∂Gkk,0
-1.6E-07 1.3E-08 1.3E-10 6.2E-10 -5.9E-13 -3.8E-14 -3.1E-10 -1.3E-09 -2.7E-10 -5.6E-12

∂β2
∂Σ0

9.7E-07 5.2E-03 -4.9E-04

Table 5: Posterior Estimates and Overall Prior Sensitivity Measures of Model Parameters

expected we see slightly larger sensitivities for β1 than β0 which is reflected in the larger
overall sensitivity measure for the former reported in Table 4.

A different approach to assess the magnitude of the sensitivities in terms of predicted
earnings yp of a representative individual. Here we predict earnings from the model based on
the sample mean values of the covariates and the posterior mean estimates. (Another approach
would be to compute the predictions based on parameters draws from the posterior parameter
distributions alongside the estimation algorithm.) In Table 6 below we present the “raw”
sensitivities of predicted earnings with respect to b0 and g0 as well the implied changes from
a 1% posterior mean change in the element. Note that the latter number is usually lower as we
pre-multiply the derivative with a number below zero, i.e. 4b0,1y

p = [0.01β̂1] × (∂yp/∂b0,1).
The derivative is a local measure so we use to assess small changes. The reason for using a 1%
change in the posterior mean rather than the prior hyper-parameter itself is that it is common
to set those at zero, in particular for prior means. Among this set of results we see the largest
effects from changes in the prior means for the intercept terms followed by prior means on the
birth-cohort effects. We have also reported the estimates for the sensitivities with respect to
the starting values of γ0 in Table 6. We note that some of these sensitivities are of non-trivial
size.

6 Discussion
In this paper we have introduced a general and flexible numerical approach to undertake a
comprehensive input sensitivity analysis for output from Bayesian MCMC analysis to assess
robustness of (i) posterior estimates to all prior hyper-parameters and (ii) MCMC parameter
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Sensitivities for Predicted Earnings
Partial Derivatives

∂yp

∂b0
0.0226 -9.1E-05 -0.0019 0.0065 -0.0009 5.0E-05 -1.0E-05 1.6E-05 -5.2E-06 5.3E-07

∂yp

∂g0
0.0094 -2.0-05 -0.0009 0.0029 -0.0004 2.2E-05 -3.4E-06 3.0E-06 -5.1E-07 -4.3E-08

∂yp

∂γ0 -1.7E-05 -4.5E-06 -0.0013 -0.0001 -0.0012 -0.0036 -0.0002 -0.0006 -0.0008 -0.0035
Effects from 1% Posterior Mean Changes

4b0
yp -0.0008 -5.3E-08 -1.1E-05 -0.0001 -2.1E-06 -6.1E-09 -3.6E-09 -3.9E-09 -6.1E-10 -9.0E-12

4g0y
p 0.0008 -9.19E-08 -3.92E-06 -4.05E-05 -8.1E-07 -2.2E-09 1.2E-09 3.1E-09 2.5E-10 -3.2E-12

4γ0yp -1.5E-06 -2.1E-08 -5.8E-06 1.6E-06 -2.2E-06 3.5E-07 6.5E-08 -6.3E-07 3.8E-07 -2.7E-07

Table 6: Partial derivatives and approximate changes from 1% changes in hyper-parameters.

draws with respect to all starting values (chain convergence). Under the approach sensitiv-
ities for all MCMC output, including draws and statistics, with respect to all inputs can be
computed via embedded sensitivity algorithms that are based on algorithmic differentiation
(AD) methods. This approach to estimate the Jacobian matrices of the first order derivatives
of MCMC output can be viewed as a small-size limit of the bumping method. The extensions
to higher order derivatives, such as the Hessian matrix of the posterior statistic, is clearly fea-
sible (Joshi and Zhu, 2016b). Whilst it has some similarities with symbolic differentiation,
it works by differentiating an algorithm at the level of elementary operations rather than by
differentiating formulas.

The introduced set of methods based on the forward mode AD approach for sensitivity
analysis offers researcher an new tool to improve current prior robustness and algorithm con-
vergence analysis. Different from existing methods, the approach enables researchers to com-
pute sensitivities with respect to both the complete set of prior hyper-parameters as well as the
complete set of starting values required to initiate the MCMC chain. Prior robustness mea-
sures based on the Jacobian of posterior statistics with respect of prior hyper-parameters allow
researchers to gain a better understanding of prior to posterior dependence within a parametric
family. The extension to a wider range of robustness measures is possible via distributional
derivatives which we will explore in future research.

As part of the algorithmic differentiation the complete set of partial derivatives (all inputs)
is computed for all parameters (draws) at every iteration of the chain. These results are used
to compute the partial derivatives/sensitivities of functions of the parameters, in particular
statistics such as posterior means and variances. Importantly, the partial derivatives of the
parameter draws with respect to the starting values allows us to monitor the convergence of
the chain. The paper introduces a new set of direct measures of chain convergence based
on the starting value sensitivities of all parameters that will help to assess chain convergence
directly and set a reasonable burn-in period. The measures will complement existing measures
of algorithm efficiency based on the autocorrelations of the draws.

An essential feature of the introduced methods is that the computational cost of the forward
mode AD increases linearly with the number of input parameters of interest and the number of
operations in the estimation algorithm. As some operations are very fast increases in compu-
tation time are often less than linear as illustrated in our examples. This makes the approach
feasible for applications with high dimensional parameter and input parameter spaces. Clearly
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the computational burden could be lowered by computing only a subset of the possible sen-
sitivities that are particularly relevant in a specific context. In this paper we have aimed to
introduce the approach for the general set of prior sensitivities that are of relevance for prior
robustness and convergence to illustrate the potential of this approach. We have also proposed
some summary sensitivity measures based on the large set of input sensitivities.

Finally, to test and illustrate the new methods, we have implemented sensitivity analysis
both with respect to the prior hyper-parameters and MCMC chain starting values in the con-
text of the Gibbs estimation of linear and student-t regression models as well as joint models
in simulated and real data experiments. We also show that our sensitivity estimates of the
posterior means with respect to the hyper-parameters are comparable to those obtained via the
likelihood ratio approach, but are faster to converge and more stable. While overall prior pa-
rameters sensitivities are small in our real data applications, partially a results of large sample
sizes, the sensitivities vary both across parameters within a model and across models. The
developed convergence measures shows the fastest convergence of the Gibbs sampler for the
linear model and the slowest convergence for the Gibbs sampler of the Joint Model. The latter
has a particularly slow convergence if a full covariance matrix is chosen to start of the chain,
requiring 10,000 iterations as a burn- in period.

A potential challenge of the AD based approach is the requirement of the continuity of
the underlying MCMC algorithm. In this paper we show how to address issues of disconti-
nuities that arise in the context of common random variable updates in Gibbs algorithms, the
Gamma and Wishart updates. Discontinuities arising from a Metropolis Hastings updates will
be addressed in a separate paper.
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7 Technical Appendix

7.1 Automatic Differentiation via Forward Mode
We now discuss in more detail how the automatic differentiation is carried out. A program
will start with a number of inputs, z1, z2, . . . , zM , for some M. In our context, these are all
the starting parameters of the model including the hyper-parameters, the starting point of the
chain and the data. So we could have

z1 = θ
(0)
1 , z2 = θ

(0)
2 , . . . , zp = θ(0)p ,

and
zk+1 = η10, . . . , zk+j = ηj0,

and similarly for the data. Our program will start with these values {zr}r=1,...,M and applies
elementary operations from the class introduced in Subsection 2.3 one at at time to already
computed values to get a sequence of new values {zr}r=M+1,...,L. Thus we have a sequence of
operations Fj for j = k + 1, . . . , L, and

zj = Fj(zj1 , zj2)

for some j1, j2 < j. For some operations such as exp, Fj will have no dependence on zj2 but it
is easier notationally to assume all operations have two inputs.

We now fix a particular input, zs, for which we want the output’s sensitivity. The sensitivity
of zs to itself is, of course, 1 and the sensitivity of zr to zs for r ≤M, r 6= s, will be zero since
they are separate inputs. We compute the sensitivity to zs of each subsequent zl for l > M one
by one starting with zM+1. We emphasize that at each stage we are computing its numerical
value for a given set of inputs. Now suppose we have computed ∂zr

∂zs
for r < j, and we want to

find ∂zj
∂zs
. We can write

∂zj
∂zs

=
∂Fj
∂zs

(zs) =
∂Fj
∂zj1

∂zj1
∂zs

+
∂Fj
∂zj2

∂zj2
∂zs

. (7.1)

The values ∂Fj/∂zj1 and ∂Fj/∂zj2 are very easily computable since Fj is an elementary
operation. For example, if Fj is + then they are both 1 and

∂zj
∂zs

=
∂zj1
∂zs

+
∂zj2
∂zs

. (7.2)

If Fj(zj1 , zj2) = exp(zj1) then

∂zj
∂zs

= exp(zj1)
∂zj1
∂zs

= zj
∂zj1
∂zs

. (7.3)

We therefore rewrite our computer program to compute the numerical value ∂zj/∂zs at
the same time as zj and to store the result alongside zj. We drop its storage at the same that
we drop the storage of zj. Once zj has been done, we move on to zj+1 and so on. When the
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program terminates in a value zL, it will have ∂zL/∂zs alongside and the derivative has been
computed. Depending on the class of elementary operations, it is usually possible to automate
this process.

Note that the analysis above does not require us to have only one output and if the origi-
nal algorithm outputted several values zL−w+1, zL−w+2, . . . , zL then it is simply a question of
reading off the last w derivatives. If we want to compute the sensitivity for multiple inputs,
then we can simply repeat the above process for each one of them.

We have sketched out how to construct the differentiated algorithm and it is important to
realize that this is a practical result. Any continuous computation implementable in a computer
can be broken down and differentiated in this way.

7.2 More on Implementing AD for Linear Models
Multidimensional setup
For the actual applications, β is often a vector. As a consequence, we need compute and update
a gradient vector for each g(βk) with more state variables including each elements of βg, b(g)

and B(g). We also generate β(g) from multi-variate normal distribution with parameter b(g)

and B(g) by decomposing B(g) via the Cholesky decomposition. Consider a matrix Σ = AAT ,
we want to obtain the sensitive of A with respect to a real parameter θ

∂Σ

∂θ
=
∂A

∂θ
AT + A

∂AT

∂θ

The trick is to left-multiply by A−1 and right-multiply by A−T

A−1
∂Σ

∂θ
A−T = A−1

∂A

∂θ
ATA−T + A−1A

∂AT

∂θ
A−T = A−1

∂A

∂θ
+
∂AT

∂θ
A−T

The second term is the transpose of the first, meaning it is upper-triangular and has the same
diagonal. We can therefore remove the second term by applying a function Φ to both sides,
where Φ takes the lower-triangular part of a matrix and halves its diagonal:

Φi,j(A) =


Ai,j if i > j

0.5Ai,j if i = j

0 if i < j.

Hence
∂A

∂θ
= AΦ(A−1

∂Σ

∂θ
A−T ).

The proof of this method is in [20]. For the step where we need to compute derivatives of
matrix inversion, we could also apply the automatic differentiation to the inversion algorithm,
but there is a trick to save the computational cost. Since for a square matrix A depending on
real parameter θ

A−1A = I,
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where I is the identity matrix, differentiating both sides gives us

dA−1

dθ
A + A−1

dA

dθ
= 0→ dA−1

dθ
= −A−1dA

dθ
A−1.

where 0 is the zero square matrix.
Generating Gamma Random Variable

1. Setup: α̂ = α− 1, b =
α− 1

6α

α̂
, m = 2

α̂
and d = m + 2.

2. Repeat: generate V = U(0, 1) and V D = U(0, 1) independently, set Y = bV
D

V
.

3. If m1V − d + Y + 1
Y
≤ 0 accept,

else if m log(V )− log(Y ) + Y − 1 ≤ 0 accept,

4. until accept,

5. return Z = α̂Y .

Thus, a small change in the shape parameter α may induce changes in the above acceptance-
rejection decisions.

1. Setup: α̂ = α− 1, b =
α− 1

6α

α̂
, m = 2

α̂
and d = m + 2.

2. Repeat: generate V = U(0, 1) and V D = U(0, 1) independently, set Y = bV
D

V
.

3. If m1V − d + Y + 1
Y
≤ 0 accept,

else if m log(V )− log(Y ) + Y − 1 ≤ 0 accept,

4. until accept,

5. return Z = α̂Y .

Thus, a small change in the shape parameter α may induce changes in the above acceptance-
rejection decisions.

7.3 Gibbs Algorithm for Student-t Model
For the linear regression model with student-t error from Section 1, we define λ = λ1, λ2, ..., λn
as the vector of the scale parameters for all observations, then we can define the likelihood of
the model now also conditioned on the scale parameters as

p(y|β, h, λ) =
n∏
i=1

N(yi|xiβ, λ−1i h−1) =
n∏
i=1

h1/2λ
1/2
i

(2π)1/2
exp{−1

2
hλi(yi − xiβ)2}
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where h = 1/σ2. To express the likelihood more compactly in matrix form we define the
diagonal matrix of scale parameters

Λ =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn


The likelihood then can be expressed in vector form as the multivariate normal density

p(y|β, h, λ) = N(y|Xβ, h−1Λ−1) =
hn/2

(2π)n/2
|Λ|1/2 exp{−1

2
h(y −Xβ)′Λ(y −Xβ)}

where |hΛ| = hn|Λ| by matrix algebra.
The implied prior distribution of the model parameters is

π(β, h, λ) = N(β|β0, B0) G(h|α0

2
,
δ0
2

)
n∏
i=1

G
(ν

2
,
ν

2

)
The posterior distribution of the model parameters is

π(β, h, λ|Y ) ∝
n∏
i=1

G(λi|
ν

2
,
ν

2
) Nk(β|b0,B0)G(h|α0

2
,
δ0
2

)N(y|Xβ, h−1Λ−1).

The posterior distribution can be estimated via a Gibbs sampler since we stay within the
normal regression framework, i.e. π(β|Y, h, λ is still of a normal form

p(β|y, h, λ) = N(B−1[hX ′Λy + B−10 b0],B = [h(X ′ΛX) + B−10 ]−1)

the conditional posterior distribution of the precision h is still a gamma distribution

p(h|β, λ, y) = G

(
n + α0

2
,

(y −Xβ)′Λ(y −Xβ) + δ0
2

)
and the conditional posterior distribution of the scale parameters is just a product of indepen-
dent gamma distribution]

p(λ|y,β, h) =
n∏
i=1

p(λi|yi,β, h) =
n∏
i=1

G

(
ν + 1

2
,
ν + h(yi − xiβ)2

2

)
We summarize the Gibbs’ algorithm.

1. Initialization: The initial inputs of the algorithm:

• B0, the prior covariance matrix of β,

• b0, the prior mean of β,
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• the prior δ0 and α0 of the Gamma,

• the prior for λ degree of freedom parameter ν

• h(0) = 1

σ2(0)
and β0, the initial starting point of the algorithm

• set counter at g = 1

2. Update vector λ: Draw λ
(g)
i , i = 1, ..., n from π(λi|Y, h(g−1),β(g−1)) = G

(
ν1
2
,
ν
(g)
2

2

)
where

ν
(g)
2 = ν + h(g−1)(yi − xiβ(g−1))2, ν1 = ν + 1.

3. Update vector β: Draw β(g) from π(β|Y, h(g−1), λ(g)) = Nk(b(g),Bg) where

B(g) =
[
h(g−1)XTΛ(g)X + B−10

]−1
,b(g) = B(g)

[
h(g−1)XTΛ(g)Y + B−10 b0

]
.

4. Update h: Draw h(g) from π(h|Y,β(g), λ(g)) = G
(
α1

2
, 2
δ(g)

)
where

δ(g) = δ0 + (Y −Xβj)
TΛ(g)(Y −Xβ(g)), α1 = α0 + n.

5. Repeat steps (2) and (4) for B +G times, where B is the initial burn-in period required
for the chain to converge which is discarded and G is the required simulation sample
size.

7.4 MCMC Algorithm for Joint Model
Below are the details for the Gibbs algorithm used to fit the joint model defined in Section 4.1
and also used in the illustrative example in Section 5. To express the likelihood in a compact
form suitable for an efficient gibbs update, we first define the covariate vectors for the earnings
and schooling equations as xyi = {const, si, xyobi, xagei} and xsi = {const, xli, xyobi, xagei}
then the Covariate Matrix Xi and coefficient vector

yi =

(
yi
si

)
, Xi =

 x′yi 0
0 x′si

 , δ =

(
β
γ

)
where β = (β1,β1,β3,β4) is a k × 1 vector and γ = (γ1, γ2,γ3,γ4) a p × 1 vector. The
likelihood under this model can then be compactly expressed as

f(y|δ,Σ) =
n∏
i=1

N(Xiδ,Σ)

We assume that the inverse of the covariance matrix follows a prior Wishart distribution
Σ−1 ∼ W (ν0,R0) with degree of freedoms ν0 and scale matrix R0 which is defined as follows

f(Σ−1|ν0,R0) ∝ |Σ|
− (ν0−k−1)

2

|R0|ν0/1
exp

{
−1

2
tr(R−10 Σ−1)

}
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where tr refers to the trace of the matrix defined as the sum of the diagonal elements sot hat
the expression in the exponential is a scalar. This assumption of a conditionally conjugate
prior for Σ allows for the estimation of the model parameters via a standard Gibbs sampler as
the full condition distribution of Σ−1 is a Wishart distribution f(Σ−1|ν1, R1) with the updated
parameter given by

ν1 = ν0 + n , R1 =
[
R−10 +

∑
(yi −Xiδ)(yi −Xiδ)′

]−1
Further, assuming normal priors for the coefficient vectors β ∼ N(b0,B0) and γ ∼ N(g0,G0),
these can be updated in two separate Normal Gibbs steps by exploiting the marginal-conditional
decomposition of the bivariate normal likelihood. For the update of β we express

f(yi, si) = f(yi|si)f(si)

where according to the properties of the bivariate normal the conditional distribution is given
by

f(yi|si) = N(x′yiβ + σ12σ
−1
22 (si − x′siγ), ω11)

where the conditional variance of yi is ω11 = σ11 − σ12σ−122 . From here it follows that the full
conditional distribution of β, π(β|y, s,γ,Σ) = N(B,B) where

B =
[
B−10 + ω−111

∑
xyix

′
yi

]−1
,b = B

[
B−10 b0 + ω−111

∑
xyi(yi − σ12σ−122 (si − x′siγ))

]
.

Similarly, assuming γ ∼ N(g0,b0) and expression the joint likelihood as

f(yi, si) = f(si|yi)f(yi)

where according to the properties of the bivariate normal the conditional distribution is given
by

f(si|yi) = N(x′siγ + σ12σ
−1
11 (yi − x′yiβ), ω22)

where the conditional variance of si is ω22 = σ22 − σ12σ−111 . From here it follows that the full
conditional distribution of γ, π(γ|y, s,β,Σ) = N(g,G) where

G =
[
G−10 + ω−122

∑
xsix

′
si

]−1
,g = G

[
G−10 g0 + ω−122

∑
xsi(si − σ12σ−111 (yi − x′yiβ))

]
.

We summarize the three step Gibbs’ algorithm below

1. Initialization: The initial inputs of the algorithm:

• b0, B0: the prior mean and covariance matrix of β,

• g0, G0, the prior mean and covariance matrix of γ,

• the prior parameters ν0 and R0 of the Wishart prior for Σ−1,

• the initial starting points of the algorithm Σ(0) : {σ0
11, σ

0
12, σ

0
22} (and ω0

11 = σ0
11 −

σ0
12σ

0−1
22 , ω0

22 = σ0
22 − σ0

12σ
0−1
11 )
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• and γ0,

• set counter at g = 1

2. Update vector β: Draw β(g) from π(β|Y,γ(g−1),Σ(g−1), ) = Nk(b(g),Bg) where

B(g) =
[
B−10 + ω−1

(g−1)

11

∑
xyix

′
yi

]−1
,

b(g) = B(g)
[
B−10 b0 + ω−1

(g−1)

11

∑
xyi

(
yi − σ(g−1)

12 σ−1
(g−1)

22 (si − x′siγ(g−1))
) ]
.

3. Update vector γ: Draw γ(g) from π(γ|Y,β(g),Σ(g−1), ) = Nk(g(g),Gg) where

G(g) =
[
G−10 + ω−1

(g−1)

22

∑
xsix

′
si

]−1
,

g(g) = G(g)
[
G−10 g0 + ω−1

(g−1)

22

∑
xsi

(
yi − σ(g−1)

12 σ−1
(g−1)

11 (yi − x′yiβ(g))
) ]
.

4. Update Σ: Draw Σ−1
(g) from π(Σ−1|Y,β(g),γ(g)) = W (ν

(g)
1 ,R

(g)
1 )where

ν
(g)
1 = ν0 + n , R1 =

[
R−10 +

∑
(yi −Xiδ

(g))(yi −Xiδ
(g))′
]−1

with δ(g) = (β(g),γ(g))

5. Repeat steps (2) to (4) for B + G times, where B is the initial burn-in period required
for the chain to converge which is discarded and G is the required simulation sample
size.
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