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Abstract

Consider a set of agents who play a network game repeatedly. Agents may not know the

network. They may even be unaware that they are interacting with other agents in a network.

Possibly, they just understand that their payoffs depend on an unknown state that in reality

is an aggregate of the actions of their neighbors. Each time, every agent chooses an action

that maximizes her subjective expected payoff and then updates her beliefs according to what

she observes. In particular, we assume that each agent only observes her realized payoff. A

steady state of such dynamic is a selfconfirming equilibrium given the assumed feedback.

We characterize the structure of the set of selfconfirming equilibria in network games and we

relate selfconfirming and Nash equilibria. Thus, we provide conditions on the network under

which the Nash equilibrium concept has a learning foundation, despite the fact that agents may

have incomplete information. In particular, we show that the choice of being active or inactive

in a network is crucial to determine whether agents can make correct inferences about the payoff

state and hence play the best reply to the truth in a selfconfirming equilibrium. We also study

learning dynamics and show how agents can get stuck in non–Nash selfconfirming equilibria. In

such dynamics, the set of inactive agents can only increase in time, because once an agent finds

it optimal to be inactive, she gets no feedback about the payoff state, hence does not change

her beliefs and remains inactive.
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1 Motivation

Imagine an online social network, like Twitter, with many users. Let us consider a simultaneous-

moves game, in which each user i decides her level of activity ai ≥ 0 in the social network. The

payoff that agents get from their activity depends on the social interaction. In particular, when

active user i receives idiosyncratic externalities, that can be positive and negative, from the other

users with whom she is in contact with in the social network. The externality from user i to user

j is proportional to the time that they both spend on the social network, ai and aj . Sticking to a

quadratic specification, that allows for linear best replies, let us assume that the payoff of i from

this game is1

ui(ai,a−i) = αiai −
1

2
a2i +

∑
j∈I\{i}

zijaiaj . (1)

In eq. (1), I is the set of agents in the social network and ai is the level of activity of i ∈ I, while αi

represents the individual pleasure of i from being active on the social network in isolation, which

results in the bliss point of activity in autarchy. Parameter αi can also be negative, and in this case

i would not be active in isolation. For each j ∈ I\ {i}, there is some exogenous level of externality

from j to i denoted by zij . We say that j affects i, or that j is a peer of i, if zij 6= 0.

At some point, in this paper, we will also consider an extra global term in the payoff function

ui(ai,a−i) = αai −
1

2
a2i +

∑
j∈I\{i}

zijaiaj + β
∑

k∈j∈I\{i}

ak. (2)

We can interpret this extra term as an additional pleasure that i gets from being member (even if

not active) of an online social network that is overall popular.

In this paper, the network described by the matrix Z of all the zij ’s is exogenous. As a first

approximation, this fits a directed online social network like Twitter, where users cannot decide

who follows them. Under this interpretation, i receives positive or negative externalities from those

who follow her, that are proportional to her activity. Payoff represents the popularity that i receives

from being active or not in the social network. We imagine that i cannot choose the style of what

she writes, since she just follows her exogenous nature. In this interpretation, ai represents the

amount of tweets that i writes, and this can make her more or less popular for those who follow her,

according to how her style combines with the (typically unobserved) taste of each of her followers.

Since we are going to analyze learning dynamics and their steady states, we also have to specify

what agents observe after their choice, because this affects how they update their beliefs. Twitter

user i typically observes perfectly her own activity level ai, but she may not observe the sign

1This is the class of games originally analyzed by Ballester et al. (2006). Bramoullé et al. (2014) is one of the

more recent papers providing results for such linear-qadratic network games, and they discuss also how to generalize

to games that have the same best–reply functions. Zenou (2016) surveys many applications.
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of the externalities and the activity of others. However, she gets indirect measures of her level of

popularity that come from her conversations and experiences in the real world, where her popularity

from Twitter affects her social and professional real life. Players of this game may have wrong beliefs

about the details of the game they are playing (e.g. the structure of the network, or the value of

the parameters) and about the actions of other players. With this, they update their beliefs in

response to the feedback they receive, which will be their (possibly indirectly measured) payoff.

This updating process may lead to a learning dynamic that does not converge to a Nash equilibrium

of the game.

In this paper we address the following question: assuming simple updating rules, under what

circumstances do learning dynamics converge to a Nash equilibrium of the game and when, instead,

do they just converge to a selfconfirming equilibrium where agents best reply to confirmed but

possibly wrong beliefs? This question is per se interesting, and with our answers we provide novel

theoretical tools for the analysis of network games. However, the application of the model to online

social networks that we just anticipated can also help in understanding why we may easily observe

apparently non–optimal best responses by economic agents in such an environment, such as agents

who get stuck into “inactivity traps.”

Section 2 presents our baseline model. For this setting, we characterize the set selfconfirming

equilibria in Section 3, and we discuss the learning process in Section 4. In Section 5 we analyze

a more general model that accounts for global externalities. We devote appendices to proofs and

technical results. Appendix A analyze properties of feedback and selfconfirming equilibria in a

class of games including as special cases the network games that we consider. Appendix B reports

existing and results in linear algebra, that we use to find sufficient conditions for reaching interior

Nash equilibria in network games. Appendix C contains the proofs of our propositions.

2 The Framework

Consider a set I of agents, with cardinality n = |I| and generic element i, located in a network. Let

the network be characterized by an adjacency matrix Z ∈RI×I , where entry zij specifies whether

agent i is linked to agent j 6= i and the weight of this link, and we let zii = 0 by convention. In

what follows we consider the possibility of asymmetric networks, so that zij 6= zji, and in particular

the case of directed network, so that, given i, j ∈ I, we allow zij > 0, and zji = 0.2

We assume that there is an upper bound w̄ and a lower bound w in the weighted externalities,

that can be positive or negative, between players We let Θ ⊆ [w, w̄]I×I denote the of possible

weighted networks Z. The network game is parametrized by Z ∈ Θ and we assume that Θ is

compact.

2In some of the examples that we propose, which strictly relate to existing literature, we will consider the simplified

case of Z ∈{0, 1}I×I in which all active links have the same weight normalized to 1. However, this will typically not

be the case.
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Each agent i ∈ I chooses an action ai from interval Ai = [0, āi], where the upper bound

āi is “sufficiently large”.3 For each i ∈ I, A−i := ×j 6=iAj denotes the set of action profiles

a−i = (aj)j∈I\{i} for players different from i. Similarly, defining Ni := {j ∈ I : zij 6= 0} as the set of

the neighbors of a given agent i, ANi := ×j∈NiAj denotes the set of action profiles aNi := (aj)j∈Ni
of i’s neighbors.

For each i ∈ I, we posit a set (interval) Xi = [xi, x̄i] of payoff states for i, with the inter-

pretation that i’s payoff his determined by his action ai and by his payoff state xi according to a

utility function vi : Ai ×Xi → R. The payoff state xi is in turn determined by the actions of i’s

neighbors and is unknown to i at the time of his choice. For each agent i ∈ I and matrix Z, we

consider a parametrized aggregator of the coplayers’ actions `i : A−i × Θ → Xi of the following

form: for each Z ∈ Θ, the section of `i at Z is

`i,Z : A−i → Xi,

a−i 7→
∑

j 6=i zijaj .

This notation allows to assume that, on top of the adjacency matrix, the relationships between

agents are mediated by a parameter vector γ ∈RI+. In fact, suppose that there is a basic network

Z0. Then we can represent the linear aggregator as

a−i 7→ γi

∑
j 6=i

z0,ijaj

 .

In what follows we include in the adjacency matrix the heterogeneous parameters from vector γ: we

let Z = ΓZ0, where Γ is a diagonal matrix, with diagonal given by γ, and Z0 is the basic network

(e.g., a matrix of 0s and 1s). In words, Z represents a social network in which there is an additional

idiosyncratic effect by which every agent i weights the effects of the others on her, and this effect

is parameterized by γi.

Let N−i := {j ∈ I : zij < 0} denote the set of neighbors of player i that have a negative effect

on the payoff state of i. Similarly, N+
i := {j ∈ I : zij > 0} denotes the set of neighbors of player i

that have a positive effect on the payoff state of i. We also assume that

∀i ∈ I, xi ≤
∑
j∈N−i

zij āj , x̄i ≥
∑
j∈N+

i

zij āj .

The overall payoff function that associates each action profile (ai,a−i) with a payoff for agent

i is thus parametrized by the adjacency matrix Z:

ui : Ai ×A−i ×Θ → R,

(ai,a−i,Z) 7→ vi (ai, `i (a−i,Z)).
(3)

3Note that in the network literature it is common to assume Ai = R+. However, for the games we consider, we

can always find an upper bound ā on actions such that the problem is unchanged when actions are bounded above

by ā.
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Note, we assume that each agent i knows how her payoff depends on her action and her payoff state,

that is, we assume that i knows function vi, but we do not assume that i knows Z. Actually, from

the perspective of our analysis, agent i might even ignore that the payoff state xi aggregates her

neighbors’ activities according to some weighted network structure, because we are not modeling

how i reasons strategically.4 If vi,xi : Ai → R is strictly concave5 for each xi, there is a unique best

reply ri (xi) to each payoff state xi. Although the aggregator is linear, if this “proximate” best

reply function ri : Xi → Ai is non-linear,6 then also the best reply ri (`i (a−i,Z)) is non-linear in

a−i. Linearity obtains if and only if vi is quadratic in ai and linear in xi. Without substantial loss

of generality, among such utility functions we consider the following form:

vi : Ai ×Xi → R,

(ai, xi) 7→ αiai − 1
2a

2
i + aixi.

(4)

Note that vi in eq. (4) is continuous and strictly concave in ai. Thus, G =
〈
I,Θ, (Ai, ui)i∈I

〉
, with

ui defined by eqs. (3)-(4), is a parametrized nice game (see Moulin 1984 for a definition of nice

game, and Appendix A for a generalization, with some results for non-linear-quadratic network

games).

We assume that the game is repeatedly played by agents maximizing their instantaneous payoff.

After each play agents get some feedback. Let M be an abstract set of “messages” (e.g., monetary

outcomes). The information obtained by agent i ∈ I after each round is described by a feedback

function fi : Ai ×Xi →M . Assuming that i knows how her feedback is determined by the payoff

state given her action, if she receives message m after action ai she infers that the state xi belongs

to the “ex post information set”

f−1i,ai (m) :=
{
x′i ∈ Xi : fi

(
ai, x

′
i

)
= m

}
.

This completes the description of the object of our analysis. The structure

NG =
〈
I,Θ, (Ai, Xi, vi, `i, fi)i∈I

〉
is a (parameterized) network game with feedback, or simply network game. Our analysis

depends on the assumptions about the payoff functions and the feedback functions.

Definition 1. A network game with feedback NG is linear-quadratic if the utility function of

each player has the linear-quadratic form (4).

4If the parametrized payoff functions and the parameter space Θ are common knowledge, strategic reasoning

according to the epistemic assumptions of rationality and common belief of rationality can be captured by a simple

incomplete-information version of the rationalizability concept. See, e.g., chapter 7 of Battigalli (2018) and the

references therein.
5Or strictly quasi-concave.
6More precisely, not affine.
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In this case, the proximate best-reply function is

ri (xi) =


0, if xi ≤ −αi,
αi + xi, if α < xi < āi − αi,
āi, if xi ≥ āi − αi.

(5)

Hence the best reply to the actions of others is

ri (`i (a−i,Z)) =


0, if

∑
j 6=i zijaj ≤ −αi,

αi +
∑

j 6=i zijaj , if −αi <
∑

j 6=i zijaj < āi − αi,
āi, if

∑
j 6=i zijaj ≥ āi − αi.

(6)

Definition 2. Feedback fi satisfies observability if and only if player i is active (OiffA) if

section fi,ai is injective for each ai ∈ (0, āi] and constant for ai = 0; fi satisfies just observable

payoffs (JOP) relative to vi if there is a function v̄i : Ai ×M → R such that

∀ (ai, xi) ∈ Ai ×Xi, vi (ai, xi) = v̄i (ai, fi (ai, xi))

and the section v̄i,ai : M → R is injective for each ai ∈ Ai. Network game with feedback NG

satisfies observability by active players if feedback fi satisfies OiifA , for each player i ∈ I, and

it satisfies just observable payoffs if fi satisfies JOP for each player i ∈ I.

In a game with just observable payoffs agents infer their realized payoff from the message they

get, but no more than that. For example, the feedback could be a total benefit, or revenue function

fi : Ai ×Xi → R,

(ai, xi) 7→ αiai + aixi,

with the payoff given by the difference between benefit and activity cost Ci (ai):

vi : Ai ×Xi → R,

(ai, xi) 7→ fi (ai, xi)− Ci (ai).

Under the reasonable assumption that agent i knows her cost function, when she chooses ai and

then gets message m, she infers that her payoff is v̄i (ai,m) = m− Ci (ai). Thus, each section v̄i,ai
(ai ∈ Ai) is indeed injective. If the feedback/benefit function is fi (ai, xi) = αiai + aixi, then it

satisifes observability if and only if i is active.

Remark 1. If NG is linear-quadratic and satisfies just observable payoffs, then it satisfies ob-

servability by active players. If NG satisfies observability by active players, then

f−1i,ai (fi (ai, xi)) =

{
Xi, if ai = 0,

{xi} , if ai > 0
(7)

for every agent i ∈ I and action-state pair (ai, xi) ∈ Ai ×Xi.
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Most of our analysis focuses on linear-quadratic network games with just observable payoffs.

This implies that agents who are active get as a feedback a message enabling them to perfectly

determine the state. Conversely, inactive agents get a message completely uninformative.

To choose an action, subjectively rational agents must have some deterministic or probabilistic

conjecture about the payoff state xi. We refer to conjectures about the state as shallow conjec-

tures, as opposed to deep conjectures, which concern the specific network topology (Z) and the

actions of other players (a−i). In linear-quadratic network games (more generally, in nice games

with feedback), it is sufficient to focus on deterministic shallow conjectures. Indeed, for every prob-

abilistic conjecture µi ∈ ∆ (Xi), there exists a deterministic conjecture x̂i ∈ Xi that justifies the

same action a∗i as the unique best reply (see the discussion in Appendix A.1).

2.1 Selfconfirming equilibrium

We analyze a notion of equilibrium which is broader than Nash equilibrium. Recall that our

approach allows for the possibility of agents who are unaware of the full game around them. In

a steady state, agents best respond to conjectures consistent with the feedback that they receive,

which is not necessarily fully revealing. We believe that this approach fits well to a networked

environment where the information that players receive is only local.7

Definition 3. A profile (a∗i , x̂i)i∈I ∈ ×i∈I (Ai ×Xi) of actions and (shallow) deterministic con-

jectures is a selfconfirming equilibrium (SCE) at Z if, for each i ∈ I,

1. (subjective rationality) a∗i = ri (x̂i),

2. (confirmed conjecture) fi (a∗i , x̂i) = fi
(
a∗i , `i

(
a∗−i,Z

))
.

We say that a∗ = (a∗i )i∈I is a selfconfirming action profile at Z if there exists a correspond-

ing profile of conjectures (x̂i)i∈I such that (a∗i , x̂i)i∈I is a selfconfirming equilibrium at Z, and we

let ASCE
Z denote the set of such profiles. Also, for any adjacency matrix Z ∈ Θ, we denote by ANE

Z

the set of (pure) Nash equilibria of the (nice) game determined by Z, that is,

ANE
Z :=

{
a∗ ∈ ×i∈IAi : ∀i ∈ I, a∗i = ri

(
`i
(
a∗−i,Z

))}
.

Nice games satisfy all the standard assumptions for the existence of Nash equilibria.8 Hence, we

obtain the existence of selfconfirming equilibria for each Z ∈ Θ. To summarize:

7In a context of endogenous strategic network formationn fact, McBride (2006) apply the conjectural equi-

librium concept, which is essentially as selfconfirming equilibrium for games with feedback (see the discussion in

Battigalli et al. 2015).
8Since the self-map a 7→ (ri (a−i,Z))i∈I is continuous on the convex and compact set A = ×i∈I [0, āi], by Brouwer’s

Theorem it has a fixed point.
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Remark 2. For every Z, there is at least one Nash equilibrium, and every Nash equilibrium is a

selfconfirming profile of actions:

∀ Z ∈ Θ, ∅ 6= ANE
Z ⊆ ASCE

Z .

3 Characterization of SCE

In this section we characterize the set ASCE
Z of selfconfirming equilibrium profiles of actions. We

start with the simplest case in which every agent finds it subjectively optimal to be active. All our

proofs are derived from the results in Appendix A and Appendix B, and are stated in Appendix C.

Proposition 1. Consider a network game NG satisfying observability by active players. Assume

that, for every i ∈ I and for every x̂i ∈ Xi, ri (x̂i) > 0. Then, for each Z ∈ Θ, ASCE
Z = ANE

Z .

Assume that αi > 0 and Z = γZ0, with γ > 0 and Z0 ∈ {0, 1}I×I . This represents the standard

case of local complementarities studied by Ballester et al. (2006). If γ (n− 1) < 1 there is a unique

Nash equilibrium which is also interior. Our proposition states that, in this case, if being inactive

is not justifiable as a best reply to any shallow conjecture, then there is only one selfconfirming

equilibrium action profile, which necessarily coincides with the unique Nash equilibrium.

We now consider a more general case in which agents may be inactive. Let I0 denote the set

of players for whom being inactive is justifiable. Note that, by Lemma A in Appendix A.1,

I0 = {i ∈ I : min ri (Xi) = 0} .

Also, for each Z ∈ Θ and nonempty subset of players J ⊆ I, let ANE
J,Z denote the set of Nash

equilibria of the auxiliary game with player set J obtained by letting ai = 0 for each i ∈ I\J , that

is,

ANE
J,Z =

{
a∗J ∈ ×j∈JAj : ∀j ∈ J, a∗j = rj

(
`j

(
a∗J\{j},0I\J ,Z

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE
J,Z = ∅ by convention.

We relate the set of self confirming equilibria to the sets of Nash equilibria of the auxiliary games.

Proposition 2. Suppose that network game with feedback NG is linear-quadratic and satisfies

just observable payoffs. Then, for each Z ∈ Θ, the set of selfconfirming action profiles is

ASCE
Z =

⋃
I\J⊆I0

ANE
J,Z ×

{
0I\J

}
,

that is, in each SCE profile a∗, a subset I\J of players for whom being inactive is justifiable choose

0, and every other player chooses the best reply to the actions of his coplayers. Therefore, in each

SCE profile a∗ and for each player i ∈ I,

a∗i = 0⇒ xi ≤ −αi,

a∗i > 0⇒

αi +
∑
j∈I

zija
∗
j > 0 ∧ a∗i = min

āi, αi +
∑
j∈I

zija
∗
j


 . (8)

8



In every SCE we can partition the set of agents in two subsets. Agents in J ⊆ I choosing a

strictly positive action, and agents in I \ J choosing a null action. Start considering these last

ones. If they play a∗i = 0, they get null payoff independently of others’ actions. But, since every

conjecture x̂i ∈ (−∞,−αi] is compatible with this payoff, their conjecture is confirmed. On the

contrary, agents in J choosing a strictly positive action a∗i > 0 receive a message that enables them

to recover perfectly x̂i. Notice that every agent makes a choice that is a best reply to her own

conjecture. However, differently from the case in Proposition 1, here there are some agents (the

ones in the set I \ J) who do not necessarily have correct conjectures. Given the specific structure

of linear quadratic games, for every i, the presence of inactive agents in her neighborhood, is payoff

irrelevant. For this reason the set of self confirming equilibria can be characterized from the set of

Nash equilibria of the auxiliary game.

Suppose, for example, that I0 = I. This means that, for every subset J ⊆ I we can find a self

confirming equilibria in which agents in J are inactive. Furthermore, suppose that there is a unique

interior Nash equilibrium for the auxiliary game corresponding to every subset of active players.

Then |ASCE
Z | = 2|I|, that is, there are exactly 2n SCE action profiles. Appendix A.3 discusses the

equilibrium characterization for the generalized case of non linear-quadratic network games.

3.1 Assumptions about the network

Now we focus on the network Z. In what follows, remember that we can always represent Z

as Z = ΓZ0, where Γ is a diagonal matrix, and Z0 is the basic underlying representation of the

network. Thus, matrix Z represents a basic network combined with an additional idiosyncratic

effect by which every agent i weights the effects of the others on her. This effect is modeled by the

parameter γi.
9

We list below some additional properties of matrix Z that are not maintained assumptions.

Rather, in some of the following results (for which we refer also to Appendix B) we will use some

of these assumptions, in other results we will use other assumptions. Finally, in some of the main

results, we will show that alternative assumptions will provide alternative sufficient conditions.

Assumption 1. Matrix Z of size n has bounded values, i.e. |zij | < 1
n for all i and j.

Assumption 2. Matrix Z has the same sign property i.e., for every i, j, sign(zij) = sign(zji),

where the sign function can have values −1, 0 or 1.10

Assumption 3. Matrix Z is negative, i.e. zij < 0 for all i and j,

9Then the payoff of i ∈ I at a given profile a of the original game is

ui (a) = αai −
1

2
a2i + aiγi

∑
j∈I

z0,ijaj = αai −
1

2
a2i + ai

∑
j∈I

zijaj .

10The sign condition is the one used in Bervoets et al. (2016) to prove convergence to Nash equilibria in network

games, under a particular form of learning.
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We recall here that the spectral radius ρ(Z) of Z is the largest absolute value of its eigenvalues.

Assumption 4. Matrix Z is limited, i.e. ρ(Z) < 1.

Assumption 5. Matrix Z is symmetrizable, i.e. it can be written as Z = ΓZ0, with Γ diagonal

and Z0 symmetric. Moreover, Γ has all positive entries in the diagonal.

Note that if Z is symmetrizable then all its eigenvalues are real. Moreover, since Γ has all

positive entries, Assumption 5 implies the sign condition from Assumption 2.

Our final assumption is discussed in Bramoullé et al. (2014) and combines Assumptions 4 and 5

above.

Assumption 6. Z = ΓZ0 is symmetrizable-limited, i.e. Z is symmetrizable and, for every i, j,

zij = z0,ij
√
γiγj, is limited.

Our previous results from Section 3, about the characterization of selfconfirming equilibria,

state that we can choose any subset of agents and have them inactive in a SCE. However we cannot

ensure that the other agents are active, because their best response in the reduced game could be

null. The next result goes in the direction of specifying under which sufficient conditions this does

not happen. Given the matrix Z, and given J ⊆ I, we call ZJ the submatrix who has only rows

and columns corresponding to the elements of J .

Proposition 3. Consider a set J ⊆ I. Let us assume that ZJ satisfies at least one one of the

three conditions below:

1. [(i)]

2. it has bounded values (Assumption 1),

3. it is negative and limited (Assumptions 3 and 4),

4. or it is symmetrizable–limited (Assumption 6).

Then, we have the two following results:

1. ANE
J,Z =

{
aNEJ

}
, such that aNEJ > 0;

2. There exists a∗ ∈ ASCE
Z such that a∗ =

{
aNEJ

}
×
{
0I\J

}
.

4 Learning process

The definition of selfconfirming equilibrium is a static definition. If agents happen to have those

conjectures, and play accordingly, then they have no reason to move away from it. However we

may wonder how agents get to play SCE action profiles, and if these profiles are stable.
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We first notice that existing results show that SCE have solid learning motivations. Consider

a sequence of actions’ profiles, at time t given by (at)
∞
t=0. An existing theorem states the following

result: If a trajectory (at)
∞
t=0 is consistent with adaptive learning11 and at → a∗, then a∗ is a

selfconfirming equilibrium action profile.

Of course, the limit of the trajectory may or may not be a Nash equilibrium. Let us now con-

sider a best response dynamics. This generates trajectories that—by construction—are consistent

with adaptive learning. With this, we prove convergence (under reasonable assumptions), hence

convergence to an SCE.

To ease the analysis we consider best reply dynamics for shallow conjectures. In details, given

conjecture x̂i,t, a
∗
i,t = r (x̂i,t) is the best reply to this conjecture. Notice that we may or may not

be in a selfconfirming equilibrium. At the end of the period, given the feedback received, agents

update conjectures. If conjectures are confirmed then an agent keeps past conjecture, otherwise she

updates using as new conjecture the conjectures that would have been correct in the past period.

In details,

x̂i,t+1 =

{
x̂i,t if a∗i,t = 0

`i

(
a∗−i,t,Z

)
if a∗i,t > 0

. (9)

This rules states that if a∗i,t = 0, past conjectures are kept. This since a∗i,t = 0 can be played only

if x̂i,t ∈ (−∞,−α). Then, any of these conjectures is confirmed by the feedback, as previously

argued. On the contrary, if a∗i,t > 0, feedback is such that agents can perfectly infer the level of

`i

(
a∗−i,t,Z

)
, and so they update conjectures accordingly. This is one possible adaptive learning

dynamics. Previous theorem implies that if the dynamics described above converges, then it must

converge to a selfconfirming equilibrium.

The implicit interpretation of SCE is based on the idea of an underlying learning process: players

repeatedly take a decision, receive feedback and update actions accordingly. Under this view a SCE

is a stable point of the dynamics where players keep on taking a decision that is a consistent best

response to the feedback that they receive. In this section we consider the notion of stability, in the

simplest possible case of resistance to small perturbations, as in Bramoullé and Kranton (2007).

However, we will not consider perturbations to the strategy profile, but perturbations on the profile

of beliefs.

Definition 4 (Learning process). Players start at time 0 with a vector of beliefs (shallow deter-

ministic conjectures) x̂0 = (x̂i,0). At each time step players take actions according to rationality:

for each player i we have a∗i,t = max{αi + x̂i,t, 0}.
At the end of each time step players update beliefs such that, if a∗i,t = 0, then x̂i,t+1 = x̂i,t; if instead

a∗i,t > 0, then x̂i,t+1 =
ui(a

∗
t )

a∗i,t
− α+ 1

2a
∗
i,t.

11A trajectory (at)
∞
t=0 is consistent with adaptive learning if for every t̂, there exists some T such that, for every

t > t̂+T and i ∈ I, ai,t is a best reply to some deep conjecture µi that assigns probability 1 to the set action profiles

a−i consistent with the feedback received from t̂ through t− 1. See Chapter 6 of Battigalli (2018).
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Note that we are in principle able to express the dynamics just in terms of beliefs. If we consider

the case of linear best replies, from equations (8) and (9), but the system is not linear because

x̂i,t+1 =

{
x̂i,t if x̂i,t ≤ α∑

j∈I zija
∗
j,t if x̂i,t > α ,

and for any other player j, we have that a∗j,t = max{αj + x̂j,t, 0}.
Clearly a SCE of the game, as defined in the beginning of Section 3, will always be a steady

state point of this learning dynamics. Consider x̂ to be also the vector of beliefs once the steady

state is reached.

Example 1. Consider the case of 4 players, with the network matrix Z ∈ {0, 0.2}I×I shown in the

left panel of Figure 1, and α = 0.1. This is a case of complements, with only positive externalities.

Starting from the beliefs depicted at the beginning of the bottom–left plot in Figure 1, the learning

dynamics (expressed in the top–left plot also for actions) converges to the unique Nash equilibrium

of the network game (whose strategies are the dotted lines).

Figure 1: A case of strategic complements, with 4 players, where the learning dynamics converges

to the Nash equilibrium.

We can then define stable steady states, with respect to the beliefs of the players.

Definition 5. A selfconfirming strategy profile a∗ ∈ ASCE
Z is locally stable if it is consistent with

a vector of beliefs x̂, such that there is an ε > 0, such that for every x̂′, with ‖x̂′ − x̂‖ < ε, the

learning dynamics starting from x̂′ converges back to x̂.
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4.1 Results

Each SCE will be characterized by some active agents. So, given a strategy profile a, let us call

Ia ⊆ I the set of active players

Ia = {i ∈ I : r (x̂i) > 0}.

In this way, given a strategy profile a, ZIa is the submatrix whose rows and columns are all and

only those players that are active in a. This allows us to characterize locally stable selfconfirming

equilibria.

Proposition 4. Consider a∗ ∈ ASCE
Z . a∗ is locally stable if:

• Assumption 4 holds for matrix ZIa∗ ;

• for every i ∈ I\Ia∗ we have that α+ x̂i < 0.

Moreover, we provide alternative sufficient conditions, based on linear algebra, to characterize

all those subsets of I that characterize a locally stable selfconfirming strategy profile

Proposition 5. Consider a selfconfirming strategy profile a∗ ∈ ASCE
Z . If ZIa∗ satisfies at least

one one of the three conditions below:

1. it has bounded values (Assumption 1),

2. negative (Assumptions 3 and 4),

3. or it is symmetrizable–limited (Assumption 6),

then for every J ⊆ Ia∗, there exists another locally stable selfconfirming equilibrium a∗∗ ∈ ASCE
Z

such that

1. ANE
J,Z =

{
aNEJ

}
, such that aNEJ > 0J ;

2. a∗∗ =
{
aNEJ

}
×
{
0I\J

}
.

So, we already know that we can have selfconfirming equilibria that are not Nash equilibria,

because some agents are inactive even if it is not a best response for them. The following example

shows that we can reach them also starting with initial beliefs inducing all positive actions at the

beginning of the learning dynamics. Things actually depend on the initial beliefs, and starting from

different beliefs, we can get to the unique interior Nash, or to a SCE which is not Nash

Example 2. Consider the case of 4 players, with the network matrix Z ∈ {−0.2, 0, 0.2}I×I shown

in the left panel of Figure 2, and, for every i, αi = 0.1. This is a case of general externalities,

that can be positive or negative. The central plots and the right plots show the learning dynamics

13



of actions and beliefs that start from different starting beliefs. In one case (the central one) we

converge to the unique Nash equilibrium of this game (the dotted lines in the top center and right

plots), in the other (the right one) the learning dynamics puts, after 2 rounds, one player out from

the active agents, and the remaining 3 converge to a selfconfirming equilibrium which is not Nash.

Figure 2: General strategic externalities. Starting from different beliefs on the same network (left

panel), the learning process may converge to the unique Nash equilibrium (center panel) or to a

SCE which is not a Nash equilibrium (right panel)

5 Local and Global externalities

We consider an extension to the case of equation (4), in which we add a global externality term

with no strategic effects. For each i ∈ I, we posit an interval Yi = [y
i
, ȳi], β ∈ R, and we consider

the following aggregator12

gi,β,Z : A−i → Yi,

a−i 7→ β
∑

j 6=i aj .

We assume that every agent i ∈ I knows Yi. Then, we define yi = gi (a−i, β). The new

parametrized payoff function is

vi : Ai ×Xi × Yi → R
(ai, xi, yi) 7→ αiai − 1

2a
2
i + aixi + yi

, (10)

12This aggregator g sums up the actions of all the agents in the network except agent i. We could have considered

agent i as well, but we opted for this specification not to change the first order condition with respect to the case

with just local externalities.
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where both xi and yi are unknown. Deterministic conjectures for each i ∈ I are now defined as the

pair (x̂i, ŷi) ∈ (Xi, Yi). We recall that we keep the assumption that fi = vi. We provide now the

definition of selfconfirming equilibrium for the case with global externalities.

Definition 6. A profile (a∗i , x̂i, ŷi)i∈I ∈ ×i∈I (Ai ×Xi × Yi) of actions and (shallow) deterministic

conjectures is a selfconfirming equilibrium at Z and β of a linear quadratic network game with

feedback and global externalities if, for each i ∈ I,

1. (subjective rationality) a∗i = ri (x̂i),

2. (confirmed conjecture) fi (a∗i , x̂i, ŷi) = fi
(
a∗i , `i

(
a∗−i,Z

)
, gi
(
a∗−i, β

))
.

Notice that the rationality condition is unchanged with respect to the case of just local exter-

nalities since first order conditions are not affected by the global externality term. To compare this

game with the linear quadratic network game with just local externalities, we consider the case in

which agents observe own payoff, so that for each i ∈ I, fi = ui. Then, we can characterize any

selfconfirming equilibrium as follows:

Proposition 6. Fix Z ∈ Θ. Every selfconfirming equilibrium profile
(
a∗i , x̂

i, ŷi
)
i∈I ∈ ×i∈I

(
Ai × R2

)
is such that, for every i ∈ I

1. if a∗i = 0, then x̂i ∈ (−∞,−α], ŷi = yi

2. if a∗i > 0, then a∗i = α+ x̂i, ŷi = yi + a∗i (xi − x̂i)

We discuss how the presence of the global externality term in the payoff function, changes

radically the characterization of selfconfirming equilibria. Recall that players observe own realized

payoff. Indeed when global externalities are considered, observability by active players does

not hold anymore. Inactive players have correct conjectures about the global externality, but

may have correct or incorrect conjectures about the local externality part, as far as they justify

their being inactive. Active players, on the other hand, are not able to determine precisely the

magnitude of the local vs global effects. Given any strictly positive action a∗i , for every agent

i, (ŷi − yi) = a∗i (xi − x̂i). Then in equilibrium if agent i overestimates (underestimates) the

local externality, she must compensate this error by underestimating (overestimating) the global

externality. Then, with respect to the case of just local externalities, we have that i) active agents

choose a best response to a (generically) wrong conjecture about x; ii) it immediately follows that

it is not possible to characterize any selfconfirming equilibrium in terms of a Nash equilibrium of

the auxiliary games when just active players are considered.
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5.1 Learning with Global Externalities

We now consider the learning process that originates from an adaptive updating of conjectures, as

we did for the case of just local externalities. To ease the analysis we focus entirely on the case

of strictly positive justifiable actions. We will obtain this with the simple assumption that α > 0

and that all the elements in Z are not negative. This case, however, is a bit more complex since,

at each time, there are infinitely many collections of feasible pairs (x̂i,t, ŷi,t)i∈I compatible with

adaptive learning. For every i ∈ I, and each time t, let m∗i,t = f
(
a∗i,t, xi,t, yi,t

)
be the message

agents receive. Then, fixing x̂i,t, ŷi,t is uniquely determined. In details, at each time period, agent

i chooses a pair (x̂i,t, ŷi,t), that is confirmed given the message received at the previous period. We

have that ŷi,t = m∗i,t−1 − αa∗i,t−1 + 1
2

(
a∗i,t−1

)2
− a∗i,t−1x̂i,t. Given message m∗i,t−1, and considering

that agents perfectly recall their past actions, given x̂i,t, ŷi,t is uniquely determined. We can just

focus on the dynamics of x̂i,t. The dynamics of x̂i,t is given by the following

x̂i,t+1 =
m∗i,t − ŷi,t+1

a∗i,t
− α+

1

2
a∗i,t (11)

To avoid bifurcations at each time period, we need to use simplificative assumptions. Define

ci,t =
x̂i,t
ŷi,t

. Then

Assumption 7. For each i ∈ I and for each t ∈ N, ci,t = vi,t+1 = ci.

We call ci the perceived centrality of player i.

From equation (11), and substituting observed payoff in the message, we get that the learning

dynamics is

x̂i,t+1 = xi,t +
yi,t
a∗i,t
− ŷi,t+1

a∗i,t
(12)

Substituing ci,t =
x̂i,t
ŷi,t

we get

x̂i,t+1 =
ci,t

1 + vi,ta∗i,t

(
a∗i,txi,t + yi,t

)
(13)

We define the true centrality of player i as

c′i,t =
xi,t
yi,t

.

The value of c′i,t is always between 0 and
∑
k 6=i zi,j
β . Then, we can assume that also the perceived

centrality ci ∈
(

0,
∑
k 6=i zi,j
β

]
. The dynamics, then, can be written as

x̂i,t+1 = ciyi,t
a∗i,tc

′
i,t + 1

a∗i,tci + 1
,

which implies that the conjecture is correct only when ci = c′i,t.
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We look at best responses a∗i,t+1 = α + x̂i,t+1, and study existence and characterization of the

system of equations given by this learning process. Recall that yi,t = β
∑

j 6=i aj,t. To find a fixed

point we look at the system of n equations

Hi(a
∗, c,Z) = α+ ci

β∑
j 6=i

a∗j

 a∗i c
′
i + 1

a∗i ci + 1
− a∗i = 0 . (14)

For comparison, we study the system of equations that provide the Nash Equilibrium of this network

game, namely:

Fi(a
∗,Z) = α+

∑
j∈I

zija
∗
j − a∗i = 0 . (15)

Proposition 7. If the system defined by (15) admits a solution, then for each vector v of perceived

centralities, also the system defined by (14) admits a solution. If we call A ⊂ [α,∞)n the space of

the solutions of the system, then the system implies a homeomorphism between all vectors c and A.

This homeomorphism respects the partial ordering between vectors in the two spaces.

Previous result is a static results, but the homeomorphism is implied by the particular learning

dynamics that we are imposing, which is based on constant belief centralities. Here below is instead

a real dynamical result, that provides sufficient conditions for convergence of our learning dynamics.

We impose that externalities are not too big, and that the global externality is not too big. Namely,

we say that, for each player i, 0 < ciβ(n− 1) <
∑

k 6=i zi,j < 2.13

Proposition 8. If, for each player i, we have that 0 < ciβ(n − 1) <
∑

j 6=i zi,j < 2, then the

dynamics defined by the learning process (14) always converge to its unique solution, which is

stable.

13It should be noted that we are not requiring that |
∑
j 6=i zi,j | < 1, which would imply Assumption 4.
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Appendix A A generalization.

Selfconfirming equilibria in parametrized nice games

with aggregators

In this section we develop a more general analysis of selfconfirming equilibria in a class of games

that contains the linear-quadratic network games with feedback. To ease reading, we make this

section self-contained repeating some definitions from the main text.

A parametrized nice game with aggregators and feedback is a structure

G =
〈
I,Θ, (Ai, `i, vi, fi)i∈I

〉
where

• I is the finite players set, with cardinality n = |I| and generic element i.

• Θ ⊆ Rm is a compact parameter space.

• Ai = [0, āi] ⊆ R+, a closed interval, is the action space of player i with generic element

ai ∈ Ai.

• Xi = [xi, x̄i] ⊆ R, a closed interval, is the a space of payoff states for i.

• `i : A−i × Θ → Xi (where A−i = ×j∈I\{i}Aj) is a continuous parametrized aggregator of

the actions of i’s coplayers such that its range `i (A−i ×Θ) is connected.14

• vi : Ai×Xi → R is the payoff (utility) function of player i, which is strictly quasi-concave

in ai and continuous,15 and from which we derive the parameterized payoff function

ui : Ai ×A−i ×Θ → R,

(ai,a−i, θ) 7→ vi (ai, `i (a−i, θ)).

Thus, xi = `i (a−i, θ) is the payoff relevant state that i has to guess in order to choose

a subjectively optimal action. With this, for each θ ∈ Θ,
〈
I, (Ai, ui,θ)i∈I

〉
is a nice game

(Moulin, 1979), and
〈
I,Θ, (Ai, ui)i∈I

〉
is a parametrized nice game. We let

ri : Xi → Ai

xi 7→ arg maxai∈Ai vi (ai, xi)

denote the best reply function of player i.

14Since the range of each section `i,θ must be a closed interval, we require that the union of the closed intervals

`i,θ (A−i) (θ ∈ Θ) is also an interval, which must be closed because Θ is compact and `i continuous.
15That is, vi is jointly continuous in (ai, xi) and, for each xi ∈ [xi, x̄i], the section vi,xi : [0, āi] → R has a unique

maximizer a∗i (that typically depends on xi), it is strictly increasing on [0, a∗i ], and it is strictly decreasing on [a∗i , āi].

Of course, the monotonicity requirement holds vacuously when the relevant subinterval is a singleton.
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• Let M ⊆ R be a set of “messages,” fi : Ai×Xi →M is a feedback function that describes

what i observes (a “message,” e.g., a monetary outcome) after taking any action ai given any

payoff state xi.
16

On top of the formal assumptions stated above, we maintain the following informal assumption

about players’ knowledge of the game:

• Each player i knows vi and fi.

Unless we explicitly say otherwise, we instead do not assume that i knows θ, or function `i, or

even that i understands that his payoff is affected by the actions of other players. However, since

i knows the feedback function fi : Ai ×Xi → M and the action he takes, what i infers about the

payoff state xi after he has taken action ai and observed message m is that

xi ∈ f−1i,ai (m) :=
{
x′i : fi

(
ai, x

′
i

)
= m

}
.

Appendix A.1 Conjectures

Definition A. A shallow conjecture for i is a probability measure µi ∈ ∆ (Xi). A (deep)

conjecture for i is a probability measure µ̄i ∈ ∆ (A−i ×Θ). An action a∗i is justifiable if there

exists a shallow conjecture µi such that

a∗i ∈ arg max
ai∈Ai

∫
Xi

vi (ai, xi)µi (dxi) ;

in this case we say that µi justifies a∗i . Similarly, we say that (deep) conjecture µ̄i ∈ ∆ (A−i ×Θ)

justifies a∗i if the shallow conjecture induced by µ̄i (µi = µ̄i ◦ `−1i ∈ ∆ (Xi)) justifies a∗i .

Remark 3. If ai 7→ vi (ai, xi) is strictly concave for each xi, then also ai 7→
∫
Xi
vi (ai, xi)µi (dxi)

is strictly concave and the map

µi 7→ arg max
ai∈Ai

∫
Xi

vi (ai, xi)µi (dxi)

is a continuous function.17

The following lemma summarizes well known results about nice games (see, e.g., Battigalli 2018)

and some straightforward consequences for the more structured class of nice games with aggregators

considered here:

Lemma A. The best reply function ri : Xi → Ai is continuous, hence its range ri (Xi) is a closed

interval, just like Xi. Furthermore, for each given a∗i ∈ Ai, the following are equivalent:

16Here the assumption that M is a set of real numbers is without loss of generality, because the same holds for the

set of payoff states Xi.
17When ∆ (Xi) is endowed with the topology of weak convergence of measures.
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• a∗i is justifiable,

• a∗i ∈ ri (Xi) (that is, a∗i is justified by a deterministic shallow conjecture),

• there is no ai such that vi (a∗i , xi) < vi (ai, xi) for all xi ∈ Xi (that is, a∗i is not dominated by

any other pure action).

Corollary B. Suppose that the aggregator `i is onto. Then, an action of player i is justifiable if

an only if it is justified by a deep conjecture.

Proof. The “if” part is trivial. For the “only if” part, fix a justifiable action a∗i arbitrarily. By

Lemma A, there is some xi ∈ Xi such that a∗i = ri (xi). Since the aggregator `i is onto, there is

some (a−i, θ) ∈ `−1i (xi) such that

a∗i ∈ arg max
ai∈Ai

ui (ai,a−i, θ) .

Hence a∗i is justified the deep conjecture δ(a−i,θ), that is, the Dirac measure supported by (a−i, θ).

�

With this, from now on we restrict our attention to (shallow, or deep) deterministic conjectures.

Appendix A.2 Feedback properties

Definition B. Feedback fi satisfies observable payoffs (OP) relative to vi if there is a function

v̄i : Ai ×M → R such that

vi (ai, xi) = v̄i (ai, fi (ai, xi))

for all (ai, xi) ∈ Ai×Xi; if the section v̄i,ai is injective for each ai ∈ Ai, then we say that fi satisfies

just observable payoffs (JOP) relative to vi. Game G satisfies (just) observable payoffs if, for

each player i ∈ I, feedback fi satisfies (J)OP relative to vi.

If fi satisfies JOP, we may assume without loss of generality that fi = vi, because, for each

action ai, the partitions of Xi induced by the preimages of vi,ai and fi,ai coincide:

Remark 4. Feedback fi satisfies JOP relative to vi if and only if

∀ai ∈ Ai,
{
v−1i,ai (u)

}
u∈vi,ai (Xi)

=
{
f−1i,ai (m)

}
m∈fi,ai (Xi)

. (a)

Proof. (Only if) Fix ai ∈ Ai. Since fi satisfies JOP relative to vi, vi,ai (Xi) = (v̄i,ai ◦ fi,ai) (Xi)

(by OP), for each u ∈ vi,ai (Xi) there is a unique message mai,u = v̄−1i,ai (u) (by injectivity of v̄i,ai),

and

v−1i,ai (u) = {xi ∈ Xi : vi (ai, xi) = u}

= {xi ∈ Xi : v̄i (ai, fi (ai, xi)) = u}

= {xi ∈ Xi : fi (ai, xi) = mai,u} = f−1i,ai (mai,u) ,
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which implies eq. (a).

(If) Suppose that eq. (a) holds. For every ai ∈ Ai and m ∈ fi,ai (Xi) select some ξi (ai,m) ∈
f−1i,ai (m). Let

D :=
⋃
ai∈Ai

{ai} × fi,ai (Xi)

With this,

ξi : D → Xi

is a well defined function. Domain D is the set of action-message pairs for which the definition of

v̄i matters. Define v̄i as follows:

v̄i (ai,m) =

{
vi (ai, ξi (ai,m)) if (ai,m) ∈ D,

0 otherwise.

By construction, eq. (a) implies that

∀ (ai, xi) ∈ Ai ×Xi, v̄i (ai, fi (ai, xi)) = vi (ai, xi) .

Hence, OP holds. Furthermore, for all ai ∈ Ai, m′,m′′ ∈ fai (Xi),

m′ 6= m′′ ⇒ ξi
(
ai,m

′) 6= ξi
(
ai,m

′)
⇒ vi

(
ai, ξi

(
ai,m

′)) 6= vi
(
ai, ξi

(
ai,m

′′))
⇒ v̄i

(
ai,m

′) 6= v̄i
(
ai,m

′)
where the second implication follows from eq. (a) (ξi (ai,m

′) and ξi (ai,m
′) belong to different cells

of the coincident partitions, hence yield different utilities), and the third holds by construction.

Therefore, v̄i,ai is injective for every ai, which means the JOP holds. �

Definition C. Feedback fi satisfies observability if and only if i is active (OiffA) if section

fi,ai is injective for each ai > 0 and constant for ai = 0. Game G satisfies observability by active

players if OiffA holds for each i.

Remark 5. If NG is linear-quadratic and satisfies just observable payoffs, then it satisfies ob-

servability by active players.

Proof.By Remark 4 JOP implies that, for each ai ∈ Ai,{
v−1i,ai (u)

}
u∈vi,ai (Xi)

=
{
f−1i,ai (m)

}
m∈fi,ai (Xi)

.

The linear-quadratic form of vi implies that, for every xi ∈ Xi,

v−1i,0 (vi,0 (xi)) = Xi
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∀ai > 0, v−1i,0 (vi,0 (xi)) = {xi} .

These equalities imply that fi,0 is constant and fi,ai is injective for ai > 0, that is, NG satisfies

observability by active players. �

Definition D. Feedback fi satisfies own-action independence (OAI) of feedback about the state

if, for all justifiable actions a∗i , a
o
i and all payoff states x̂i, xi ∈ Xi,

fi (a∗i , x̂i) = fi (a∗i , xi)⇒ fi (aoi , x̂i) = fi (aoi , xi) .

Game G satisfies own-action independence of feedback about the state if, for each player i ∈ I,

feedback fi satisfies OAI.

In other words, OAI says that if player i cannot distinguish between two payoff states x̂i and

xi when he chooses some given justifiable action a∗i , then he cannot distinguish between these two

states when he chooses any other justifiable action aoi . This is equivalent to requiring that the

partitions of Xi of the form
{
f−1i,ai (m)

}
m∈fi,ai (Xi)

coincide across justifiable actions, i.e., across

actions ai ∈ ri (Xi) (see Lemma A).

The following lemma—which holds for any game, not just nice games—states that, under payoff

observability and own-action independence, an action is justified by a confirmed conjecture if and

only if it is a best reply to the actual payoff state:

Lemma C. If fi satisfies payoff observability relative to vi and own-action independence of feedback

about the state, then for all (a∗i , xi) ∈ Ai ×Xi the following are equivalent:

1. there is some x̂i ∈ Xi such that a∗i ∈ arg maxai∈Ai vi (ai, x̂i) and fi (a∗i , x̂i) = fi (a∗i , xi),

2. a∗i ∈ arg maxai∈Ai vi (ai, xi).

Proof.(Cf. Battigalli et al. 2015, Battigalli 2018) It is obvious that (2) implies (1) independently

of the properties of fi. To prove that (1) implies (2), suppose that fi satisfies OP-OAI and let x̂i

be such that (1) holds. Let aoi be a best reply to the actual state xi. We must show that also a∗i is

a best reply to xi. Note that both a∗i and aoi are justifiable; hence, by OAI, fi (a∗i , x̂i) = fi (a∗i , xi)

implies fi (aoi , x̂i) = fi (aoi , xi). Using OP, condition (1), and OAI as shown in the following chain

of equalities and inequalities, we obtain

vi (a∗i , xi)
(OP)
= v̄i (a∗i , fi (a∗i , xi))

(1)
= v̄i (a∗i , fi (a∗i , x̂i))

(OP)
= vi (a∗i , x̂i)

(1)

≥

vi (aoi , x̂i)
(OP)
= v̄i (aoi , fi (aoi , x̂i))

(1,OAI)
= v̄i (aoi , fi (aoi , xi))

(OP)
= vi (aoi , xi) .

Since ao is a best reply to xi and vi (a∗i , xi) ≥ vi (aoi , xi), it must be the case that also a∗i is a best

reply to xi. �
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Corollary D. Suppose that G satisfies payoff observability and own-action independence of

feedback about the state, then the sets of selfconfirming action profiles and Nash equilibrium action

profiles coincide for each θ:

∀θ ∈ Θ, ASCE
θ = ANE

θ .

Proof By Remark 2, we only have to show that ASCE
θ ⊆ ANE

θ . Fix any a∗ = (a∗i )i∈I ∈ ASCE
θ

and any player i. By definition of SCE, there is some x̂i ∈ Xi such that a∗i ∈ ri (x∗i ) and fi (a∗i , x̂i) =

fi
(
a∗i , `i

(
a∗−i, θ

))
. By Lemma C a∗i ∈ ri

(
`i
(
a∗−i, θ

))
. This holds for each i, hence a∗ ∈ ANE

θ . �

Corollary D provides sufficient conditions for the equivalence between SCE and NE. Next, we

give sufficient conditions that allow a characterization of ASCE
θ by means of Nash equilibria of

auxiliary games.

Appendix A.3 Equilibrium Characterization

If ai ∈ [0, āi] is interpreted as an activity level (e.g., effort) by player i, then it makes sense to say

that i is active if ai > 0 and inactive otherwise. Let I0 denote the set of players for whom

being inactive is justifiable. Note that, by Lemma A,

I0 = {i ∈ I : min ri (Xi) = 0} .

Also, for each θ ∈ Θ and nonempty subset of players J ⊆ I, let ANE
J,θ denote the set of Nash

equilibria of the auxiliary game with player set J obtained by letting ai = 0 for each i ∈ I\J , that

is,

ANE
J,θ =

{
a∗J ∈ ×j∈JAj : ∀j ∈ J, a∗j = rj

(
`j

(
a∗J\{j},0I\J , θ

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE
J,θ = ∅ by convention.

Lemma E. Suppose that the parametrized nice game with aggregators and feedback G satisfies

observability by active players. Then, for each θ, the set of selfconfirming action profiles is

ASCE
θ =

⋃
I\J⊆I0

ANE
J,θ ×

{
0I\J

}
.

Proof Let J be the set of players i such that a∗i > 0. Fix θ ∈ Θ arbitrarily. Let a∗ ∈ ASCE
θ

and fix any i ∈ I. If a∗i = 0, then 0 is justifiable for i, that is i ∈ I0. If a∗i > 0, OiifA implies that

fi,a∗i is injective, that is, action a∗i reveals the payoff state, hence the (shallow) conjecture justifying

a∗i is correct: a∗i = ri
(
`i
(
a∗−i, θ

))
. Thus, a∗ =

(
a∗J ,a

∗
I\J

)
so that a∗i = 0 for each i ∈ I\J ⊆ I0, and

a∗j = rj
(
`j
(
a∗J ,0I\J , θ

))
> 0 for each j ∈ J . Hence,

a∗ =
(
a∗J ,a

∗
I\J

)
∈ ANE

J,θ ×
{
0I\J

}
with I\J ⊆ I0.
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Let I\J ⊆ I0 and
(
a∗J ,a

∗
I\J

)
∈ ANE

θ ×
{
0I\J

}
. Since G satisfies OiffA, for each i ∈ I\J , any

conjecture justifying a∗i = 0 (any x̂i ∈ r−1i (0)) is trivially confirmed. For each j ∈ J , a∗j > 0 is by

assumption the best reply to the correct, hence confirmed, conjecture x∗j = `i
(
a∗J ,0I\J , θ

)
. Hence,(

a∗J ,a
∗
I\J

)
=
(
a∗J ,0I\J

)
∈ ASCE

θ . �

Appendix B Interior Nash equilibria

Propositions 1 and 2 in Section 3 show that in our framework there exists an equivalence between

any selfconfirming equilibrium and the Nash equilibrium of a reduced game in which only active

agents are considered. Moreover, we can set any subset of agents to be inactive. We now provide

some results about existence of these selfconfirming equilibria, that will be useful in proving Propo-

sition 3 in Section 3. We first present sufficient conditions that are present in the literature for the

existence of interior Nash equilibria, then we provide some original results.

In this appendix we formulate the problem as a linear algebra problem. We consider a square

matrix Z ∈ Rn×n such that zii = 0 for all i ∈ {1, . . . , n}. We call I the identity matrix, λmax(Z)

the maximal eigenvalue of Z, ρ(Z) the spectral radius of Z (i.e. the largest absolute value of its

eigenvalues), 1 is the vector of all 1’s, 0 is the vector of all 0’s, and � is the strict partial ordering

between vectors (meaning that all the elements in the first vector are pairwise strictly greater than

the elements in the second vector).

Proposition F. If for all i, zii = 0, for all i 6= j, zij ≤ 0, and if ρ(Z) < 1, then (I− Z)−1 1� 0.18

There are also results when the sign of the externalities are mixed. We recall that the matrix Z is

symmetrizable if there exists a diagonal matrix Γ and a symmetric matrix Z0 such that Z = ΓZ0.

Note that if Z is symmetrizable then all its eigenvalues are real. If for all i, zii = 0, and Z is

symmetrizable, we define the symmetric matrix Z̃ to be such that z̃ij = zij
√
γiγj .

Proposition G. If for all i, zii = 0, Z is symmetrizable, and if |λmax(Z̃)| < 1, then (I− Z)−1 1�
0.19

We provide here below an alternative condition, which does also guarantee all positive solutions.

Proposition H. Consider a square matrix Z ∈ Rn×n such that:

• zii = 0 for all i ∈ {1, . . . , n};

• |zij | < 1
n for all i, j ∈ {1, . . . , n}.

18This is Theorem 1 in Ballester et al. (2006). The same result is in Appendix A in Stańczak et al. (2006).
19See Section VI of Bramoullé et al. (2014), generalizing Proposition 2 therein. Note that in their payoff specification

externalities have a minus sign, while in (4) we have a plus sign: this is why we have a condition on the maximal

eigenvalue and not on the minimal eigenvalue.
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Then (I− Z)−1 1� 0.

Proof: Call B = (I− Z). First of all, by Gershgorin circle theorem,20 B has all eigenvalues

strictly between 0 and 2, so det(B) 6= 0.

Consider the n vectors b1, . . . ,bn given by the n rows of B, and take the hyperplane in Rn passing

by those n points:

H = {h ∈ Rn : ∃α ∈ Rn with α′ · 1 = 1 and h = B′α} .

Now, consider the following vector

v = B−11 .

Component vi of v is exactly the sum of the elements in ith row of B−1. However, v is also a vector

perpendicular to H. That is because for any h ∈ H we have

h · v =
(
B′α

)′ ·B−11
= α′1

=
n∑
i=1

αi = 1 ,

which is a constant.

Now, we want to show that H does not pass thorugh the convex region of vectors with all

non-postitive elements: H ∩ (−∞, 0]n = ∅.
In fact, it is impossible to find α ∈ Rn, such that α′ · 1 = 1 and B′α� 0.

If it was the case, by absurdum, we could take k = arg maxi∈{1,...,n}{αi} (αk > 0 because
∑n

i=1 αi =

1), and write

αbk = αk +
∑
j 6=k

αjbjk > αk −
∑
j 6=k
|αj ||zjk| > αk

1−
∑
j 6=k
|zjk|

 > 0 ,

which would be a contradiction.

Finally, we show that if an hyperplane H satisfies H ∩ (−∞, 0]n = ∅, then its perpendicular

vector from the origin has all positive elements, and this would close the proof .

We do so by induction on n .

1. n = 2: This is easy to show graphically;

2. Induction hypothesis: Suppose it is true for n = m− 1;

20https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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3. Induction step: In Rm, a vector v from the origin is perpendicular to an hyperplane H

not passing through the origin can be obtained in the following way. For each dimension

i ∈ {1, . . . ,m} take V ¬i = {v ∈ Rm : vi = 0}. Call H¬i the intersection of H with V ¬i,

and take a vector v¬i ∈ V ¬i from the origin that is perpendicular to H¬i. By the induction

hypothesis v¬i has all positive elements. We can obtain the vector v from the origin that is

perpendicular to H by rescaling each v¬i, such that v¬i is the projection of v on H¬i. By

construction, v will have all positive elements.

Notice that, if Z satisfies the conditions of Proposition H, then it must also hold that |λmax(Z)| <
1, because of Gershgorin circle theorem. However, the condition that |λmax(Z)| < 1 is in general

not sufficient to guarantee that (I− Z)−1 1� 0.

Appendix C Proofs

Proof of Proposition 1

Proof. Since every agent is active, state observability by active players implies own action

independence of the feedback about the state. Then, the result derives from Corollary D in Appendix

A. �

Proof of Proposition 2

Proof. By Remark 5, NG satisfies observability by active players. Hence, Lemma E in Appendix

A and the best reply equation (6) yield the result. �

Proof of Proposition 3

Proof. Condition (i), (ii) and (iii) correspond, respectively, to the conditions in Propositions H,

F and G from Appendix B. �

Proof of Proposition 4

Proof. If for every i ∈ I\Ia∗ we have that α + x̂i < 0, then changing their x̂i such that the

inequality is still strict, will not make them become active.

So, let us focus on the subset Ia∗ of active agents. If we perturb locally the beliefs, we will perturb

locally also their actions. Assumption 4 garantees that the discrete dynamical system defined for

actions by (8) and (9) is stable. So, the variation to beliefs can always be small enough such that:

all their actions remain strictly positive;

we are in a neighborhood of a∗ in the actions’ space, such that the discrete dynamical system

defined for actions by (8) and (9) converges back to a∗. �
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Proof of Proposition 5

Proof. When we remove elements from Ja and set them to 0, it is as if we delete corresponding

rows and columns in the ZJa matrix. By the Cauchy interlace theorem applied to symmetrizable

matrices (see Kouachi 2016) we know that the eigenvalues of the new matrix are between the

minimal and the maximal eigenvalues of the old matrix. �

Proof of Proposition 6

A selfconfirming equilibrium is such that, for all i ∈ I, rationality implies

a∗i = max{0, αi + x̂i} .

Each agent then thinks that

m∗ = αia
∗
i −

1

2
(a∗i )

2 + a∗i x̂i + ŷi ,

so that

ŷi = m∗ − αia∗i +
1

2
(a∗i )

2 − a∗i x̂i .

Substituting the expression of the true payoff function

m∗ = αia
∗
i −

1

2
(a∗i )

2 + a∗ixi + yi

into it, we get the dependence between ŷi and x̂i:

ŷi = yi + a∗i (xi − x̂i) .

The first and second items in the proposition are derived, respectively, if a∗i = 0 or a∗i > 0.

Proof of Proposition 7

Proof. First, we derive some properties. Each equation in the system given by (14) can be

written also as a parabola b1a
2
i + b2ai + b3 = 0, in the following way

Hi(a, c,Z) = ci︸︷︷︸
≡b1

a2i +

1− αci − ci

∑
j∈I

zijaj,t


︸ ︷︷ ︸

≡b2

ai

−

1 + ci

β∑
j 6=i

aj,t


︸ ︷︷ ︸

≡b3

= 0 . (b)
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So, the solution a∗i to `i(a, c,Z) = 0 lies in the right–arm of an upward parabola, where d`i
dai

∣∣∣
ai=a∗i

>

0. With respect to ci, each `i(a, c,Z) is a linear equation.

Note also that each ai is bounded in the interval

α < ai < α+

∑
j∈Ni

zijaj

+ β

∑
k 6=i ak

ai
.

Considering that a∗i is increasing in b3 and decreasing in b2, it is easy to see that each a∗i increases

in each aj , with j 6= i.

Second, we show that there is a homeomorphism. There is a continuous function defined

from each c ∈ [0, 1]n to an element a ∈ A, that is because

• either ci = 0 and then a∗i = α;

• or ci > 0 and then each a∗i is continuously increasing in each xj with j 6= i.

lim
ci→0

a∗i = α .

a∗i is bounded above by

α+

∑
j∈Ni

zijaj

+ β

∑
j 6=i aj

a∗i
.

Since the system defined by (15) admits a solution, also this system has a finite solution.

This function is one–to–one and invertible, because for each a ∈ A, we obtain a unique vector

c ∈ [0, 1]n, and since we obtain it from a linear system of equations, also the inverse function from

A to [0, 1]n is continuous.

To analyze the relation between a∗ and c, we can apply the implicit function theorem to

Fi(a, c,Z).

We can compute
dFi
dci

=
β
∑

j 6=i aj,t

(aici + 1)2

Now, since

`i(a, c,Z) = −(aici + 1)Fi(x, c) ,

we have that `i(a, c,Z), with respect to ai, has the same zeros as Fi(a, c,Z), and that, for each ai,

`i(a, c,Z) is negative if and only if Fi(a, c,Z) is positive. As they are both continuous functions,

this means that since d`i
dai

∣∣∣
ai=a∗i

> 0, we have dFi
dai

∣∣∣
ai=a∗i

< 0. So, we obtain that

dai
dvi

∣∣∣∣
ai=a∗i

= − ∂Fi/∂ci
∂Fi/∂ai

∣∣∣∣
ai=a∗i

> 0 . (c)

This shows that a∗i is increasing with vi, and the other way round. �
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Proof of Proposition 8

Proof. We consider the system (14)

Fi(a,v,Z) = α+ ci

β∑
j 6=i

aj,t

 aic
′
i + 1

aici + 1
− ai = 0 ,

with c′i,t =
∑
j∈I zijaj,t

β
∑
j 6=i aj,t

. We can compute its Jacobian, with respect to a, and check that each row

of the Jacobian sum to less than 1, so that the process is always a contraction. The Jacobian J is

such that: {
Jij = vi

aici+1 (β + aizij)

Jii = ci

(
β
∑

j 6=i aj

)(
c′i

aici+1 − ci
aic
′
i+1

(aici+1)2

)
− 1

The sum of each row of the Jacobian is

∑
j

Jij =
ci

aici + 1

β
∑
j 6=i

aj

(c′i − ciaic′i + 1

aici + 1

)
+ ai

∑
j 6=i

zi,j

+ β(n− 1)

− 1 (d)

Let us analyze expression (d) with respect to ai, for any ai ≥ 0.

As ai →∞, we have that expression (d) is equal to∑
j 6=i

zi,j − 1 , (e)

whose absolute value is less than one by assumption.

If ai → 0, espression (d) becomes

ciβ

∑
j 6=i

aj

(c′i − ci)+ (n− 1)

− 1 . (f)

An interior maximum or minimum of the numerical expression (d), with respect to ai, must satisfy

first order condition

−
(

ci
aici + 1

)2
β

∑
j 6=i

aj

(c′i − ciaic′i + 1

aici + 1

)
+ ai

∑
j 6=i

zi,j

+ β(n− 1)


+

ci
aici + 1

β
∑
j 6=i

aj

( ci
aici + 1

)(
c′i − ci

aic
′
i + 1

aici + 1

)
+

∑
j 6=i

zi,j

 = 0

Last expression can be simplified and results in

viβ(n− 1) =
∑
j 6=i

zi,j ,
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which is endependent on ai. So, the only candidates for being minima or maxima for espression

(d) are its value in the extrema, namely (e) and (f).

Also, the sign of the first derivative of (d) with respect to ai is equal to the sign of
∑

j 6=i zi,j −
ciβ(n− 1). So, if ciβ(n− 1) <

∑
j 6=i zi,j we have that (d) is strictly increasing in ai, and then (e)

is strictly greater than (f).

The value of (e) is between −1 and 1, by assumption, because 0 <
∑

j 6=i zi,j < 2.

The quantity in (f) is minimized by vi → 0; and c′i → 0. In this case (f) goes to −1 from the

right, and for any ci > 0 it will be greater than −1. This complete the proof, because we have

shown that any row of the Jacobian J sums to a number between −1 an 1. �
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