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Abstract

We examine a strong form of robust implementation in dynamic mechanisms that is

both belief- and belief-revision-free. Specifically, we characterize robust wPBE-implemen-

tation, that is, full implementation in weak Perfect Bayesian equilibrium across all type

spaces. We introduce a dynamic robust monotonicity condition that is weaker than Berge-

mann and Morris’ (2011) robust monotonicity condition and show that under a conditional

no total indifference condition, ex-post incentive compatibility and dynamic robust mono-

tonicity characterize robust wPBE-implementation in general dynamic mechanisms. We

also introduce a notion of weakly rationalizable implementation (wr-implementation) and

prove that it is equivalent to robust wPBE-implementation. Applied to static mechanisms,

wr-implementation exactly characterizes a version of static belief-free implementation.
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1 Introduction

Since Bergemann and Morris’ (2005; 2009a; 2011) seminal series of papers, there has been a

renewed and growing interest in implementing social choice functions in a robust way. In their

work Bergemann and Morris equate robustness with belief-freeness, that is, independence

of the agents’ beliefs and higher order beliefs about the state of the world. In addition to

robustness, it is advantageous to achieve full implementation, that is, to not only guarantee

that the implementing mechanism contains acceptable equilibria but also to rule out that there

are any unacceptable ones. In short, it is desirable to achieve full robust implementation.

Full robust implementation, however, is demanding. For this reason, researchers have

searched for more permissive results by weakening the robustness requirement or moving to

notions of approximate full implementation or both (e.g. Artemov et al., 2013; Müller, 2016;

Ollár and Penta, 2017; see also Bergemann and Morris, 2009b). In this search, the com-

plementary approach of enlarging the class of mechanisms to dynamic mechanisms (roughly,

extensive game forms) is only beginning to be investigated (e.g. Müller, 2016; see also Penta,

2015)1. While still largely unexplored in robust implementation, dynamic mechanisms have

been successfully employed in full non-robust implementation, both in complete information

environments (e.g. Moore and Repullo, 1988; Abreu and Sen, 1990; Vartiainen, 2007) and

in the case of incomplete information on which we focus in this paper (e.g. Brusco, 1995,

2006; Bergin and Sen, 1998; Duggan, 1998; Baliga, 1999). This makes dynamic mechanisms

a promising alternative to weakening the robustness notion or abandoning exact in favor of

approximate full implementation.

An intrinsic complication with dynamic mechanisms, however, is that they may confront

agents with information sets that these agents expected with probability zero. At such “sur-

prise” information sets agents cannot Bayesian update their previous beliefs and instead have

to revise them in other ways (since we maintain throughout that agents use Bayesian updat-

ing when not surprised, from now on, by “belief revision” we in particular refer to the belief

revision at surprise information sets). Many of the positive results for dynamic non-robust

implementation are derived under specific assumptions on the belief revision.2 Importantly,

the existing positive result for dynamic robust implementation in Müller (2016) not only ap-

plies to a concept of approximate implementation, but crucially also depends on a specific

belief-revision assumption. While belief-revision assumptions in various forms are widely re-

1We discuss these and other papers on implementation by dynamic mechanisms in Subsection 5.1.
2Assumptions on the belief revision at surprise information sets are often implicit in the solution concept,

for example in perfect Bayesian equilibrium (used by Brusco, 1995, 2006) and sequential equilibrium (used by
Baliga, 1999, and in effect also by Bergin and Sen, 1998). Such assumptions are even common under complete
information, e.g. in subgame perfect equilibrium (used by Moore and Repullo, 1988; Abreu and Sen, 1990;
Vartiainen, 2007). A notable exception is Duggan (1998), who obtained positive results in a more specialized
setting without such belief-revision assumptions. For more details, see Subsection 5.1.
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lied on in the literature, mechanism designers may, however, not always be confident which

assumptions (if any) are valid in practice. Accordingly, there are not one but two robustness

concerns in dynamic mechanisms. First, as in static mechanisms, achieving robustness with

respect to the agents’ initial beliefs about the state of the world, expressed by conditions such

as Bergemann and Morris’ belief-freeness. Second, achieving robustness with respect to the

agents’ belief revision processes.

In short, the state of the literature raises several questions. How much can dynamic mech-

anisms weaken the necessary conditions for full robust implementation, particularly if one

insists on belief-freeness and exact implementation? And to what extent does the success of

dynamic mechanisms in full robust implementation depend on belief-revision assumptions?

In this paper we take a step towards answering these questions by adopting weakly per-

fect Bayesian equilibrium (wPBE) and studying full robust implementation in wPBE (robust

wPBE-implementation). Robust wPBE-implementation is a notion of belief-free and exact im-

plementation by dynamic mechanisms, and like wPBE maintains Bayesian updating but does

not make any assumptions on the belief revision at surprise information sets. Specifically, first,

we introduce and then provide necessary and sufficient conditions for a notion of weakly ratio-

nalizable implementation (wr-implementation). Second, we prove that wr-implementation is

equivalent to robust wPBE-implementation (Theorem 2). In combination, Theorems 1 and 2

characterize robust wPBE-implementation, and thus provide one answer to the first question

from above and establish an important benchmark for the second.

In more detail, we believe that a characterization of robust wPBE-implementation con-

tributes in several ways. First, our sufficiency result (Theorem 1(b) in conjunction with

Theorem 2) provides conditions under which an arguably very strong form of robust imple-

mentation can be guaranteed. The concern of the robust mechanism design literature is that

if a mechanism designer makes a mistake in modeling the agents’ belief hierarchies about

the state of the world, then a standard (i.e. non-robust) mechanism might “malfunction” and

not implement the desired social choice function. This concern is real, as even small changes

in the agents’ belief hierarchies can alter equilibrium outcomes (see e.g. Rubinstein, 1989,

Weinstein and Yildiz, 2007, and Penta, 2013, for static games and Penta, 2012, for dynamic

games). Following the foundational contributions of Bergemann and Morris (2005) and Chung

and Ely (2007), the robust mechanism design literature identifies mechanisms that do not

depend on “details” about the agents’ belief hierarchies. With belief-freeness, robust wPBE-

implementation maintains the strongest and thus most desirable static robustness condition of

this literature, namely independence from the initial belief hierarchies about the state of the

world, while extending the analysis to dynamic mechanisms. With respect to the dynamic as-

pects, robust wPBE-implementation is belief-revision-free in the sense that it only imposes the

rather minimal assumptions of sequential rationality (generalizing rationality from the static
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case) and Bayesian updating. Therefore, robust wPBE-implementation provides “maximal”

robustness with respect to both initial and revised beliefs, requiring no knowledge of either.

Second, maintaining belief-freeness has the advantage that our sufficient conditions are

easily comparable to those for robust implementation by static mechanisms derived by Berge-

mann and Morris (2011) (henceforth, BM), giving us a sense of what dynamic mechanisms add.

Clearly, since they guarantee strong dynamic robustness, we cannot expect the conditions for

robust wPBE-implementation to be overly permissive. But due to admitting dynamic mech-

anisms and despite the absence of belief-revision assumptions, robust wPBE-implementation

is nonetheless more permissive than BM’s robust implementation by static mechanisms.

We could relax our sufficient conditions further by imposing assumptions on the agents’

belief revision or initial beliefs or both. However, without understanding robust wPBE-imple-

mentation, we would not know when such stronger assumptions are actually necessary. In

other words, third, our necessary conditions for robust wPBE-implementation (Theorem 1(a)

in conjunction with Theorem 2) delineate an important boundary to robust implementation

that can only be overcome at the cost of such stronger assumptions.

While extreme, insisting on belief-revision-freeness means that robust wPBE-implementa-

tion can build a basis for disentangling the effect of simply permitting dynamic mechanisms

from simultaneously making belief-revision assumptions. Like most past results for non-robust

implementation, potential future results for robust implementation may rely on particular

belief-revision assumptions. Being able to compare such potential future results to our nec-

essary conditions is valuable, as it can inform mechanism designers who have to manage the

trade-off between avoiding such belief-revision assumptions (which they may not be completely

confident in) and being able to implement additional social choice functions.

Fourth, an advantage of our weak informational assumptions is that they allow us to

completely characterize implementability in fairly general environments: under a conditional

no-total indifference condition, our necessary and sufficient conditions (for wr- and also for

robust wPBE-implementability) coincide. Beyond assuming finite environments, our analysis

relies on the agents maximizing expected utility and on mechanisms being able to terminate

in lotteries over pure outcomes. As we discuss in Subsection 5.1, to the best of our knowl-

edge, a tight characterization of implementability by general dynamic mechanisms is a first in

the literature on full (robust and also non-robust) implementation in incomplete information

environments. Therefore, our results may also contribute to the understanding of dynamic

implementation more generally.

As already mentioned, we do not directly characterize robust wPBE-implementation, but

instead establish it as equivalent to wr-implementation (Theorem 2). In this respect, our

approach is analogous to BM’s, who characterize (static) robust implementation by relating

it to a notion of rationalizable implementation. A benefit of this approach is that, unlike
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robust wPBE-implementation, wr-implementation is defined and can be analyzed without

introducing the machinery of type spaces, which can be an important simplifying factor in

practice. In other words, mechanism designers may prefer to work with wr-implementation

instead of robust wPBE-implementation.

Let us make three remarks about Theorem 2. First, because it establishes a tight equiv-

alence between wr-implementation and robust wPBE-implementation, Theorem 2 confirms

that our definition of wr-implementation is “correct” for our purposes. Wr-implementation is

based on a slight variation of Battigalli’s (1999, 2003) weak rationalizability, and includes a

condition that Theorem 2 shows to guarantee the existence of a wPBE on all type spaces.

Second, an advantage of Theorem 2 is that it applies to a very broad class of general dynamic

mechanisms, an aspect in which it goes beyond its game-theoretic counterpart by Battigalli

(1999). For example, Theorem 2 applies as long as we rule out mechanisms that violate a mea-

surability condition. Finally, Theorem 2 has implications for static robust implementation.

To elaborate from above, BM already proposed a notion of rationalizable implementation by

static mechanisms, and showed that it is almost equivalent to (static) robust implementation.

Applying Theorem 2 to static mechanisms reveals that the notion of wr-implementation by

static mechanisms modifies BM’s rationalizable implementation in a way that results in an

exact equivalence to (static) robust implementation (see Subsection 4.4).

Given the equivalence between robust wPBE-implementation and wr-implementation we

simply focus on characterizing the latter (Theorem 1). In Subsection 3.1, we propose the com-

paratively simple notion of robust preference reversals. Using this notion, we define dynamic

robust monotonicity (dr-monotonicity), and show that dr-monotonicity and ex-post incentive

compatibility (epIC) are necessary and, together with a conditional no total indifference con-

dition, also sufficient for wr-implementation. Dr-monotonicity is related to but weaker than

BM’s robust monotonicity condition, and epIC is weaker than semi-strict epIC. Robust mono-

tonicity and semi-strict epIC are necessary for BM’s rationalizable implementation. Additional

value from Theorem 1 derives because wr-implementation is also of independent interest be-

yond being a proxy for robust wPBE-implementation (see for example Subsection 5.2).

As a benefit, our proof of Theorem 1 shows that in order to wr-implement social choice

functions, it suffices to restrict attention to countable mechanisms, that is, mechanisms with

countable strategy sets. Restricting attention to countable mechanisms is convenient as it

avoids dealing with the technicalities of uncountable mechanisms. Specifically, our sufficiency

proof shows that every wr-implementable social choice function can in fact be wr-implemented

by a countable mechanism. And our necessary conditions apply to general dynamic mecha-

nisms. Consequently, wr-implementation by countable and by general mechanisms are equiv-

alent, and focusing on the former entails no loss.
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Organization of the Paper. Section 2 introduces the notation, the environment, countable

mechanisms and wr-implementation. Section 3 derives necessary and sufficient conditions for

wr-implementation. Section 4 relates wr-implementation to robust wPBE-implementation

and introduces general mechanisms. Section 5 discusses some related literature and concludes.

Appendix A comments on our definition of wr-implementation, and Appendix B collects the

proofs omitted from the main text.

2 Preliminaries

Let J = {1, . . . , J} be a finite set. If (Zj)j∈J is a family of sets Zj indexed by J , then Z

denotes the Cartesian product
∏

j∈J Zj. If zj ∈ Zj for all j ∈ J , then z denotes (z1, . . . , zJ )

and, for each i ∈ J , z−i = (z1, . . . , zi−1, zi+1, . . . , zJ ). At times we ignore the correct order of

tuples and write (zj , z−j) for z and, if for all j ∈ J , (vj , wj) ∈ Zj = Vj ×Wj for some sets

Vj and Wj, ((v1, . . . , vJ), (w1, . . . , wJ )) for the element (vj, wj)j∈J of Z. If V and Z are sets,

then 2Z denotes the power set of Z and ZV the set of functions mapping V to Z.

We endow every countable set with its discrete topology, every product of topological spaces

with the product topology, and every topological space with its Borel σ-algebra.3 If (Z,Z) is

a measurable space then ∆(Z) denotes the set of probability measures on Z. If in addition

{z} ∈ Z, then δ(z) denotes the degenerate probability measure on Z that places probability

one on z ∈ Z. If Zj is endowed with a topology for all j ∈ J and p ∈ ∆(
∏

Zj), then margZjp

denotes the j-th coordinate marginal of p, that is, the measure induced from p by the projection

from
∏

Zj to Zj. If Z is countable and p ∈ ∆(Z), then supp(p) = {z ∈ Z : p(z) > 0} denotes

the support of p.

We let Ord denote the class of ordinal numbers.

2.1 Environment

There is a finite set I = {1, . . . , I} of at least two agents. Every agent i ∈ I has a nonempty

and finite payoff type space Θi and privately observes a payoff type θi ∈ Θi that represents her

payoff-relevant information. There is a nonempty and finite set X of pure outcomes. We let

Y = ∆(X), endow Y with the relative Euclidean topology and call elements y ∈ Y lotteries

(over X) or outcomes.

The agents have expected utility preferences over outcomes which are interdependent in

that i’s utility can depend on the payoff-relevant information θ−i of her opponents. Specifically,

we let ui(x, θ) denote the von Neumann-Morgenstern utility that i ∈ I derives from the pure

outcome x if the payoff type profile is θ ∈ Θ, and, in a slight abuse of notation, ui(y, θ) the

expected utility that i derives from lottery y if the payoff type profile is θ.

3Our results also hold under alternative assumptions; see Footnotes 16 and 18 for details.
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Following the belief-free paradigm, i’s (initial) belief ψi ∈ ∆(Θ−i) about −i’s payoff type

profile θ−i is not part of our description of an environment. Instead, we will work with imple-

mentation concepts that consider all possible beliefs ψi. Hence we also do not take expectations

of i’s utility with respect to beliefs ψi here; rather, such expectations will implicitly appear

when we define sequential rationality in Subsection 2.3. Still, we already note that in another

abuse of notation we write θj ∈ supp(ψi) if ψi ∈ ∆(Θ−i), j 6= i and θj ∈ Θj is in the support

of margΘjψi.

2.2 Countable Mechanisms

Our characterization of wr-implementation conveniently applies to both a general class of

mechanisms and a class of simpler mechanisms that we will call countable mechanisms: our

necessary conditions apply even if the designer has general mechanisms at her disposal, and our

sufficiency proof demonstrates that every wr-implementable social choice function is indeed

wr-implementable by a countable mechanism.

Considering general mechanisms requires the careful treatment of measurability issues.

Purely to simplify the exposition, we therefore limit attention to countable mechanisms until we

reach Subsection 4.2 (even though for brevity we will not write the qualifier “countable” every

time we write “mechanism”, even though we already adopt a notation that easily generalizes

later and even though we immediately formulate those proofs that we relegate to Appendix B

for general mechanisms). Moreover, we will only summarize important features of countable

mechanisms here. Subsection 4.2 will formally define countable and general mechanisms, and

present the appropriate generalizations of the other definitions that we make in the remainder

of this Section 2.

A countable (dynamic) mechanism Γ = 〈A,H, (Hi)i∈I , P, C〉 is an extensive game form

with perfect recall and no trivial decisions that conforms to the following description. Its first

component, A, is a countable set of actions. Its second component, H, is a set of histories

h = (a1, . . . , an), which are finite sequences of actions. Play starts at the (typically non-

terminal) initial history ∅. At each non-terminal history h = (a1, . . . , an), the agent P (h)

specified by the player function P chooses an action from the set A(h) = {a ∈ A : (h, a) ∈ H}.

Here, (h, a) denotes the history (a1, . . . , an, a). Once a history h such that A(h) = ∅ — that is,

a terminal history — is reached, the mechanism concludes and the lottery C(h) ∈ Y specified

by the outcome function C obtains. The set Hi partitions the set of all histories at which i

moves into information sets H. Whenever i moves she knows the information set, but not the

history she is at. A strategy si for player specifies an (available) action for each information

set H ∈ Hi. Letting Si denote the set of i’s strategies, a countable mechanism is such that Si

is countable for all i ∈ I .

The terminal history induced by strategy profile s ∈ S is denoted by ζ(s). We use the
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symbol � to indicate precedence among histories, and also to indicate precedence among i’s

information sets. We let Si(H) = {si ∈ Si : ∃s−i ∈ S−i∃h ∈ H, h � ζ(s)} be the set of i’s

strategies that admit j’s information set H, j ∈ I , and S−i(H) be the set of strategy profiles

of −i admitting H. For each J ⊆ I , we let

Hi((sj)j∈J ) =

{

H ∈ Hi :
(

∃h ∈ H, (sj)j∈I\J ∈
∏

j∈J\I

Sj

)(

h � ζ(s)
)

}

denote the set of i’s information sets admitted by (sj)j∈J . For A ⊆ S, Hi(A) denotes the

union of sets Hi(s), where s ∈ A. Moreover, Σi = Si × Θi, Σ−i = S−i × Θ−i and Σ−i(H) =

S−i(H)×Θ−i.

A countable static mechanism consists of a countable strategy set Si for each i ∈ I and

an outcome function C : S → Y . Formally, a countable static mechanism is simply a special

countable (dynamic) mechanism (see Subsection 4.2).

2.3 Beliefs and Sequential Rationality in Countable Mechanisms

Given a mechanism, player i has beliefs about her opponents’ strategies and payoff types.

These beliefs are captured by an indexed family of probability measures on (Σ−i,B−i), where

B−i = 2Σ−i denotes the discrete σ-algebra on Σ−i. Each measure represents i’s belief at a

different point in the mechanism. Precisely, the index set is H̄i = Hi ∪ {{∅}} and i has a

belief on (Σ−i,B−i) at each of her information sets and at the initial history (even if the initial

history does not comprises one of her information sets). Player i’s beliefs so indexed form a

conditional probability system.

Definition 1 (Rényi, 1955) A conditional probability system (CPS) on (Σ−i, H̄i) is a func-

tion µi : B−i × H̄i → [0, 1] such that

(a) for all H ∈ H̄i, µi(·|H) is a probability measure on (Σ−i,B−i).

(b) for all H ∈ H̄i, µi(Σ−i(H)|H) = 1.

(c) for all H,H′ ∈ H̄i and D ∈ B−i such that D ⊆ Σ−i(H), if H′ � H then

µi(D|H)µi(Σ−i(H)|H′) = µi(D|H′).

In particular, by Condition (c), “i uses Bayesian updating whenever applicable,” that is,

i’s beliefs are related by the rules of conditional probability whenever possible. However,

Condition (c) imposes no assumption on the belief revision if an information set surprises

i. An information set H is a surprise to i if at the immediate predecessor of H, i places

probability zero on Σ−i(H) and thus is certain that H will not be reached.
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We let ∆(Σ−i) denote the set of probability measures on (Σ−i,B−i) and ∆H̄i(Σ−i) denote

the set of conditional probability systems on (Σ−i, H̄i). Given a CPS µi ∈ ∆H̄i(Σ−i),

Uµii (si, θi,H) =

∫

Σ−i(H)
ui(C(ζ(s)), θ)dµi((s−i, θ−i)|H)

denotes agent i’s expected utility if she plays strategy si ∈ Si(H), is of payoff type θi and

holds beliefs µi(·|H).

We call a strategy sequentially rational if it represents a sequentially rational plan of

action. That is, we require a sequentially rational strategy to maximize expected utility at all

information sets admitted by the strategy itself, but do not require optimality at information

sets that cannot be reached if the agent follows the strategy. This is in line with the absence

of belief-revision assumptions other than Bayesian updating,4 standard in papers that define

weak rationalizability or wPBE, and will play some role in our sufficiency mechanism.

Definition 2 Strategy si ∈ Si is sequentially rational for payoff type θi ∈ Θi of player i with

respect to the beliefs µi ∈ ∆H̄i(Σ−i) if for all H ∈ Hi(si) and all s′i ∈ Si(H)

Uµii (si, θi,H) ≥ Uµii (s′i, θi,H). (1)

We let ri : Θi ×∆H̄i(Σ−i) ։ Si denote the correspondence that maps (θi, µi) to the set of

strategies that are sequentially rational for payoff type θi with beliefs µi, and ρi : ∆
H̄i(Σ−i) ։

Σi denote the correspondence that maps µi to the set of strategy-payoff type pairs that includes

(si, θi) if and only if si is sequentially rational for payoff type θi with beliefs µi.

2.4 Weak Rationalizability and WR-Implementation in Countable Mecha-

nisms

A strategy is weakly rationalizable if it survives the iterative elimination of never-best sequen-

tial responses, where it is required that at the initial information set, each agent believes in

the highest degree of her opponents’ rationality. In static mechanisms, a strategy is weakly

rationalizable if and only if is (belief-free) rationalizable as defined by BM.

4See e.g. Osborne and Rubinstein (1994) and Battigalli and Siniscalchi (2003) for a distinction between the
terms “strategy” and “plan of action.” In equilibrium concepts stronger than wPBE, such as sequential equi-
librium, even after i deviates from her strategy, the other players are certain that i will follow her equilibrium
strategy from now on. For such equilibrium concepts, one interpretation of the action specified by a strategy
at an information set inconsistent with the strategy is not as the action planned by i, but rather as the other
players’ belief about i’s behavior should i deviate (see e.g. Osborne and Rubinstein, 1994). In this context,
requiring optimality of a strategy at all information sets implies that even after a deviation by i, the other
players believe in equilibrium that i behaves optimally from now on. Weak rationalizability and wPBE do
not impose such a belief-revision assumption. Thus, conceptually, the role of optimality at information sets
inconsistent with a strategy is void.
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Recall that Ord denotes the class of ordinal numbers.

Definition 3 For all i ∈ I, let W 0
i = Σi and Π0

i = ∆H̄i(Σ−i) and, for all ordinal numbers

α ≥ 1, define by transfinite recursion the set Wα
i of weakly α-rationalizable pairs (si, θi) for

player i by

Wα
i =

{

ρi(Π
α−1
i ) if α is a successor ordinal

⋂

β<αW
β
i if α is a limit ordinal

and the set Παi of weakly α-rationalizable beliefs for player i by

Παi =
{

µi ∈ ∆H̄i(Σ−i) : µi(W
α
−i|{∅}) = 1

}

. (2)

For convenience, let Qαi (θi) = {si ∈ Si : (si, θi) ∈Wα
i } denote the set of weakly α-rationalizable

strategies for θi ∈ Θi. Finally, let W∞
i =

⋂

α∈Ord
Wα
i be the set of weakly rationalizable

strategy-payoff type pairs for player i, Q∞
i (θi) = {si ∈ Si : (si, θi) ∈ W∞

i }, and Π∞
i =

⋂

α∈Ord
Παi be the set of weakly rationalizable beliefs for player i.

For each agent i, Definition 3 iteratively eliminates pairs (si, θi) of never-best sequential

responses and payoff types from the set W 0
i = Σi of all pairs of strategies and payoff types.

If (si, θi) ∈ Wα
i then (si, θi) survived α rounds of elimination. For α, β ∈ Ord, α < β implies

W β ⊆Wα. The pair (si, θi) survives the first round of elimination if si is sequentially rational

for θi with respect to some CPS from the set Π0
i of all CPSs. With each round of elimination

the corresponding set of “permitted” CPSs weakly shrinks: for all α, β ∈ Ord, α < β implies

Πβ ⊆ Πα. In particular, in round α, Παi consists of all CPSs µi which initially (that is, at

{∅} ∈ H̄i) place probability one on Wα
−i. Thus each round increases the minimum level of

rationality that i initially ascribes her opponents. Note that Παi places no other restrictions

on its elements. In particular, if H is a surprise given µi, then µi(·|H) can be any probability

distribution in ∆(Σ−i(H)) without contradicting µi ∈ Παi .

Battigalli (1999, 2003) and Battigalli and Siniscalchi (2007) define weak rationalizability as

W ω0 , where ω0 denotes the first infinite ordinal. That is, they for all agents i ∈ I let W 0
i = Σi

and Π0
i = ∆H̄i(Σ−i), then for all natural numbers α ≥ 1 recursively define Wα

i = ρi(Π
α−1
i ) and

Παi as in (2), and finally let W ω0
i =

⋂∞
α=0W

α
i be the set of i’s weakly rationalizable strategy-

payoff type pairs. Definition 3 modifies their definition by requiring that one continues to

iteratively eliminate never-best sequential best responses even after W ω0 is reached.

Adding more rounds of elimination to Battigalli and Siniscalchi’s definition does not affect

our characterization of wr-implementable social choice functions.5 However, the additional

5This will become clear after reading Section 3: Our proof by contradiction of the necessity of dr-
monotonicity (Proposition 1) explicitly constructs a fixed point of the elimination procedure. The proof of
the necessity of epIC (Proposition 2) would not change if we used Battigalli’s and Siniscalchi’s definition in-
stead of Definition 3. Finally, as Footnote 14 will explain, the iterated elimination procedure of the mechanism

10



rounds of elimination are crucial for establishing an equivalence between robust wPBE- and

wr-implementation. Briefly, the reason is that W ω0 can fail to be a fixed-point of the elimi-

nation procedure of Definition 3, while W∞ cannot. Correspondingly, for some agent i and

payoff type θi, Q
ω0
i (θi) can contain a strategy that fails to be a wPBE strategy for θi in every

type space, while Q∞
i (θi) cannot. We illustrate this point in Appendix A.

A social choice function f : Θ → Y assigns a desired outcome to each payoff type profile.

We pursue the full implementation of social choice functions. The key to fully weakly ratio-

nalizably implementing a social choice function f is to find a mechanism such that for every

payoff type profile θ, every strategy profile that is weakly rationalizable for θ leads to f(θ).

Definition 4 Mechanism Γ weakly rationalizably implements (wr-implements) social choice

function f if

(a) C(ζ(s)) = f(θ) for all (s, θ) ∈W∞ and

(b) there exists a profile (Qi(θi))i∈I,θi∈Θi of nonempty strategy sets Qi(θi) ⊆ Q∞
i (θi) such

that for all i ∈ I, θ ∈ Θ and s−i ∈ Q−i(θ−i)
def
=
∏

j 6=iQj(θj), there exist si ∈ Qi(θi) and

µi ∈ ∆H̄i(Σ−i) such that µi((s−i, θ−i)|{∅}) = 1 and si ∈ ri(θi, µi).

Condition (a) is the standard requirement for full implementation described above. Condi-

tion (b) implies that every payoff type of every agent has some weakly rationalizable strategy,

another standard requirement. In addition, Condition (b) demands the existence of a sequen-

tial best response to some weakly rationalizable CPSs that have a degenerate initial belief.

In Section 4, we will see that Condition (b) corresponds to the requirement that an imple-

menting mechanism has a wPBE for every type space. Thus Condition (b) ensures that

wr-implementation has a foundation as robust wPBE-implementation.

3 Necessary and Sufficient Conditions for WR-Implementation

In full implementation results, preference reversal conditions often play an important role.

In Subsection 3.1, we will introduce a novel preference reversal condition that is key to un-

derstanding wr-implementation. In Subsection 3.2 we will then use this condition to define

dr-monotonicity, which Proposition 1 will establish as the main necessary condition for wr-

implementation. In Subsection 3.3, Proposition 2 will reveal epIC as a second necessary

condition. Finally, under a mild assumption, Subsections 3.4 and 3.5 will provide a converse

to these necessary conditions. Specifically, Proposition 3 will show that under a conditional

NTI condition, dr-monotonicity and epIC are also sufficient for wr-implementation.

that we employ to establish our sufficiency result (Proposition 3) converges in finitely many rounds.
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In summary, with Propositions 1-3, this section will prove the following theorem. Note

that Theorem 1 holds if we restrict attention to countable mechanisms but remains true if we

admit general mechanisms.

Theorem 1 Let f be a social choice function.

(a) If f is wr-implementable then f is dr-monotone and epIC.

(b) If the conditional NTI property is satisfied and f is dr-monotone and epIC, then f is

wr-implementable.

3.1 Robust Preference Reversals

Key to understanding dr-monotonicity, the central condition in Theorem 1, is to understand

when what we will call a robust (θ′i, θi)-preference reversal exists.

Let i ∈ I be an agent and θi, θ
′
i ∈ Θi be two payoff types of i. First, let us describe

the following Condition (3) which, as we will show at the end of this subsection, guarantees

the existence of a robust (θ′i, θi)-preference reversal. Imagine that i gets to pick exactly one

outcome from a given set. Condition (3) is satisfied if and only if there is a subset of outcomes

Z ⊆ Y and a y ∈ Z which θi would never choose from Z, independently of θi’s belief ψi about

θ−i, but which θ′i would choose from Z for some belief ψ′
i about θ−i. To verify this claim,

simply let Z equal the union of y and all different x from (3).

∃ψ′
i ∈ ∆(Θ−i), y ∈ Y ∀ψi ∈ ∆(Θ−i)∃x ∈ Y :

Eψiui(x, θ) > Eψiui(y, θ) and Eψ′
i
ui(x, θ

′
i, θ−i) ≤ Eψ′

i
ui(y, θ

′
i, θ−i). (3)

Second, let us weaken Condition (3) to arrive at the preference reversal notion appropriate

for our analysis. Recall that if ψ′
i ∈ ∆(Θ−i), then Y supp(ψ′

i) denotes the set of functions

mapping supp(ψ′
i) = {θ−i ∈ Θ−i : ψ

′
i(θ−i) > 0} to the set Y of outcomes. We say that there

is a robust (θ′i, θi)-preference reversal if

∃ψ′
i ∈ ∆(Θ−i), y ∈ Y supp(ψ′

i)∀χi ∈ ∆(supp(ψ′
i)×Θ−i)∃x ∈ Y supp(ψ′

i) :

Eχiui(x(θ
′
−i), θ) > Eχiui(y(θ

′
−i), θ) and Eψ′

i
ui(x(θ−i), θ

′
i, θ−i) ≤ Eψ′

i
ui(y(θ−i), θ

′
i, θ−i).

6 (4)

Condition (4) is in the same spirit as Condition (3), but recognizes that there are more

elaborate ways to “separate” θ′i from θi than to let i pick an element from a set Z. In particular,

we can give choices to both i and −i. To understand Condition (4), imagine that i gets to

choose the function y or one of the functions x and that −i announces a payoff type profile

6Here, we let θ′−i denote the first and θ−i the second argument of χi, so that e.g. Eχi
ui(x(θ

′
−i), θ) =

∑

(θ′
−i
,θ−i)∈supp(ψ

′
i
)×Θ−i

ui(x(θ
′
−i), θ)χi(θ

′
−i, θ−i).
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θ′−i. Then, letting z denote i’s choice, the outcome z(θ′−i) realizes. In this context, think of

χi(θ
′
−i, θ−i) as the probability that θi places on the event that −i’s actual payoff type profile

is θ−i but that −i claims to be θ′−i. Condition (4) then requires that θi would never choose y,

independently of θi’s belief χi, but that θ′i would choose y if she believes that θ−i is distributed

according to ψ′
i and that −i tells the truth.

As already mentioned, Condition (3) is sufficient for the existence of a robust (θ′i, θi)-

preference reversal: Condition (3) is satisfied if in Condition (4), we can choose y and all x

to be constant functions. In this special case i’s belief about −i’s announced type profile is

irrelevant, and the beliefs χi about −i’s announced and actual payoff type profiles from (4)

can be replaced in (3) by the beliefs ψi about −i’s actual payoff type profile only.

3.2 Dynamic Robust Monotonicity and its Necessity

Let f be the social choice function under consideration. In order to define our first necessary

condition for wr-implementation, we recall the notion of a deception. A deception is a profile

β = (β1, . . . , βI), where βi : Θi → 2Θi satisfies θi ∈ βi(θi) for all i ∈ I and all θi ∈ Θi. We can

interpret a deception β in terms of the direct mechanism associated with f .7 In this context,

βi(θi) is the set of i’s strategies that θi can play under β. A deception β is acceptable if for

all θ, θ′ ∈ Θ, θ′ ∈
∏

j∈I βj(θj) implies f(θ′) = f(θ), and unacceptable otherwise. For each

ϑ−i ∈ Θ−i, β
−1
−i (ϑ−i) = {θ−i ∈ Θ−i : ϑ−i ∈ β−i(θ−i)} is the set of payoff type profiles that can

announce ϑ−i under β, where β−i(θ−i)
def

=
∏

j 6=i βj(θj).

More broadly, in a mechanism that may be direct or indirect, we can think of βi(θi) as the

set of payoff types that θi is permitted to imitate under β. Intuitively, if we want to achieve

wr-implementation, then in the implementing mechanism, every unacceptable deception may

not form a fixed point of the iterated elimination procedure defining weak rationalizability. In

order for it not to form a fixed point, an unacceptable deception β must permit some payoff

type θi of some agent i a lie θ′i that is not worth abiding by if the payoff type initially believes

that the other agents follow β. In fact, β must be d-refutable in the sense defined below,

where, like BM, we let

Yi(θ−i) =
{

y ∈ Y : ui(y, (θ
′′
i , θ−i)) ≤ ui(f(θ

′′
i , θ−i), (θ

′′
i , θ−i)) for all θ′′i ∈ Θi

}

be the “reward set” for agent i (with respect to θ−i).

Definition 5 A deception β is dynamically refutable (d-refutable) if there exist i ∈ I, θi ∈ Θi

and θ′i ∈ βi(θi) such that 1) there is a robust (θ′i, θi)-preference reversal or 2) for all θ′−i ∈ Θ−i

7The direct mechanism associated with the social choice function f is the static mechanism Γ with Si = Θi
for all i ∈ I and C(θ) = f(θ) for all θ ∈ Θ.
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and all ψi ∈ ∆(Θ−i) with ψi(β
−1
−i (θ

′
−i)) = 1,

∃x ∈ Yi(θ
′
−i) : Eψiui(x, θ) > Eψiui(f(θ

′), θ). (5)

Intuitively, d-refutability captures when a deception β can be “handled” via the use of

some dynamic mechanism. In a condition termed refutability, BM already captured when a

deception can be handled by some static mechanism. Our formulation of d-refutability permits

a straightforward comparison between these two notions: a deception β is refutable according

to BM if there exist i ∈ I , θi ∈ Θi and θ′i ∈ βi(θi) such that 2) holds. Hence a mechanism

designer who considers not only static but also dynamic mechanisms gains that she can now

also handle a deception β if there exist i ∈ I , θi ∈ Θi and θ′i ∈ βi(θi) such that 1) holds. This

gain applies even if nothing (beyond Bayesian updating) is known about the agents’ belief

revision processes.

A high-level intuition for d-refutability is the following. (The proof of Theorem 1 will

account for all details.) In order to handle a deception β by disincentivizing θi’s lie θ′i, a

mechanism that implements a social choice function needs to have two properties.

• The mechanism must permit θi a deviation that leads to a more favorable expected

outcome than that obtained by imitating θ′i.

• As Part (b) of Definition 4 roughly means that truth-telling must form a fixed point in

every implementing mechanism, the existence of the more favorable expected outcome

must not upset the truth-telling fixed point.

A dynamic mechanism offers two ways to disincentivize θi’s lie θ′i ∈ βi(θi). First, it may

disincentivize θ′i at a surprise information set, and second, at the initial or a similar information

set.

At a surprise information set, since we impose no belief-revision assumptions, we do not

know anything about the agent’s beliefs. Consequently, a dynamic mechanism “separates”

θ′i from θi by their behavior at a surprise information set exactly if there is a robust (θ′i, θi)-

preference reversal. In particular, the two bullet points above correspond to the two inequalities

in (4): There is a choice y that, no matter her belief about her opponents, θi will never make

in the “subgame” starting at the surprise information set (first bullet point above and strict

inequality in (4)), but that θ′i is happy to make if she believes in her opponents telling the

truth (second bullet point above and weak inequality in (4)).

If no robust (θ′i, θi)-preference reversal exists, then the mechanism must disincentivize θi’s

lie θ′i ∈ βi(θi) at the initial (or a similar) information set. Let us first consider the case of a

static mechanism, already examined by BM. The only option to achieve in a static mechanism

that θi does not imitate θ′i is to give player i, for every belief of θi about her opponents that

14



conforms to β, an action m that is more attractive to θi than θ′i’s weakly rationalizable actions.

In particular, if θi expects her opponents to play θ′−i and believes that their actual payoff type

profiles are distributed according to ψi, then for some such additional action m, the action

profile (m, θ′−i) must lead to some outcome x that satisfies the strict inequality in (5) (first

bullet point above). At the same time, the additional action m must not upset the truth-telling

fixed point (second bullet point above): if i expects θ′−i to tell the truth, then, no matter her

payoff type θ′′i , agent i must not prefer playing m and receiving x over telling the truth. This

is captured by the condition that x must be in the reward set Yi(θ
′
−i). Second, while dynamic

mechanisms offer more options than adding an extra action to i’s initial information set (e.g.,

our sufficiency mechanism from Proposition 3 will augment the direct mechanism in a dynamic

fashion), the static “whistleblower” condition 2) continues to be necessary even with dynamic

mechanisms in case 1) does not hold. The intuition is that 2) now captures the possibility

to disincentivize θi’s lie θ′i by, for each θ′−i, adding actions at information sets that i initially

expects with strictly positive probability if she believes the other players imitate θ′−i.

Observe two differences between 1) and 2) that arise from 1) capturing the possibility to

disincentivize θi’s lie θ′i at a surprise information set, and 2) capturing the same at the initial

or a similar information set. First, corresponding to the lack of knowledge about the agent’s

beliefs after a surprise, the preference reversal described by 1) is robust, that is, holds for all

possible beliefs of θi. In contrast, 2) requires a reversal only for beliefs that conform to the

deception β. Second, however, corresponding to a surprise being unexpected, 1) makes no

restriction on the (expected) outcomes x and y with respect to which there is a preference

reversal. In contrast, 2) requires these outcomes to be in the reward set. Therefore, 1) and 2)

are complementary in that they separate θ′i from θi in different circumstances.

Definition 6 Social choice function f is dynamically robustly monotone (dr-monotone) if

every unacceptable deception is d-refutable.

Proposition 1 If social choice function f is wr-implementable then f is dr-monotone.

BM, Theorem 1, Corollary 1 show that a condition related to dr-monotonicity, robust

monotonicity, is necessary for wr-implementation in static mechanisms.8 A social choice func-

tion is robustly monotone if every unacceptable deception is refutable. Robust monotonicity

is more demanding than dr-monotonicity.

We prove Proposition 1 in Appendix B. There, we suppose by contradiction that some Γ

wr-implements f but that there is a deception β which is unacceptable but not d-refutable.

We then construct a fixed point corresponding to β of the iterated elimination procedure that

defines weak rationalizability. Our construction exploits that if β permits a payoff type θi

8More precisely, they derive that strict robust monotonicity (and hence robust monotonicity) is necessary
for their notion of rationalizable implementation, and hence for robust implementation in static mechanisms.
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to mimic another payoff type θ′i, then the lack of d-refutability of β implies that there is

no robust (θ′i, θi)-preference reversal. Specifically, the absence of a robust (θ′i, θi)-preference

reversal helps us construct the non-initial beliefs of a CPS that justifies the lie θ′i for θi. Since

β is unacceptable, the fixed point implies that Γ produces an undesired outcome, contradicting

that Γ wr-implements f .

3.3 Ex-post Incentive Compatibility and its Necessity

Bergemann and Morris (2005) show that ex-post incentive compatibility (epIC) is a necessary

condition of partial robust implementation in static mechanisms.

Definition 7 Social choice function f is epIC if for all i ∈ I, θi, θ
′
i ∈ Θi and all θ−i ∈ Θ−i

ui(f(θ), θ) ≥ ui(f(θ
′
i, θ−i), θ).

Partial robust implementation only requires that for each type space, there exists a wPBE

that delivers the social choice. If instead one pursues the more demanding notion of full robust

implementation, that is, if one also insists that for each type space, all wPBE deliver the social

choice, a stronger version of epIC called semi-strict epIC emerges as a necessary condition for

robust implementation in static mechanisms (BM). For (full) wr-implementation in dynamic

mechanisms, on the other hand, the necessary incentive compatibility condition remains epIC

(whether we restrict attention to countable dynamic mechanisms or not).

Proposition 2 If social choice function f is wr-implementable then f is epIC.

In the static case, the necessary condition of robust monotonicity implies semi-strict epIC

(BM, Lemma 1, Theorem 1). The following example shows that despite that, an analogous

relation does not hold between dr-monotonicity and epIC. Hence we need to prove Proposition

2 directly, and cannot deduce it from Proposition 1. We do so in Appendix B.

Example 3.1 There is one agent with two payoff types, Θ1 = {θ1, θ
′
1}. (We could easily

add a “dummy” second agent with Θ2 = {θ2} in order to maintain our assumption of at least

two agents from Subsection 2.1.) There are two pure outcomes, X = {x, x′}. Payoff type θ1

strictly prefers x over x′, while θ′1 has the opposite strict preferences:

u1(x, θ1) > u1(x
′, θ1) and u1(x, θ

′
1) < u1(x

′, θ′1).

Therefore, both a robust (θ′1, θ1)- and a robust (θ1, θ
′
1)-preference reversal exist. Consider

the social choice function f : Θ1 → Y given by f(θ1) = x′ and f(θ′1) = x. This social

choice function is not epIC, but nonetheless dr-monotone since by the existence of the robust

preference reversals, every unacceptable deception is d-refutable.
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3.4 Sufficient Conditions

For the purpose of deriving sufficient conditions for wr-implementation, we assume that play-

ers’ preferences satisfy the following mild condition, taken from BM.

Definition 8 (Conditional NTI.) Let f be a social choice function. The conditional no

total indifference (NTI) property is met if for all i ∈ I, θi ∈ Θi, ψi ∈ ∆(Θ−i) and θ′−i ∈ Θ−i,

there exist y, y′ ∈ Yi(θ
′
−i) such that

Eψiui(y, θ) > Eψiui(y
′, θ).

Strictly speaking, the conditional NTI is a property of the social choice function f under

consideration. This is because the reward sets Yi(θ
′
−i) depend on f . However, in many cases

of interest (e.g. quasilinear environments) the conditional NTI is satisfied by all social choice

functions and in this sense, can be thought of as a property of the environment.

Proposition 3 If social choice function f is dr-monotone and epIC and the conditional NTI

property is satisfied, then f is wr-implementable.

We prove Proposition 3 in the following subsection using an infinite mechanism. Our

mechanism has two debatable properties. First, it exploits that faced with an infinite number

of choices, an agent may not have a sequential best response if she holds certain beliefs about

her opponents. This property is familiar from the literature, including from the static results by

BM. Second and possibly less common, our mechanism leverages the plans of action notion of

sequential rationality embedded in weak rationalizability (see Definition 2 and the paragraph

preceding it). Concretely, it exploits that in a dynamic mechanism, an agent may avoid

strategies that admit information sets at which the agent has no best response. In Müller

(2017b), we show that under a mild strengthening of our sufficient conditions, this second

property can be dispensed with at the cost of complicating the early stages of the implementing

mechanism.

The use of non-well-behaved infinite mechanisms has been criticized by Jackson (1992) and

others but allows us to derive a clean result, while a characterization of wr-implementation by

well-behaved mechanisms remains an open and challenging question. Since non-well-behaved

infinite mechanism are common in papers on full implementation, our choice also allows an

easy comparison of our sufficiency result to the existing literature.

3.5 Proof of Proposition 3

Proof. First, some preliminaries.
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Relative Interior Lotteries of the Reward Sets. For every i ∈ I and every θ−i ∈ Θ−i,

the reward set Yi(θ−i) is the intersection of Y = {y ∈ R#X : y ≥ 0,
∑

yn = 1} with the half-

spaces {(yx)x∈X ∈ R#X :
∑

x∈X ui(x, θ
′
i, θ−i)yx ≤ ui(f(θ

′
i, θ−i), θ

′
i, θ−i)}, indexed by θ′i ∈ Θi.

As such, Yi(θ−i) is convex and has finitely many extreme points y1,θ−i , y2,θ−i , . . . , ym,θ−i . By

the conditional NTI property, Yi(θ−i) is nonempty. Therefore m ≥ 1, and it is well-defined to

let ȳθ−i be the convex combination that puts weight 1
m

on each extreme point. The “relative

interior” lotteries ȳθ−i ∈ Yi(θ−i), indexed by i ∈ I and θ−i ∈ Θ−i, satisfy the following two

properties.

• (compare with BM, p. 270) There is a (Y F
i (θ′−i))i∈I,θ′−i∈Θ−i

such that for each i ∈ I and

θ′−i ∈ Θ−i, Y
F
i (θ′−i) is a finite subset of the reward set Yi(θ

′
−i), and

∀i ∈ I, θi ∈ Θi, θ
′
−i ∈ Θ−i, ψi ∈ ∆(Θ−i) ∃y ∈ Y F

i (θ′−i) : Eψiui(y, θ) > Eψiui(ȳθ′−i , θ).

(6)

Proof: Let i ∈ I and θ′−i ∈ Θ−i. By the conditional NTI property, for every θi ∈

Θi and ψi ∈ ∆(Θ−i), there are y =
∑

αkyk,θ′−i ∈ Yi(θ
′
−i) and y′ =

∑

α′
kyk,θ′−i ∈

Yi(θ
′
−i) such that Eψiui(y, θ) > Eψiui(y

′, θ). For η > 0 small enough, ȳθ′−i + η(y −

y′) =
∑
(

1
m

+ η(αk − α′
k)
)

yk,θ′−i is in Yi(θ
′
−i). Moreover, Eψiui(ȳθ′−i + η(y − y′), θ) >

Eψiui(ȳθ′−i , θ). Thus ∀θi, ψi ∃y(θi, ψi) ∈ Yi(θ
′
−i) : Eψiui(y(θi, ψi), θ) > Eψiui(ȳθ′−i , θ).

Endow ∆(Θ−i) with the topology of weak convergence and recall that Θj is finite for

all j ∈ I . Then for each θi and ψi, there exists an open set Oψi ⊆ ∆(Θ−i) such that

ψi ∈ Oψi and such that Eψ′
i
ui(y(θi, ψi), θ) > Eψ′

i
ui(ȳθ′−i , θ) for all ψ′

i ∈ Oψi . Moreover,

∆(Θ−i) is compact, and there exists a finite subcover (Oψki
)mk=1 of the open cover (Oψi) of

∆(Θ−i). Now let Y F
i (θ′−i) = {y(θi, ψ

k
i ) : θi ∈ Θi, k ∈ {1, . . . ,m}}. If we define Y F

i (θ′−i)

in this way for all i and θ′−i, then (Y F
i (θ′−i))i∈I,θ′−i∈Θ−i

satisfies (6).

• There exists ε ∈ (0, 1) such that for all i ∈ I , θ ∈ Θ and y ∈ Y

ui
(

(1− ε)ȳθ−i + εy, θ
)

< ui(f(θ), θ). (7)

Proof: By the conditional NTI property, for every i, θ, there are y =
∑

αkyk,θ−i ∈ Yi(θ−i)

and y′ =
∑

α′
kyk,θ−i ∈ Yi(θ−i) such that ui(y, θ) > ui(y

′, θ). By definition of Yi(θ−i),

ui(yk,θ−i , θ) ≤ ui(f(θ), θ) for all k = 1, . . . ,m. Suppose that ui(yk,θ−i , θ) = ui(f(θ), θ)

for all k, then

ui(y, θ) =
∑

αkui(yk,θ−i , θ) = ui(f(θ), θ) =
∑

α′
kui(yk,θ−i , θ) = ui(y

′, θ).

Contradiction, hence ui(yk̄,θ−i , θ) < ui(f(θ), θ) for some k̄. Therefore, for all i ∈ I and

θ ∈ Θ, ui(ȳθ−i , θ) < ui(f(θ), θ). Since X is finite, for all i ∈ I and θ ∈ Θ, there exists
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εi(θ) ∈ (0, 1) such that for all y ∈ Y , ui
(

(1− εi(θ))ȳθ−i + εi(θ)y, θ
)

< ui(f(θ), θ). Since

Θ and I are finite, (7) follows.

D-refutable Deceptions. By an argument analogous to that made in the proof of (6), the

compactness in the topology of weak convergence of {ψi ∈ ∆(Θ−i) : ψi(β
−1
−i (θ

′
−i)) = 1} for

every deception β and every θ′−i ∈ Θ−i implies the following equivalence: A deception β is

d-refutable if and only if there exist i ∈ I , θi ∈ Θi and θ′i ∈ βi(θi) such that 1) there is a

robust (θ′i, θi)-preference reversal or 2) for all θ′−i ∈ Θ−i there is a finite subset Y F
i (θ′−i) of the

reward set Yi(θ
′
−i) such that for all ψi ∈ ∆(Θ−i) with ψi(β

−1
−i (θ

′
−i)) = 1,

∃x ∈ Y F
i (θ′−i) : Eψiui(x, θ) > Eψiui(f(θ

′), θ). (8)

For each d-refutable deception β let i = i(β) ∈ I , θi = θi(β) ∈ Θi and θ′i = θ′i(β) ∈ βi(θi)

be such that 1) or 2) are true. For every d-refutable β for which 2) holds, every θ′−i ∈ Θ−i

and every ψi ∈ ∆(Θ−i) such that ψi(β
−1
−i (θ

′
−i)) = 1 let x(β,θ

′
−i,ψi) ∈ Y F

i (θ′−i) be such that (8)

holds.

Finite Subsets of Reward Sets. For each i and a θ′−i, we defined a set Y F
i (θ′−i) that

satisfies (6). Moreover, for each d-refutable β, if i = i(β) and 2) holds for θ′−i, the previous

paragraph introduced another set Y F
i (θ′−i). For the remainder of the proof, Y F

i (θ′−i) will

denote the union of all these sets, which is still a finite set and satisfies both (8) for all

pertinent β and (6).

Robust Preference Reversals. For every (θ′i, θi) ∈ Θ2
i for which there is a robust (θ′i, θi)-

preference reversal, let ψ′
i = ψ′

i(θ
′
i, θi) ∈ ∆(Θ−i), y(θ

′
i, θi) ∈ Y supp(ψ′

i), p = p(θ′i, θi) ∈ N,

x1(θ′i, θi), . . . , x
p(θ′i, θi) ∈ Y supp(ψ′

i) be such that for all χi ∈ ∆(supp(ψ′
i)×Θ−i) there exists a

q ∈ {1, . . . , p} such that

Eχiui(x
q(θ′i, θi)(θ

′
−i), θ) > Eχiui(y(θ

′
i, θi)(θ

′
−i), θ)

and Eψ′
i
ui(x

q(θ′i, θi)(θ−i), θ
′
i, θ−i) ≤ Eψ′

i
ui(y(θ

′
i, θi)(θ−i), θ

′
i, θ−i). (9)

Similar to above, such p and x1(θ′i, θi), . . . , x
p(θ′i, θi) exist because ∆(supp(ψ′

i)×Θ−i) is com-

pact.

Given these preliminaries, we now construct a mechanism Γ = 〈A,H, (Hi)i∈I , P, C〉 which

we might describe as a “dynamically augmented” direct mechanism. For ease of reference, we

divide Γ into four stages. Figures 1 and 2 present a scheme equivalent to Γ.
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Stage I all i ∈ I simultaneously choose θI
i ∈ Θi

action profile θI is revealed to all i ∈ I

Stage II
all i ∈ I simultaneously choose zi ∈ {r} ∪ Y F

i (θI
−i)

(zi remains as private as possible until end of mechanism)

Stage III
∀i ∈ I : Ni(θ

I
i)

def

=
{

θi ∈ Θi : ∃ rob. (θI
i , θi)-pref. reversal

}

= {θ1i , . . . , θ
ni
i };

N (θI)
def

= {i ∈ I : Ni(θ
I
i) 6= ∅}

if N (θI) = ∅ if N (θI) 6= ∅

∀i ∈ N (θI), θi ∈ Ni(θ
I
i): let ψ′

i(θ
I
i , θi), y(θ

I
i , θi), p(θ

I
i , θi),

x1(θI
i , θi), . . . , x

p(θIi ,θi)(θI
i , θi) be such that

∀χi ∈ ∆(supp(ψ′
i(θ

I
i , θi))×Θ−i)∃q ≤ p(θI

i , θi) such that (9) holds

i
def

= minN (θI) i
def

= min(N (θI) ∩ {l|l > i})

if some l 6= i chose zl = r in Stage II if all l 6= i chose zl 6= r in Stage II

if i = maxN (θI) if i 6= maxN (θI)

j
def

= ji
def

= (i+ 1) mod I

substage i
m

def

= 1 j chooses between c and ¬c

if j chose cif j chose ¬c

i chooses (qmi ,K
m
i ) ∈ {1, 2, . . . , p(θI

i , θ
m
i )}×{{1}, {2, 3, . . .}}

(i’s choice remains private until end of mechanism)

−i chooses θm−i ∈ supp(ψ′
i(θ

I

i , θ
m
i )))

m
def

= m+ 1if m = ni + 1 if m ≤ ni

exit Substage i

continue on next page

Figure 1: Stages I, II and III of the mechanism of Proposition 3
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continued from previous page

• ∀i ∈ I , let
– hi equal ∅ if Substage i was not played, and
– hi be the sequence of Substage-i choices otherwise

• ∀i ∈ I , let m̃i(h
i) ∈ {0, . . . , ni} be the number of copies of action c that hi contains

Stage IV

all i ∈ I simultaneously choose

(k0i , ki) = (k0i , k
1
i , . . . , k

ni
i ) ∈ {1, 2, . . .} ×

(

m̃i(hi)
∏

m=1

Km
i

)

×
(

ni
∏

m=m̃i(hi)+1

{1, 2, . . .}
)

(where we “ignore” a product
∏k
m=l Am if l > k)

Outcome

∀i ∈ I : CII

i (θ
I, zi, k

0
i )

def

=

{

f(θI) if zi = r
1
k0i
ȳθI−i

+
(

1− 1
k0i

)

zi if zi ∈ Y F
i (θI

−i)

CII(θI, (zi), (k
0
i ))

def

=
1

I

∑

i∈I

CII

i (θ
I, zi, k

0
i )

let ε ∈ (0, 1) satisfy (7)

∀ i ∈ I : CIII

i (θI, hi, ki)

def

=















f(θI) if m̃i(h
i) = 0

(1− ε)ȳθI−ji
+ ε

m̃i(hi)

∑m̃i(hi)
l=1

(

1
kli
y(θI

i , θ
l
i)(θ

l
−i) if m̃i(h

i) ≥ 1 and
hi = (c, q1i ,K

1
i , θ

1
−i, c, q

2
i ,K

2
i , θ

2
−i, . . .)

[and where ∀l ≤ m̃i(h
i) : kli ∈ K l

i ]
+
(

1− 1
kli

)

xq
l
i(θI

i , θ
l
i)(θ

l
−i)
)

CIII(θ′, (hi), (ki))
def

=
1

I

∑

i∈I

CIII

i (θI, hi, ki)

outcome is
1
2C

II(θI, (zi), (k
0
i )) +

1
2C

III(θI, (hi), (ki))

Figure 2: Stage IV and outcome function of the mechanism of Proposition 3
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Stage I. In the first stage of Γ, each agent i announces one of her payoff types θI

i ∈ Θi,

strategically simultaneously with all other the agents.9 The set of first-stage “subhistories” is

HI = {h : h � θ for some θ ∈ Θ}. In the following paragraphs, we will also describe sub-

histories for the Stages II, III and IV; terminal histories in Γ will be concatenations of

“terminal subhistories.” Every agent i has exactly one first-stage information set, namely

HI
i = {(θ1, . . . , θi−1) ∈ HI} ∈ Hi.

10 Accordingly, if h = (θ1, . . . , θi−1) ∈ HI then P (h) = i.

(As defining the player function P for Stage II-IV histories is similarly trivial, we will omit P ’s

definition from now on.) All players observe the first-stage action profile θI before the second

stage commences.

Stage II. Given the first-stage action profile θI ∈ Θ, every agent i chooses a second-stage

message zi ∈ {r}∪Y Fi (θI
−i), strategically simultaneously with all other agents. Here, r stands

for “rational” (Step 1 of this proof will imply that r is the only rational choice for i among the

actions zi). Thus, we can write terminal second-stage subhistories that follow the terminal

first-stage subhistory θI as

(zi)i∈I ∈
∏

i∈I

(

{r} ∪ Y F
i (θI

−i)
)

.

Every player’s second-stage action remains as private as possible throughout the mechanism,

as page 24 will explain further. There, we will also define the agents’ second-stage information

sets.

Stage III. For all i ∈ I , let Ni(θ
I
i) be the set of θi ∈ Θi for which a robust (θI

i , θi)-

preference reversal exists (recall that we know that θi ∈ Ni(θ
I

i) if there is a d-refutable β

such that i = i(β), θi = θi(β) and θI
i = θ′i(β) for which 2) is false for (i, θi, θ

′
i)). Number the

elements of Ni(θ
I

i) in a random order and write Ni(θ
I

i) = {θ1i , . . . , θ
ni
i }, with the convention

that ni = 0 if Ni(θ
I
i) = ∅. Let N (θI) = {i ∈ I : Ni(θ

I
i) 6= ∅}.

Suppose that N (θI) 6= ∅. Then Stage III has up to #N (θI) “substages,” which we label by

the elements of N (θI). The first of these (potential) substages is substage i = minN (θI). It

is played if all j 6= i chose some zj ∈ Y F
j (θI

−j) in Stage II, and skipped if some j 6= i chose r

in Stage II. In either case, substage i is followed by (potential) substage i′ = minN (θI)\{i}.

Substage i′ is played if all j 6= i′ chose some zj ∈ Y F
j (θI

−j) in Stage II, and skipped otherwise.

In either case, substage i′ is followed by (potential) substage i′′ = minN (θI)\{i, i′}. And so

on.

Let us now describe substage i ∈ N (θI), assuming that it is played and not skipped.

Substage i starts with ji = (i + 1) mod I choosing between two actions c (for “continue”)

9This assumes that every agent has at least two payoff types. For each i ∈ I, if Θi is a singleton, then to
ensure that Γ satisfies the no trivial decision condition (see Definition 12 in Subsection 4.2) of a mechanism, i
does not take part in Stage I and obvious notational changes ensue.

10In this proof, we use concise notation for information sets. E.g., since in the context of defining HI

i the tuple
(θ1, . . . , θi−1) does not denote a specific profile of payoff types, {(θ1, . . . , θi−1) ∈ HI} denotes {(θ1, . . . , θi−1) ∈
HI : (θ1, . . . , θi−1) ∈

∏

j<iΘj}.
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and ¬c (for “not continue”).11 Action ¬c ends the substage, while if c is played then player i

chooses a (q1i ,K
1
i ) ∈ {1, 2, . . . , p(θI

i , θ
1
i )} × {{1}, {2, 3, . . .}}. To anticipate, in Stage IV, i will

pick a k1i ∈ {1, 2, 3, . . .} such that k1i ∈ K1
i . Thus, in Stage III, i essentially decides between

k1i = 1 and k1i ≥ 2, and in the latter case she will refine her choice in Stage IV. Following

i’s choice, “−i chooses a θ1−i ∈ supp(ψ′
i(θ

I

i , θ
1
i )):” first, l1 = min I\{i} chooses a θ1l1 ∈ Θl1

such that θ1l1 ∈ supp(margΘl1ψ
′
i(θ

I
i , θ

1
i )), then l2 = minI\{i, l1} chooses a θ1l2 ∈ Θl2 such

that (θ1l1 , θ
1
l2
) ∈ supp(margΘl1×Θl2

ψ′
i(θ

I

i , θ
1
i )), and so on, until all l 6= i have chosen.12 After

these choices, if #Ni(θ
′
i) = 1, the substage ends. If #Ni(θ

′
i) > 1, then a second round of

choices follows: player ji again chooses between two actions c and ¬c. Action ¬c ends the

substage, while if c is played then i chooses a (q2i ,K
2
i ) ∈ {1, 2, . . . , p(θI

i , θ
2
i )}×{{1}, {2, 3, . . .}},

followed by “−i choosing a θ2−i ∈ supp(ψ′
i(θ

I
i , θ

2
i )).” If #Ni(θ

′
i) = 2 the substage ends while if

#Ni(θ
′
i) > 2, a further round of choices ensues. And so on. If ji does not end the substage by

playing ¬c before, the substage ends after i chooses (qnii ,K
ni
i ) and “−i chooses θni−i.”

Suppose that the terminal first- and second-stage subhistories are θI and (zi), respectively.

Let us write terminal third-stage subhistories histories as hIII = (hi), where we subdivide

hIII into terminal Substage i subhistories hi, and let (hi) denote the concatenation of these

substage subhistories. Here, let hi = ∅ if there is no Substage i given θI because i /∈ N (θI)

or if i ∈ N (θI) but Substage i was skipped because some j 6= i played zj = r in Stage II.

Let m̃i(h
i) ∈ {0, . . . , ni} denote the number of copies of action c that hi contains. That is,

m̃i(h
i) = 0 if hi ∈ {∅, (¬c)}, m̃i(h

i) = m̃ if

hi ∈
∏

m≤m̃

(

{c} × {1, . . . , p(θI

i , θ
m
i )} × {{1}, {2, 3, . . .}} × supp(ψ′

i(θ
I

i , θ
m
i ))
)

× {¬c},

and m̃i(h
i) = ni if hi is a (4ni)-tuple (c, q1i ,K

1
i , θ

1
−i, . . . , c, q

ni
i ,K

ni
i , θ

ni
−i).

Stage IV. As a final choice, given the history of play (θI, (zi), (h
i)) from the previous

three stages, each agent i chooses a pair (k0i , ki) consisting of a number k0i and a tuple ki,

strategically simultaneously with all other agents. More precisely, agent i chooses

(k0i , ki) = (k0i , k
1
i , . . . , k

ni
i ) ∈ {1, 2, . . .} ×

(

m̃i(h
i)

∏

m=1

Km
i

)

×
(

ni
∏

m=m̃i(hi)+1

{1, 2, . . .}
)

,

where ni = 0 (which implies hi = ∅ and thus m̃i(h
i) = 0) is understood to imply that i only

chooses k0i , m̃i(h
i) = 0 and ni > 0 that (k0i , ki) ∈ {1, 2, . . .}ni+1, and m̃i(h

i) = ni > 0 that

(k0i , ki) ∈ {1, 2, . . .} ×
(

∏ni
m=1K

m
i

)

.

11It works equally well to let ji be any other player different from i.
12To ensure that Γ satisfies the no trivial decision condition, for every l 6= i, if there is only one θ1l ∈ Θl

such that (θ1j )j≤l,j 6=i ∈ supp(marg(Θj)j≤l,j 6=i
ψ′
i(θ

′
i, θ

1
i )), then we skip l. That is, immediately after l−1 chooses

θ1l−1, l + 1 chooses θ1l+1. In this case, θ1l simply denotes the mentioned unique payoff type of l.
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To sum up, the set of histories H of Γ consists of terminal histories (θI, (zi), (h
i), (k0i , ki))

and their initial subhistories, where we let the set of actions A be the union of all actions

described in Stages I-IV. About every choice of every player in the second and third stage, as

little as possible is revealed to the other players. E.g., while j may realize in Stage III that

i chose some zi 6= r in Stage II (player j can infer this if j observes that some third-stage

Substage l 6= i is played), j will not learn before the end of the mechanism which zi ∈ Y F
i (θI

−i)

agent i chose. As a second example, all Substage i choices of agent i in Stage III remain

private until the end of the mechanism. The set of i’s second-stage information sets is

HII

i =
⋃

θ′∈Θ

{

{(θ′, (zj)j<i) ∈ H}
}

We refrain from formally defining the set HIII,i
i of i’s third-stage Substage-i information sets,

the set HIII,−i
i of i’s other third-stage information sets and the set HIV

i of i’s fourth-stage

information sets.

To define the outcome function C of Γ, define CII(θI, (zi), (k
0
i )) and CIII(θI, (hi), (ki)) as

in Figure 2, and then let

C(θI, (zi), (h
i), (k0i , ki)) =

1

2
CII(θI, (zi), (k

0
i )) +

1

2
CIII(θI, (hi), (ki)).

13

The set of actions A, the set of histories H, the set of i’s information sets Hi = {HI

i} ∪ HII

i ∪

HIII,i
i ∪HIII,−i

i ∪HIV
i for each i ∈ I , the outcome function C, and the (obvious) player function

P fully describe the mechanism Γ. In Γ every agent has only finitely many information sets

and at most countably many actions available at each information set. Hence both A and Si

for all i are countable sets and Γ is a countable mechanism (as defined in Subsection 2.2). We

now prove that Γ wr-implements f .

Step 1. If (si, θi) ∈W 1
i , θI ∈ Θ and HII = {(θI, (zj)j<i) ∈ H} ∈ Hi(si), then si(H

II) = r.

Proof: If HII = {(θI, (zj)j<i) ∈ H} is a second-stage information set in Hi(si) then

si(H
I
1) = θI

i and i’s available actions at HII are r and every zi ∈ Y F
i (θI

−i). Suppose that

si(H
II) = zi ∈ Y Fi (θI

−i). Let µi be a CPS with respect to which si is sequentially rational

for θi. Then for all H ∈ Hi(si), si maximizes Uµii (·, θi,H). In particular, Uµii (si, θi,H
II) ≥

Uµii (s′i, θi,H
II) for all s′i ∈ Si(H

II), that is, si is optimal in the case that −i announces θI
−i in

the first stage.

Recall that if h =
(

θI,
(

zi, (zj)j 6=i
)

, (hl)l∈I , (k
0
l , kl)l∈I

)

ends up being the terminal history

13The definition of C implies that every agent i’s fourth-stage choice k0i is irrelevant (in that it does not
influence Γ’s outcome) if i chose zi = r in Stage II. Similarly, the choice of kmi , m ≥ 1, is irrelevant if third-stage
Substage i was not played, if Km

i = {1} or if ji ended Substage i by playing ¬c before i could choose Km
i . For

notational simplicity, we nonetheless let i choose the entire tuple (k0i , ki) in these cases.

24



(where (zj)j 6=i, (h
l)l∈I and (k0l , kl)l∈I are such that h ∈ H), then the outcome of Γ is

C(h) =
1

2I

[ 1

k0i
ȳθI−i

+
(

1−
1

k0i

)

zi +
∑

j 6=i

CII

j (θ
I, zj , k

0
j )
]

+
1

2
CIII(θI, (hl), (kl)).

Every strategy s′i that prescribes some element of Y F
i (θI

−i) (potentially different from zi) at

HII and some actions in Stage IV (potentially different from the fourth-stage actions of si)

but otherwise equals si is in Si(H
II). Moreover, for every j 6= i, every such s′i admits the

same information sets H ∈ Hj as si, as no j 6= i can observe or deduce before the end of the

mechanism which element i chooses from Y F
i (θI

−i) in Stage II, and all agents’ Stage IV choices

are simultaneous. Thus, the third-stage subhistory expected by i at HII is the same whether

she plays si or some such s′i. In fact, the only effect that playing some such s′i instead of si

has on the outcome of Γ is on the term 1
2I

[

1
k0i
ȳθI−i

+
(

1− 1
k0i

)

zi

]

.

Since by (6)

EmargΘ−i
µi(·|HII)ui(y, θ) > EmargΘ−i

µi(·|HII)ui(ȳθI−i
, θ) for some y ∈ Y F

i (θI

−i),

the optimality of si at HII implies that EmargΘ−i
µi(·|HII)ui(zi, θ) > EmargΘ−i

µi(·|HII)ui(ȳθI−i
, θ)

and that k0i > 1 for at least some fourth-stage information set that, given µi(·|H
II), i expects

will be reached with strictly positive probability. Let HIV ∈ HIV
i (si) be one such information

set, and suppose si(H
IV) = (k0i , ki). Then the strategy s′i that prescribes (k0i + 1, ki) at HIV

but otherwise equals si promises a higher expected utility to θi at HII than si. Contradiction.

Step 2. If (si, θi) ∈W 1
i and si(H

I

i) = θI

i, then θi /∈ Ni(θ
I

i).

Proof: Suppose that (si, θi) ∈ W 1
i and si(H

I
i) = θI

i , but that there exists an m such that

θi = θmi ∈ Ni(θ
I

i) = {θ1i , . . . , θ
ni
i }. Fix an arbitrary θI

−i ∈ Θ−i. Since i ∈ N (θI), there is

a third-stage Substage i which is admitted by the first-stage announcements θI and by i’s

second-stage choice (which by Step 1 is) si({(θ
I, (zj)j<i) ∈ H}) = r, and which is triggered if

all l 6= i fail to play r in the second stage. Let HIII ∈ HIII,i
i (si) be i’s m-th information set of

this Substage i. Since (si, θ
m
i ) ∈ W 1

i , there is a CPS µi ∈ ∆H̄i(Σ−i) that rationalizes si for

θmi , that is, such that (si, θ
m
i ) ∈ ρi(µi). Define χi ∈ ∆(supp(ψ′

i(θ
I
i , θ

m
i ))×Θ−i) by

χi(θ
′
−i, θ−i) =

∑

s−i∈S−i: ∀j 6= i, sj prescribes θ′j at j’s first infor-

mation set following i’s choice at HIII

µi((s−i, θ−i)|H
III)

for all (θ′−i, θ−i) ∈ supp(ψ′
i(θ

I

i , θ
m
i ))×Θ−i. Recall that i’s choice at HIII cannot be observed by

any j 6= i and thus cannot influence any (j 6= i)’s future actions. Since there is a robust (θI
i , θ

m
i )-

preference reversal, there exists a q ∈ {1, . . . , p(θI

i , θ
m
i )} such that (9) (with (θ′i, θi) = (θI

i , θ
m
i ))

holds for χi. Since (si, θ
m
i ) ∈ ρi(µi), action si(H

III) = (qmi ,K
m
i ) ∈ {1, . . . , p(θI

i , θ
m
i )} ×
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{{1}, {2, 3, . . .}} must thus satisfy Eχiui(x
qmi (θI

i , θ
m
i )(θ′−i), θ) > Eχiui(y(θ

I

i , θ
m
i )(θ′−i), θ) and

Km
i = {2, 3, . . .}, or equivalently, Uµii (si, θi,H

III) > Uµii (s′i, θi,H
III) for all s′i ∈ Si(H

III) such

that s′i equals si except that s′i(H
III) ∈ {1, . . . , p(θI

i , θ
m
i )} × {{1}}. Let HIV be some fourth-

stage information set that, given µi(·|H
III), i expects to reach with strictly positive probability

and say that at this information set, si prescribes si(H
IV) = (k0i , k

1
i , . . . , k

ni
i ). Then i prefers

to play s′i rather than si at HIII, where s′i equals si except that

s′i(H
IV) = (k0i , k

1
i , . . . , k

m−1
i , kmi + 1, km+1

i , . . . , knii ).

Contradiction.

Step 3. For all i ∈ I and θi ∈ Θi, let

Si(θi) =
{

si ∈ Si : si(H
I

i) = θi,

si(H
II) = r for all HII ∈ HII

i (si) and

si(H
III) ∈ N× {{1}} for all HIII ∈ HIII,i

i (si)
}

.

Then si ∈ Si(θi) implies (si, θi) ∈W∞
i .

Proof: For all θ−i ∈ Θ−i, let S−i(θ−i) =
∏

j 6=i Sj(θj). Let θ̄i ∈ Θi and s̄i ∈ Si(θ̄i) and let

µi be a CPS such that

• for all H ∈ H̄i({s̄i}×
⋃

θ−i∈Θ−i
S−i(θ−i)) (that is, for {∅}, HI

i, all H ∈ HII

i (s̄i) and all H ∈

HIV
i (s̄i) that immediately follow a Stage II information set because no Stage III substage

was played), there are θH−i ∈ Θ−i and sH−i ∈ S−i(θ
H
−i) such that µi((s

H
−i, θ

H
−i)|H) = 1, and

• for all HIII ∈ HIII,i
i (s̄i) and all m ∈ N, if HIII is i’s m-th substage i information set that

follows the first-stage announcements θI ∈ Θ such that θI

i = θ̄i, and if θmi is the m-th

element of Ni(θ̄i), then margΘ−iµi(·|H
III) = ψ′

i(θ̄i, θ
m
i ) and, for all (s−i, θ−i) ∈ Σ−i,

µi((s−i, θ−i)|H
III) > 0 implies that for each j 6= i, 1) sj prescribes θj (“truth-telling”)

at j’s information set that “immediately follows” HIII and 2) if m < ni and j = (i + 1)

mod I then sj prescribes ¬c the next time in Substage i that j decides between c and

¬c.

Note that we can construct such a CPS µi by starting from the “root” of the mechanism and

working our way to the “leaves.” We start by letting µi(·|{∅}) = δ(s
{∅}
−i , θ

{∅}
−i ) for some θ

{∅}
−i and

some s
{∅}
−i ∈ S−i(θ

{∅}
−i ). By Bayesian updating, this pins down µi(·|H) as µi(·|H) = δ(s

{∅}
−i , θ

{∅}
−i ),

for all H ∈ Hi(s
{∅}
−i ). Next, we consider all information sets H′ for which we have not defined

µi(·|H
′) yet and that are an immediate successor to an information set H for which we already

defined µi(·|H). Every such H′ is a surprise, and we can simply let µi(·|H
′) equal some

probability measure that satisfies every of the two bullet points listed above (at most one of
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which applies to H′). Bayesian updating pins down µi(·|H
′′) at every H′′ that is reached with

positive probability according to µi(·|H
′). Finally, we iterate the described procedure by next

defining µi(·|H
′′′) for every H′′′ for which µi(·|H

′′′) is yet undefined and such that H′′′ is an

immediate successor to an information set H for which we already defined µi(·|H), and so on.

We claim that s̄i ∈ ri(θ̄i, µi).

To see this, consider H ∈ Hi({s̄i} ×
⋃

θ−i∈Θ−i
S−i(θ−i)). We have

Uµii (s̄i, θ̄i,H) = ui(f(θ̄i, θ
H
−i), θ̄i, θ

H
−i) ≥ Uµii (si, θ̄i,H)

for every si ∈ Si(H), as

ζ(si, s
H
−i) ∈

{

(1− α− β)f(θI

i , θ
H
−i) + α

(

1

k0i
ȳθH−i

+

(

1−
1

k0i

)

zi

)

+ β

(

(1− ε)ȳθH−i
+ ε

nj
∑

l=1

q(l)y(θHj , θ
l
j)(θ

l
i)

)

:

I = 2 ⇒ (α, β) ∈
{

(0, 0),
(

1
4 , 0
)

,
(

1
4 ,

1
4

)}

, I > 2 ⇒ (α, β) ∈
{

(0, 0),
(

1
2I , 0

)}

,

θI

i ∈ Θi, zi ∈ Y
F
i (θH−i), k

0
i ≥ 1, i = (j + 1) mod I,∀l : θli ∈ supp(ψ′

j(θ
H
j , θ

l
j)),

nj = #Nj(θ
H
j ) = #{θ1j , . . . , θ

nj
j },

nj
∑

l=1

q(l) = 1,∀l : q(l) ≥ 0

}

and θ̄i prefers f(θ̄i, θ
H
−i) over f(θI

i, θ
H
−i) (the social choice function f is epIC) and over every

element of Yi(θ
H
−i) (by construction of the reward set), and because ε satisfies (7).

In order to establish that s̄i is sequentially rational for θ̄i given µi, we need to verify that s̄i

is optimal at every information set H admitted by s̄i, even if H is not admitted by sequentially

rational play of −i. Therefore, also consider the third-stage Substage-i information sets that

i may encounter if she follows s̄i. Let θ ∈ Θ denote some first-stage announcements such

that θi = θ̄i, and say that HIII ∈ HIII,i
i (s̄i) is the m-th information set that i encounters in

the Substage i that follows θ. Let θmi denote the m-th element of Ni(θ̄i). By definition of

µi, 1) margΘ−iµi(·|H
III) = ψ′

i(θ̄i, θ
m
i ) and i believes 2) that −i will truthfully announce their

payoff types immediately following HIII (independently of i’s choice at HIII) and 3) that ji

will end Substage i at the next opportunity, unless m = ni and Substage i ends anyway after

−i’s payoff type announcements. Moreover, 4) i’s action si(H
III) remains private until the

end of the mechanism, and hence i cannot believe that her choice of si(H
III) influences −i’s

remaining choices (this matters because i knows that Substage i is played and thus that for

all l 6= i, agent l’s choice of k0l in Stage IV will affect the mechanism’s outcome). Thus by (9),

si(H
III) ∈ {1, . . . , p(θ̄i, θ

m
i )} × {{1}} is optimal at HIII by construction.

Every HIII ∈ HIII,−i
i , that is, every third-stage information set from one of the Substages
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j 6= i, is not admitted by s̄i because if i plays r in Stage II then all Substages j 6= i will be

skipped. Hence we do not need to check optimality at any HIII ∈ HIII,−i
i . At every fourth-stage

information set HIV admitted by s̄i, all available actions lead to the same outcome because

s̄i prescribed r in Stage II (which makes the choice of k0i irrelevant) and Km
i = {1} at every

Substage i information set of i (which forces the choice kmi = 1 in all cases in which kmi enters

the outcome function). Hence the optimality of s̄i at HIV is trivial.

Because s̄i ∈ ri(θ̄i, µi) we have s̄i ∈ Q1
i (θ̄i). By a symmetric argument,

⋃

θ−i∈Θ−i
(S−i(θ−i)×

{θ−i}) ⊆ W 1
−i. Hence µi ∈ Π1

i and s̄i ∈ Q2
i (θ̄i). And so on. By transfinite induction,

s̄i ∈ Q∞
i (θ̄i).

Step 4. If si ∈ Q∞
i (θi) and si(H

1
i ) = θI

i , then f(θi, θ−i) = f(θI
i, θ−i) for all θ−i ∈ Θ−i.

Proof: To see this, consider the deception β such that for all i ∈ I and all θi ∈ Θi,

βi(θi) = {θI

i ∈ Θi : ∃si ∈ Q∞
i (θi), si(H

I

i) = θI

i}

(Step 3 ensures that θi ∈ βi(θi) for all i and θi, and thus that β is indeed a deception.) If

β is acceptable then Step 4’s claim is true. Suppose by contradiction that β is unacceptable.

Then by the hypothesis that f is dr-monotone, β is d-refutable. Let i = i(β), θi = θi(β)

and θI
i = θ′i(β) ∈ βi(θi). Since by the definition of β, there exists a si ∈ Q∞

i (θi) ⊆ Q1
i (θi)

such that si(H
1
i ) = θI

i , by Step 2, there is no robust (θI

i , θi)-preference reversal. Therefore, the

d-refutability of β implies that for each θ′−i ∈ Θ−i there is a finite subset Y F
i (θ′−i) of Yi(θ

′
−i)

such that for all ψi ∈ ∆(Θ−i) with ψi(β
−1
−i (θ

′
−i)) = 1, (8) holds.

Let si ∈ Q∞
i (θi) be such that si(H

I
i) = θI

i and µi ∈ Π∞
i be such that si is a sequential best

response for θi against µi.
14 Choose a θI

−i ∈ Θ−i such that µi(S̄−i(θ
I

−i)×Θ−i|H
I

i) > 0, where

S̄−i(θ
I

−i) =
{

s−i ∈ S−i : sj(H
I

j) = θI

j for all j 6= i
}

.

14Such a µi exists because our definition by transfinite recursion of W∞ implies that W∞
i = ρi(Π

∞
i ) for all

i ∈ I (see proof of Lemma 3 in Appendix B). If we had defined weak rationalizability as Wω0 , the existence
of such a µi would not be immediate (because in some mechanisms Wω0

i 6= ρi(
⋂

n∈N
Πni ) for some i ∈ I; e.g.,

in the mechanism of Example A.1 in Appendix A,

{−1, 0} ×Θi =Wω0

i 6= ρi(
⋂

n∈N

Πni ) = ρi(∆({−1, 0})) = {−1} ×Θi

for all i ∈ I), but would still follow because in the mechanism Γ of the proof of Proposition 3, the iterated
elimination of never-best sequential best responses converges in finitely many rounds. To see that there exists
a k ∈ N such that W k′ = Wω0 = W∞ for all k′ ≥ k, recall that the only information sets with more than
finitely many actions are the Stage IV information sets. By Step 1, if all players are sequentially rational, then
all players choose r in Stage II (implying e.g. that all Substages i will be skipped). At every information set
admitted by W 1 and with respect to every µi ∈ Π1

i , this renders i indifferent between all Stage IV actions.
Therefore, after one round of elimination, only finitely many relevant “equivalence classes” of strategies remain.
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For every θ−i ∈ Θ−i, let

ψi(θ−i) =
µi(S̄−i(θ

I
−i)× {θ−i}|H

I
i)

µi(S̄−i(θ
I

−i)×Θ−i|HI

i)
.

Then ψi(β
−1
−i (θ

I
−i)) = 1. Consider i’s information set HII = {(θI, (zj)j<i) ∈ H}. Note that

ψi = margΘ−iµi(·|H
II). By (8) for θI

−i and ψi

Eψiui(x
(β,θI−i,ψi), θi, θ−i) > Eψiui(f(θ

I), θi, θ−i),

and there is a strategy s′i ∈ Si(H
II) which provides θi with a strictly higher expected utility at

HII than si (which by Step 1 prescribes r at HII): the choice of θI
−i guarantees that µi(·|H

II) is

a Bayesian update of µi(·|H
I) = µi(·|{∅}). Hence if I ≥ 3, at HII, agent i expects all j 6= i to

play r in Stage II and thus that Stage III will be skipped no matter which action she chooses

at HII. Hence if I ≥ 3, it suffices to let s′i prescribe x(β,θ
I
−i,ψi) at HII and k0i in Stage IV for

k0i large enough. If I = 2, agent i expects that playing x(β,θ
I
−i,ψi) triggers Stage III Substage

j 6= i, and we additionally require that s′i specifies to end Substage j 6= i immediately by

choosing ¬c at the first opportunity. Contradiction to si being sequentially rational for θi

with respect to µi.

Step 5. By Steps 1 and 4, for every (s, θ) ∈ Σ, if s is weakly rationalizable for θ then

C(ζ(s)) = f(θ). The proof of Step 3 implies that for all i ∈ I and θi ∈ Θi, ∅ 6= Si(θi) ⊆ Q∞
i (θi),

and that for all i ∈ I , θ ∈ Θ and s−i ∈ S−i(θ−i), there exist si ∈ Si(θi) and µi ∈ ∆H̄i(Σ−i)

such that µi((s−i, θ−i)|{∅}) = 1 and si ∈ ri(θi, µi). Hence Γ wr-implements f . �

This completes the proof of Proposition 3. Note that, as mentioned in Footnote 14, the

iterated elimination of never-best sequential best responses converges in finitely many rounds.

4 WR-Implementation and Robust wPBE-Implementation

In this section we provide a foundation for wr-implementation by proving its equivalence to

robust wPBE-implementation. In broad terms, we thus demonstrate that a well-known mo-

tivation from the static case extends to dynamic mechanisms: BM show that rationalizable

implementation by static mechanisms (as defined by BM) is almost equivalent to and thus mo-

tivated by robust wPBE-implementation by static mechanisms. Our equivalence analogously

motivates our interest in wr-implementation. A more detailed look reveals that our result

does strictly speaking not generalize BM’s. This is because the notion of wr-implementation

by static mechanisms slightly differs from rationalizable implementation and is exactly equiv-

alent to robust wPBE-implementation by static mechanisms (see Subsection 4.4). Our result

thus improves upon BM’s while extending it to dynamic mechanisms.
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Viewed differently, this section provides an implementation theory counterpart to the game

theoretic result that for every payoff type, the union of weakly perfect Bayesian equilibrium

strategies across all type spaces corresponds to the set of weakly rationalizable strategies (Bat-

tigalli, 1999; see also Battigalli and Siniscalchi, 2003).15 Deriving our result requires additional

work essentially because A) to achieve implementation, we need to guarantee that the set of

wPBE is non-empty for all type spaces, an aspect that the game theoretic equivalence is

silent about, and B) while the game-theoretic result has been established for “simple” dynamic

games, we state our result for a general class of mechanisms that includes mechanisms that

are not “simple.”

4.1 An Equivalence Result for Countable Mechanisms

We define robustness in the spirit of the belief-free implementation literature and require

implementation across all type spaces. A type space consists of, for each agent i, a set Ti

of (epistemic) types, a function θ̂i that associates with each type ti a payoff type θi and a

function τi that associates with each type ti a belief on T−i (and thus implicitly, also on Θ−i).

Each type space represents a “situation” in which the mechanism may be played, describing

the beliefs that every payoff type of every agent may hold at the beginning of the mechanism.

Definition 9 A type space is a tuple T = (Ti, θ̂i, τi)i∈I such that for every i ∈ I, Ti is a non-

empty topological space of player i’s types, θ̂i : Ti → Θi is measurable and τi : Ti → ∆(T−i).
16,17

We follow Battigalli (1999) in defining weak perfect Bayesian equilibrium (save for the

measurability assumption discussed in Footnote 17).

15 Similar game theoretic results have been put forward for various solution concepts. E.g., Brandenburger
and Dekel (1987) relate a posteriori equilibrium and rationalizability in finite games of complete information;
Battigalli and Siniscalchi (2003) relate Bayesian equilibrium consistent with a set of first-order beliefs ∆ and
∆-rationalizability in finite games of incomplete information; BM relate interim equilibrium and belief-free
rationalizability in countable games of incomplete information; Penta (2015) relates interim perfect equilibrium
to (belief-free) backwards rationalizability in compact multi-stage games of incomplete information.

16 With minor modifications to the proofs, all results of Section 4 are also true for the following alternative
definition. A type space is a tuple T = (Ti, θ̂i, τi)i∈I such that for every i ∈ I, Ti is a non-empty measurable
space of player i’s types, θ̂i : Ti → Θi is measurable and τi : Ti → ∆(T−i), where we endow T−i with the
product σ-algebra. In this case we endow Σ−i with the product σ-algebra B′

−i of the Borel σ-algebras on Sj ,
j 6= i, and Θj , j 6= i, instead of the Borel σ-algebra B−i of the product topology on Σ−i as we do outside of
this footnote. Since B′

−i = B−i (in fact, B′
−i = B−i = 2Σ−i) for every countable mechanism this change of the

σ-algebra on Σ−i is meaningless as long as we focus on countable mechanisms. However, this change becomes
relevant in Subsection 4.2 as B′

−i 6= B−i for some general mechanisms. (In general, B′
−i ⊆ B−i. But B′

−i = B−i

if I = 2 or if Sj is a second-countable topological space for all j 6= i. If I = 2, this follows from the proof of
Bogachev (2007, Lemma 6.4.2.(i)), who demonstrates that B−i equals the product σ-algebra B′′

−i of the Borel
σ-algebra on S−i with respect to the product topology on S−i and the Borel σ-algebra 2Θ−i on Θ−i, and if Sj
is second-countable for all j 6= i, by a related, standard argument.)

17As we will not explicitly construct belief hierarchies, we will not require measurability of τi or even introduce
a σ-algebra on ∆(T−i) in our definition of a type space. Similarly, we will not require the belief maps gi to
be measurable in the upcoming definition of wPBE. (These omissions are irrelevant in countable type spaces,
even if one is interested in explicitly constructing belief hierarchies.)
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Definition 10 Let Γ be a countable mechanism and T be a type space. An array (bi, gi)i∈I of

measurable functions bi : Ti → Si and functions gi : Ti → ∆H̄i(Σ−i) is a weak perfect Bayesian

equilibrium (wPBE) of Γ for T if for all i ∈ I and ti ∈ Ti,

• (sequential rationality) bi(ti) ∈ ri(θ̂i(ti), gi(ti)) and

• (consistency) for all B−i ⊆ Σ−i,

gi(ti)(B−i|{∅}) = τi(ti){t−i ∈ T−i : (b−i(t−i), θ̂−i(t−i)) ∈ B−i}.

While the definition of weak rationalizability (Definition 3) did not involve a type space,

we defined wPBE with respect to a particular type space. That is, weak rationalizability is

“explicitly belief-free,” while wPBE depends on a description of the agents’ belief hierarchies

possible in the environment, as captured by the type space. A class of type spaces often used

in applied models consists of “payoff type spaces” in which Ti = Θi, θ̂i is the identity function

and τi(θi) = p(·|θi) for some common prior p ∈ ∆(Θ). Other type spaces include belief

hierarchies that are not necessarily derived from a a common prior. As common in the robust

implementation literature, we reconcile the approach of describing beliefs via a type space

with the explicitly belief-free approach by rendering the former approach implicitly belief-free

by requiring implementation for all type spaces.

Definition 11 Mechanism Γ robustly wPBE-implements social choice function f if for every

type space T = (Ti, θ̂i, τi)i∈I , 1) there exists a wPBE and 2) for every wPBE (bi, gi)i∈I and

every t ∈ T , C(ζ(b(t))) = f(θ̂(t)).

The following Corollary 1 states the characterization result of this section for countable

mechanisms (such as the mechanism employed in our sufficiency result, Proposition 3). Corol-

lary 1 will immediately follow from the more general Theorem 2 of Subsection 4.3.

Corollary 1 Let Γ be a countable mechanism and f be a social choice function. Then Γ

wr-implements f if and only if Γ robustly wPBE-implements f .

Corollary 1 says that if a designer finds a countable mechanism Γ that wr-implements a

desired social choice function, then the same mechanism also robustly wPBE-implements the

social choice function, and vice versa. Obtaining such a mechanism by mechanism equiva-

lence is stronger than obtaining the equality of the corresponding sets of implementable social

choice functions. It is of potential importance for example if Γ satisfies additional desiderata

beyond robustness, as it excludes the possibility that Γ wr-implements f but only a different

mechanism Γ′ (which may violate the additional desiderata) robustly wPBE-implements f .
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4.2 General Definitions of Mechanisms and Related Concepts

Let us now formally define the type of mechanisms to which we will generalize Corollary 1

to in Subsection 4.3. With respect to wr-implementation, note that the proofs collected in

Appendix B imply that permitting these type of mechanisms (instead of only focusing on

countable mechanisms) does not weaken the necessary conditions.

Definition 12 A mechanism is a tuple Γ = 〈A,H, (Hi)i∈I , P, C〉 such that

• A is a T1 topological space. We call elements of A actions.18

• H is a nonempty set of sequences19 with codomain A such that

– with h every initial subsequence of h is in H and

– if every initial subsequence of a countably infinite sequence h is in H, then h ∈ H.

We call H the set of histories. For every finite h ∈ H, we let A(h) = {a ∈ A : (h, a) ∈ H}

denote the set of actions available at h and endow it with the relative topology. We

let T = {h ∈ H : h is countably infinite or (h is finite and A(h) = ∅)} be the set of

terminal histories and call ∅ ∈ H the initial history. We write h′ � h if h′ ∈ H is an

initial subsequence of h ∈ H.

• P : H\T → I is a surjection. We call P the player function.

• for each i ∈ I, Hi is a partition of {h ∈ H\T : P (h) = i} such that

– for all H ∈ Hi and all h, h′ ∈ H, A(h) = A(h′). Because of this property, we can

write A(H) for A(h) for every h ∈ H.

– for all H ∈ Hi and all h, h′ ∈ H, if h ∈ H, h′ � h and h′ 6= h then h′ /∈ H.

We call Si = {si ∈ AHi : ∀H ∈ Hi (si(H) ∈ A(H))} the set of strategies of i. The sets

Si(H) for i ∈ I and H ∈
⋃

j∈I Hj and H((sj)j∈J ) for J ⊆ I and (sj)j∈J ∈
∏

j∈J Sj

etc. are defined as in Subsection 2.2. For every strategy profile s ∈ S, we let ζ(s) denote

the terminal history induced by s.

We define a binary relation � on Hi by writing H′ � H if there are h′ ∈ H′ and h ∈ H

18Even if A is countable, the assumption of T1 suffices for all of our results. That is, even though at the
beginning of Section 2, for simplicity of exposition, we endowed every countable set with its discrete topology,
all of our results continue to hold if we endow countable action sets A with T1 topologies that are not discrete.

19A sequence is finite or countably infinite. A finite sequence h of length n ∈ N with codomain A is a function
h : {1, . . . , n} → A. A countably infinite sequence h with codomain A is a function h : {1, 2, . . .} → A; its
length is ∞. A finite sequence g : {1, . . . , k} → A is an initial subsequence of a sequence h if the length of h is
at least k and g(l) = h(l) for all l ∈ {1, . . . , k}. Note that ∅ (the unique finite sequence mapping {1, . . . , 0} = ∅
to A) is an initial subsequence of every sequence with codomain A. For h : {1, . . . , n} → A and a ∈ A, (h, a)
denotes the finite sequence that maps {1, . . . , n+ 1} to A, has h as an initial subsequence and maps n+1 to a.
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such that h′ � h, and extend this relation to H̄i = Hi ∪ {{∅}} (if necessary) by letting

{∅} � H for all H ∈ H̄i.

• C : T → Y . We call C the outcome function.

• (perfect recall) for all i ∈ I, si ∈ Si and H ∈ Hi, if H ∩H(si) 6= ∅ then H ⊆ H(si).

• (no trivial decisions) for all (h, a) ∈ H with h finite there exists an action a′ 6= a such

that (h, a′) ∈ H.

• (measurability) for all i ∈ I and si ∈ Si, the function C(ζ(si, ·)) : S−i → Y, s−i 7→

C(ζ(s)) is measurable.20

The first five bullet points of Definition 12 imply that a mechanism is an extensive game

form (see e.g. Osborne and Rubinstein (1994) for a definition of extensive game forms using the

“history notation” we adapted here). Not every extensive game form is a mechanism, though.

Definition 12 stipulates some mild extra conditions for an extensive game form to be called a

mechanism. These have mostly technical motivations: We require the set A of actions to be

a T1 topological space to ensure that singletons {(s−i, θ−i)} comprised of one strategy-payoff

type profile are measurable subsets of Σ−i. The requirement that the player function P is

surjective simplifies notation.21 The well-known conditions of perfect recall and no trivial

decisions ensure that our description of players as Bayesian agents (made in Subsection 2.3) is

sensible. And the measurability condition (which we use in the proof of Proposition 1) ensures

that the agents’ expectations are well-behaved in infinite mechanisms.

The class of (dynamic) mechanisms contains and is strictly larger than the class of static

mechanisms. A mechanism is static if we can identify T with S and if each agent has exactly

one information set. If Hi denotes i’s single information set in a static mechanism Γ, then we

can identify Si with A(Hi), T with
∏

iAi(Hi), and for each s ∈ S, ζ(s) with s. Assuming

that A =
⋃

i∈I A(Hi) and that the topology on A is obvious, a static mechanism Γ is entirely

specified by (Si)i∈I and C.

A mechanism is countable if A is countable and endowed with the discrete topology and Si

is countable for all i ∈ I . Note that due to the no trivial decisions condition, the countability of

Si for all i implies that all histories of a countable mechanism are finite. That is, all countable

mechanisms are of finite length.

We adopt the following, usual notational convention.

20Recall that as the product of the sets A(H) for H ∈ Hj , Sj is endowed with the product topology. The set
S−i, in turn, is endowed with the product of the topologies on the sets Sj , j 6= i, and the corresponding Borel
σ-algebra.

21P being surjective rules out the case that there is an “inactive” player i /∈ P (H\T ). This is not a substantive
restriction as Definition 12 permits that i is “de facto inactive” in that none of her actions influence the outcome
of the mechanism. Ruling out inactive players simplifies notation as it guarantees that every i has CPSs on
(Σ−i, H̄i) rather than ((

∏

j∈J ,j 6=i Sj ×Θj)× (
∏

j/∈J ,j 6=iΘj), H̄i) where J is the set of active players etc.
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• Convention (C). If (Ω,F , P ) is a probability space and F ⊆ Ω is not measurable (i.e.

F /∈ F ), then every proposition containing the expression P (F ) is false.

In order for them to also apply to all uncountable mechanisms, we now generalize the

definitions of Subsections 2.3, 2.4 and 4.1 as follows:

• Subsection 2.3, including Definition 1 (CPS). In the countable mechanism case,

B−i denoted the discrete σ-algebra 2Σ−i . Now, we read B−i to denote the Borel σ-algebra

on Σ−i.

• Definition 2 (Sequential Rationality). We say that both sides of (1) “make sense”

if ui(C(ζ(si, ·)), θi, ·) : Σ−i → R and ui(C(ζ(s′i, ·)), θi, ·) : Σ−i → R are measurable with

respect to the Borel σ-algebra B−i completed with respect to µi(·|H). Given a general

mechanism, call a strategy si ∈ Si sequentially rational for payoff type θi ∈ Θi of player

i with respect to the beliefs µi ∈ ∆H̄i(Σ−i) if for all H ∈ Hi(si) and all s′i ∈ Si(H), (1)

holds and both sides of (1) “make sense.”22

In this paper we tacitly use the fact that if µi(·|H), H ∈ H̄i, assigns all probability mass

to finitely many mass points then Uµii (si, θi,H) “makes sense” for all si ∈ Si and θi ∈ Θi.

• Definition 3 (Weak Rationalizability). Definition 3 applies verbatim to general

mechanisms if we take into account the notational Convention (C) (which implies that

µi(W
α
−i|{∅}) = 1 is not satisfied if Wα

−i is not measurable).

• Definition 10 (wPBE). To generalize Definition 10, replace “countable mechanism”

with “mechanism.” Additionally, require the consistency condition only for all measur-

able (instead of for all) B−i ⊆ Σ−i. Finally, note that the notational Convention (C)

implies that the consistency condition fails if for some measurable set B−i ⊆ Σ−i, the

set {t−i ∈ T−i : (b−i(t−i), θ̂−i(t−i)) ∈ B−i} is not measurable.

Definitions 4 (of wr-implementation), 5 (of d-refutability), 6 (of dr-monotonicity), 7 (of epIC),

8 (of the conditional NTI), 9 (of a type space) and 11 (of robust wPBE-implementation)

continue to apply verbatim.

4.3 An Equivalence Result for General Mechanisms

After introducing the following technical assumption, we can generalize Corollary 1 to the

general mechanisms from Definition 12.

∀i ∈ I, α ∈ Ord :Wα
−i is measurable (M)

22Since the Lebesgue integral is formally well-defined even for non-measurable functions and X and Θ are
finite, both sides of (1) are well-defined and finite even for general mechanisms. We nonetheless add to Definition
2 the requirement that both sides of (1) “make sense” because for some non-measurable functions they might
not have their usual interpretation.
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Condition (M) guarantees that every agent i can assign a probability to the set Wα
−i of her

opponents’ weakly α-rationalizable strategy-payoff type profiles, for every ordinal number α.

Theorem 2 Let Γ be a mechanism and f be a social choice function.

(a) Γ wr-implements f if and only if Γ robustly wPBE-implements f and (M).

(b) Suppose the conditional NTI property is satisfied. Then f is wr-implementable if and

only if f is robustly wPBE-implementable.

Theorem 2(b) asserts that in the class of social choice functions that satisfy the conditional

NTI, the subsets of wr- and robustly wPBE-implementable social choice functions coincide.

Theorem 2(a) strengthens this result to a mechanism by mechanism equivalence. This latter

equivalence assumes a mechanism that satisfies (M), but applies even if the conditional NTI

is violated.

We prove Theorem 2 in Appendix B by combining known techniques and new insights. To

prove the “if” direction of Part (a), first, we show that W∞ corresponds to a wPBE of a par-

ticular type space. In establishing this auxiliary result for general mechanisms, our proof does

not rely on various assumptions of related results in the literature (see the discussion preced-

ing Lemma 3 in Appendix B for details) but instead adapts some arguments from Echenique

(2005). Second, we prove a novel lemma that shows that robust wPBE-implementation and

(M) imply the existence condition (b) of Definition 4. To prove the “only if” direction of Part

(a), first, we show that if a mechanism Γ wr-implements a social choice function f , then Γ

has a wPBE in every type space. This auxiliary result generalizes to dynamic mechanisms a

result by BM from the static case, and simultaneously weakens the assumptions used in their

result. Second, we note that if Γ wr-implements f then Γ satisfies (M).23 Third, we obtain

with minor modifications from Battigalli (1999) the implication that if Γ satisfies (M), then all

wPBE strategies are weakly rationalizable. Once Part (a) is proven, Part (b) follows quickly

from our work in Section 3.

Theorem 2 implies that under the assumption of the conditional NTI, excluding mecha-

nisms that violate (M) from consideration is without of loss of generality, in the sense that

this does not reduce the set of implementable social choice functions. As the statement of

Theorem 2(a) confirms and as explained in Footnote 23, if Γ wr-implements f then Γ satisfies

(M). Therefore, mechanisms that violate (M) do not wr-implement any social choice func-

tion and can be safely ignored. Parts (a) and (b) combined imply the analogous result for

robust wPBE-implementation. If f is robustly wPBE-implementable then by part (b), f is

wr-implementable and there is some Γ that wr-implements f . By Part (a), Γ satisfies (M) and

robustly wPBE-implements f .

23 If Γ implements f then W∞ 6= ∅. Therefore, Γ satisfies (M) — if Wα
−i were not measurable then Παi and

therefore Wα+1
i would be empty by notational Convention (C), contradicting W∞ 6= ∅.
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On a more subtle note, the following example illustrates why condition (M) can nonetheless

not be eliminated from Theorem 2(a), even if the conditional NTI is satisfied. While under

the conditional NTI, a mechanism that violates (M) cannot expand the set of robustly wPBE-

implementable social choice functions and cannot wr-implement any social choice function,

it may still robustly wPBE-implement a social choice function. This constellation is only

possible if the mechanism has uncountably many strategies for some player, even though the

mechanism can be static and well-behaved (in the sense that each player has a best response

at each information set against each belief).

Example 4.1 Let I = 2, Θi = {θi} for all i ∈ I, X = {r1, p1} × {r2, p2}, and

ui(zi)
def

= ui((z1, z2), θ)
def

=

{

1 if zi = ri

0 if zi = pi
.

This is a two player, complete information environment in which we can reward (zi = ri) or

punish (zi = pi) each player i. Let E be non-measurable subset of the Euclidean space R

and fix some e ∈ E. As we will see now, the non-measurability of E implies that the static

mechanism which lets each player choose a real number and rewards i for choosing e or for

matching s−i as long as s−i ∈ E violates (M). For each i, let Si = R be i’s strategy set. For

each s ∈ S, let the outcome assigned by the mechanism to s be24

C(s1, s2) =























(r1, r2) if s1 = s2 ∈ E

(r1, p2) if s1 = e 6= s2

(p1, r2) if s1 6= e = s2

(p1, p2) otherwise

.

Then for each i and j 6= i, Q1
i = E and (M) is violated because the non-measurability of

E implies that W 1
−j = W 1

i = E × {θi} is non-measurable. Moreover, Π1
j = ∅ and W 2

j = ∅

— since i’s rational strategies comprise a non-measurable set, by the notational Convention

(C) introduced in Subsection 4.2, µj(W
1
i |{∅}) = 1 is false for every CPS µj. Consequently,

W∞ = ∅. Nonetheless, a wPBE exists for all type spaces: Fix some e′ ∈ E. For T =

(Ti, θ̂i, τi)i∈I , let bi(ti) = e′ and gi(ti) = δ(e′) for all i, then (bi, gi)i∈I is a wPBE. Moreover,

by sequential rationality, if (bi, gi)i∈I is a wPBE then bi(ti) ∈ E for all i and ti ∈ Ti. Thus,

this mechanism robustly wPBE-implements f such that f(θ1, θ2) = (r1, r2), even though it

does not wr-implement it. Finally, this example satisfies the conditional NTI.

24Note that this mechanism satisfies the measurability condition of Definition 12, as for each i and si,
C(ζ(si, ·)) : S−i → Y is measurable (for s1 = e, C(ζ(s1, ·)) maps s2 to (r1, r2) is s2 = e and to (r1, p2) if s2 6= e
and is thus obviously measurable; for s1 ∈ E\{e}, C(ζ(s1, ·)) maps s2 to (r1, r2) if s2 = s1, to (p1, r2) if s2 = e
and to (p1, p2) if s2 /∈ {e, s1}; for s1 /∈ E, C(ζ(s1, ·)) maps s2 to (p1, r2) is s2 = e and to (p1, p2) if s2 6= e).
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4.4 Robust wPBE-Implementation in Countable Static Mechanisms

This subsection maintains the assumptions of this paper (including the finiteness of the payoff

type spaces and the pure outcome space) and additionally imposes the following assumptions

of BM, ensuring that the assumptions of both papers are met. First, this subsection focuses

on countable static mechanisms. Second, this subsection restricts attention to countable type

spaces when talking about robustness, that is, type spaces T = (Ti, θ̂i, τi)i∈I such that Ti is

countable for all i ∈ I . One can show that a countable mechanism Γ wr-implements a social

choice function f if and only if Γ wPBE-implements f for all countable type spaces (see Müller,

2017a), rendering the latter restriction inconsequential.

BM, pioneering the analysis of full robust implementation, introduced a notion of ratio-

nalizable implementation in static mechanisms and showed that it is almost equivalent to

robust implementation in interim equilibrium. Robust implementation in interim equilibrium

(“robust implementation” in this subsection for brevity) is a static mechanism implementa-

tion concept that equals robust wPBE-implementation by static mechanisms.25 ,26 The almost

equivalence between rationalizable and robust implementation implies that the same social

choice functions are implementable under both notions, at least if one only considers social

choice functions that satisfy the conditional NTI (Definition 8). However, it can occur that

a mechanism rationalizably but not robustly implements a social choice function, even if the

conditional NTI is met.

Corollary 1 implies that wr-implementation by static mechanisms strengthens BM’s def-

inition of rationalizable implementation in such a way as to permit an exact equivalence:

for every countable static mechanism Γ, wr-implementation is exactly equivalent to robust

wPBE-implementation. This exact equivalence implies that the set of wr-implementable and

robustly implementable social choice functions coincide, even if one permits social choice func-

tions that violate the conditional NTI. Moreover, a designer who identifies a mechanism that

wr-implements a social choice function is guaranteed that the mechanism also achieves robust

implementation (and vice versa).

To formalize the discussion, let Γ be a countable static mechanism and f be a social choice

function. The following Condition (A) equals Part (a) of our definition of wr-implementation

25For every static mechanism and every type space, the set of wPBE and the set of interim equilibria are
identical for our purposes: If (bi, gi)i∈I is a wPBE, then in the terminology of BM, (bi)i∈I is an interim (or
Bayesian) equilibrium. Conversely, every profile (bi)i∈I of strategy functions uniquely determines an associated
profile (gi)i∈I of belief functions via the consistency condition of Definition 10. In particular, if (bi)i∈I is an
interim equilibrium, then (bi)i∈I together with the associated profile (gi)i∈I is a wPBE.

26 By robust implementation, in accordance with Definitions 10 and 11, we mean robust implementation in
pure interim equilibrium. While BM in fact study robust implementation in mixed interim equilibrium, their
almost equivalence also applies to robust implementation in pure interim equilibrium (see Footnote 28). We
further note that if Γ robustly implements f in pure interim equilibrium then Γ robust implements f in mixed
interim equilibrium, but not vice versa (see Müller, 2017a). Hence, we focus on the more demanding of these
two concepts here.
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(Definition 4), and thus describes the implementation requirement that all weakly rational-

izable strategy profiles lead to desired social outcomes. The following conditions (B1)-(B3)

all imply that every payoff type has at least one weakly rationalizable strategy, but each

strengthen this requirement to various degrees. Conditions (B1) and (B3) are from BM and

Condition (B2) applies Definition 4(b) to static mechanisms.

(A) C(s) = f(θ) for all (s, θ) ∈W∞.

(B1) For each i ∈ I and ψi ∈ ∆(Θ−i) there exists a λi ∈ Π∞
i ⊆ ∆(Σ−i) such that

– λi(Q
∞
−i(θ−i)× {θ−i}) = ψi(θ−i) for all θ−i ∈ Θ−i and

– ri(θi, λi) 6= ∅ for all θi ∈ Θi.

(B2) There exists a profile (Qi(θi))i∈I,θi∈Θi of nonempty strategy sets Qi(θi) ⊆ Q∞
i (θi) such

that for all i ∈ I , θ ∈ Θ and s−i ∈ Q−i(θ−i), there exists si ∈ Qi(θi) such that

si ∈ ri(θi, δ(s−i, θ−i)).

(B3) (ex-post best response property for (Q∞
i (θi))i,θi , BM) For all i ∈ I and θi ∈ Θi, there

exists si ∈ Q
∞
i (θi) such that si ∈ ri(θi, δ(s−i, θ−i)) for all (s−i, θ−i) ∈W

∞
−i .

We obtain that

• Γ rationalizably implements (as defined by BM) f if and only if [(A) and (B1)],27 that

• Γ wr-implements f if and only if [(A) and (B2)], and

• an additional notion of implementation introduced by BM, [(A) and (B3)].

These “rationalizability-based” implementation concepts are nested. In particular, for every

countable static mechanism Γ and every social choice function f ,

[(A) and (B3)] ⇒ [(A) and (B2)] ⇒ [(A) and (B1)],

and the converse directions of these implications are false for some Γ and f (see Müller, 2017a).

BM, Theorem 3(2) show that [(A) and (B1)] is necessary for Γ to robustly implement

f . However, [(A) and (B1)] is not sufficient for Γ to robust implement f . The key is that

[(A) and (B1)] does not guarantee that Γ has an interim equilibrium on all type spaces (see

Müller, 2017a). Consequently, BM resort to a stronger condition to establish sufficiency. In

their Theorem 3(1), they prove that [(A) and (B3)] implies robust implementation. Together,

27See BM, Definition 4, noting that in static mechanisms, weak rationalizability reduces to rationalizability
as defined by BM.
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these two results establish an almost equivalence of rationalizable to robust implementation.28

BM further show that it is impossible to achieve an exact equivalence by strengthening the

conclusion of their Theorem 3(2) to [(A) and (B3)]. Corollary 1 achieves an exact equivalence

between wr- and robust implementation by instead weakening the ex-post best response prop-

erty (B3) to (B2). Property (B2) is implied by robust implementation, and at the same time

suffices to establish the existence of an interim equilibrium for all type spaces.

In conclusion, wr-implementation by static mechanisms is the rationalizability-based im-

plementation concept that exactly characterizes robust implementation. Wr-implementation

by static mechanisms achieves this by embodying slightly weaker sufficient conditions than

BM’s [(A) and (B3)], and the slightly tighter necessary conditions than BM’s [(A) and (B1)].

5 Discussion and Conclusion

We studied two implementation notions, robust wPBE-implementation and wr-implementa-

tion. Both notions are belief-free in that they assume no knowledge of the agents’ initial belief

hierarchies about the state of the world θ ∈ Θ, and belief-revision free in that they assume

no knowledge of how agents revise their beliefs after encountering a surprise information set.

We showed that these notions are equivalent (given a technical measurability condition), and

introduced a dr-monotonicity condition that together with epIC is necessary, and under the

conditional NTI condition, sufficient for robust wPBE- and wr-implementation. Our results

apply to general dynamic mechanisms, but remain true if we restrict attention to countable

mechanism.

5.1 Dynamic Mechanisms in Incomplete Information Settings in the Lit-

erature29

“Classical” Dynamic Implementation under Belief-Revision Assumptions. We now

relate the current paper to Baliga (1999), who provides sufficient conditions for implementa-

tion in sequential equilibrium in economic environments, Brusco (1995, 1999), who examines

implementation in Perfect Bayesian equilibrium (PBE), and Bergin and Sen (1998), who pro-

vide sufficient conditions for implementation in sequential equilibrium and related solution

concepts.

Like us, all these papers consider incomplete information environments with finite payoff

type spaces. Nonetheless, our paper is orthogonal to this important literature in several

respects. First, while unlike these papers we restrict the outcome space to be a space of

28 While BM state their Theorem 3 for robust implementation in mixed interim equilibrium, by their proof,
their almost equivalence also applies to robust implementation in pure interim equilibrium, and thus the concept
of robust implementation we focus on in this subsection (see Footnote 26).

29We skip a discussion of papers from the complete information literature such as Moore and Repullo (1988).
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lotteries over pure outcomes, their sufficient conditions require at least three agents while ours

also apply to the two agent case. Thus the set of environments to which our results apply

overlaps but is different from the set of environment to which their results apply. Second, we

examine implementation that does not depend on the initial belief hierarchies about payoff

types, while the mentioned papers all assume a common prior. We thus primarily address

designers that are concerned about the robustness of their mechanisms. Third, while this

literature makes various belief-revision assumptions that go beyond Bayesian updating, a

main feature of our analysis is that we forgo such assumptions.

Even neglecting the other differences, the third difference alone implies that our conditions

for implementation and this literature’s are not nested. Our analysis is based on wPBE, a

weaker equilibrium concept than both PBE and sequential equilibrium. Since our sufficiency

mechanism rules out all undesirable wPBE, it also rules out all undesirable PBE and sequential

equilibria. Arguably, ruling out all undesirable equilibria is at the heart of full implementation.

Even so, our results do not imply this literature’s because our mechanism only guarantees the

existence of a wPBE, and not the existence of a PBE or sequential equilibrium. Conversely,

since ruling out all undesirable PBE and sequential equilibria does not imply ruling out all

undesirable wPBE, our results do not follow from this literature’s.

To expand on the third difference, it is fruitful to discuss some aspects of Bergin and Sen

(1998). While these authors explicitly formulate their sufficient condition independent of the

exact solution concept used, their sufficient condition does not apply to wPBE. This illustrates

some salient differences between their and our assumptions (and clarifies that the mentioned

independence extends only to sequential equilibrium and similar solution concepts).

Bergin and Sen (1998) focus on the possibility of generating preference reversals using

posterior distributions. To illustrate their notion of a posterior distribution, suppose that it

has been observed that some agent deviated from her (candidate) equilibrium strategy. Then

the i-th component of a posterior distribution λ ∈
∏

k∈I ∆(Θk) describes the beliefs that

every j 6= i holds about i’s payoff type. Bergin and Sen (1998) formulate their sufficient

condition, “posterior reversal,” in terms of the set of posterior distributions permitted after

such a deviation. The set of permitted posterior distributions induced by a particular solution

concept may then, or not, satisfy the posterior reversal condition. The kind of beliefs permitted

in a wPBE, however, are generally too rich to be captured by a posterior distribution. As

indicated, using posterior distributions implicitly assumes that after a deviation, there is a

common belief among all j 6= i about i’s payoff type. In wPBE, by contrast, every agent

(except the agent that deviated) forms their own, individual, new belief after a deviation.

Hence Bergin and Sen (1998)’s sufficient condition does not apply to wPBE, and our analysis

complements theirs by encompassing richer sets of beliefs after surprises.

An additional indication that the posterior reversal condition is geared towards sequential
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equilibrium and related concepts is that Bergin and Sen (1998)’s sufficiency proof implicitly

assumes that even after a deviation from the equilibrium path, players are certain that their

opponents will follow the equilibrium strategy “from now on.” This is again not true in

wPBE, which permits that after a surprise, players believe that their opponents no longer

follow the equilibrium strategy. Finally, some instances of posterior reversals exploit that in

sequential equilibrium a player i’s beliefs about players j and k are independent, in the sense

that a deviation by j does not influence i’s belief about k (see e.g. Bergin and Sen, 1998,

Example 2). Since wPBE allows e.g. that, after observing irrational play by j, player i places

some probability on k also behaving irrationally in the future, such instances of posterior

reversals would not exist given wPBE. Thus, while it already incorporates a variation of the

idea of facilitating implementation by using preference reversals “off the equilibrium path,”

the posterior reversal condition is quite distinct from our robust preference reversal condition.

In particular, our robust preference reversal condition does not assume any knowledge of the

agents’ belief revision.

In addition to their sufficient conditions, Bergin and Sen (1998) also provide necessary

conditions for implementation. These, however, only apply to implementation by mechanisms

“with one round of signaling,” that is, mechanisms in which equilibrium play never goes beyond

a first stage. It seems fair to say that the restriction to such mechanisms is not motivated by

particular real-world concerns, but is imposed in order to keep the analysis tractable. In fact,

Brusco (1999) shows that the restrictions to mechanisms with one round of signaling is with loss

of generality by providing an example of an implementable social choice function that cannot be

implemented by a mechanism with one round of signaling. Since Baliga (1999) only provides a

sufficient but no necessary conditions for implementation, Brusco (1995, 2006) probably comes

closest in this literature to a tight characterization of implementability of general dynamic

mechanisms. Brusco (1995) allows general dynamic mechanisms, but there is a gap between

his necessary and sufficient conditions. Brusco (2006) achieves a tight characterization, but

restricts attention to multi-stage (and to avoid additional notational complexity, in fact, two-

stage) mechanisms with public signals. Thus even in Brusco’s (2006) case, one still may be

concerned that one can enlarge the set of implementable social choice functions simply by

removing an ad-hoc restriction on the class of admitted mechanisms.

Our approach does not face this difficulty. Our characterization applies to general dy-

namic mechanisms. In fact, the mechanism of our sufficiency result, Proposition 3, is neither

multi-stage nor a mechanism with one round of signaling. Thanks to our simpler informa-

tional assumptions, and only apart from the mild conditional NTI property, we obtain a tight

characterization of the set of implementable social choice functions. Formally complementing

and not substituting for this literature’s findings, from a broader perspective, our results may

thus have some benchmark character for dynamic implementability in incomplete information
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environments.

“Classical” Dynamic Implementation without Belief-Revision Assumptions. In an

interesting contribution, Duggan (1998) constructs a set of outcomes from which each pay-

off type of agent i would pick one element as a strictly dominant choice. Only payoff types

with identical utility functions would pick the same element, making this set of outcomes a

“preference revelation device.” Duggan (1998) then places such preference revelation devices

off the equilibrium path in a two-stage mechanism in order to implement social choice func-

tions. Notably, since his preference revelation devices give strictly dominant incentives, his

implementation is independent of particular belief-revision assumptions.30 Despite thus offer-

ing maximal robustness with respect to the belief-revision process, Duggan (1998) belongs to

the classical implementation literature in that he assumes that agents have commonly known

priors about the state of the world. In contrast, we adopt a belief-free approach. His and

our implementation results are also complementary in other regards. In an informal sense,

Duggan’s mechanism is simpler than ours, but this comes at the cost of relying on more spe-

cialized assumptions. In particular, Duggan (1998) assumes quasi-linear preferences and rules

out interdependent values by assuming private values, while our results apply to more general

environments.31 Duggan (1998) does not provide necessary conditions for implementation,

while we characterize implementability.

Robust Dynamic Implementation. Finally, our paper also takes a different direction

than Penta (2015) and Müller (2016), who already considered forms of robust implementation

in dynamic mechanisms.

Penta (2015) provides sufficient conditions for robust implementation in multi-period envi-

ronments in which an agent learns part of her payoff type in each period. Such environments

are more general than the more classical static environments that we consider. Our analysis

instead goes beyond Penta’s (2015) in other ways. First, Penta (2015) restricts attention to

mechanisms that are static each period and comprise a multi-stage mechanism with observ-

able actions across periods. For his sufficient conditions, he indeed restricts attention to direct

mechanisms. In our static environments, an agent learns her complete payoff type before the

mechanism begins and later period payoff type revelations are trivial, making every direct

mechanism a static mechanism. Static environments thus render Penta (2015)’s sufficient con-

ditions ones for static implementation. One thus could say that Penta (2015) mostly focuses on

dynamic environments, while we focus on dynamic mechanisms. Second, mostly advancing the

30He nonetheless adopts a different implementation concept than us. While we base our analysis on wPBE, he
introduces a notion of double implementation that he terms implementation in sequentially rational strategies.

31Similar to us, Duggan (1998) also assumes a finite payoff type space and admits lotteries over a space as
outcomes. Further assumptions of his include a no-total indifference condition and that the agents’ priors have
full support or at least common support.
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theory of direct implementation, Penta (2015) does not characterize or even provide necessary

conditions for full implementation by indirect mechanisms, one of our main contributions.

Further differences between Penta’s (2015) and our work are that, first, Penta’s (2015)

sufficient conditions are for robust implementation in interim perfect equilibrium (IPE). IPE

is stronger than wPBE, implying that Penta (2015) uses stronger belief-revision assumptions

than we do here. Second, analogous to our Section 4, Penta (2015) provides an epistemic

characterization that relates robust implementation in IPE to a novel notion he puts for-

ward, backwards rationalizable implementation. However, since incentive compatibility and

equilibrium existence coincide in direct mechanisms (see Penta, 2015, Proposition 1), for his

purposes, a game theoretic equivalence (see beginning of our Section 4 and Footnote 15) suf-

fices, while our epistemic characterization requires consideration of equilibrium existence in

general mechanisms.

In Müller (2016), we provide necessary and sufficient conditions for (belief-free) robust

implementation by finite dynamic mechanisms in static environments. The current paper also

differs from this work in crucial aspects. First, in Müller (2016) we weaken the implementation

concept to robust virtual implementation, and thus adopt an approximate notion of full im-

plementation. In contrast, the current paper insists on robust exact implementation. Virtual

implementation permits a vanishing but positive probability of implementing an outcome very

different from the desired social outcome. Virtual implementation has its own advantages and

disadvantages (see e.g. Abreu and Matsushima, 1992b,a; Glazer and Rosenthal, 1992) and,

from a technical viewpoint, leads to a quite different analysis. Second, in Müller (2016) we

examine strongly rationalizable implementation. We thus assume rationality and common

strong belief in rationality (RCSBR) and impose stronger belief-revision assumptions than we

do here, assuming that the agents engage in forward induction logic. This permits agents to

“learn” their opponents’ payoff types in an appropriately designed mechanism, which in turn

facilitates the virtual implementation of incentive compatible social choice functions. This

learning channel is at the core of the analysis in Müller (2016), but breaks down in the ab-

sence of forward induction. Third, the necessary and sufficient conditions in Müller (2016)

coincide in “generic” private consumption environments that satisfy an economic property, but

are not tight in general. Fourth, there is no known equilibrium concept that corresponds to

strong rationalizability as wPBE corresponds to weak rationalizability. Hence the analysis in

Müller (2016) is motivated directly by the appeal of RCSBR,32 while our Section 4 provides

an equilibrium based motivation for wr-implementation.

In a sense, Müller (2016) illustrates the potential of dynamic mechanisms for robust imple-

mentation by unveiling their advantage over static mechanisms in one scenario: in most private

consumption environments, if the agents employ forward induction and one is content with

32See our Subsection 5.2 for a possible analogous motivation for wr-implementation.
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virtual implementation, finite dynamic mechanisms can handle preference interdependencies

much better than static mechanisms. In the current paper, we instead aim at a tight character-

ization of implementability for a pure form of robust exact implementation in a quite general

setting. We believe such a characterization is useful as it reveals which social choice func-

tions can be implemented without weakening the implementation concept, relying on stronger

belief-revision assumptions, or relaxing wr-implementation in other ways. At the same time,

such a characterization gives us certainty about the social choice functions that require some

such relaxation to be implementable.

5.2 Weak Rationalizability and RCIBR

In this paper, our main motivation to study wr-implementation stemmed from its equivalence

to robust wPBE-implementation. Since it does not involve the explicit formulation of type

spaces, wr-implementation is easier to work with than and thus a useful proxy for robust

wPBE-implementation. The value of our results on wr-implementation, however, likely extends

further. The reason is that weak rationalizability characterizes the behavioral implications

of the epistemic condition of rationality and common initial belief in rationality (RCIBR)

(Battigalli and Siniscalchi, 2007).

Directly characterizing the set of social choice functions that are implementable for a given

epistemic condition is an interesting complement to the more traditional, equilibrium based

implementation theory. In this context, RCIBR is a baseline condition that (as expected) only

assumes Bayesian updating with respect to the belief revision process. RCIBR captures that

initially there is common belief in sequential rationality, but does not make assumptions about

beliefs at surprise information sets. In Müller (2016), we used the more demanding condition

of RCSBR, under which agents engage in forward induction reasoning after encountering a

surprise.

While we do not pursue a formal analysis of implementation under RCIBR here, we expect

our characterization of wr-implementation to be useful in such an endeavor. A technical diffi-

culty that arises is that the epistemic relation between weak rationalizability and RCIBR has

originally been established only for finite mechanisms, and thus a smaller class of mechanisms

that we employ. While still not sufficient to immediately apply to our sufficiency mechanism,

recently, however, Battigalli et al. (2017) extended this characterization to simple games, not-

ing that they choose mechanisms with observable actions only for notational simplicity.

5.3 Conclusion

In conclusion, this paper provides general conditions for robust implementability in dynamic

mechanisms, imposing Bayesian updating as the only belief-revision assumption. On the one

hand, our conservative informational assumptions guarantee that all social choice functions
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that satisfy our sufficient conditions for wr-implementation are implemented in a strong, ro-

bust way. In this context, the question of sufficient conditions for wr-implementation by

well-behaved mechanisms is of future interest. On the other hand, the necessary conditions

of our characterization describe restrictions to robust implementability. Since we already use

a very general class of mechanisms, relaxing these necessary conditions will require stronger

assumptions in other dimensions. In this context, our results can serve as a point of depar-

ture for future research in at least two directions. First, in some circumstances, mechanism

designers may be comfortable to make stronger epistemic assumptions on the belief revision

process. As discussed in Subsection 5.1, in Müller (2016), we already examined one specific

instance of this approach for virtual implementation. Second, in other circumstances, stronger

assumptions about initial beliefs may be acceptable. Ollár and Penta (2017) already provide

interesting results in this direction for the static mechanism case.

A On the Definition of Weak Rationalizability

In Subsection 2.4 we defined weak rationalizability asW∞ (Definition 3) instead of asW ω0 . We

thus require a strategy to survive more than ω0 rounds of elimination of never-best sequential

responses before we call it weakly rationalizable. In this appendix, we illustrate that the

additional rounds of elimination required by W∞ compared to W ω0 are key to ensuring that

wr-implementation is equivalent to robust wPBE-implementation. This appendix uses the

notions of a type space, a wPBE and robust wPBE-implementation, see Definitions 9, 10 and

11 in Section 4.

Considering static games of complete information, Lipman (1994) shows that the iterated

removal of never-best responses does not necessarily characterize common certainty of ratio-

nality if one uses only ω0 rounds of elimination. The logic behind his result is our reason

for insisting on more than ω0 rounds of elimination in our definition of W∞. The following

example exhibits a countable mechanism that robustly wPBE-implements a social choice func-

tion f , but fails to wr-implement f if one uses W ω0 as the definition of weak rationalizability.

We were able to construct this example because in some mechanisms (indeed, even in some

countable mechanisms), a fixed point is not yet reached after ω0 rounds of elimination and, cor-

respondingly, W ω0 contains strategy-payoff type profiles that cannot arise in any equilibrium

in any type space. Replacing W ω0 with W∞ renders robust wPBE- and wr-implementation

equivalent, though, both in the example and also much more generally (see Theorem 2).

In the static mechanism case, BM implicitly also use transfinitely many rounds of elimi-

nation in their definition of (belief-free) rationalizability.

Example A.1 Let I = 2 and suppose that Θi = {θi} for all i ∈ I . That is, suppose that there

is complete information among the two agents and the mechanism designer about the agents’
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preferences. Let the set of pure outcomes be X = {−1, 0, 1}2 and interpret (x1, x2) ∈ X to

mean that i receives xi units of money. Accordingly, let ui(x1, x2) = xi for all i and (x1, x2),

where we suppress the trivial dependence of utility on θ from the notation (as we shall similarly

do for other trivial dependencies).

Consider the social choice function f such that f(θ1, θ2) = (0, 0). While the complete

information assumed in this example makes it trivial to find some mechanism that robustly

wPBE- and wr-implements f (not matter if we define weak rationalizability as W ω0 or as

W∞), not all mechanisms that robustly wPBE-implement f also wr-implement f if we define

weak rationalizability as W ω0 . To see this, consider the static mechanism Γ with strategy set

Si = {−1, 0, 1, 2, . . .} for i ∈ I and the outcome function C : S → ∆(X) such that

C(s) =











































(1, 0) if s1 > s2 > 0

(0, 1) if s2 > s1 > 0

(1− 1
2s1
, 1) if s1 > s2 = 0

(1, 1 − 1
2s2

) if s2 > s1 = 0

(0, 0) if s1 = s2

(−1,−1) if (s1 = −1 or s2 = −1) and s1 6= s2

,

where (1 − 1
2s1
, 1) denotes the lottery that places probability (1 − 1

2s1
) on (1, 1) and comple-

mentary probability 1
2s1

on (0, 1), and (1, 1 − 1
2s2

) denotes an analogous lottery.

Mechanism Γ robustly wPBE-implements f . First, for every type space T = (Ti, θ̂i, τi)i=1,2,

the profile (bi, gi)i=1,2 that for every i and ti ∈ Ti prescribes the strategy bi(ti) = −1 and

belief gi(ti)
def

= gi(ti)(·|{∅}) = δ(−1, θ−i) is a wPBE. Therefore, for every type space, (s1, s2) =

(−1,−1) is realized in a wPBE. Second, for every type space, there is no wPBE (bi, gi) in

which some type of some agents plays a strategy other than −1. Too see that, suppose that

for T = (Ti, θ̂i, τi) there is a wPBE (bi, gi) such that A = {a > 0 : ∃i ∈ I, ti ∈ Ti(a = bi(ti))}

is nonempty. Let smin = minA. Let i be an agent and ti be a type which plays smin in

equilibrium. Since s−i = 1, . . . , smin − 1 are not equilibrium strategies for any type of −i, we

have gi(ti)({−1, 0} ∪ {smin, smin +1, . . .}) = 1. But then smin /∈ ri(gi(ti)), as either si = −1 or

smin + k for k large enough is a better response against gi(ti). Contradiction. Next, suppose

that there is a wPBE (bi, gi) such that A = ∅ but that bi(ti) = 0 for some i and ti. Since

gi(ti)({−1, 0}) = 1, a contradiction arises because then si = −1 (if gi(ti)(−1) = 1) or si = 1

(if gi(ti)(0) > 0) is a better response than bi(ti) = 0.

Mechanism Γ does not wr-implement f if we define weak rationalizability as W ω0 . Let

λi ∈ ∆(Sj), where i ∈ I and j 6= i. If λi(sj = 0) > 0 or if sup[supp(λi)] = ∞, then for every

si ≥ 0 there is a k ∈ N such that si + k is a better response than si against λi, and the set

of best responses against λi is either empty (if λi(sj = −1) is sufficiently small) or comprises

si = −1 (if λi(sj = −1) is sufficiently large). If λi(sj = 0) = 0 and sup[supp(λi)] = m < ∞,

46



then si = −1 (if m = −1 or more generally, if λi(sj = −1) is sufficiently large) or si = 0

and every si > m (if λi(sj = −1) is sufficiently small [and by implication m ≥ 1]) are best

responses against λi. Therefore Qαi = {−1, 0} ∪ {α+ 1, α + 2, . . .} for each α < ω0, and thus

Qω0
i = {−1, 0}. Hence Γ does not wr-implement f if we define weak rationalizability as W ω0 .

Note that for Γ, W ω0 does not form a fixed point of the iterated elimination procedure.

However, if we iterate the process of deleting never-best sequential best responses one addi-

tional time, we arrive at the fixed point described by Qω0+1
i = {−1} for all i. Therefore, for

the transfinite definition of weak rationalizability, Γ wr-implements f and wr-implementation

is equivalent to robust wPBE-implementation.

B Proofs

We immediately formulate all proofs in this appendix for general dynamic mechanisms as

defined in Definition 12.

B.1 Proof of Proposition 1

Proof. As a preliminary step, note that for all i ∈ I and all θi, θ
′
i ∈ Θi, there does not exist a

robust (θ′i, θi)-preference reversal if and only if

∀ψ′
i ∈ ∆(Θ−i), y ∈ Y supp(ψ′

i)∃χi ∈ ∆(supp(ψ′
i)×Θ−i)∀x ∈ Y supp(ψ′

i) :

Eψ′
i
ui(x(θ−i), θ

′
i, θ−i) ≤ Eψ′

i
ui(y(θ−i), θ

′
i, θ−i) =⇒ Eχiui(x(θ

′
−i), θ) ≤ Eχiui(y(θ

′
−i), θ). (10)

We now show that if (10) holds, then for every mechanism Γ = 〈A,H, (Hi)i∈I , P, C〉 and

information set H ∈ Hi, if si ∈ Si(H) is a best response for θ′i at H with respect to some

belief λ′i ∈ ∆(Σ−i(H)), then there is a λi ∈ ∆(Σ−i(H)) such that si is a best response for

θi at H with respect to λi. Let ψ′
i = margΘ−iλ

′
i. Moreover, for each θ−i ∈ supp(ψ′

i), define

(λ′i)
θ−i ∈ ∆(S−i) by

(λ′i)
θ−i(B−i) =

λ′i(B−i × {θ−i})

ψ′
i(θ−i)

for all measurable B−i ⊆ S−i, and define y ∈ Y supp(ψ′
i) by

y(θ−i) =

∫

S−i(H)
C(ζ(s))d(λ′i)

θ−i(s−i)

for all θ−i ∈ supp(ψ′
i) (where the right-hand side is a Bochner integral). Note that

Eψ′
i
ui(y(θ−i), θ

′
i, θ−i) =

∑

θ−i

[
∫

S−i(H)
ui
(

C(ζ(s)), θ′i, θ−i
)

d(λ′i)
θ−i(s−i)

]

ψ′
i(θ−i)
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=
∑

θ−i

[

sup
∑

k

(

inf
s−i∈Bk−i

ui
(

C(ζ(s)), θ′i, θ−i
)

)

(λ′i)
θ−i(Bk

−i)

]

ψ′
i(θ−i)

= sup
∑

k

(

inf
(s−i,θ−i)∈Ak−i

ui
(

C(ζ(s)), θ′i, θ−i
)

)

λ′i(A
k
−i)

= Eλ′iui(C(ζ(s)), θ′i, θ−i), (11)

where the first equality follows from the measurability of C(ζ(si, ·)) : S−i → Y and the linearity

of ui, and the suprema in the second and third lines extend over all finite partitions {Bk
−i}

of S−i(H) into measurable sets Bk
−i and all finite partitions {Ak−i} of Σ−i(H) into measurable

sets Ak−i, respectively. Let χi satisfy (10) for ψ′
i and y, and let

λi(B−i × {θ−i}) =
∑

θ′−i∈supp(ψ
′
i)

(λ′i)
θ−i(B−i)χi(θ

′
−i, θ−i)

for all measurable B−i ⊆ S−i and all θ−i ∈ Θ−i. Note that

Eχiui(y(θ
′
−i), θ) =

∑

(θ′−i,θ−i)

(

∫

S−i(H)
ui (C(ζ(s)), θ) d(λ′i)

θ′−i(s−i)

)

χi(θ
′
−i, θ−i)

=
∑

(θ′−i,θ−i)

[

sup
∑

k

(

inf
s−i∈Bk−i

ui
(

C(ζ(s)), θ
)

)

(λ′i)
θ′−i(Bk

−i)

]

χi(θ
′
−i, θ−i)

=
∑

θ−i

sup
∑

k

(

inf
s−i∈Bk−i

ui
(

C(ζ(s)), θ
)

)

λi(B
k
−i × {θ−i})

= sup
∑

k

(

inf
(s−i,θ−i)∈Ak−i

ui
(

C(ζ(s)), θ
)

)

λi(A
k
−i)

= Eλiui(C(ζ(s)), θ), (12)

where the suprema extend as above. Then for every s′i ∈ Si(H), if we let

x(θ−i) =

∫

S−i(H)
C(ζ(s′i, s−i))d(λ

′
i)
θ−i(s−i)

for all θ−i ∈ supp(ψ′
i) and consider equations (11), (12) and analogous equalities for s′i,

Eλ′iui(C(ζ(s′i, s−i)), θ
′
i, θ−i) = Eψ′

i
ui(x(θ−i), θ

′
i, θ−i)

≤ Eψ′
i
ui(y(θ−i), θ

′
i, θ−i) = Eλ′iui(C(ζ(s)), θ′i, θ−i)
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implies

Eλiui(C(ζ(s′i, s−i)), θ) = Eχiui(x(θ
′
−i), θ) ≤ Eχiui(y(θ

′
−i), θ) = Eλiui(C(ζ(s)), θ).

Suppose that mechanism Γ wr-implements f and that β is an unacceptable deception.

Suppose by contradiction that β is not d-refutable. Then for all i ∈ I , θi ∈ Θi and θ′i ∈ βi(θi),

there does not exist a robust (θ′i, θi)-preference reversal. Moreover, for each i ∈ I , θi ∈ Θi and

θ′i ∈ βi(θi), we can let θ
θ′i�θi
−i ∈ Θ−i and ψ

θ′i�θi
i ∈ ∆(Θ−i) with ψ

θ′i�θi
i (β−1

−i (θ
θ′i�θi
−i )) = 1 be such

that

∀x ∈ Yi(θ
θ′i�θi
−i ) : E

ψ
θ′
i
�θi

i

ui(x, θ) ≤ E
ψ
θ′
i
�θi

i

ui(f(θ
′
i, θ

θ′i�θi
−i ), θ). (13)

Below, we use a CPS with the initial belief that −i “claims to be” payoff type θ
θ′i�θi
−i and that

−i’s true payoff type is distributed according to ψ
θ′i�θi
i in order to rationalize the lie θ′i for θi.

For each i ∈ I and θi ∈ Θi, fix a si(θi) ∈ Qi(θi) and a µi(θi) ∈ Π∞
i such that si(θi)

is a sequential best response for θi with respect to µi(θi), and such that µi(θi)(·|{∅}) =

δ(s
θi,{∅}
−i , θ−i) for some θ−i ∈ Θ−i and some s

θi,{∅}
−i ∈ Q−i(θ−i). Here, Qi(θi) is the set described

in Definition 4. For convenience, let

N = {(i, θi, θ
′
i) : i ∈ I, θi, θ

′
i ∈ Θi, θ

′
i ∈ βi(θi)},

so that (i, θi, θ
′
i) ∈ N if θ′i is an announcement of θi that β permits.

Step 1. Suppose that (i, θ̄i, θ̄
′
i) ∈ N . We claim that si(θ̄

′
i) ∈ Q1

i (θ̄i). Let µi be a CPS that

satisfies the following conditions.

1. If we let s−i(θ
θ̄′i�θ̄i
−i )

def

=
(

sj(θ
θ̄′i�θ̄i
j )

)

j 6=i
, then µi((s−i(θ

θ̄′i�θ̄i
−i ), θ−i)|{∅}) = ψ

θ̄′i�θ̄i
i (θ−i) for

all θ−i ∈ Θ−i.

2. Suppose that H ∈ Hi(si(θ̄
′
i)) is a surprise given the beliefs µi. Since si(θ̄

′
i) is a best

response for θ̄′i at H against µi(θ̄
′
i)(·|H), and since there does not exist a robust (θ̄′i, θ̄i)-

preference reversal, there is a λi ∈ ∆(Σ−i(H)) such that si(θ̄
′
i) is a best response for θ̄i

at H against λi. We require that µi(·|H) equals such a λi.

By Condition 2., si(θ̄
′
i) maximises θ̄i’s expected utility with respect to µi at all informa-

tion sets that are admiited by si(θ̄
′
i) and that are or succeed a surprise information set

(formally, at all H ∈ Hi(si(θ̄
′
i))\Hi(s−i(θ

θ̄′i�θ̄i
−i )). Thus, to prove that si(θ̄

′
i) ∈ ri(θ̄i, µi), we

only need to verify that si(θ̄
′
i) maximizes θ̄i’s expected utility with respect to µi(·|H

′) at all

H′ ∈ Hi(si(θ̄
′
i), s−i(θ

θ̄′i�θ̄i
−i )).

Pick an x ∈ Y . Suppose that x /∈ Yi(θ
θ̄′i�θ̄i
−i ) and C(ζ(si, s−i(θ

θ̄′i�θ̄i
−i ))) = x for some si ∈ Si.
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Then

ui(x, θ
′′
i , θ

θ̄′i�θ̄i
−i ) > ui(f(θ

′′
i , θ

θ̄′i�θ̄i
−i ), θ′′i , θ

θ̄′i�θ̄i
−i )

for some θ′′i ∈ Θi. Let µ′i ∈ Π∞
i be such that 1) µ′i(·|{∅}) equals the degenerate belief in

(s−i(θ
θ̄′i�θ̄i
−i ), θ

θ̄′i�θ̄i
−i ), and 2) there exists a sequential best response s∗i for θ′′i against µ′i. Such a

µ′i exists by Definition 4. On the one hand, C(ζ(s∗i , s−i(θ
θ̄′i�θ̄i
−i ))) = f(θ′′i , θ

θ̄′i�θ̄i
−i ) as s∗i ∈ Q

∞
i (θ′′i )

and Γ wr-implements f . On the other hand, we must have C(ζ(s∗i , s−i(θ
θ̄′i�θ̄i
−i ))) 6= f(θ′′i , θ

θ̄′i�θ̄i
−i ),

as x provides i with more expected utility with respect to µ′i(·|{∅}) than f(θ′′i , θ
θ̄′i�θ̄i
−i ) and

i believes that x is “in her reach.” Contradiction. Consequently, if x ∈ Y is such that

C(ζ(si, s−i(θ
θ̄′i�θ̄i
−i ))) = x for some si ∈ Si, then x ∈ Yi(θ

θ̄′i�θ̄i
−i ) and, by (13),

E
ψ
θ̄′
i
�θ̄i

i

ui(x, θ̄i, θ−i) ≤ E
ψ
θ̄′
i
�θ̄i

i

ui(f(θ̄
′
i, θ

θ̄′i�θ̄i
−i ), θ̄i, θ−i).

Hence, at each H ∈ Hi(si(θ̄
′
i), s−i(θ

θ̄′i�θ̄i
−i )), the strategy si(θ̄

′
i) maximizes θ̄i’s expected utility

with respect to µi(·|H) within Si(H).

Step 2. Let α ∈ Ord. First, if α is a successor ordinal, then si(θ
′
i) ∈ Qα−1

i (θi) for all

(i, θi, θ
′
i) ∈ N implies that si(θ

′
i) ∈ Qαi (θi) for all (i, θi, θ

′
i) ∈ N : For each (i, θi, θ

′
i) ∈ N , if

µi denotes the CPS for constructed for (i, θi, θ
′
i) in Step 1, then si(θ

′
i) ∈ ri(θi, µi). Moreover,

since the support of µi is

{s−i(θ
θ′i�θi
−i )} × supp(ψ

θ′i�θi
i ) ⊆ {s−i(θ

θ′i�θi
−i )} × β−1

−i (θ
θ′i�θi
−i ),

µi is an element of Πα−1
i . Second, if α is a limit ordinal, then si(θ

′
i) ∈ Qβi (θi) for all (i, θi, θ

′
i) ∈

N and all β < α trivially implies that si(θ
′
i) ∈ Qαi (θi) =

⋂

β<αQ
β
i (θi) for all (i, θi, θ

′
i) ∈ N .

Step 3. By Step 2, si(θ
′
i) ∈ Q∞

i (θi) for all (i, θi, θ
′
i) ∈ N . As is easy to verify, since β is

unacceptable, there are i ∈ I , θi ∈ Θi, θ
′
i ∈ βi(θi) and θ

θ′i�θi
−i ∈ Θ−i such that f(θi, θ

θ′i�θi
−i ) 6=

f(θ′i, θ
θ′i�θi
−i ). Because Γ wr-implements f ,

C(ζ(si(θ
′
i), s−i(θ

θ′i�θi
−i ))) = f(θi, θ

θ′i�θi
−i ) 6= f(θ′i, θ

θ′i�θi
−i ) = C(ζ(si(θ

′
i), s−i(θ

θ′i�θi
−i ))).

Contradiction. �

B.2 Proof of Proposition 2

Proof. We establish the claim by a direct proof. Suppose that Γ wr-implements f and, for

each i and θi, let Qi(θi) ⊆ Q∞
i (θi) be the set of strategies from Definition 4. Fix some i ∈ I ,

50



θi, θ
′
i ∈ Θi and θ−i ∈ Θ−i. We are going to show that

ui(f(θ), θ) ≥ ui(f(θ
′
i, θ−i), θ). (14)

Pick some s−i ∈ Q−i(θ−i). Then there exist a CPS µi ∈ ∆H̄i(Σ−i) and a strategy si ∈ Qi(θi)

such that µi(·|{∅}) equals the degenerate belief in (s−i, θ−i) and such that si ∈ ri(θi, µi). In

addition, there exists a s′i ∈ Qi(θ
′
i). If f(θ′i, θ−i) = f(θ) then (14) is trivially satisfied, thus

consider the case that f(θ′i, θ−i) 6= f(θ). By wr-implementation, C(ζ(s′i, s−i)) = f(θ′i, θ−i) 6=

f(θ) = C(ζ(s)). So Hi(s) 6= ∅ (otherwise ζ(s′i, s−i) = ζ(s)). What is more, there is a (unique)

information set H′ ∈ Hi(s) such that si(H
′) 6= s′i(H

′) and such that si(H) = s′i(H) for all

H ∈ Hi(s) such that H ≺ H′. By the definition of sequential rationality, ∀H ∈ Hi(si)∀s̃i ∈

Si(H) : Uµii (si, θi,H) ≥ Uµii (s̃i, θi,H). In particular,

Uµii (si, θi,H
′) ≥ Uµii (s′i, θi,H

′). (15)

Since Γ wr-implements f and since µi((s−i, θ−i)|H
′) = 1,

Uµii (si, θi,H
′) =

∫

Σ−i(H′)
ui(C(ζ(s)), θ)dµi((s−i, θ−i)|H

′)

= ui(C(ζ(s)), θ)

= ui(f(θ), θ).

Similarly, Uµii (s′i, θi,H
′) = ui(f(θ

′
i, θ−i), θ) and (14) follows from (15). �

B.3 Proof of Theorem 2

For every mechanism, every type space T = (Ti, θ̂i, τi)i∈I and every b = (bi)i∈I with bi : Ti →

Si for all i, let

Σb =
{

(

bi(ti), θ̂i(ti)
)

i∈I
∈ Σ : t ∈ T

}

(16)

denote the set of strategy-payoff type profiles “realized” by b. The following lemma shows

that for all mechanisms that satisfy (M), “every weakly perfect Bayesian equilibrium is weakly

rationalizable.” The lemma essentially equals Proposition 3.10 (1) of Battigalli (1999). We

nonetheless include a proof, because some minor changes to Battigalli’s proof are necessary in

our set-up.33

Lemma 1 For every mechanism Γ that satisfies (M), every type space T and every wPBE

(bi, gi)i∈I , Σ
b ⊆W∞.

33We assume (M) but do not rely on Σb−i being measurable. Also, we need to use transfinite induction.
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Proof. Let T = (Ti, θ̂i, τi)i∈I be a type space and (bi, gi)i∈I be a wPBE. Trivially, Σb ⊆W 0

and for each i, gi(Ti) ⊆ Π0
i . Now suppose that for all α < β ∈ Ord, both Σb ⊆Wα and for all

i, gi(Ti) ⊆ Παi . If β is a limit ordinal, then Σb ⊆ W β =
⋂

α<βW
α. If β is a sucessor ordinal,

then by the sequential rationality condition of wPBE,

Σbi ⊆ ρi(gi(Ti)) ⊆ ρi(Π
β−1
i ) =W β

i , ∀i ∈ I.

Hence for all i, the set {t−i ∈ T−i : (b−i(t−i), θ̂−i(t−i)) ∈ W β
−i} equals T−i (and is therefore

measurable), and the consistency condition of wPBE implies that for all ti ∈ Ti,

gi(ti)(W
β
−i|{∅}) = τi(ti){t−i ∈ T−i : (b−i(t−i), θ̂−i(t−i)) ∈W β

−i} = τi(ti)(T−i) = 1

(recall that W β
−i is measurable by (M)). Therefore, gi(Ti) ⊆ Πβi for all i ∈ I . �

The next lemma shows that wr-implementation implies the existence of wPBEs in all

type spaces. Thereby, it enhances in two directions the implication of BM, proof of Theorem

3(1) that rationalizable implementation by a static mechanism that satisfies the ex-post best

response property (B3) implies the existence of a (pure strategy) interim equilibrium in all type

spaces. First, as we alluded to in Subsection 4.4, Lemma 2 applied to static mechanisms uses

weaker assumptions than BM, Theorem 3(1). Second, it generalizes their result to dynamic

mechanisms.

Lemma 2 If Γ wr-implements f then for every type space T , Γ has a wPBE for T .

Proof. Since Γ wr-implements f , we can pick a nonempty (Qi(θi))i,θi such that for all

i ∈ I , θ ∈ Θ and s−i ∈ Q−i(θ−i), there exist s′′i ∈ Qi(θi) ⊆ Q∞
i (θi) and µi ∈ ∆H̄i(Σ−i) such

that µi((s−i, θ−i)|{∅}) = 1 and s′′i ∈ ri(θi, µi) and thus

ui(C(ζ(s′′i , s−i)), θ) ≥ ui(C(ζ(s′i, s−i)), θ) ∀s′i ∈ Si (17)

(where (17) is trivial if Hi(s
′′
i , s−i) = ∅ and follows from the optimality of s′′i at the earliest

information set in Hi(s
′′
i , s−i) otherwise). In fact, (17) remains true for all i ∈ I , θ ∈ Θ and

s−i ∈ Q−i(θ−i) if we replace s′′i by any other si ∈ Qi(θi), as ui(C(ζ(s′′i , s−i)), θ) = ui(f(θ), θ) =

ui(C(ζ(s)), θ). Therefore, for every i ∈ I , θ ∈ Θ and s ∈ Q(θ)
def

=
∏

j∈I Qj(θj),

ui(C(ζ(s)), θ) ≥ ui(C(ζ(s′i, s−i)), θ) ∀s′i ∈ Si. (18)

For each i and θi, fix some arbitrary θ−i and s−i ∈ Q−i(θ−i) and let si(θi) ∈ Qi(θi) and

µi(θi) ∈ ∆H̄i(Σ−i) be such that µi(θi)((s−i, θ−i)|{∅}) = 1 and si(θi) ∈ ri(θi, µi(θi)). Then by

(18), for each i and θi, si(θi) is a best response for θi in Si with respect to every λi ∈ ∆(Σ−i)
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such that λi{(s
′
−i, θ

′
−i) ∈ Σ−i : s

′
−i = s−i(θ

′
−i)} = 1. Suppose that T = (Ti, θ̂i, τi)i∈I is a type

space. Define (bi, gi)i∈I by letting, for all i, bi : Ti → Si be such that bi(ti) = si(θ̂i(ti)) for all

ti, and gi : Ti → ∆H̄i(Σ−i) be such that gi(ti) is the CPS such that

• gi(ti)(B−i|{∅}) = τi(ti){t−i ∈ T−i : (b−i(t−i), θ̂−i(t−i)) ∈ B−i} for all measurable B−i

(note that {t−i ∈ T−i : (b−i(t−i), θ̂−i(t−i)) ∈ B−i} is measurable as it equals the finite

union ∪θ−i∈Θ−i:(s−i(θ−i),θ−i)∈B−i
θ̂−1
−i (θ−i) of measurable sets θ̂−1

−i (θ−i) =
∏

j 6=i θ̂
−1
j (θj);

further note that gi(ti)({(s
′
−i, θ

′
−i) ∈ Σ−i : s′−i = s−i(θ

′
−i)}|{∅}) = 1, and thus that

si(θi) is a best response against gi(ti)(·|{∅})), and

• if H ∈ H̄i is a surprise, then gi(ti)(·|H) = µi(θ̂i(ti))(·|H),

for all ti. Then (bi, gi)i∈I is a wPBE, because for every i,

• bi is measurable, as for every S′
i ⊆ Si, b

−1
i (S′

i) equals the finite union ∪θi∈Θi:si(θi)∈S′
i
θ̂−1
i (θi)

of measurable sets θ̂−1
i (θi), and

• by construction, bi(ti) is a sequential best response for θ̂i(ti) against gi(ti), for all ti ∈ Ti,

and

• by construction, the consistency condition of a wPBE is satisfied, for all ti ∈ Ti.
�

To prove the following lemma, we show thatW∞ corresponds to a fixed point of a sequential

best response operator, and thus to a wPBE. The underlying idea of this approach is familiar

from related results in the literature. What somewhat complicates our case is that we prove the

lemma for a general class of mechanisms. For example, Brandenburger and Dekel (1987) focus

on finite games for which the fixed point property of rationalizability is more immediate, and

depart from a best-reply sets definition of rationalizability from the start. For their respective

solution concepts, Bernheim (1984) and Battigalli (1999) exploit compactness and continuity

properties that we do not assume here. In BM, Tarski’s fixed point theorem applies, while

in our case, a non-monotonicity of the sequential best response operator prevents a direct

application of Tarski’s theorem. We solve this by adapting arguments from Echenique (2005).

Lemma 3 If Γ robustly wPBE-implements f , then C(ζ(s)) = f(θ) for all (s, θ) ∈W∞.

Proof. First, we represent W∞ as a fixed point of an appropriate operator. For all elements

S and S ′ of the set S
def

=
{

S = (Si(θi))i,θi : Si(θi) ⊆ Si for all i ∈ I and θi ∈ Θi

}

, write S ≤ S ′

if and only if Si(θi) ⊆ S ′
i(θi) for all i ∈ I and θi ∈ Θi. One element of S is W = (Q∞

i (θi))i,θi .

Define an operator b = (b1, . . . , bI) : S → S by

bi(S)(θi) =

{

si ∈ Si : ∃µi ∈ ∆H̄i(Σ−i)
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(

µi

(

⋃

θ−i∈Θ−i

(

S−i(θ−i)× {θ−i}
)

∣

∣

∣

∣

{∅}

)

= 1 and (si, θi) ∈ ρi(µi)

)}

While (S ,≤) is a complete lattice, b can be non-monotone.34 We thus can generally not

apply Tarksi’s fixed point theorem to b. Fortunately, we can still derive that W is a fixed

point of b by following and adapting some steps of Echenique (2005, Lemma 1) (see also

Echenique’s references regarding his Lemma 1). Let γ be an ordinal number with cardinality

greater than that of S . Define f : (γ + 1) → S by transfinite recursion by [f(0)]i(θi) = Si

and [f(β)]i(θi) =
⋂

α<β bi(f(α))(θi) for 0 < β < γ + 1, for all i and θi. Even though b can

be non-monotone, f is weakly decreasing by definition, that is, α < β implies f(β) ≤ f(α).

Thus for all α < γ, f(α + 1) = b(f(α)), and [f(α)]i(θi) = Qαi (θi) for all α < γ + 1, i and θi.

Since the cardinality of γ is greater than the cardinality of S , there is an α < γ such that

f(α) = f(α + 1). Let ᾱ be the smallest such α, then f(ᾱ) = f(ᾱ+ 1) = b(f(ᾱ)) and f(ᾱ) is

a fixed point of b. Finally, f(ᾱ) = W.

Second, since the claim of the lemma is trivial if W∞ is empty, assume W∞ 6= ∅. Since

W is a fixed point of b, for each (si, θi) ∈ W∞
i there is a gi(si, θi) ∈ ∆H̄i(Σ−i) such that

gi(si, θi)(W
∞
−i |{∅}) = 1 and si ∈ ri(θi, gi(si, θi)). For each i ∈ I , let Ti = W∞

i and endow

it with the relative topology inherited from Σi. Let θ̂i be the projection from Ti to Θi and

define τi : Ti → ∆(T−i) by letting τi(si, θi) equal the restriction of gi(si, θi)(·|{∅}) to the Borel

σ-algebra on T−i, for all (si, θi) ∈ Ti. Then (Ti, θ̂i, τi)i∈I is a type space because θ̂i is con-

tinuous and thus measurable. Moreover, if bi denotes the projection from Ti to Si, then bi is

measurable, and (bi, gi)i∈I (with gi : Ti → ∆H̄i(Σ−i) as just defined) satisfies by construction

the sequential rationality and consistency conditions of a wPBE for T . Since (bi, gi)i∈I is a

wPBE for T , the lemma follows from the definition of robust wPBE-implementation. �

Finally, we prove the following lemma.

Lemma 4 If Γ robustly wPBE-implements f , then there exists a profile (Qi(θi))i∈I,θi∈Θi of

nonempty strategy sets such that for all i ∈ I, θ ∈ Θ and s−i ∈ Q−i(θ−i), there exist si ∈ Qi(θi)

and µi ∈ ∆H̄i(Σ−i) such that µi((s−i, θ−i)|{∅}) = 1 and si ∈ ri(θi, µi). If Γ also satisfies (M),

then in addition Qi(θi) ⊆ Q∞
i (θi) for all i ∈ I and θ ∈ Θ.

Proof. We start by defining a type space that captures all coherent belief hierarchies

comprised of only degenerate beliefs. For each i ∈ I , let T 0
i = Θi. Recursively define T ki =

∏

j 6=i T
k−1
j , for all i ∈ I and all k ∈ {1, 2, 3, . . .}. For all i and k, endow T ki with the discrete

34If S ≤ S ′ and
⋃

θ−i∈Θ−i

(

S ′
−i(θ−i)× {θ−i}

)

is measurable for all i, then b(S) ≤ b(S ′); however, if S ≤ S ′,

b(S) 6= ∅ and
⋃

θ−i∈Θ−i

(

S ′
−i(θ−i) × {θ−i}

)

is non-measurable for some i, then, according to the notational

Convention (C) from Subsection 4.2, ∅ 6= b(S) � b(S ′) = ∅.
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topology. For each i, let Ti =
∏

k∈N T
k
i be the set of i’s types and endow it with the product

topology. Let θ̂i be the projection from Ti to Θi, that is, let

θ̂i(t
0
i , t

1
i , t

2
i , . . .) = t0i , for all (t0i , t

1
i , t

2
i , . . .) ∈ Ti.

Finally, define τi : Ti → ∆(T−i) by

τi(t
0
i , (t

1
ij)j 6=i, (t

2
ij)j 6=i, . . .) = δ((t1ij , t

2
ij , t

3
ij , . . .)j 6=i), for all (t0i , (t

1
ij)j 6=i, (t

2
ij)j 6=i, . . .) ∈ Ti,

where tkij ∈ T k−1
j for all j 6= i and k ≥ 1. Then T = (Ti, θ̂i, τi)i∈I is a type space, since the

maps θ̂i are continuous by definition and thus measurable. Type (t0i , t
1
i , t

2
i , . . .) has payoff type

t0i , is certain that his opponents’ payoff types are t1i = (t1ij)j 6=i ∈ T 1
i =

∏

j 6=iΘj, and that j 6= i

believes that j’s opponents’ payoff types are t2ij and so on.

Because Γ robustly wPBE-implements f , there exists a wPBE (bi, gi)i∈I for T . Let Σb be

defined as in (16), and let Qi(θi) = {si ∈ Si : (si, θi) ∈ Σbi} be the section of Σbi at θi. For

every i ∈ I , θ ∈ Θ and s−i ∈ Q−i(θ−i), let, for each j 6= i, (t0j , t
1
j , t

2
j , . . .) ∈ b−1

j (sj) be such that

t0j = θj, and si = bi(θi, (t
0
j )j 6=i, (t

1
j )j 6=i, . . .). Then si ∈ Qi(θi) and there exists µi ∈ ∆H̄i(Σ−i)

— namely, gi(ti) for ti = (θi, (t
0
j )j 6=i, (t

1
j )j 6=i, . . .) ∈ Ti — such that

µi((s−i, θ−i)|{∅}) = τi(ti){t−i ∈ T−i : (b−i(t−i), θ̂−i(t−i)) = (s−i, θ−i)} = 1

(by the consistency condition of (bi, gi)i∈I for ti and since (t0j , t
1
j , t

2
j , . . .)j 6=i ∈ {t−i ∈ T−i :

(b−i(t−i), θ̂−i(t−i)) = (s−i, θ−i)}) and si ∈ ri(θi, µi) (by the sequential rationality condition of

(bi, gi)i∈I for ti).

Finally, if Γ satisfies (M), Lemma 1 implies Σb ⊆ W∞ and thus Qi(θi) ⊆ Q∞
i (θi) for all i

and θi. �

If Γ wr-implements f then Γ satisfies (M) (see Footnote 23). Thus Lemmata 1 and 2 imply

that if Γ wr-implements f , then Γ satisfies (M) and robustly wPBE-implements f . Lemmata 3

and 4 imply the converse implication. This proves part (a) of Theorem 2. Part (b) follows from

part (a) and Proposition 3 if one shows that robust wPBE-implementation by all mechanisms,

even those that violate (M), implies dr-monotonicity and epIC. Since this proof is analogous

to the proofs of Propositions 1 and 2, we do not detail it here but just make the following

remarks.

The first sentence of Lemma 4 still applies if we do not assume (M), even though Qi(θi) ⊆

Q∞
i (θi) is no longer guaranteed. Moreover, in that first sentence, Qi(θi) is the set of θi’s

equilibrium strategies and the CPSs µi are equilibrium beliefs of the wPBE of the type space

T = (Ti, θ̂i, τi)i∈I introduced in the proof of Lemma 4. Essentially, for proving that robust
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wPBE-implementation implies dr-monotonicity and epIC, the Qi(θi) from Lemma 4 replaces

the Qi(θi) from Definition 4 in the proofs of Propositions 1 and 2.

To adapt the proof of Proposition 1, note that it is easy to extend T from the proof of

Lemma 4 (in fact, to extend every given type space) by a finite number of types per agent. In

extending T to T ′, we can choose the type function of i to be every arbitrary extension of θ̂i

and the belief function of i to be every arbitrary extension of τi. If (bi, gi) is a wPBE of T ,

then (b′i, g
′
i) is a wPBE of T ′ if b′i is an extension of bi, g

′
i is an extension of gi, gi(ti) is defined

by the consistency condition of wPBE for all added types ti, and bi(ti) is sequentially rational

for θ̂′i(ti) with respect to gi(ti) for all added types ti.

The proof of Proposition 1 shows that for each (i, θi, θ
′
i) ∈ N , si(θ

′
i) is weakly rationalizable

for θi. In the adapted proof, we can extend T from the proof of Lemma 4 by one type for each

element of N . We can choose the extension so that the equilibrium (bi, gi) of T extends to a

wPBE of the extended type space. Specifically, we can let the type corresponding to (i, θi, θ
′
i)

be a type of player i, have payoff type θi and si(θ
′
i) as equilibrium strategy.

Adapting the proof of Proposition 2 requires only minor changes.
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