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Abstract

Models based on belief-based switching costs (such as inattention costs)
are related to hypothesis tests and vice versa. Specifically, an inference
problem with a penalty for mistakes and for switching the inferred value
gives a band of inaction which is equivalent to a confidence interval, and
therefore to a two-sided hypothesis test.
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1 Introduction

This paper provides a new micro-foundation for a hypothesis test. Agents re-
ceive sequential information and conduct inference which penalizes both the
variance of the estimator and adjustments to the estimator whenever it changes.
The fully optimal estimator has a band of inaction, whereby it is updated only
when the classical Bayesian estimate leaves it. We show that, to a first order
approximation for small adjustment costs, this band of inaction has width pro-
portional to the Bayesian estimator’s standard deviation, making it equivalent
to a confidence interval and therefore to a two-sided hypothesis test.

Our result locates belief formation models based on hypothesis tests, such
as [10], within a wider literature on switching costs due to sticky belief adjust-
ment and vice versa. The switching costs may arise, say, from cognitive effort
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in attention and observation, information gathering, or the consultation of ex-
perts [3, 9, 5]. State-dependant belief adjustment implies a dependence on the
economic state, which in turn depends on new information arriving. Models of
inattention and portfolio choice are example applications of this approach [1, 7].

The theory of optimal investment under transaction costs has been well
studied within the mathematical finance literature. A key approach, which
our approach is based on, is the use of asymptotic approximation methods, to
allow closed-form solutions which are valid when transaction costs are small.
For both proportional costs [11] and fixed costs [2, 6], one is able to derive an
approximate ‘no trade region’, within which agents accept deviations from the
no-transaction-cost optimal strategy, in order to avoid excessive costs. In this
paper, we translate this analysis to an estimation setting, giving the desired
bands of inaction. Our approach follows [2] closely, however their analysis is
not directly applicable, as our setting is not based on trading in a financial
market.

2 The model

We base our setting on a Kalman–Bucy filter [8], as this gives a wide range of
applications.

We write Xt for a multivariate (hidden) process, which we seek to estimate
using multivariate observations Y . We suppose X and Y satisfy

dXt = FtXtdt+ dWt; X0 ∼ N(X̂0, P0)

dYt = HtXtdt+ dBt

where W and B are independent continuous martingales, with quadratic varia-
tions

d〈W 〉t = Qtdt, d〈B〉t = Rtdt.

Here F,H,Q and R are matrix-valued deterministic processes of appropriate
dimensions, we assume R is invertible and H is nonzero, and X̂0, P0 are known.
We define a filtration by Ft = σ(Ys; s ≤ t), which represents the information
available from observing Y up to time t.

The key result of [8] is that, conditional on our observations, Xt has a
multivariate normal distribution, that is,

Xt|Ft ∼ N(X̂t, Pt).

The values of (X̂t, Pt) have dynamics

dX̂t = FtX̂tdt+KtdV̂t,

dPt = FtPt + PtF
>
t +Qt −KtRtK

>
t ,

with initial values (X0, P0), where Kt = PtH
>
t R
−1
t denotes the Kalman gain

process, and dV̂t = dYt −HtX̂tdt defines the innovations process V̂ , which is a
(multivariate) Brownian motion under {Ft}t≥0.
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Example 1. A simple example is when our processes are all scalar, F,Q ≡ 0 and
H,R ≡ 1. Then X = X0 is a constant (unknown) quantity and Kt = Pt, so

dPt
dt

= −KtRtK
>
t = −P 2

t , ⇒ Pt =
1

1/P0 + t
,

dX̂t = KtdV̂t =
1

1/P0 + t
dV̂t.

We suppose that, over a fixed time period [0, T ], our agent has wealth Zt,
and pays costs ρ(X̂t−θt) due to tracking error and a cost λ whenever θt changes.
We assume ρ is smooth and minimized at ρ(0) = 0. For a utility function U ,
our agent wishes to optimize her expected wealth

J(ω, t, z, θ;λ) = E
[
U
(
z −

∫ T

t

ρ
(
X̂t − θt

)
− λ

∑
t≤s≤T

I{∆θt 6=0}

)∣∣∣Ft].
over piecewise constant adapted processes θ. As X̂ is a Markov process, there
exists a value function

v(t, X̂t, z, θt;λ) = sup
θ′:θt=θ′t

J(ω, t, z, θ′;λ).

The approach of [2] can now be employed1. We expand v in terms of powers
of λ and determine the corresponding coefficients. By ignoring higher order
terms, we obtain a first approximation to our value function, and hence to the
optimal choice of θ.

Given the presence of a fixed cost, the optimal policy will be to leave θ
unchanged until X̂t−θt is large. Write K for the region where θ remains fixed. A
standard dynamic programming argument yields a partial differential equation
for v:

In the regime where θt does not change, X̂t follows a diffusion process. The
martingale principle of optimality2, combined with Itô’s lemma, shows that v
satisfies the inequality

0 ≥ ∂tv − (∂zv)u
(
X̂t − θt

)
+ (∂x̂v)>FX̂t +

1

2
Tr(KtK

>
t ∂x̂x̂v), (1)

with equality on K (when it is not optimal to change θ). Considering the pos-
sibility of changing θ, we observe

v(t, z, x̂, θ;λ) ≥ sup
θ′
v(t, z − λ, x̂, θ′;λ) (2)

1In [2] this analysis is completed, as the required regularity assumptions on v are checked,
to ensure that we have obtained an approximately optimal strategy. (See also [6] for a differ-
ent approach.) The corresponding calculations are lengthy and lend little to our qualitative
understanding.

2This is a form of the dynamic programming principle, and states that the value function
should be a martingale under the optimal strategy, and a supermartingale otherwise.
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with equality on Kc. Combining these two inequalities, we obtain the dynamic
programming equation

0 = min

{
− ∂tv + (∂zv)u

(
x̂− θ

)
− (∂x̂v)>Fx̂− 1

2
Tr(KtK

>
t ∂x̂x̂v),

v(t, z, x̂, θ;λ)− sup
θ′
v(t, z − λ, x̂, θ′;λ)

}
,

with terminal value v(T, z, x̂, θ;λ) = U(z). The difficulty in solving this equation
directly is that we have a free boundary for K. We focus on obtaining an
approximation for small values of λ.

2.1 Asymptotic analysis

When λ = 0 we know v(t, z, x̂; 0) ≡ U(z). Following [2], we expect that the
optimal strategy3 will involve switching whenever ‖X̂ − θ‖ = O(λ1/4), resulting
in a cost of O(λ1/2). This gives the ansatz

v(t, z, x̂, θ;λ) = U(z) + λ1/2φ(t, z) + λψ(t, z, x̂, ξ) +O(λ3/2) (3)

where ξ := (x̂− θ)λ−1/4.
Recalling our assumptions on ρ,

ρ(ξλ1/4) = λ1/2ξ>Γξ + o(λ1/2),

where Γ = −∂xxρ/2 is a positive-definite matrix.
We plug-in the ansatz (3) into (1), to obtain (on K)

0 = λ1/2
(
φt + ξ>ΓξU ′ +

1

2
Tr
(
KtK

>
t ψξξ

))
+ o(λ1/2).

On Kc, from (2) we have

0 = v(t, z, x̂, θ;λ)− sup
θ′
v(t, z − λ, x̂, θ′;λ)

= −λU ′ − λ3/2φz + λ
(
ψ(t, z, x̂, ξ)− sup

ξ′
ψ(t, z − λ, x̂, ξ′)

)
.

(4)

We can assume4 ψ(t, z − λ, x̂, ξ) = ψ(t, z, x̂, ξ) + o(λ), where the error depends
only on z and, as λ multiplies ψ in (3),

sup
ξ′
ψ(t, z, x̂, ξ′) = ψ(t, z, x̂, 0) = 0,

which simplifies (4):

0 = −λ
(
U ′ + ψ(t, z, x̂, ξ)

)
+ o(λ).

3This strategy comes from analyzing, over long horizons, how often the boundary of an
interval will be hit by a random walk, averaging out the cost paid, then optimizing over the
width of the interval chosen. The arguments of [2] hold in our setting, mutatis mutandis.

4This assumption can be verified in many cases, see [2].
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Considering the leading λ-order term in each region, we obtain{
0 = φt + (ξ>Γξ)U ′ + 1

2Tr
(
KtK

>
t ψξξ

)
on K,

0 = U ′(z) + ψ(t, z, x̂, ξ) on Kc.

2.2 Exponential Utility

To obtain a closed-form solution, we shall assume that U(z) = (1− e−kz)/k for
some k > 0. Then U ′(z) = e−kz and with φ̃ = ekzφ, ψ̃ = ekzψ,{

0 = φ̃t + (ξ>Γξ)k + 1
2Tr
(
KtK

>
t ψ̃ξξ

)
on K,

0 = −1 + ψ̃(t, z, x̂, ξ) on Kc.

In addition to this, a smooth pasting property should hold on the boundary.
Following [4, 2], we propose5 a solution of the form

ψ̃∗(t, z, x̂, ξ) = −1 + (ξ>Mξ − 1)2

with K = {ξ : ξ>Mξ < 1}, where M is a (symmetric, positive-definite) matrix
to be determined. Calculating,

ψ̃∗ξξ = 4(ξ>Mξ − 1)M − 8Mξξ>M.

Therefore,

0 = φ̃∗t + ξ>Γξ +
1

2
Tr
(
KtK

>
t 4(ξ>Mξ − 1)M − 8Mξξ>M

)
= φ̃∗t − 2Tr

(
KtK

>
t M

)
+ ξ>

(
Γ + 2MTr

(
KtK

>
t M

)
− 4MKtK

>
t M

)
ξ.

This should hold for all ξ, so by comparing coefficients

0 = Γ + 2MTr
(
KtK

>
t M

)
− 4MKtK

>
t M (5)

which is an algebraic equation to be solved for M .

2.3 The scalar setting

In one dimension, (5) simplifies to

0 = Γ− 2M2K2
t ⇔ M =

√
Γ/2

Kt
.

The no-switching region is

K =
{
ξ : ξ ≤

√
Kt

(Γ/2)1/4
∝
√
Kt

}
.

5In one dimension, this is the smallest family of polynomials which could satisfy our as-
sumptions.
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In the special case where the hidden variable Xt is constant,

Pt = Kt = (1/P0 + t)−1,

and as Pt is the variance of Xt|Ft, we observe the desired test-statistic behavior;
we switch whenever

|X̂t − θt|
P

1/2
t

> c

for c = (2λ/Γ)1/4. By choosing the test size α of our two-sided test such that c
is the critical value of the test statistic, our optimal policy is to switch whenever
a hypothesis test is failed.

Remark 1. In the scalar setting, when X is not a constant, it is interesting that
the optimal switching does not correspond to a hypothesis test with fixed test

size. In general, K has width ∝ K
1/2
t = (PtHt/Rt)

1/2. As Ht/Rt describes the
quality of observations, and hence the volatility of X̂, we see that in periods of
low-quality data (so X̂ is not volatile) our agent will switch more frequently, as
deviations between θt and Xt are likely to persist for longer.
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Appendix: Illustration in Discrete Time

In order to give a concrete example, and to justify the asymptotica approxima-
tion used, we consider the similar problem of estimating a parameter p ∈ [0, 1],
sampling from Bernoulli trials Yi in order to conduct a hypothesis test of

H0 : p = p0 vs. H1 : p 6= p0.

For notational simplicity, we write Ft for the information available from the
first t observations, that is Y1, ..., Yt.

If the sample size t is large we apply the Central Limit Theorem to the
Maximum Likelihood Estimator (MLE) p̂t.

Yi ∼ i.i.d. (p, p(1− p)) ,∑
Yi
t

= p̂t ∼ N
(
p,
p(1− p)

t

)
.

A two-sided hypothesis test of size α is a rule whereby we maintain H0 if p̂t
falls into a confidence interval. This standard ‘belief band of inaction’ is given
by (6), where zα/2 is the appropriate quantile of a standard normal distribution.

p0 − zα/2

√
p0(1− p0)

t
< p̂t < p0 + zα/2

√
p0(1− p0)

t
. (6)

We now demonstrate exactly the same 1/
√
t scaling effect from a very dif-

ferent perspective. For notational simplicity, we shall write σ̂2
t = p̂t(1− p̂t), and

note that for large t, σ̂2
t → p(1 − p), in particular σ̂t asymptotically does not

depend on t.
Suppose our agent uses an estimator θt, based on the sample Yi. She incurs

two costs:

• A cost λ whenever θt changes
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• A cost ρ(θt − p̂t), based on the error between θt and the MLE p̂t, paid
at every time. We assume ρ is twice differentiable, convex and has a
minimum ρ(0) = 0.

Remark 2. The cost ρ can be motivated in various ways. One approach is to
treat the true probability p in a Bayesian fashion, and assume our agent faces
a running cost E[(p − θt)

2|Ft], that is, a cost depending on the distance of
their estimate from the true (unknown) value. In this case, the MLE satisfies
p̂t = E[p|Ft], and we can compute

E[(p− θt)2|Ft] = E[(p− p̂t)2|Ft] + (p̂t − θt)2.

As the agent has no control over the term E[(p − p̂t)2|Ft], the effective cost is
given by (p̂t − θt)2, which is of the form considered.

From the theory of problems with transaction costs, see for example [2], the
optimal policy is for the agent not to act until the error Wt := p̂t−θt leaves some
interval. To a first approximation, which we consider more formally below, the
interval is of the form (−b, b), for some b to be determined. When W does leave
this interval, the optimal strategy is to set θt = p̂t, or equivalently Wt = 0(this
is essentially because p̂t is an unbiased estimate of p).

To find b, we first consider the behaviour of W between two sequential
switching times t1 < t2. We can write

Wt = p̂t − p̂t1 =
1

t

t∑
i=t1+1

(Yi − p̂t1) ≈ 1

t1

t∑
i=t1+1

(Yi − p̂t1). (7)

where the approximation is justified whenever t−1
1 − t−1

2 is small. Hence Wt is
approximately the sum of a sequence of mean-zero iid random variables, and
so is well modelled as a random walk with up-probability pt1 . Clearly, this
approximation is better when t1 is large and b is small (so switches occur more
frequently).

Using the approximation of W as a random walk, we choose b to minimize
expected costs. We have to trade off between our running cost and the cost of
switching. For a time s, we try and evaluate the expected cost at time t, given
our barrier strategy b. We first compute the running cost term.

Write Ct(b) = ρ(p̂t − θt) = ρ(Wt) when θt is determined using a boundary
b. From our assumptions on u, provided Wt is not too large (which will happen
whenever b is small or t is large), we can approximate with Taylor’s theorem
ρ(Wt) ≈ γW 2

t for some constant γ.
Assuming our agent will be active over a long horizon, it is the long-run

average value of this cost which is important. As b may change through time, it
is natural to rescale our random walk, and see that the stationary distribution
of W/b approximately has ‘triangular’ density

g(W/b) =


1 +W/b if − 1 < W/b ≤ 0

1−W/b if 0 < W/b ≤ 1

0 otherwise.
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This can be seen by the facts that:

• g(−1) = g(1) = 0,

• The density integrates to unity.

• From considering the possible paths of W , except at w = 0, the only
way for W to reach w is from being previously at either w − 1−p̂t

bt1
and

observing Y = 1, or at w+
p̂t1
bt1

and then observing Y = 0. In the stationary
distribution, this implies

g(w) = p̂t1g
(
w − 1− p̂t1

bt1

)
+ (1− p̂t1)g

(
w +

p̂t1
bt1

)
.

This equation is solved by linear functions g, and only by linear functions
in the limit bt1 → ∞. Given the relationship does not need to hold at
w = 0, we obtain a triangular density.

The density g(.) has variance 1/6 and substituting,

E[Ct(b)|Fs] ≈ γ
b2

6

for s� t.
We now seek to understand the expected switching cost, E[Cλt (b)|Fs], where

Cλ(b) = λ if |Wt| ≥ b and zero otherwise. Using our rescaled random walk
W/b, we need to find the probability of W/b hitting ±1 at a time t � s. As
W/b is approximately a random walk restarted at zero, this is approximately
1/E[τ |Ft1 ], where τ = t2 − t1 is the time taken to hit ±1 from zero.

To calculate E[τ |Ft1 ], heuristically we calculate when the standard deviation
of W/b equals 1. (Formally, this can be verified using the optional stopping
theorem for the martingale part of (W/b)2.) Starting at t1, from (7), Wt/b has
approximate variance

Var(Wt/b) ≈
1

b2t21

t∑
i=t1+1

σ̂2
t1 = (t− t1) ·

σ̂2
t1

b2t21

so to find the average time to hit ±1,

√
E[τ |Ft1 ]

( σ̂t1
bt1

)
= 1 ⇒ E[τ |Ft1 ] =

(bt1)2

σ̂2
t1

≈ (bt1)2

σ̂2
s

,

provided s is sufficiently large that σ̂2
t1 ≈ σ̂

2
s .

For t � s, with t1 < t ≤ t2, the probability of hitting the barrier at t,
incurring cost λ, is 1/E[τ |Ft1 ], so

E[Cλt (b)|Fs] ≈ λ
( σ̂s
bt

)2

.
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We can now minimize our expectations of long-run future costs Ω(b) =
E[Cλt (b)|Fs] + E[Ct(b)|Fs] in a pointwise fashion:

d

db
Ω(b) = 0 ⇐⇒ d

db

(
λ

(
σ̂s
bt

)2

+ γ
b2

6

)
= 0

which yields

b =
(6λ

γ

)1/4
√
σ̂s
t

= χ
σ̂s√
t

where χ =
(6λ

γ

)1/4

σ̂−1/2
s .

Therefore, we obtain a bandwidth b for the belief band of inaction that is pro-
portional to 1/

√
t. As in the continuous time case, we also observe that the

width χ of our band of inaction involves the square root of the data quality

ratio ∝ σ−1/2
s . (To see that this corresponds to the data quality ratio, see that

Var(p̂t − p̂t−1) ≈ σ̂t/t, while the variance of p̂t is σ̂2
t /t. The ratio σ̂−1

t then
corresponds to the term Ht/Rt in the Kalman–Bucy dynamics.)

This demonstrates the equivalence with a hypothesis test in the case of a
proportion, as desired. Using this b, we have

Ω(b) =
2σ̂t
t

√
λγ

6

which suggests the λ1/2 scaling of our asymptotic approximation in continuous
time. We also note that b → 0 and bt → ∞ as t → ∞, implying that our
assumptions can be justified over long horizons.
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