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Abstract

Models based on belief-based switching costs (such as inattention costs)
are related to hypothesis tests and vice versa. Specifically, an inference
problem with a penalty for mistakes and for switching the inferred value
gives a band of inaction which is equivalent to a confidence interval, and
therefore to a two-sided hypothesis test.
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1 Introduction

This paper provides a new micro-foundation for a hypothesis test. Agents re-
ceive sequential information and conduct inference which penalizes both the
variance of the estimator and adjustments to the estimator whenever it changes.
The fully optimal estimator has a band of inaction, whereby it is updated only
when the classical Bayesian estimate leaves it. We show that, to a first order
approximation for small adjustment costs, this band of inaction has width pro-
portional to the Bayesian estimator’s standard deviation, making it equivalent
to a confidence interval and therefore to a two-sided hypothesis test.

Our result locates belief formation models based on hypothesis tests, such
as [10], within a wider literature on switching costs due to sticky belief adjust-
ment and vice versa. The switching costs may arise, say, from cognitive effort
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in attention and observation, information gathering, or the consultation of ex-
perts [3, 9, 5]. State-dependant belief adjustment implies a dependence on the
economic state, which in turn depends on new information arriving. Models of
inattention and portfolio choice are example applications of this approach [1, 7].

The theory of optimal investment under transaction costs has been well
studied within the mathematical finance literature. A key approach, which
our approach is based on, is the use of asymptotic approximation methods, to
allow closed-form solutions which are valid when transaction costs are small.
For both proportional costs [11] and fixed costs [2, 6], one is able to derive an
approximate ‘no trade region’, within which agents accept deviations from the
no-transaction-cost optimal strategy, in order to avoid excessive costs. In this
paper, we translate this analysis to an estimation setting, giving the desired
bands of inaction. Our approach follows [2] closely, however their analysis is
not directly applicable, as our setting is not based on trading in a financial
market.

2 The model

We base our setting on a Kalman—Bucy filter [8], as this gives a wide range of
applications.

We write X; for a multivariate (hidden) process, which we seek to estimate
using multivariate observations Y. We suppose X and Y satisfy

dXt :FtXtdt+th, XO NN(X07PO)
dY; = H,X,dt + dB,

where W and B are independent continuous martingales, with quadratic varia-
tions
d(W); = Qudt, d(B); = Rydt.

Here F, H,() and R are matrix-valued deterministic processes of appropriate
dimensions, we assume R is invertible and H is nonzero, and XO, Py are known.
We define a filtration by F; = o(Ys;s < t), which represents the information
available from observing Y up to time t.

The key result of [8] is that, conditional on our observations, X; has a
multivariate normal distribution, that is,

X4|Fy ~ N(Xy, Py).
The values of (X;, P,) have dynamics
dX; = F,Xdt + K,dV,,
dP, = F,P,+ PF, +Q — KiRK/,

with initial values (Xo, o), where K; = P.H,"R; ' denotes the Kalman gain
process, and dV; = dY; — H; Xdt defines the innovations process V', which is a
(multivariate) Brownian motion under {F;};>o.



Ezxample 1. A simple example is when our processes are all scalar, F, Q) = 0 and
H,R=1. Then X = X, is a constant (unknown) quantity and K; = P;, so

dP, . , 1

. K,RK =—P, = P=—
dt LT t TP+t
~ N 1 ~

dX, = K;dV, = ——av;.

1/Py+t

We suppose that, over a fixed time period [0,T], our agent has wealth Z;,
and pays costs p(Xt —6¢) due to tracking error and a cost A whenever 6; changes.
We assume p is smooth and minimized at p(0) = 0. For a utility function U,
our agent wishes to optimize her expected wealth

T
J(w,t,z,&;A):E{U(z—/ p(Xi—6) -2 Y I{M#O}) }'t}.
t

t<s<T

over piecewise constant adapted processes . As X is a Markov process, there
exists a value function

v(t,Xtaz,et;)‘) = Sup J(watazael;A)'
0’:0,=0,

The approach of [2] can now be employed'. We expand v in terms of powers
of A and determine the corresponding coefficients. By ignoring higher order
terms, we obtain a first approximation to our value function, and hence to the
optimal choice of 6.

Given the presence of a fixed cost, the optimal policy will be to leave 6
unchanged until X,—0,is large. Write R for the region where 6 remains fixed. A
standard dynamic programming argument yields a partial differential equation
for v:

In the regime where 6; does not change, X, follows a diffusion process. The
martingale principle of optimality?, combined with It6’s lemma, shows that v
satisfies the inequality

0> 9w — (Bov)u(Xy — 0;) + (930) T FX; + %Tr(KthTE)Mv), (1)

with equality on K (when it is not optimal to change 6). Considering the pos-
sibility of changing €, we observe

v(t,z,2,0; \) > supv(t,z — X\, 2,05 \) (2)
0’

n [2] this analysis is completed, as the required regularity assumptions on v are checked,
to ensure that we have obtained an approximately optimal strategy. (See also [6] for a differ-
ent approach.) The corresponding calculations are lengthy and lend little to our qualitative
understanding.

2This is a form of the dynamic programming principle, and states that the value function
should be a martingale under the optimal strategy, and a supermartingale otherwise.



with equality on 8. Combining these two inequalities, we obtain the dynamic
programming equation

1
0= min{ — O + (O.v)u(d —0) — (03v) " Fi — §TI‘(K,5K;8;2;@U),
v(t,z,2,0;\) —supv(t,z — A\, 2,0'; )\)},
9/

with terminal value v(T, z, &, 0; \) = U(z). The difficulty in solving this equation
directly is that we have a free boundary for R We focus on obtaining an
approximation for small values of .

2.1 Asymptotic analysis

When A = 0 we know v(t,z,#;0) = U(z). Following [2], we expect that the
optimal strategy® will involve switching whenever || X — 6|| = O(A'/%), resulting
in a cost of O(A'/?). This gives the ansatz

v(t, 2, &,0; \) = U(z) + A20(t, 2) + Mp(t, 2, 2, &) + O(XY/?) (3)

where £ := (& — )N~/
Recalling our assumptions on p,

p(ENVH) = AV2TTE + o(AV/?),

where I' = —0,,p/2 is a positive-definite matrix.
We plug-in the ansatz (3) into (1), to obtain (on K)

1
0= X2 (g1 +€TTEU" + STe(KoK ee) ) +o(AY2).
On R, from (2) we have

0=uv(t,z,2,0; \) —supv(t,z — N\, £,0"; \)
9/

4
= —)\Ul - >\3/2¢z + A(w(tv Z, ‘%76) - S?/pw(t? Z = Av‘%vgl))' ( )

We can assume? 9(t,z — X\, 2,€) = (t, 2,2, &) + o(\), where the error depends
only on z and, as A multiplies ¢ in (3),

Sup 11[}(t7 Z’ ',:i:’ 6/) = /l/}(t7 Z’ j;’ O) = 07
&'/
which simplifies (4):

0= AU +(t,2,,8)) +0o(\).

3This strategy comes from analyzing, over long horizons, how often the boundary of an
interval will be hit by a random walk, averaging out the cost paid, then optimizing over the
width of the interval chosen. The arguments of [2] hold in our setting, mutatis mutandis.
4This assumption can be verified in many cases, see [2].



Considering the leading A-order term in each region, we obtain

0= ¢+ (ETTOU" + 3Tr (Ko K[ tbee) on &,
0=U'(2) +¥(t,2,%,¢) on K.

2.2 Exponential Utility

To obtain a closed-form solution, we shall assume that U(z) = (1 —e~*%)/k for

some k > 0. Then U’(z) = e~ ¥* and with ¢ = e¥*¢, ¥ = eF*9,

0= ¢+ (€T + 3 Tr (KoK ) on &,
0=—1+19(t, 2,8 on R¢.

In addition to this, a smooth pasting property should hold on the boundary.
Following [4, 2], we propose® a solution of the form

Pt 2,8,8) = =1+ (ETME - 1)

with & = {¢: €T M¢ < 1}, where M is a (symmetric, positive-definite) matrix
to be determined. Calculating,

Die = 4(€TME — 1)M — 8MEET M.
Therefore,
0=¢; +&'TE+ %Tr(KthTél(gTMf —1)M — 8MEET M)
= 61 — 2T (K K] M) + €7 (T + 2MTe(K K, M) — AMK, K] M)é.
This should hold for all £, so by comparing coefficients
0=T+2MTr(K,K M) - AMK, KM (5)
which is an algebraic equation to be solved for M.

2.3 The scalar setting

In one dimension, (5) simplifies to

0=T-2M*K} & M= F/2.
K
The no-switching region is
VE:

5In one dimension, this is the smallest family of polynomials which could satisfy our as-
sumptions.



In the special case where the hidden variable X; is constant,
Po=K,=(1/Py+t)7!,

and as P; is the variance of X;|F;, we observe the desired test-statistic behavior;
we switch whenever .
| X¢ — 04
Ptl /2

for ¢ = (2\/T")Y/%. By choosing the test size a of our two-sided test such that ¢
is the critical value of the test statistic, our optimal policy is to switch whenever
a hypothesis test is failed.

Remark 1. In the scalar setting, when X is not a constant, it is interesting that
the optimal switching does not correspond to a hypothesis test with fized test
size. In general, § has width oc K;/? = (P,H,/R,)Y/2. As H,/R, describes the
quality of observations, and hence the volatility of X , we see that in periods of
low-quality data (so X is not volatile) our agent will switch more frequently, as
deviations between 6; and X; are likely to persist for longer.
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Appendix: Illustration in Discrete Time

In order to give a concrete example, and to justify the asymptotica approxima-
tion used, we consider the similar problem of estimating a parameter p € [0, 1],
sampling from Bernoulli trials Y; in order to conduct a hypothesis test of

H()Zp:p(] VS. H1 Zp?ép().

For notational simplicity, we write F; for the information available from the
first ¢ observations, that is Y3, ..., Y;.

If the sample size t is large we apply the Central Limit Theorem to the
Maximum Likelihood Estimator (MLE) p;.

Y; ~ idd. (p,p(1—0p)),

A two-sided hypothesis test of size « is a rule whereby we maintain Hy if p;
falls into a confidence interval. This standard ‘belief band of inaction’ is given
by (6), where z, /5 is the appropriate quantile of a standard normal distribution.

[po(1 — R [po(1 —
Do — Zay2 M <Pt <Po+ 22 M~ (6)

We now demonstrate exactly the same 1/+/f scaling effect from a very dif-
ferent perspective. For notational simplicity, we shall write 62 = p;(1 —p;), and
note that for large t, 62 — p(1 — p), in particular 6; asymptotically does not
depend on t.

Suppose our agent uses an estimator 6, based on the sample Y;. She incurs
two costs:

e A cost A whenever 0; changes



e A cost p(6; — pt), based on the error between 6; and the MLE p;, paid
at every time. We assume p is twice differentiable, convex and has a
minimum p(0) = 0.

Remark 2. The cost p can be motivated in various ways. One approach is to
treat the true probability p in a Bayesian fashion, and assume our agent faces
a running cost E[(p — 0;)?|F;], that is, a cost depending on the distance of
their estimate from the true (unknown) value. In this case, the MLE satisfies
pr = Elp|F], and we can compute

El(p— 0,)*|F] = El(p — pe)|Fe] + (be — 00)°

As the agent has no control over the term E[(p — p;)?|F;], the effective cost is
given by (p; — 0;)?, which is of the form considered.

From the theory of problems with transaction costs, see for example [2], the
optimal policy is for the agent not to act until the error W, := p; — 0, leaves some
interval. To a first approximation, which we consider more formally below, the
interval is of the form (—b,b), for some b to be determined. When W does leave
this interval, the optimal strategy is to set 8; = py, or equivalently W; = 0(this
is essentially because p; is an unbiased estimate of p).

To find b, we first consider the behaviour of W between two sequential
switching times t; < to. We can write

t t

Wimpi—pu= > i-p)~r > (Y-, )
i=t1+1 i=ti14+1

where the approximation is justified whenever t;* — ¢;* is small. Hence W is

approximately the sum of a sequence of mean-zero iid random variables, and

so is well modelled as a random walk with up-probability p;,. Clearly, this

approximation is better when t; is large and b is small (so switches occur more

frequently).

Using the approximation of W as a random walk, we choose b to minimize
expected costs. We have to trade off between our running cost and the cost of
switching. For a time s, we try and evaluate the expected cost at time ¢, given
our barrier strategy b. We first compute the running cost term.

Write Cy(b) = p(pr — 6;) = p(W;) when 0, is determined using a boundary
b. From our assumptions on u, provided W4 is not too large (which will happen
whenever b is small or ¢ is large), we can approximate with Taylor’s theorem
p(Wy) =~ yW? for some constant ~.

Assuming our agent will be active over a long horizon, it is the long-run
average value of this cost which is important. As b may change through time, it
is natural to rescale our random walk, and see that the stationary distribution
of W /b approximately has ‘triangular’ density

1+W/ if —1<W/b<0
gW/b)=<1-W/b if0<W/b<1
0 otherwise.



This can be seen by the facts that:

* g(-1) =9(1) =0,
e The density integrates to unity.

e From considering the possible paths of W, except at w = 0, the only

way for W to reach w is from being previously at either w — 11;1% and

observing Y =1, or at w+ btl and then observing Y = 0. In the stationary
distribution, thls implies

N 1— ﬁtl ) A Dbt
o= L) 0o+ )
g(w) pt19<w i, )T (1 =P, )g(w+ by
This equation is solved by linear functions g, and only by linear functions
in the limit bt; — oco. Given the relationship does not need to hold at
w = 0, we obtain a triangular density.

The density g(.) has variance 1/6 and substituting,

b2
E[Cy(b)|Fs] ~ VE

for s < t.

We now seek to understand the expected switching cost, E[C}(b)|Fs], where
C*b) = M if [Wi| > b and zero otherwise. Using our rescaled random walk
W /b, we need to find the probability of W/b hitting +1 at a time ¢ > s. As
W/b is approximately a random walk restarted at zero, this is approximately
1/E[r|F:,], where T = to — t; is the time taken to hit 1 from zero.

To calculate E[7|Fy, ], heuristically we calculate when the standard deviation
of W/b equals 1. (Formally, this can be verified using the optional stopping
theorem for the martingale part of (W/b)2.) Starting at t1, from (7), W;/b has
approximate variance

1 o7,
Var(W, /b) ~ —— Z 62 =(t—t1)- or
i=t1+1 1

so to find the average time to hit £1,

(bty)?  (bty)?

=2
0, o

Utl

bty

E[r|]—'t1]( ):1 = E[r|F,] =

provided s is sufficiently large that 67 ~ 62.

For t > s, with t; < t < tg, the probability of hitting the barrier at ¢,
incurring cost A, is 1/E[r|F, ], so

E[CMb)|F,] ~ )\(%)2.



We can now minimize our expectations of long-run future costs Q(b) =
E[C}(b)|Fs] + E[Cy(b)|F] in a pointwise fashion:

d d 5 \2 b2

which yields

1/4 [4 5 1/4
b= <@> Is X& where x = (@> 6;1/2.
gl t Vi g

Therefore, we obtain a bandwidth b for the belief band of inaction that is pro-
portional to 1/y/f. As in the continuous time case, we also observe that the
width x of our band of inaction involves the square root of the data quality
ratio o< o /2, (To see that this corresponds to the data quality ratio, see that
Var(p, — pr_1) ~ 6;/t, while the variance of p; is 62/t. The ratio 6; > then
corresponds to the term H;/R; in the Kalman—-Bucy dynamics.)

This demonstrates the equivalence with a hypothesis test in the case of a
proportion, as desired. Using this b, we have

26y [ Ay
o) =%

which suggests the A'/2 scaling of our asymptotic approximation in continuous
time. We also note that b — 0 and bt — oo as t — oo, implying that our
assumptions can be justified over long horizons.

10



