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Abstract

We make four contributions to the ‘news versus noise’ literature: (I) We

provide a new identification scheme which, in population, exactly recovers

news and noise shocks. (II) We show that our scheme is not vulnerable to

Chahrour and Jurado’s (2018) criticism about the observational equivalence of

news and noise shocks, which uniquely holds if the econometrician only ob-

serves a fundamental, and agents’ expectations about it. By contrast, we show

that observational equivalence breaks down when the econometrician observes

macroeconomic variables encoding information about the signal (and therefore

about news and noise shocks), because they are chosen by agents conditional

on all information, including the signal itself. (III) We propose a new econo-

metric methodology for implementing our identification scheme, and we show,

via a Monte Carlo study, that it has an excellent performance. (IV) We pro-

vide several empirical applications of our identification scheme and econometric

methodology. Our results uniformly suggest that, contrary to previous findings

in the literature, noise shocks play a minor role in macroeconomic fluctuations.
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1 Introduction

Noise shocks–defined as announcements about future fundamentals which, in fact,

never materialize–offer the possibility of generating macroeconomic fluctuations with-

out any variation in the economy’s fundamentals. They are therefore radically differ-

ent from news shocks, i.e. announcements about future fundamentals which do indeed

materialize at some future date.

Finding a way to distinguish between news and noise shocks has proved difficult.

Indeed, Chahrour and Jurado (2018) claim that news and noise shocks are obser-

vationally equivalent. In this paper, we develop a new identification scheme which,

in population, exactly recovers news and noise shocks, and show that Chahrour and

Jurado’s (2018) claim is not generally valid. Our identification scheme cannot be

imposed using a structural Vector Autoregressive (SVAR) model, but we show how it

can be imposed using a structural Vector Autoregressive Moving Average (SVARMA)

model. We develop Bayesian econometric methods for implementing the identifica-

tion scheme and demonstrate, in a Monte Carlo study, their excellent performance.

We then use our methods in several empirical applications. In all of these we find

that, contrary to previous findings in the literature, noise shocks play a minor role in

macroeconomic fluctuations.

Our identification strategy is based on the general principle that agents’ inability

to distinguish news and noise shocks on impact–which is the essence of the entire

‘news versus noise’ problem–implies that

(1) the responses of the economy to the two shocks at =0 will be the same,

whereas

(2) they will progressively diverge further out.

As time goes by agents gradually learn whether the announcement was news (i.e.

that the fundamentals will indeed change) or simply noise, leaving fundamentals

unchanged. To provide some intuition, consider an announcement that purports to

promise a future positive permanent shock to Total Factor Productivity (TFP). Is

this announcement news or noise? Initially, it is impossible to tell. As we illustrate

in Section 3 using the real business cycle (RBC) model of Barsky and Sims (2011)

augmented with noise shocks about TFP, such an announcement indeed produces, on

impact, identical impulse vectors regardless of whether it is news or noise (see Figure

2). The crux of our identification strategy is that, although news and noise shocks

are observationally equivalent on impact, they are not at all subsequent horizons.

The news shock will ultimately cause a permanent increase in TFP, whereas the

noise shock will not. This implies that there is no way that the two shocks might be

confused once the entire set of their properties is taken into account. Quite simply,

within the present example, a permanent shock cannot be observationally equivalent

to a transitory one.

This apparently conflicts with Chahrour and Jurado’s (2018; henceforth, CJ) claim

that news and noise shocks are observationally equivalent. We show that CJ’s result
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crucially hinges on the fact that they cast their entire analysis in terms of the joint

process for fundamentals and agents’ expectations about them. When the analysis is

instead cast in terms of the joint process for fundamentals and signals about news

and noise, observational equivalence breaks down, and the two shocks are, in fact,

separately identified.1 This implies that since, in general, agents should be assumed

to observe the signal, they are in fact able to disentangle news and noise shocks. We

further argue that the fact that agents observe the signal, and the econometrician does

not, does not imply that the observational equivalence of news and noise shocks holds

from the econometrician’s perspective. Econometricians can disentangle news and

noise shocks, and the reason for this is straightforward. Although econometricians do

not observe the signal, they do observe macroeconomic variables encoding information

about the signal–and therefore about news and noise shocks–because they have

been chosen by agents conditional on all information, including the signal itself. This

implies that the distinction between economic agents (who observe the signal) and

econometricians (who do not) is, for discussion of observational equivalence of news

and noise shocks, irrelevant. The key point is that both of them have information

about the signal, either because they directly observe it (the agents), or because they

see how macroeconomic variables react to it (the econometricians). Working with

the RBC model with noise shocks about TFP, we then provide a straightforward

illustration of how the impulse response functions (IRFs) to news and noise shocks,

and the fractions of forecast error variance (FEV) of the variables they explain, can

be exactly recovered in population by imposing the model-implied restrictions that

() news and noise shocks produce identical impulse vectors on impact, and () news

and non-news shocks are the only disturbances having a permanent impact on TFP.

Our econometric methodology is based on Bayesian estimation of structural VARMA

models.2 The need for using VARMAs instead of VARs originates from the fact that

the ‘news versus noise’ problem automatically produces a reduced-rank structure for

the matrix of the shocks’ impact responses at =0.3 In the econometrics literature, a

common finding is that VARMAs can be over-parameterized and difficult to estimate,

particularly in high dimensional setups such as that used in this paper. Building on

previous work with reduced form VARMAs,4 we derive methods for estimating the

SVARMA implied by our identification scheme. We use stochastic search variable

selection (SSVS) methods–see in particular George et al. (2008)–to pick out re-

strictions and ensure parsimony in an otherwise over-parameterized model. In our

1In a companion note–see Benati, Eisenstat, and Koop (2018)–we provide a general proof of

this point, based on Hilbert spaces arguments.
2The general point that SVARMAs can be used to estimate (nonfundamental) semi-structural

models goes back to Hansen and Sargent (1981) and Ito and Quah (1989).
3Intuitively, this has to do with the fact that the very essence of this problem causes the impulse

vectors to news and noise shocks at =0 to be identical. In turn, this automatically implies that,

with two identical columns, the matrix of the shocks’ structural impacts at =0 cannot have full

rank.
4See Chan et al. (2016).
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Monte Carlo study, we find our algorithm to work extremely well.

We consider three empirical applications of our identification scheme and econo-

metric methodology. The first ‘news versus noise’ problem pertains to TFP. In the

second we consider a model involving real dividends and stock prices (with the ‘noisy

news’ setup pertaining to real dividends). Finally we consider an application involv-

ing defense expenditure. In all cases, we find that noise shocks play a minor role

in macroeconomic fluctuations. Our results for the system featuring TFP contrast

with those of both Blanchard et al. (2013) and Forni et al. (2017), who found a

significant role for noise shocks pertaining to productivity. Likewise, results for the

system featuring dividends and stock prices contrast with the corresponding findings

of Forni et al. (2017).

The paper is organized as follows. The next section discusses several theoretical

implications of the ‘news versus noise’ problem. In Section 3 we illustrate the main

features of Barsky and Sims’ (2011) RBC model augmented with noise shocks about

TFP. We show, working in population, that low-order SVARMAs can approximate

very well the model’s theoretical IRFs and fractions of FEV explained by individ-

ual shocks. We also discuss our identifying restrictions. In Section 4 we address the

potential observational equivalence issue raised by CJ. Section 5 describes our econo-

metric methodology, and discusses the Monte Carlo evidence about its performance.

Section 6 contains our three empirical applications. Section 7 concludes, and discusses

possible directions for future research.

2 Theoretical Implications of the ‘News versus Noise’

Problem

In this section we discuss several theoretical implications of the news versus noise

problem and illustrate them with reference to a standard present-value model for

dividends and stock prices. Three implications which play a crucial role in our iden-

tification strategy have already been mentioned:

(1) On impact (i.e., at =0) news and noise shocks generate identical IRFs.

(2) After impact (i.e., for all 0) IRFs to news and noise shocks progressively

diverge.

(3) The impact matrix of the structural shocks at =0 has reduced rank.

Two further theoretical implications of the news versus noise problem are the

following:

(4) The structural model possesses a non-fundamental representation.

(5) The absolute magnitude of the economy’s response to noise shocks at =0 is

monotonically decreasing in their standard deviation.

As already discussed, (1) is a direct logical implication of agents’ inability to

distinguish news and noise shocks on impact–which is the essence of the news versus

noise problem–whereas (2) simply originates from the fact that, as time goes by, the
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true nature of the shock is progressively revealed to agents. In particular, in the RBC

model of Section 3, the news shock ultimately causes a permanent increase in TFP,

whereas the noise shock does not cause any permanent change in any variable. One

small qualification to (1) is that exact equality between the IRFs to news and noise

shocks at =0 holds when the standard deviations of the two shocks are identical.

In the general case, the two impulse vectors at =0 will be proportional, with the

coefficient of proportionality being equal to the ratio between the two shocks’ standard

deviations. Our identification strategy will therefore impose proportionality, rather

than strict equality, between the two impulse vectors at =0. This proportionality

implies that the impact matrix of the structural shocks at =0 will be reduced rank.5

This will automatically imply (4), i.e., that the model possesses a non-fundamental

representation.6

The reason for the fifth implication is straightforward. As the volatility of noise

shocks increases, the signal becomes less and less informative, and agents therefore

react to it less and less. In the limit, as the volatility of noise shocks tends to infinity,

so that the signal becomes completely uninformative, agents’ reaction to it–and

therefore to noise shocks–tends to zero. This implies that the absolute magnitude

of the IRFs to noise shocks at =0 is monotonically decreasing in their standard

deviation.7 With the magnitude of the economy’s response decreasing as the volatility

of noise shocks increases, an obvious question is whether the importance of these

shocks at driving macroeconomic fluctuations (in terms of the fractions of FEV of

the variables they explain) is increasing or decreasing with their volatility. Although

it is not possible to make general statements on this issue, in the model for dividends

and stock prices of the next sub-section, the relationship is hump-shaped (see panel

III of Figure 1 below, whereas panel II presents the corresponding evidence for the

IRFs of stock prices at =0). Intuitively, when the standard deviation of noise shocks

is small, the increase in the volatility of noise shocks dominates the decrease in agents’

response to them. As this standard deviation increases, there becomes a point where

the latter effect becomes the dominant one, and the importance of noise shocks in

driving stock prices decreases.

5It is worth mentioning in passing that the proportionality of IRFs (and therefore the correspond-

ing matrix of impacts being reduced-rank) only holds on impact. This is a direct logical implication

of the fact that, as time goes by, the true nature of the shock is progressively revealed to agents, so

that, at all periods after impact, the economy’s responses to news and noise shocks will necessarily

diverge.
6In Section 5.1 we discuss how we address the issue of non-fundamentalness within our econo-

metric framework. In a nutshell, for each draw from the posterior distribution of the coefficients

of the VARMA model, we consider all of the possible representations obtained by ‘flipping the MA

roots’ inside and outside of the unit circle.
7It is clear that the magnitude of the impact of noise shocks on the economy at =0 will be zero

if their standard deviation is zero (in which case there are no noise shocks to speak of). This implies

that the magnitude of the impact of noise shocks on the economy at =0, as a function of the shocks’

standard deviation, exhibits a discontinuity at zero.
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2.1 A simple illustration

2.1.1 A present-value model for dividends and stock prices

We illustrate the news versus noise problem with reference to a standard present-value

model for dividends and stock prices along the lines of Forni et al. (2017), in which

stock prices are equal to the present discounted value of future expected dividends.8

Labelling stock prices and log dividends as  and , respectively, and using notation

where + | subscripts on any variable denote expectations at time  of the variable
at time +, we have:

ln =

∞X
=0

+| (1)

where  is the discount rate. Log dividends are assumed be the sum of two unobserved

components, a permanent and a transitory one,

 =  +  (2)

which evolve according to

 = −1 + 
 + 

−1 (3)

 = 

 +  (4)

where 
 and 

 are the non-news and news shocks, respectively, with 
 ∼

(0 2) and 
 ∼ (0 2); 0    1; and  ∼ (0 2).

Specification (2)-(4) is the same as the one used by Blanchard et al. (2013), with

the crucial difference that, in their case, the equation for the permanent component

does not feature a ‘proper’ news shock–defined as a time- disturbance which impacts

upon the relevant variable only at a future date–as it is uniquely driven by a standard

‘surprise’ disturbance which enters contemporaneously. As we shall discuss below, this

is the key reason why, on impact, their IRFs to the noise and surprise shocks are not

the same.

Although at time  agents observe , its two individual components, 

 and

 , are never observed. Agents however observe a signal, , which reveals some

information about the news shock:

 = 
 +  (5)

with  ∼ (0 2). Online Appendix A.1 characterizes and solves the agent’s signal

extraction problem. Based on (1), (2), and (A.5) the solution for log stock prices is

given by

ln =
|
1− 

+
|

1− 
+



1− 

| =

|
1− 

+
|

1− 
+

32

1− 

£

 + 

¤
 (6)

where 32 is defined in online Appendix A.1.

8Appendix A.2 presents an additional illustration based a standard New Keynesian model in

which the news versus noise problem pertains to the natural rate of interest.
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Figure 1  Impulse-response functions of log stock prices to the structural shocks, and fractions of the 
             FEV of stock prices explained by noise shocks, as a function of their standard deviation 
 
 



2.1.2 Illustrating the theoretical implications of the ‘news versus noise’

problem

Since, on impact, neither news nor noise shocks affects either | or 

| it follows

that: ∙
 ln




¸
=0

=

∙
 ln



¸
=0

=
32

1− 
(7)

In words, since on impact agents are unable to distinguish between news and noise

shocks, they will react to either disturbance in the same way, and stock prices will

jump by exactly the same amount–i.e., implication (1) above. This feature was also

noticed, in passing, by Forni et al. (2017), who pointed out (see their Section 2.2) that

‘[...] the impact responses are identical, since the agents cannot distinguish between

the two shocks immediately.’ Forni et al. (2017), however, did not exploit this for

identification purposes, as their identification strategy is based on dynamic rotations

of the VAR’s residuals.

Blanchard et al.’s (2013) IRFs, on the other hand, do not exhibit this property.

The reason is that in their case the process for the permanent component of technology

does not feature a news shock. Their analogue to our  is uniquely driven by a

standard surprise disturbance. This implies that, on impact, there cannot be any

symmetry between this disturbance and the noise shock. This is because whereas,

at =0, the noise shock only impacts upon the economy via the signal, the surprise

shock affects both the signal and (via the permanent component) the relevant variable

itself. As a result, the impact upon the economy at =0 of the two shocks considered

by Blanchard et al. (2013) cannot possibly be the same. Noise shocks and news

shocks, on the other hand, are perfectly symmetrical at =0, as they impact upon

the economy uniquely via the signal extraction problem, within which they cannot

be distinguished. As a result, their impact on the endogenous variables at =0 must

necessarily be identical.

The first panel of Figure 1 plots IRFs to unitary innovations in the four shocks,

by setting =0.99, =0.9, ====0.01. As implied by (7), the impact

responses to news and noise shocks are identical.9 As time goes by, agents observe

dividends, and therefore learn whether the signal at =0 was news or noise, and the

two IRFs therefore progressively diverge: The IRF to news shocks converges to the

new permanent level of stock prices, whereas that to noise shocks converges to zero.

Another point to stress is that, at all horizons beyond =0, the magnitude of

the IRF associated with noise shocks is smaller than the one of the IRF associated

with news shocks. The reason is that agents are gradually learning about the nature

of the shock. At =0 they cannot distinguish the two shocks (and so they react in

exactly the same way), whereas at =∞ they can perfectly disentangle them (and

9Notice that IRFs in Figure 1 are to shocks of size one, so that the impact responses to news and

noise shocks are identical for either variable. As mentioned, in general the impacts are proportional,

with the factor of proportionality being equal to the ratio between  and .
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their reaction is therefore positive to the news, and zero to the noise). At all other

horizons their reaction is intermediate between these two extremes. As we will see

in Section 3.2 based on Barsky and Sims’ (2011) RBC model augmented with noise

shocks about TFP, this feature is a remarkably robust one.

As for implication (3), with four shocks, and just three observed variables (div-

idends, stock prices, and the signal), the present model does not allow to properly

illustrate the reduced-rank structure of the matrix of the shocks’ structural impacts

at =0. For this, we will have to wait for the RBC model of Section 3. As mentioned,

non-fundamentalness–implication (4)–is a direct implication of the reduced-rank

structure of the matrix of structural impacts at =0.

With regards to implication (5), the second panel of Figure 1 shows the impact

response at =0 of stock prices to noise shocks as a function of their standard de-

viation. Apart from the discontinuity at zero, the impact response is monotonically

decreasing, reflecting the fact that, as the signal becomes noisier and noisier, agents

react to it less and less. Finally, the last panel of Figure 1 illustrates how, in this

model and for these parameter values, the fraction of the FEV of stock prices at =0

explained by noise shocks, as a function of their standard deviation, exhibits a ‘Laffer

curve-type’ shape. Over the initial portion of the parameter space, the increase in

the volatility of noise shocks dominates the decrease in agents’ response to them.

Beyond a certain point, however, the latter effect becomes the dominant one, and the

importance of noise shocks at driving stock prices decreases more and more.

We now turn to Barsky and Sims’ (2011) RBC model, which we augment with

noise shocks about future TFP.

3 Barsky and Sims’ (2011) RBCModel Augmented

With Noise Shocks About TFP

The preceding section examined the properties of news and noise shocks within a

simple theoretical model. In our empirical work we will use SVARMAmethods, which

are atheoretical except for imposing identifying restrictions motivated by theory. In

this section we motivate the use of SVARMA methods based on the RBC model of

Barsky and Sims (2011), which we augment with noise shocks about TFP. In the next

section, working with the theoretical MA representation of the model, we will show

that our identifying restrictions can exactly recover news and noise shocks.

The basic elements of the RBC model of Barsky and Sims (2011) can be succinctly

described as follows (for details, see Barsky and Sims, 2011, Section 2.2.1). Consumers

maximize the discounted sum, with discount factor 0    1, of the period- utility

flows  ≡ ln( − −1) − 
 (1 + 1)

−11+1
 , for  = 0, 1, 2, 3, ..., ∞. 

is consumption,  is hours worked, 

 is a random process whose logarithm,  ,

is (0, 2), 0    1 is a parameter capturing the strength of habit formation

and  captures the curvature of the labor supply function. Output, , is the sum
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of consumption, investment (), and public expenditure () and it is produced via

the production function  = 



1−
 , where  is the capital stock, and  is the

Cobb-Douglas parameter. The capital stock evolves according to the law of motion

+1 = (1 − ) + [1 − (2)(−1 − ̃)
2], where  is the depreciation rate, 

is a parameter capturing the magnitude of capital adjustment costs, and ̃ is the

gross rate of growth of investment in the steady-state. Finally, public expenditure is

postulated to be equal to a stationary random fraction of GDP, that is,  = ,

with ln  = ln ̄ + 

 , with 


 being (0, 

2
).

Productivity is captured by , and we assume that  = ln() evolves according

to

 = ̃ +  (8)

where ̃ is the unobserved permanent component of productivity, and  is a white

noise disturbance,  ∼ (0 2). The ‘news versus noise’ problem pertains to the

productivity process. In particular, we assume that the permanent component of 
evolves according to

̃ = ̃−1 + 
 + 

− (9)

where, once again, 
 and 

 are a non-news and a news shock, respectively, and

 is the anticipation horizon for the news shock. Although at time  agents observe

, its two individual components, ̃ and , are never observed. In each period,

however, agents receive a signal, which is equal to the sum of the news shock and of a

noise component as in (5). Details of the agent’s signal extraction problem, together

with the model’s solution, are given in online Appendix C.

Figure 2 shows the IRFs of the logarithms of GDP, consumption, investment,

hours and technology to one-standard deviation non-news, news and noise shocks.

The model is calibrated using parameter values similar to those in Barsky and Sims

(see online Appendix C). As expected, the IRFs to news shocks are qualitatively in line

with those reported in Barsky and Sims’ (2011) Figure 1, with consumption increasing

on impact; GDP, investment and hours falling on impact; and GDP, consumption,

and investment subsequently converging to their new, higher, steady-state values.

Once again, for either variable the responses to news and noise shocks at =0 are

identical. The IRFs of GDP, consumption, and investment to noise shocks fade away

to zero quite rapidly, whereas those to news shocks converge to the new steady-state

values. As for hours, the response to noise shocks quickly fades away to zero, whereas

that to news shocks, although it ultimately also converges to zero, exhibits a strong

hump-shaped pattern as in Barsky and Sims (2011). Finally, in response to non-news

shocks GDP, consumption, investment and hours all increase on impact.

Figure I.1 in the online appendix10 shows the fractions of FEV explained by non-

news, news and noise shocks. Key points to stress are that () noise shocks explain

almost nothing of the FEV of any variable at all horizons; () non-news and news

10The online appendix can be found at Luca Benati’s webpage, at:

https://sites.google.com/site/lucabenatiswebpage.
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Figure 2  Impulse-response functions to non-news, news and noise  
             shocks for Barsky and Sims’ (2011) model augmented 
             with noise shocks about TFP 
 



shocks explain, at long horizons, about 50 per cent each of the FEV of log TFP, and

they explain non-negligible-to-sizeable fractions of the FEV of GDP, consumption,

and investment; and () none of the three shocks explain an appreciable amount of

the FEV of hours.

3.1 Reduced-rank structure of the matrix of structural im-

pacts at t=0

It can be seen immediately that the matrix of structural impacts at =0 has a reduced

rank. In particular, with two signal-extraction problems (news versus noise, and non-

news versus transitory) there are two pairs of columns (i.e., of impulse vectors at =0)

which are proportional to each other: The column generated by noise is proportional

to the one generated by news, and the same holds true for the two impulse vectors

generated by non-news and transitory.11 This implies that, within the present context,

the matrix of the structural shocks’ impacts at =0 has rank 3. We now turn to the

issue of whether low-order SVARMAs can well approximate the main features of the

model.

3.2 Approximating the theoretical model based on low-order

SVARMA(p,q)’s

Figure 3 compares the theoretical IRFs to non-news, news, and noise shocks generated

by the model (i.e., the very same IRFs shown in Figure 2) to those produced by either

its truncated theoretical SVAR(1) and SVAR(2) representations, or its truncated the-

oretical SVARMA(1,1) representation.12 Since, as can be trivially shown, the model

possesses a near-exact VARMA(1,1) representation,13 a truncated VARMA(1,1) re-

covers the true IRFs almost perfectly.14 Interestingly, although VARs can never re-

cover, even approximately, the IRFs to noise shocks,15 a VAR(2) can approximate

remarkably well the IRFs to both non-news and news shocks.

11Within the context of the present-value model for dividends and stock prices of Section 2.1 this

was illustrated in the first panel of Figure 1.
12The truncated theoretical SVAR and SVARMA representations of the RBC model have been

computed via linear projections methods starting from the RBC model’s structural MA representa-

tion, which can immediately be recovered from the model’s IRFs (see Appendix D).
13In the sense that all MA matrices after the first one have very small entries.
14Qualitatively the same evidence holds for the fractions of FEV: We do not report this evidence

for reasons of space, but it is available upon request.
15The problem is strictly conceptual: Within a VAR framework, there is no way to break the

one-to-one mapping at all horizons between the IRFs to news and noise shocks, originating from

the fact that they share the very same impulse vector on impact. As a result, a VAR automatically

forces the IRFs to news and noise shocks to be identical at all horizons. But since the two sets of

IRFs are identical only on impact, and then diverge at longer horizons, it is logically impossible for

a VAR to correctly recover the true IRFs. This implies that increasing the VAR’s lag order cannot

solve the problem.
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Figure 3  Approximating the IRFs of Barsky and Sims’ (2011) RBC model augmented with  
             noise shocks by means of theoretical SVAR(MA) representations  
 
 



Although these results have been obtained based on a fairly simple DSGE model,

at the very least they suggests that, in practice, structural VARMA models with a

small MA lag order might be sufficient to accurately approximate the main features

of the underlying DGP.

3.3 Identifying restrictions

Motivated by the previous discussion, in our empirical work we will impose the follow-

ing restrictions in order to identify non-news, news, and noise shocks (in Section 4.2

we will show that these restrictions allow indeed to exactly recover the three shocks

in population):

(1) At =0, the variable of interest–to fix ideas, TFP–is impacted upon by only

two disturbances, the non-news shock, and a transitory shock which is disentangled

from the non-news shock because it explains the minimum fraction of the FEV of

TFP at a specific long horizon (which we will take to be 20 years ahead). The reason

for departing slightly from the corresponding restriction used by Barsky and Sims

(2011)–who identify the non-news shock as the reduced-form innovation in TFP–is

discussed below.

(2) The news shock is the one which, among all of the remaining shocks, explains

the maximum fraction of the FEV of TFP at a long horizon (again, 20 years ahead).

In order to isolate the noise shock from the remaining disturbances, we impose

the following restriction:

(3) The impulse vectors generated on impact by news and noise shocks are pro-

portional to each other.

Restriction (1) differs from the corresponding restriction used by Barsky and Sims

(2011),

(10) the non-news shock is identified as the reduced-form innovation to TFP,

by allowing for an additional transitory shock to impact upon TFP at =0. Our

preference for scheme (1)-(3), over the alternative scheme defined by (10), (2), and
(3), originates from the fact that the alternative scheme suffers from the following

problem. As the previous discussion of the RBC model augmented with noise shocks

made clear, for these shocks to play any role it ought to be the case that the permanent

component of TFP is not perfectly observed, which is obtained by having a white

noise shock impacting upon TFP at =0. By postulating that the non-news shock

is the only one impacting upon TFP at =0, on the other hand, Barsky and Sims’

(2011) assumption (10) implicitly postulates that the permanent component of TFP
is, in fact, perfectly observed, which rules out the possibility that noise shocks might

play a role. Because of this, in what follows we will report and discuss results based

on scheme (1)-(3).

Although these restrictions (together with a technical restriction given in (23) and

discussed in Section 5.1) are sufficient to identify the three shocks, in what follows

we will also consider imposing additional restrictions, in order to get more precise
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estimates. We therefore conduct an exercise in the spirit of Canova and Paustian

(2011) in order to derive a set of robust restrictions pertaining to news and noise

shocks, where ‘robust’ means ‘holding for an overwhelmingly large fraction of plausible

random combinations of the model’s parameters’.

We consider the following sets of plausible values for most of the model’s structural

parameters: : [0, 0.99]; : [0.01, 0.08]; : [0.1,∞)16; : [0.01, 0.1]; ̄: [0.15; 0.25]; ̃:
[0; 0.04] and we set the standard deviations of news and noise shocks to ==1.

The remaining parameters are calibrated as in Barsky and Sims (2011) as described

in online Appendix C. Following Canova and Paustian (2011), we take 100,000 draws

for the parameters from Uniform distributions defined over these intervals. For each

draw of the parameters, we solve the model and compute IRFs to news and noise

shocks and the fractions of the FEV of either variable explained by the two shocks.

Table 1: Proportion of Drawn Parameters which Satisfy the Restriction:

News Shock IRFs Greater than Noise Shock IRFs (in absolute value)

Periods after impact TFP GDP Consumption Investment Hours

1 1.00 1.00 1.00 0.71 0.98

2 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00

8 1.00 1.00 1.00 1.00 1.00

Table 1 reports the proportion of drawn parameters which produce IRFs which

satisfy one possible restriction of interest: That IRFs to news shocks are, in absolute

value, greater than those to noise shocks.17 These proportions turn out to be identical

to the proportion of draws for which the percentage of the FEV explained by news

shocks is greater than that explained by noise shocks. There is strong support for

this restriction for all variables and at all horizons. For horizons of two or more

this support becomes overwhelming. Accordingly, in our empirical work some of

our specifications will impose the restriction that news shocks have larger IRFs (in

absolute value) than noise shocks two periods after impact.18

We now turn to addressing the issue of whether news and noise shocks can in fact

be separately identified.

16To be precise, we set the upper value of the interval to be 1

where  is MATLAB’s definition of

a small number which is equal to 2.2204e-16.
17We do not report results for =0 because on impact the two sets of IRFs are identical.
18This statement assumes that news and noise shocks have the same standard deviation. A slight

adjustment is required when they have different standard deviations which is described in section 5.
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4 Can News and Noise Shocks Be Disentangled?

The possibility of separately identifying news and noise shocks has been recently

called into question by CJ (2018), who have argued that the two shocks are, in fact,

observationally equivalent, and as such cannot be disentangled. In this section we

briefly summarize the main results from a companion note–see Benati, Eisenstat,

and Koop (2018)–in which we show that CJ’s observational equivalence result holds

only under a specific assumption about what the econometrician can observe and

does not hold in more general (and more realistic) frameworks. We make three main

points:

(I) CJ’s result about observational equivalence crucially hinges on their casting

the analysis from the perspective of the joint distribution of fundamental variables

and agents’ expectations about them. We demonstrate that observational equivalence

breaks down if the analysis is instead cast from the perspective of the joint distribution

of fundamental variables and signals about them.19 This implies that since agents

are typically assumed to observe the signal, they should be able to disentangle news

and noise shocks.

(II) The fact that econometricians do not observe the signal does not imply that

observational equivalence of news and noise shocks holds from the econometricians’

perspective. The reason for this is straightforward. Although econometricians do not

observe the signal, they observe ‘what the signal does to the economy’. Within

any relevant macroeconomic model–e.g., Blanchard et al.’s (2013) model, or the

RBC model with noise about TFP of Section 3–economic agents react to the signal,

and their actions have an impact on the economy. This implies that macroeconomic

variables contain information about the signal, and therefore about news and noise

shocks. Within the RBC model of Section 3, for example, all variables (with the

obvious exception of TFP itself) react to the signal, and therefore contain information

about it. This is what a general equilibrium, rational expectations framework implies.

The crucial question therefore becomes whether econometricians–armed with () the

information about the signal contained in macroeconomic data, and () appropriate

identifying assumptions–can perform the same task as agents can, that is: Can they

disentangle news and noise shocks? The answer to this question depends on the

macroeconomic model the econometrician is working with, but for the sorts of models

used in the noisy-news literature we argue that the answer is yes.

(III) We provide a simple illustration of this point based on the RBC model of

Barsky and Sims (2011), which we augment with noise shocks about future TFP.

Working in population, we show that the impulse response functions (IRFs) to news

and noise shocks, and the fractions of forecast error variance (FEV) of the variables

they explain, can be exactly recovered by imposing the model-implied restrictions

that () news and noise shocks produce identical impulse vectors on impact, and ()

19Benati, Eisenstat, and Koop (2018) contains a general proof of this based on Hilbert spaces

arguments.
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news and non-news shocks are the only disturbances having a permanent impact on

TFP.

We start by illustrating point (I) based on one of CJ’s simple mathematical ex-

amples.

4.1 A simple theoretical example

Throughout the entire paper, CJ (2018) state their results about the observational

equivalence of news and noise shocks from the perspective of the bivariate process

for fundamentals and agents’ expectations about them (i.e., within the context of the

model of Section 3, , and either |−1 or +1|). Based on a theoretical example
from their paper,20 we now show that, although news and noise shocks are indeed

observationally equivalent when a researcher adopts that particular perspective, this

is not true in general. In particular, we show that if a researcher adopts instead the

perspective of the bivariate process for fundamentals and signals, the observational

equivalence result disappears. In online Appendix H we show that the same holds

true for all of CJ’s (2018) theoretical examples.

Let

 = −1 +  (10)

 =  +  (11)

where  is the observed process,  is the signal, and , , and  have the interpre-

tation of non-news, news, and noise shocks, with  ∼ (0 2),  ∼ (0 2), and

 ∼ (0 2). We start by showing that, from a perspective of [, |−1]0, news and
noise shocks cannot be disentangled.

4.1.1 Observational equivalence conditional on [, |−1]0

From (10) we have that |−1 = −1|−1. By applying the Kalman filter to (11) we
have

| =
2

2 + 2| {z }


[ + ] =  (12)

so that

|−1 = [−1 + −1] (13)

The process [, |−1]0 is fully characterized by the following non-zero moments:21

Var[] = 2 + 2 (14)

Cov[, |−1] = Var[|−1] =
4

2 + 2
(15)

20The example is from Section 3.2, pp. 15-16.
21All other moments are equal to zero.
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With three parameters (2, 
2
, and 2) and two equations, the system is not identi-

fied, which is another way of stating that the shocks cannot be separately disentan-

gled.

4.1.2 Observational non-equivalence conditional on [, ]
0

Consider instead what happens if we use [, ]
0 as the data. In this case, the system

is identified, and news and noise shocks are no longer observationally equivalent. With

 and  given by (10) and (11), the system [, ]
0 features three distinct non-zero

moments, instead of two. The first one is still given by (14) and the other two are

given by

Var[] = 2 + 2 (16)

Cov[, −1] = 2 (17)

Equation (17) directly provides 2. Given 
2
, equations (14) and (16) then allow for

the computation of 2 and 2.

4.1.3 Discussion

This simple example illustrates how the possibility of separately identifying news and

noise shocks crucially hinges on what the researcher regards as the data. Within

the present context, the two shocks are indeed observationally equivalent from the

perspective of [, |−1]0, but they are not from the perspective of [, ]
0. Rather,

based on data for [, ]
0, the shocks’ IRFs and fractions of FEV can be exactly

recovered in population. As shown in online Appendix H, the same holds true for

CJ’s more complex models. Finally, Benati, Eisenstat, and Koop (2018) contains a

general proof (based on Hilbert spaces arguments) that conditional on observing the

signal news and noise shocks are not observationally equivalent.

This has two important implications. First, since agents are typically assumed to

observe the signal, in principle they should be able to disentangle news and noise

shocks. Second, although econometricians do not observe the signal, in fact they do

observe the economy’s response to it, as encoded in the reaction of macroeconomic

variables such GDP, consumption, investment, and hours, which are all optimally cho-

sen by agents conditional on all information, including the signal itself. This implies

that the distinction between economic agents (who observe the signal) and econome-

tricians (who do not) is, for discussion of observational equivalence of news and noise

shocks, irrelevant. The key point is that both of them have information about the

signal, either because they directly observe it (the agents), or because they see how

macroeconomic variables react to it (the econometricians). In turn this logically sug-

gests that, based on the information on the signal contained in macroeconomic data,

econometricians armed with appropriate identifying assumptions might well be able

to disentangle news and noise shocks–exactly as agents, in principle, can. As we now
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show based on the RBC model with noise, this is indeed the case, as our identifying

restrictions allow to exactly recover the shocks’ IRFs and fractions of explained FEV

in population.

4.2 Recovering the IRFs and fractions of FEV in population

Let the theoretical structural MA representation of the RBC model’s observables be

 = 0 +1−1 +2−2 +3−3 +  (18)

where  = [    ]
0, where , , , and  are the logarithms of GDP,

consumption, investment, and hours;  = [

   


   


 ]
0, where the notation

is as before;22 and [
0
]= , with  being the ( × ) identity matrix, so that

each of the -th columns (with  = 1, 2, ..., ) of the MA matrices 0, 1, 2, 3, ...

has been divided by the standard deviation of the -th shock in . Representation (18)

can be immediately recovered from the model’s IRFs to the structural innovations.

Observationally equivalent reduced-form representations of (18) can be obtained

by post-multiplying all of the MA matrices 0, 1, 2, 3, ... by an orthogonal

rotation matrix , yielding

 = ̃0̃ + ̃1̃−1 + ̃2̃−2 + ̃3̃−3 +  (19)

where ̃ =  and ̃− = 0−,  = 0, 1, 2, 3, ... . We can randomly generate dif-
ferent rotation matrices23, thus producing different observationally equivalent VMAs.

The question we wish to address is whether imposing restrictions (1)-(3) from sub-

section 3.3 on different reduced form VMAs allow us to recover the true structural

VMA.

We have performed this exercise 100 times, and for all of these, imposing the

restrictions (1)-(3) produces IRFs and FEVs which match the true theoretical IRFs

and FEVs.24 We illustrate this in Figure 4 which contains results using one random

22Since we have five observables, in this section we set to 0 all of the shocks other than the five

collected in the vector .
23We generate the ( ×) random rotation matrix as follows. We start by taking an ( ×)

draw  from an N(0, 1) distribution. Then, we take the  decomposition of , and we set the

rotation matrix to 0.
24We impose restrictions (1)-(3) via rotation matrices as follows. Restrictions (1)’s zero restrictions

on impact are imposed via a Householder reflection. Restriction (2) is imposed via Uhlig’s (2003,

2004) ‘maximum FEV’ approach. Proportionality between the impulse vectors generated on impact

by news and noise shocks is imposed via numerical methods, based on the methodology proposed by

Benati (2014, Section 3.2.2). In brief, the methodology is based on the notion of working with the

entire set of possible rotation matrices associated with a given structural impact matrix, optimizing

the relevant criterion function over the space of the associated rotation angles (which we do via

simulated annealing). Section 3.2.3 of Benati (2014) presents Monte Carlo evidence on the excellent

performance of this methodology.
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Figure 4  Assessing the identifying restrictions in population: Theoretical and estimated IRFs 
             based on Barsky and Sims’ (2011) RBC model augmented with noise shocks 
 
 



rotation.25 The figure shows, in red, the true IRFs as captured by the theoretical

MA representation (18); in blue (dotted line) the IRFs associated with the initial,

randomly rotated MA representation (19); and in black the estimated IRFs, i.e., the

IRFs we recovered starting from (19), by imposing identifying assumptions (1)-(3).

In spite of the fact that the IRFs associated with the initial, randomly rotated MA

representation were, in general, far away from the true IRFs, our identifying restric-

tions were able to recover them with great precision (in fact, the true and estimated

IRFs are essentially indistinguishable). In the light of the previous discussion this

should not be seen as surprising. A crucial difference between news and noise shocks

is that whereas the former have a permanent impact on TFP (and GDP, consump-

tion, and investment), the latter do not have a permanent impact on any variable. It

is therefore impossible for the two shocks to be observationally equivalent.

4.2.1 Approximating theMA representation with truncated VARMAs(,)

As we showed in sub-section 3.2, a truncated VARMA(1,1) produces theoretical IRFs

and fractions of FEV which are essentially indistinguishable from those associated

with the model’s theoretical MA representation (18). This logically suggests that,

working with the truncated VARMA(1,1), it should be possible to perform an exercise

conceptually akin to that we have performed in the previous sub-section based on

the RBC model’s MA representation, that is: Recovering (near-exactly) news and

noise shocks’ IRFs and fractions of FEV starting from a reduced-form truncated

VARMA(1,1) representation. This is in fact the case. We start from the truncated

theoretical VARMA(1,1) representation of the model,

 = −1 +0 +1−1 (20)

and we transform it, again, using randomly generated orthogonal matrices, thus ob-

taining observationally equivalent VARMA(1,1) representations

 = −1 + ̃0̃ + ̃1̃−1 (21)

We then impose identifying restrictions (1)-(3) and obtain IRFs and FEVs. We per-

form this exercise 100 times (and results for all repetitions are available on request)

and always find that we are able to recover the model’s true IRFs and FEVs with

great precision. This is illustrated in Benati, Eisenstat, and Koop (2018) in Figure

3, and in Figure A.3 in that note’s online Appendix, for the IRFs and the fractions

of FEV, respectively. We do not report this evidence here for reasons of space, and

because it is, in fact, near-identical to the evidence in Figure 4 we discussed in the

previous sub-section.

25Figure 2 presents results for the IRFs. Results for the FEVs are shown in Figure I.2 in the online

Appendix. In addition, we only report results for non-news, news, and noise shocks, but results for

the other two shocks are available upon request. They are qualitatively the same to those presented

here.
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4.2.2 Alternative non-fundamental representations

Sub-section 4.2.2 of Benati, Eisenstat, and Koop (2018) also addresses the issue of the

observational equivalence of fundamental and non-fundamental MA representations.26

In brief, two main points ought to be mentioned here.

First, within the context of the RBC model with noise, which yields a non-

fundamental representation by construction, the fact that many non-fundamental

representations are admissible is not an issue. Imposing the model-implied iden-

tifying restrictions allows for the recovery of news and noise shocks for all of the

non-fundamental representations of the truncated theoretical VARMA(1,1) represen-

tation (see Figure 4 there).

Second, concerning the observational equivalence of non-fundamental representa-

tions, there is also a more general, and more important point to be made. For models

different from the RBC one we use, admissible non-fundamental representations (that

differ by inverted nonzero and finite characteristic roots) may produce different re-

sults. However, this has no implications for the possibility of disentangling news and

noise shocks–this possibility hinges solely on whether news and noise shocks are ob-

servationally equivalent conditional on a given reduced-form MA representation (or

its approximate VARMA representation) regardless of how its characteristic roots are

arranged. In other words, the problem of determining the appropriate static orthogo-

nal rotations (to disentangle news and noise shocks from reduced-form innovations) is

separate from the problem of determining the correct (nonzero/finite) root structure,

which is invariant to static orthogonal rotations.

4.3 Summing up

CJ’s point that news and noise shocks are observationally equivalent is correct, if you

frame the analysis the way that they do in terms of fundamentals and expectations.

But we argue that empirical macroeconomists should not frame their analyses in this

way. Within the context of the RBC model with noise about TFP, news and noise

shocks are indeed observationally equivalent for an econometrician who based their

analysis on TFP and agents’ expectations about it, i.e. on  = [ |−1]0. But,
as we have shown, news and noise shocks are not observationally equivalent if the

data  = [    ]
0 are used, and the full set of structural implications used.

That is, the very definition of what noisy-news is implies that news shocks have a

permanent effect on TFP; noise shocks have no permanent effect on any variable;

and news and noise shocks have identical effects on impact. The two shocks are not

observationally equivalent once all of their implications for the observed data are

taken into account.

26It is well known (see, e.g. Lippi and Reichlin (1994a)) that alternative representations obtained

by “inverting” characteristic MA roots through Blaschke filters preserve the stochastic properties of

a multivariate Gaussian times series.
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5 Econometric Methodology

5.1 Justification for SVARMA

In this paper we use SVARMAs, instead of the SVARs which dominate the empir-

ical macroeconomic literature. In general, several authors (e.g. Cooley and Dwyer

(1998)) argue that theoretical macroeconomic models such as DSGE models lead to

VMA representations which may not be well approximated by VARs, especially par-

simonious VARs with short lag lengths. The fundamental concept underlying this

argument was formalized by Fernandez-Villaverde et al. (2007), who characterize the

equilibrium of a general class of DSGE models with linear transition laws in a state-

space framework, and show how this can be represented by a finite-order VARMA.

The structural VAR approach can then be justified as a truncated approximation to

the infinite-order VAR obtained by inverting the MA part of the finite-order VARMA.

The inversion/truncation step, however, entails a number of difficulties. Some

researchers–see, e.g., Chari et al. (2008) and Poskitt and Yao (2017)–point out

that the errors which arise due to this can potentially be substantial, because the

typical lag and series lengths used in practice (e.g.   5   250 for quarterly data)

are much too short.

Moreover, in many cases such as the permanent-income model of Hansen et

al. (1991), the resulting VARMA representation entails an MA component that

is not invertible, and therefore, a VAR approximation to such a model does not ex-

ist.27 VARMA representations admitting an infinite-order VAR representation are

commonly known as fundamental, while those that do not are referred to as non-

fundamental. The concept of fundamentalness is also related to a subtle, but impor-

tant identification issue that arises in SVARs and SVARMAs, which we will return

to shortly.

The presence of both news and noise shocks in our theoretical framework implies

a non-fundamental VARMA representation (see the online Appendix for technical

details). This implies that in our specific case it is not possible to impose our key

identifying restrictions using an SVAR. An SVARMA is required.

To bring out the main ideas, we use an -variate SVARMA(1 1)

y −B1y−1 = u = A1²−1 +A0² ² ∼ N (0 I) (22)

Everything can easily extended to a SVARMA( ) with deterministic terms. A

simple way to describe the need for a VARMA in our setting is as follows.

Note first that the key aspect of identification relates to the IRFs for =0 which

are in A0 and that the error covariance matrix, Ω, is Ω = A0A
0
0+A1A

0
1. In Section

2, we derived results such as (7) which showed that news and noise shocks had an

equal response on impact. In terms of the SVARMA, one might think this restriction

27Fernandez-Villaverde et al. (2007) provide an easily verifiable condition under which the

VARMA admits an infinite-order VAR representation.
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can be imposed by setting two columns of A0 to be equal to one another. As already

mentioned, this is not correct, since it would imply that the news and noise shocks

have the same standard deviations. The correct way of imposing the equal =0

impacts of news and noise shocks on impact is to restrict two columns of A0 to be

proportional to one another with the factor of proportionality being equal to the ratio

between the standard deviations of the two shocks.

If we impose the identification restriction that two columns ofA0 are proportional

to one another, then A0 will be a reduced-rank matrix. This precludes estimation in

the SVAR case since, ifA1 = 0,Ω will be singular. This is why we need the SVARMA.

To explain this another way, if we were to work with an SVAR and thus have A1 = 0,

the fact thatB1 will be common to impulse responses at all horizons
28 means that two

shocks generating a proportional impulse vector at =0 will also produce proportional

impulse responses at all horizons, with the proportionality factor being exactly the

same for all variables and all horizons. This means that within a SVAR framework it

is impossible to disentangle news and noise shocks. In Section 3, we demonstrated the

theoretical consequences of this within an RBC model. These considerations imply

that, unless a researcher is willing to resort to a DSGE-based approach, the SVARMA

approach is the only option. Within the SVARMA framework, this problem does not

arise since the presence of A1 breaks the one-to-one mapping between the impulse

responses at =0 and responses over subsequent horizons.

Writing (22) in terms of polynomial matrices in the lag operator, B(L)y =

A(L)², a reduced-rank A0 implies that detA(0) = 0, i.e. detA(z), for  ∈ C,
has a root at zero. This means that A(L) is not invertible on the closed unit disk,

or equivalently, (22) is non-fundamental. As described in online Appendix B.2, the

zero root can be ‘flipped’ using an appropriate Blaschke filter (see Lippi and Reich-

lin (1994b)) to obtain a reduced-form VARMA representation B(L)y= Θ(L)ε, in

which Θ0 is full rank, but Θ1 is reduced rank. However, it is not possible to obtain

a suitable finite-order VAR approximation to (22).

To summarize, the SVARMA approach allows us to identify non-news, news and

noise shocks by imposing the restrictions in our identification scheme (1)-(3) described

in Section 3.3. Restriction (3) is the key new restriction for identifying news and noise

shocks. In terms of our SVARMA we impose this using the following restrictions

(assuming the variable driven by non-news and news shocks, e.g. TFP, is ordered

first in the vector of variables and non-news, news and noise shocks are ordered first,

second, and third in the vector of shocks, and 0 denotes the ()

element, and

0 the ()

column of A0):

• News and noise shocks do not affect TFP at =0: 012 = 013 = 0.

• News and noise shocks have a proportional impact on all variables at =0:

02 = 03 for scalar .

28By this we mean that the IRF is based on the VMA representation which involves inverting the

VAR which puts B1 in every lag of the VMA representation.
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To ensure that the impulse responses derived from (22) are uniquely estimated,

we also impose the technical restriction that all non-zero roots of detA(z) are outside

the unit circle, formally given by

detA(z) 6= 0 for all 0  || ≤ 1 (23)

This restriction is necessary because the fundamental and all non-fundamental VARMA

representations obtained by flipping MA roots are observationally equivalent (Lippi

and Reichlin (1994b)). By imposing (23), we are selecting one of the many (up to 2)

possible non-fundamental representations with one (real) root at zero from which to

draw inference.

We justify this approach in our setting on three grounds. First, SVAR identifi-

cation strategies generally rely on a similar restriction, namely imposing the funda-

mental representation with all MA roots outside the unit circle. Indeed, this was a

key point of emphasis in Lippi and Reichlin (1994b), who argued that SVAR infer-

ence should be based on a set identification of impulse responses, where each of the

fundamental and non-fundamental representations is explicitly considered. In prac-

tice, however, this is almost never done and instead SVAR approaches focus on point

identification of impulse responses, which are obtained from the fundamental repre-

sentation alone.

The avoidance of set identification in the SVAR literature is due mainly to the

computational challenges involved in deriving impulse responses from as many as

2 structural VMA representations that would need to be constructed following

estimation of the VAR.29 One complication arises from the fact that information about

the MA roots is lost when the AR operator is truncated. Another is related to the fact

that the number of representations grows quickly with the size of the system , such

that enumerating all possible representations becomes computationally infeasible for

larger systems (e.g. with  = 15 and  = 2, there are over 1 billion representations).

In our VARMA setting, restriction (23) can be viewed as the closest departure

from the standard SVAR literature and, in this sense, produces results that are more

comparable to those of related papers (e.g. Barsky and Sims (2011)).

Nevertheless, in spite of these arguments in favor of working with a point identified

VARMA, we also check the robustness of our results by deriving set-identified IRFs

and fractions of FEV for models with  ≤ 8 in our first application. In particular,
for each draw of the parameters in our Bayesian approach, we compute the IRFs and

the fractions of FEV for each representation  = 1, 2, ..., . Then, for each variable

and each shock, we consider the lower and upper envelopes of the IRFs and of the

fractions of FEV across all of the  representations. This yields draws from the

posterior distributions for the lower and upper envelopes of the IRFs and fractions

29The exact number of non-fundamental representations depends on how many real vs. complex

conjugate pairs of roots characterize det(), which is a maximum of  if all roots are real.
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of FEV.30 In a nutshell, our main conclusions still hold based on the set-identified

results, which constitutes further support for employing restriction (23).

Finally, we use this same approach to compute IRFs and fractions of FEV for all of

the possible representations in our Monte Carlo study which takes, as DGP, the RBC

models with noise shocks of Section 3 (see online Appendix E). We find overwhelming

evidence that the representation satisfying (23) produces IRFs and fractions of FEV

which closely match the true IRFs and fractions of FEV produced by the RBC model,

whereas the other, non-fundamental representations systematically produce different

results. We therefore conclude that, at least for the DSGE model considered in this

paper, the corresponding VARMAs should have all non-zero roots outside the unit

circle.

Restriction (23), together with the three theoretical restrictions outlined in Section

3.2, uniquely identify, up to sign normalizations, non-news, news and noise shocks

(see Section 4.2). Our main set of results for all of our applications imposes these re-

strictions along with (in some cases) the over-identifying restriction that, two periods

after impact, the IRFs generated by the noise shock are smaller, in absolute value,

than the corresponding IRFs generated by the news shock.31

5.2 Estimating the SVARMA

Despite having many attractive statistical properties, VARMAs are rarely used in

practice, since they can be over-parameterized, and identification and computation

can be difficult. That is, even VARs are often over-parameterized. Ignoring deter-

ministic terms, a VAR() will have 2 VAR coefficients, which can be large, even

with the moderately sized VARs often used in the structural macroeconomics liter-

ature (e.g. Barsky et al., 2014, use a VAR with =9). Adding a VMA component

increases this to (+ ) making over-parameterization concerns even more relevant.

With structural SVARs, there is a need for structural identification restrictions. With

SVARMAs there is the same need, but even the reduced form VARMA suffers from

a lack of identification which arises from the possibility of common factors in the

VAR and VMA parts of the model. These issues are discussed in detail in Chan et

al. (2016). A crucial aspect of this approach is the use of prior shrinkage to mitigate

over-parameterization concerns. Chan et al. (2016) also develops Bayesian methods

for estimating VARMAs which work even with large values of . We adapt these

methods to the SVARMA described in the preceding sub-section, resulting in an ef-

30The reason for focusing on the lower and upper envelopes of the IRFs and fractions of FEV

across all of the  representations is that these are well-defined objects, for which it is possible to

meaningfully define a posterior distribution. This allows us to characterize IRFs and fractions of

FEV taking into account of the fact that each draw from the posterior distribution of the parameters

of the VARMA is potentially associated with more than one representation satisfying the restrictions.
31As previously mentioned, a slight adjustment has to be made when we allow news and

noise shocks to have different standard deviations and, hence, the restriction imposed is actually

|IRF(news)  IRF(noise)| .
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ficient Markov Chain Monte Carlo (MCMC) algorithm. Complete details of how we

carry out Bayesian estimation are given in online Appendix B. Here we provide a

basic outline of our strategy.

As discussed in Chan et al. (2016), estimation of VARMA models is more easily

done when they are put in so-called expanded form. The expanded form writes the

VARMA as a state-space model and standard BayesianMarkovMCMC algorithms for

state-space models can be used, greatly simplifying computation. In online Appendix

B, we show how the SVARMA written in (22), with the identification restrictions

imposed on 0, can be written in equivalent form as an expanded-form VARMA.

We use a prior designed to ensure shrinkage and parsimony in the potentially over-

parameterized SVARMA. Several different priors are popular in the Bayesian VAR

literature, including the Minnesota prior and various hierarchical shrinkage priors

(e.g. various LASSO priors, spike-and-slab priors). In this paper, we use the SSVS

prior introduced to the Bayesian VAR literature by George et al. (2008), and used

in many VAR papers.32 The basic idea can be explained in terms of a generic VAR

or MA coefficient, say . SSVS specifies a hierarchical prior (i.e., a prior expressed in

terms of parameters which in turn have a prior of their own) which is a mixture of

two Normal distributions:

| ∼ (1− )
¡
0 20

¢
+ 

¡
0 21

¢
 (24)

where  ∈ {0 1} is an unknown parameter. If  = 0 the prior for  is given by the
first Normal distribution, and if it is  = 1 its prior is given by the second. The prior

is hierarchical since  is treated as an unknown parameter which is estimated in a

data-based fashion. The first prior variance, 20, is chosen to be ‘small’ (so that the

coefficient is constrained to be virtually equal to zero) and the second prior variance,

21, to be ‘large’ (implying a relatively non-informative prior for the corresponding

coefficient). Thus, SSVS allows for the data to decide which coefficients should be

set to zero, so as to ensure parsimony in the SVARMA. The only subjective prior

information that is required is the choice of 20 and 21, but standard methods exist

for their choice. Details of how this is done and the MCMC algorithm which results

from use of the SVARMA model with SSVS prior are given in online Appendix B.

We now turn to empirical applications of our econometric methodology and iden-

tifying restrictions.

6 Empirical Applications

This section contains three different empirical applications involving standard US

quarterly macroeconomic variables. The online appendix provides exact definitions

and data sources. The sample period goes from 1954Q3 (when the Federal Funds

32E.g., among many others, Koop (2013), and Korobilis (2013).
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rate first becomes available) to 2008Q3 (so that we exclude the period during which

the Funds rate has been, in practice, at the zero lower bound).

6.1 News and noise shocks to TFP

In this sub-section we provide evidence on the impact upon the economy of TFP

non-news, news and noise shocks.

6.1.1 Data and specification choices

Our data set includes TFP and several other macroeconomic variables. We estimate

SVARMAs with different VAR and MA lag lengths, and different choices for the

macroeconomic variables other than TFP. In this section we report the results pro-

duced by a SVARMA(4,1) featuring 8 variables. In Appendices G and I we present

additional results for other lag lengths, and choices of  between 6 and 15, as well as

a model comparison exercise which provides evidence that the =4, =1, =8 choice

is supported by the data. A key finding is that results are uniformly robust across

the different values of ,  and . This is the case, in particular, for one of our main

findings, that is, the overall minor-to-negligible role played by noise shocks in driving

macroeconomic variables.

Our main results use the following eight variables: log TFP, log hours per capita,

the Federal Funds rate, GDP deflator inflation, the logarithms of real GDP, con-

sumption, and investment per capita, and the spread between the 5-year government

bond yield and the Federal Funds rate.33 The full set of 15 variables (all of which are

standard in the literature) is listed in online Appendix F.

We estimate all models in (log) levels. The main reason for estimating the models

in levels has to do with robustness with respect to cointegration of unknown order.

As discussed by Hamilton (1994), estimating the system in levels is the robust thing

to do in this case. In recent years, estimating VARs in levels has become standard

practice in the macroeconomic literature.34 All of the results we report are based

on imposing identifying restrictions (1)-(3), outlined in sub-section 3.3. As for the

restrictions on the absolute values of the IRFs to news and noise shocks, we report

results either imposing, or not imposing this restriction two quarters after impact.

33Following common practice, for TFP we use John Fernald’s purified TFP series. See Fernald

(2012). The notion that productivity may contain a transitory component which exhibits some

persistence, originally introduced by Blanchard et al. (2013) in order to rationalize the existence

of a signal-extraction problem, requires some discussion. In univariate models, the log of TFP is

typically found to be close to a random walk. But a transitory component can be justified in terms

of data revision. That is, even if the true TFP is a random walk (driven by both news and non-news

shocks), most of the data underlying the construction of TFP are progressively revised and this will

introduce a persistent, but transitory, component to the estimate of TFP. Alternatively, Blanchard

et al. (2013) showed that, in principle, it is possible to construct a process for TFP with a permanent

and a transitory component which looks like a random walk in the univariate sense.
34See, e.g., Barsky and Sims (2011) or Kurmann and Otrok (2013).
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Figure 5  Application with TFP: Fractions of forecast error variance explained by non-news,  
             news, and noise shocks, based on a VARMA(4,1), and point-identification  
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Figure 6  Application with TFP: Impulse-response functions to non-news, news, and noise 
             shocks, based on a VARMA(4,1), and point-identification  
 
 
 
 



The online appendix presents results for a range of choices of ,  and . For

each specification, we present evidence on the convergence properties of the MCMC

algorithm. In particular, for the draws from VARMA’s reduced-form parameters, we

present the draws’ first autocorrelations and the inefficiency factors,35 which we use

in order to assess the convergence of the Markov chain. The first autocorrelations are

uniformly very low, whereas the inefficiency factors are typically around one, which

is much lower than the 20-25 value which is typically taken as signalling problems in

convergence.

6.1.2 Evidence

Figures 5 and 6 show, for the baseline 8-variables system, the fractions of FEV ex-

plained by non-news, news, and noise shocks, and the IRFs to the three shocks, based

on point identification, whereas Figures 7 and 8 show the corresponding results based

on set identification (i.e., taking into account of all of the possible representations

obtained by ‘flipping the roots’). Figures VII.2-VII.3 in the online appendix report

the corresponding results obtained by imposing the additional restriction on the com-

parative magnitudes of the IRFs to news and noise shocks. Overall, results based on

set identification are qualitatively the same as those based on point identification.

Further, imposing or not imposing the restrictions on the magnitudes of the IRFs to

news and noise shocks does not make any material difference. Accordingly, in what

follows we will focus our discussion on the results based on point identification.

Our main substantive finding pertains to the negligible role played by TFP noise

shocks in U.S. macroeconomic fluctuations: As shown in Figure 5, these shocks ex-

plain small-to-negligible fractions of the FEV of all series at all horizons. This finding

is in contrast to those of Blanchard et al. (2013) and Forni et al. (2017), whereas

it is in line with the similar findings of Barsky and Sims (2012). In Figure 6 it can

be seen that all of the IRFs to noise shocks have credible intervals that include zero

at all horizons. The fact that noise shocks play such a small role, and have so little

impact on any of the variables, is the main substantive point we wish to emphasize.

Figures 5 and 6, however, show other interesting patterns which we discuss in the

remainder of this sub-section.

News shocks explain small fractions of the FEV of TFP at short horizons, but

their importance progressively increases further out: E.g., at the 10 year horizon they

explain around 40 per cent of the FEV. News shocks also play a very important role

for GDP, consumption and investment, especially at long horizons. For the remaining

variables, they play a smaller but non-negligible role (e.g., based on median estimates,

around 20 per cent of the FEV).

35The inefficiency factors are defined as the inverse of the relative numerical efficiency measure of

Geweke (1992),  = (2)−1 1
(0)

R 
− (), here () is the spectral density of the sequence

of draws from the Gibbs sampler for the quantity of interest at the frequency . We estimate the

spectral densities via the lag-window estimator as described in chapter 10 of Hamilton (1994). (We

also considered an estimator based on the fast-Fourier transform, and results were very close.)
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Figure 7  Application with TFP: Fractions of forecast error variance explained by non-news, news, 
             and noise shocks, based on a VARMA(4,1), and set-identification  
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Figure 8  Application with TFP: Impulse-response functions to non-news, news, and noise 
             shocks, based on a VARMA(4,1), and set-identification  
 
 
 



Non-news shocks account for almost 100 per cent of the FEV of TFP on impact,

but their importance progressively diminishes further out. However, even at the 10

year horizon they still account for roughly 40 per cent of the FEV. As for other series,

these shocks tend to play a small role in terms of FEV. Only for inflation and, to

a lesser extent, the Funds rate, do they play a non-negligible role (e.g., at longer

horizons, median estimates indicate they explain roughly 20-30 per cent of the FEV).

The IRFs of TFP to news and non-news shocks are in line with the previous

literature–see e.g. Barsky and Sims (2011)–with log TFP not jumping, and jump-

ing, respectively, on impact, and then slowly converging to its new long-run value. An

important point to stress is that, exactly as in Barsky and Sims (2011), the non-news

shock is estimated to be transitory, whereas the news shock clearly has a permanent

impact on TFP.

The IRFs for other variables are typically sensible. For non-news shocks, the

responses of inflation and the Funds rate are similar to one another. As for news

shocks, in line with Barsky and Sims (2011), there is some weak support for the

notion that they have a negative impact on inflation at short-horizons.

The IRFs of GDP, consumption, and investment to news shocks mimic those of

TFP. Their IRFs to non-news shocks have a different shape from that of TFP, but

they are, as for TFP, ultimately transitory. The IRFs of hours to non-news and

news shocks are different from those in Barsky and Sims (2011), but, as we will

discuss in the next sub-section, they are in line with those produced by a structural

VAR identified via the Barsky-Sims methodology based on this dataset. Finally, the

impact response of the interest rate spread to news shocks is–as in Kurmann and

Otrok (2013)–positive.

6.1.3 Comparison with Barsky and Sims (2011)

How do our results compare to those produced by Barsky and Sims (2011)? Since

theirs is an SVAR approach, they can only estimate news and non-news shocks, but

not noise shocks. As discussed in Section 3, however, for a sufficiently large lag order,

VARs can provide an arbitrarily close approximation to the IRFs for news and non-

news shocks produced by a model also featuring noise shocks. This means that a

non-negligible discrepancy between our results and those obtained by Barsky and

Sims (2011) would cast doubts on the reliability of our approach, and therefore the

meaningfulness of our results. In this sub-section we therefore compare our results for

news and non-news shocks to those obtained using an econometric model identical to

our own but with no noise shock, and therefore A1 = 0.

Figure I.3 in the online appendix reports evidence on this, by showing the IRFs

produced by our implementation of Barsky and Sims’ (2011) approach for the TFP

news and non-news shocks.36 In order to make these results exactly comparable to

36We do not show the corresponding results for the fractions of FEV, both for reasons of space,

and especially because they are qualitatively the same as those for the IRFs. They are however
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those we discussed previously, they have been based on the same eight variables, VAR

lag order and estimation sample as was used in the previous sub-section.37 In line with

Barsky and Sims (2011), the two disturbances are identified based on the restrictions

that () the non-news TFP shock is the only shock which affects TFP on impact,

and () the news shock is the one which, among all of the remaining disturbances,

explains the maximum fraction of the FEV of TFP at the 20 years ahead horizon. The

main finding emerging from Figure I.3 is that the IRFs for the non-news and news

shocks produced by the SVAR and by the SVARMA are uniformly very close, which

clearly points towards the reliability of the SVARMA-based methodology proposed

herein.

We now turn to an application to a model with dividends and stock prices.

6.2 Dividends and stock prices

One interesting feature of noise shocks is that, in principle, noise about future divi-

dends might reconcile Fama’s results about market efficiency with Shiller’s findings

of excess volatility in stock prices. The reason for this is straightforward, and it can

be immediately grasped from the solution for log stock prices in (6). The key point

is that, since  depends on noise shocks, a sufficiently large variance of these shocks

could cause rationally determined stock prices to exhibit excess volatility compared

to their fundamental value. An important caveat to this is that, for the reasons we

discussed in Section 2.1.2 (see in particular the last panel of Figure 1), there might

well be an upper limit to the fraction of FEV of any variable which is explained by

noise shocks. Even if that is the case, however, such limit will be, in general, model-

specific, so that in principle noise about future dividends might in fact reconcile the

two strands of literature.

Figures 9 and XII.2 in the online appendix show results from a VARMA(4,1)

for the logarithms of real dividends and real stock prices, and five other standard

variables: log labor productivity, log hours per capita, the Federal Funds rate, GDP

deflator inflation and the spread between the 5-year government bond yield and the

Federal Funds rate. The identification scheme assumes that the news versus noise

problem pertains to dividends. All specification choices are the same as in the previous

application. The main substantive finding, which clearly emerges from Figure 9, is,

once again, the minor-to negligible role played by noise shocks in explaining the FEV

of any of the variables included in the system. It is also worth stressing that news

available upon request.
37The VAR is estimated via Bayesian methods as in Uhlig (1998, 2005). Specifically, Uhlig’s

approach is followed exactly in terms of both distributional assumptions–the distributions for the

VAR’s coefficients and its covariance matrix are postulated to belong to the Normal-Wishart family–

and of priors. For estimation details the reader is therefore referred to either the Appendix of Uhlig

(1998), or to Appendix B of Uhlig (2005). Results are based on 10,000 draws from the posterior

distribution of the VAR’s reduced-form coefficients and of the covariance matrix of its reduced-form

innovations (the draws are computed exactly as in Uhlig (1998, 2005)).
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Figure 9  Application with dividends and stock prices: Fractions of forecast error variance  
             explained by non-news, news, and noise shocks, based on a VARMA(4,1), and  
             point-identification 
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Figure 10  Application with defense expenditure: Fractions of forecast error variance explained by 
               non-news, news, and noise shocks, based on a VARMA(4,1), and point-identification  
 
 
 
 



about dividends are the dominant driver of stock prices at long horizons, and, likewise,

they drive about 40 per cent of the FEV of labor productivity.

6.3 Defense expenditure

Finally, Figures 10 and XIII.2 in the online appendix show results from aVARMA(4,1)

for the logarithms of real defense expenditure per capita, and seven other standard

variables: log TFP, log hours per capita, the Federal Funds rate, GDP deflator infla-

tion and the logarithms of real GDP, consumption, and investment per capita. The

identification scheme assumes that the news versus noise problem pertains to defense

expenditure, and all specification choices are the same as in the two previous appli-

cations. In line with the results from the previous two applications, the main finding

emerging from Figure 10 is, once again, the minor-to negligible role played by noise

shocks in driving the series included in the system at all horizons.

Clearly, all of our results suggest that noise shocks play no meaningful role in

macroeconomic fluctuations.

7 Conclusions

In this paper, we have made four contributions to the ‘news versus noise’ literature:

(I) We have provided a new identification scheme which, in population, exactly recov-

ers news and noise shocks. (II) We have demonstrated that Chahrour and Jurado’s

(2018) claim about the observational equivalence of news and noise shocks does not,

in general, hold. (III) We have proposed a new econometric methodology for im-

plementing our identification scheme, and we have shown, via Monte Carlo, that it

has an excellent performance. (IV) We have provided several empirical applications

of our identification scheme and econometric methodology. Overall, our results have

uniformly suggested that, contrary to previous findings in the literature, noise shocks

play a minor role in macroeconomic fluctuations.

The methodology introduced in this paper is potentially useful in a wide variety of

contexts. In terms of the econometric methods, we have established that SVARMA

models of the large dimension increasingly used in macroeconomics can be easily and

robustly estimated. SVARMAs allow a researcher to do things which are impossible

to do within the SVAR framework. Our scheme for identifying news and noise shocks

should also have wide applicability. For instance, it could be used to explore the

role played by news and noise shocks with alternative anticipation horizons (i.e., with

 news shocks anticipating variation in the relevant variable 1, 2, 3, ...,  periods

ahead) or to investigate the comparative role played by surprise, news and noise

shocks in driving fluctuations in other variables, such as real exchange rates.
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