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Abstract

Given a lack of perfect knowledge about the future, agents need to form expectations

about variables affecting their decisions. We present an experiment where subjects

sequentially receive signals about the true state of the world and need to form beliefs

about which one is true, with payoffs related to reported beliefs. We control for risk

aversion using the Offerman et al. (2009) technique. Against the baseline of Bayesian

updating, we test for belief adjustment under-reaction and over-reaction and model the

decision making process of the agent as a double hurdle model where agents first decide

whether to adjust their beliefs and, if so, then decide by how much. We find evidence

for sticky belief adjustment. This is due to a combination of: random belief adjustment;

state-dependent belief adjustment, with many subjects requiring considerable evidence

to change their beliefs; and Quasi-Bayesian belief adjustment, with insufficient belief

adjustment when a belief change does occur.
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1 Introduction

Agents form and update their beliefs when they receive new information. The as-

sumptions about how they do this are fundamental to a plethora of theoretical and

empirical models, both in macro- and microeconomics. In the presence of ratio-

nal expectations, new information leads to smooth and continuous belief updating

according to Bayes’ rule. In reality agents often systematically misunderstand basic

statistics, and complexity and inattention may contribute to deviations from Bayesian

predictions (Rabin, 2013). Such violations of rational expectations have been studied

in static settings, where all the information is presented at once to subjects who dis-

count priors (Tversky and Kahneman, 1982; Camerer, 1987; El-Gamal and Grether,

1995). In contrast, we study a dynamic setting in which new information arrives

sequentially. We conduct a simple dynamic experiment and present a double hurdle

econometric model to test the explanatory power of three different types of belief

adjustment: Bayesian belief adjustment, a simple version of Quasi Bayesian belief

adjustment, as well as random and state-dependent belief adjustment. We control

for risk aversion using the Offerman et al.’s (2009) technique. We also consider how

increased task complexity or scope for inattention affects our results.

Within microeconomic research, Quasi Bayesian (QB) belief adjustment has been

the preferred route to think about bounded-rational belief adjustment. Rabin (2013)

distinguishes between warped Bayesian models which encapsulate a false model of

how signals are generated, for example ignoring the law of large numbers (Benjamin

et al., 2015); and information-misreading Bayesian models that misinterpret signals

as supporting agents’hypotheses, thus giving rise to confirmation bias (Rabin and

Schrag, 1999), and therefore lead to underweighting of information. While various

anomalies have been considered within this framework, one simple way of modeling

QB adjustment is that the agent adjusts beliefs continuously in response to new

information — in the sense that it takes place whenever there is new information —

but this adjustment is either too big or too small (Massey and Wu, 2005; Ambuehl

and Li, 2014).

There is a large body of macroeconomic research looking at time-dependent versus

state-dependent price adjustment, with mixed empirical findings (e.g., Costain and

Nakov, 2011; Aucremann and Dhyne, 2005; Stahl, 2005; Dias et al., 2007; Klenow and

Kryvtsov, 2008; Midrigan, 2010). Sticky belief adjustment can be seen as a possible

microfoundation of sticky price adjustment, for example as a result of inattention

and observation costs (Alvarez et al., 2016), information costs (Abel et al., 2013),

cognitive costs (Magnani et al., 2016) and the consultation of experts by inattentive

agents (Carroll, 2003). State-dependence in beliefs implies a dependence of belief

adjustment on the economic state, which in turn may depend on new information

flowing in. As discussed later, a way of conceptualizing state-dependent beliefs is in

the inferential expectations (IE) model of Menzies and Zizzo (2009): that is, agents

hold a belief until enough evidence has accumulated for a statistical test of a given
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test size to result significant, at which point beliefs switch. Agents can be conceived of

as drawing a test size  from a distribution, and this distribution provides a nuanced

account of the extent of sticky belief adjustment. Time-dependence in beliefs is often

viewed stochastically (as for example in Caballero. 1989) and therefore yields random

belief adjustment, following some underlying data generating process. In both state-

dependent and time-dependent macroeconomic models, beliefs are normally seen as

adjusting partially to new information; furthermore, differently from Quasi-Bayesian

models, in IE belief adjustment is not continuous but discrete, occurring at state-

dependent or time-dependent time intervals.

One source of deviation from Bayesian updating could be task complexity (Caplin

et al., 2011). Charness and Levin (2005) suggest that subjects are able to calculate

Bayes’ rule when the math is simple, but have difficulty calculating it when the math

becomes complicated in which case they apply a different heuristic other than Bayes’

rule when making decisions. Within consumer markets, complexity has often been

blamed for suboptimality of consumer choices (e.g., Joskow, 2008; Ofgem, 2011; In-

dependent Commission on Banking, 2011); the evidence from consumer experiments

is less clear but consistent with at least some effect of complexity on consumer choice

(Kalayci and Potters, 2011; Sitzia and Zizzo, 2011; Sitzia et al., 2015).

In the spirit of Sims (2003), inattention to the task could also lead to greater

deviation from Bayesian updating (Alvarez et al., 2016; Magnani et al., 2016; Carroll,

2003). Our inattention manipulation consists of an alternative task being available

and is closest to Corgnet et al. (2014), who find an effect on team effort in a work

experiment, and Sitzia and Zizzo (2015), who find an effect on consumption choices.

We are not aware of research on complexity and inattention that has identified

their effect on belief updating with sequential information flow. In brief, our results

are as follows. Subjects choose to change their beliefs about half of the time, which is

consistent with random belief adjustment, but they also consider the amount of evi-

dence available, which is consistent with state-dependent belief adjustment. Indeed,

we estimate that almost half of our subjects have various degrees of sticky belief ad-

justment. When subjects do change beliefs, they do so by around 40 per cent, which

is consistent with our version of Quasi-Bayesian belief adjustment. Our results are

perhaps surprisingly robust to either the task complexity or inattention manipulation,

but there is consistent evidence that task complexity reduces the extent of a belief

update.

Section 2 presents our experimental design and treatments, section 3 our expec-

tation models, Sections 4 and 5 our results. Section 5 provides a discussion and

concludes.

2 Experimental Design and Treatments

Our experiment was fully computerized and run in the experimental laboratory of a

British university with subjects who were separated by partitions. The experiment
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was divided in two parts, labelled the practice part and the main part. Experimental

instructions were provided at the beginning of each part for the tasks in that part (see

the online appendix for a copy of the instructions). A questionnaire was administered

to ensure understanding after each batch of instructions.

Main part of the experiment. After the practice part described below, in the main

part of the experiment subjects played 7 stages, each with 8 rounds. At the beginning

of each stage the computer randomly chose an urn out of two (Urn 1 or Urn 2), with

Urn 1 being selected at a known probability of 0.6. Each urn represents a different

state of the world. While this prior probability was known and it was known that the

urn would remain the same throughout the stage, the chosen urn was not known to

subjects. It was known that Urn 1 had seven white balls and three orange balls, and

Urn 2 had three white balls and seven orange balls. At the beginning of each of the

8 rounds (round = ), there was a draw from the chosen urn (with replacement) and

subjects were told the color of the drawn ball. These were therefore signals that could

be used by subjects to update their beliefs. It was made clear to the subjects that the

probability an urn was chosen in each of the seven stages was entirely independent

of the choices of urns in previous stages.

Once they saw the draw for the round, subjects were asked to make a probability

guess between 0% and 100%, on how likely it was that the chosen urn was Urn

1. The corresponding variable for analysis is their probability guess expressed as a

proportion, denoted . Once a round was completed, the following round got started

with a new ball draw, up to the end of the 8th round.

Payment for the main part of the experiment was based on the guess made in a

randomly chosen stage and round picked at the end of the experiment. A standard

quadratic scoring rule (e.g., Davis and Holt, 1993) was used in relation to this round

to penalize incorrect answers. The payoff for each agent was equal to 18 pounds minus

a quadratic penalty defined over the difference between a randomly chosen guess g

and the correct probability (either 0 or 100%) that Urn 1 had been chosen.

Practice part of the experiment. The practice part was similar to the main part

but simpler and therefore genuinely useful as practice. It was modelled after Offerman

et al. (2009) to enable us to infer people’s risk attitude, as detailed in section 3.

It consisted of 10 rounds. Each round was essentially the same as the guessing

task in the main part, but with subjects being told the prior probability of Urn 1

being chosen (in sequence, 0.05, 0.1, 0.15, 0.2, 0.25, 0.75, 0.8, 0.85, 0.9, 0.95) and not

receiving any further information — that is, no ball draws were forthcoming and the

subjects were to conceive of each round as a potential new urn draw. Payment for the

practice part of the experiment was based on the guess made in a randomly chosen

round picked at the end of the experiment. A quadratic scoring rule was applied as

in the main part, but this time with a top prize of 3 pounds rather than 18 pounds.1

1This ensured similar marginal incentives for each round in the practice part (3 pounds prize

picked up from 1 out of 10 rounds) and the main part (18 pounds prize picked up from 1 out of 56

rounds).
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Experimental treatments. There were three treatments. The practice parts were

identical across treatments, and the main part of the Baseline treatment was as

described.

In the main part (only) of the Complex treatment, the information on the ball

drawn from the chosen urn at the beginning of each round was presented in a complex

way. Specifically, it was presented as a statement about whether the sum of three

numbers (of three digits each) is true or false. If true (e.g., 731 + 443 + 927= 2101),

this meant that a white ball draw was drawn. If false (e.g., 731 + 443 + 927= 2121),

this meant that an orange ball draw was drawn.

In the main part (only) of the Inattention treatment, subjects were given a non-

incentivized alternative counting task which they could do instead of working on the

probability. The counting exercise was a standard one from the real effort experi-

mental literature (see Abeler et al., 2011, for an example) and consisted in counting

the number of 1s in matrices of 0s and 1s. Subjects were told that they could do this

exercise for as little or as long as they liked within 60 seconds for each round, and

that we were not asking them in any way to engage in this exercise at all unless they

wanted to.2

3 Model Variables, Risk and Expectation Process

3.1 Model Variables and Risk Attitude Correction

Table 1 lays out the main model variables and the interrelationships between them,

when the event is described in terms of the chosen urn (row 1) and when it is described

in terms of the probability of a white ball being drawn (row 2). The two descriptions

are equivalent since the subject’s subjective guess of the probability that Urn 1 was

chosen generates an implied subjective probability that a white ball is drawn.3 In our

modelling, we sometimes use the former probability–that Urn 1 was chosen–and it

will be useful to transform this probability guess using the inverse cumulative Normal

distribution, so that the support has the same dimensionality as a classic -statistic.

Alternatively, we sometimes describe agents’ guesses in terms of the probability that

a white ball is drawn.

Time is measured by , the draw (round) number for the ball draws in each stage.

We define the value of t for which subjects last moved their guess (viz. updated their

beliefs) to be m (for ‘last Move’). Thus, for any sequence of ball draws at time t, the

2They were also told that, if they did not make a guess in the guessing task within 60 seconds,

they would automatically keep the guess from the previous round and move to the next round (or

to the next stage). The length of 60 seconds was chosen based on piloting, in such a way that this

would not be a binding constraint if subjects focused on the guessing task.
3For example, at the start of the experiment, before any ball is drawn, subjects know that the

chance that Urn 1 was drawn is 0.6. It therefore follows that the chance of a white ball draw the

very first time is 0.7*0.6+0.3*(1-0.6) = 0.54.
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time that has elapsed since the last change in the guess is always −.

Starting with the top row, the event U refers to Urn 1 being drawn (the urn with

seven white balls and three orange ones). The theoretical estimator for the probability

that Urn 1 was drawn is provided by Bayes rule, which we denote by  after  ball

draws. Subjects do not use Bayes rule when they are guessing the probability of U,

though some guesses are closer to it than others.

As derived in Offerman et al. (2009), the elicited guess  in the fourth column is

the result of maximizing utility based on a Constant Relative Risk Aversion (CRRA)

utility function,  :

 =
Payoff1− − 1

1− 


and a true guess ∗ in  [ ()] = ∗ 
¡
1− (1− )

2
¢
+[1− ∗ ] (1− 2 ). Expected

utility is maximized with respect to  and yields the following relationship between

∗ and :

ln

µ
∗ (1− )

 (1− ∗ )

¶
=  ln

µ
 (2− )

(1 + ) (1− )

¶
 (1)

In the practice part rounds the prior probabilities given to the subjects (by way

of reminder, 0.05, 0.1, 0.15, 0.2, 0.25, 0.75, 0.8, 0.85, 0.9, 0.95 for 10 separate rounds)

are in fact the correct probabilities . We see no reason to not credit subjects

with realizing this, and they possess no other information anyway. Offerman et al.

(2009) then interpret the deviations of  from ∗ as being due to the subjects’ risk
preferences, and so do we. We equate the ten provided priors to ∗ and then use the
ten datapoints (∗  ) for each subject to estimate  in a version of (1) appended
with a regression error.4 Armed with a subject-specific value of  from the practice

part, all the observable  values in the main experiment can be transformed to a set

4If an agent ever declared zero or unity in this preliminary stage, a regression version of (2)

cannot be run, and so we set  = −1 in those cases.
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of inferred ∗ . This transformation is accomplished by exponentiating both sides of
(1), and solving for ∗ . By taking the inverse cumulative Normal function, Φ

−1, of
∗ we move it outside the [0 1] interval and give it the same dimensionality as a test
statistic, namely (−∞∞). The variable in the penultimate column, ∗ = Φ−1 (∗ ),
thus becomes the basis for all subsequent analysis.

In the final column of the first row, we provide a measure  of the strength of

evidence against the probability guess at the time of the last change, where the sub-

script  reminds us that this measure is based on Bayes rule and where we transform

both probabilities by the inverse cumulative Normal function. Agents change their

guesses from time to time, and  tells us if the value of  at the last change, denoted

, seems mistaken in the light of subsequent evidence.

This  measure is objective rather than based on the guesses of the subjects. It

describes how an agent who always calculates the correct Bayesian probability would

perceive a period of inertia.5 Thus, it must stand for an ‘as if’ assumption for the

subjects’ beliefs–after all, if they knew  they would use it rather than ∗–but it
is important for our modelling that we can derive the mathematical properties of 
as this will allow us to derive some key results about sticky belief adjustment.

Turning to the second row, the event  refers to a white ball being drawn,

which agents do not explicitly guess. The theoretical estimate for this probability is

the proportion of white balls, which we denote by  after  ball draws. Because

subjects are asked to guess the probability of the chosen urn being Urn 1, it is possible

to form an implicit guess of  based on the last guess of the Bayesian probability

 , namely . This guess is the probability of a white ball, 07 + 03 (1− ),

and is based on the assumption that Urn 1 has a 70% proportion of white balls while

Urn 2 has a 30% proportion.

The measure  is based on the standard test statistic for a proportion, using

the maximal value of the variance of the sampling distribution (namely (1
2
)2):

 =
 − (07 + 03 (1− ))

(052)12
 (2)

When we analyze the inferential expectations of each agent we can equate 
and  to each other which, together with our subsequent estimates, enables us to

recover the entire distribution of the test size as a key component in our description

of sticky belief adjustment. For computational ease, all our econometric estimation

uses . Appendix 1 shows that the two measures  and  are close numerically

5Since our decision problem is a double hurdle one where the first decision is whether to adjust

beliefs or not, it has to be the case that the greater the evidence against the null hypothesis, the

greater the financial cost from sticking to the null belief when the alternative is true, and therefore

the more likely the agent chooses to switch belief. In our experimental set up, there is therefore a one-

to-one correspondence between our inferential expectations (IE) formalism and state-dependent cost

based belief adjustment. Thus, we can use the IE formalism as a way of appropriately representing

not just IE but also other state-dependent belief adjustment models based on comparing the costs

of adjusting (whether cognitive, inattention, etc.) with the costs of not adjusting.
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and theoretically. In the subsequent analysis we will indicate which measure is being

used.

3.2 Expectation Processes

Using the notation around Table 1, we define three processes of expectation formation

that will be relevant for our double hurdle model in section 4.

Rational Expectations

The rational expectations (RE) solution predicts straightforward Bayesian updat-

ing. The (conditional) probability that the subject is being asked to guess is the

rational expectation (RE) which is given by . Calling  the initial prior prob-

ability and noting that the number of white balls is  we can write down  in a

number of ways:

 =
(07)

 (03)
− 

(07)
 (03)

−  + (03)
 (07)

− (1− )

=
1

1 +
(07)(03)−(1−)
(07)(03)−

(3)

=

Ã
(07)

 (03)
−

(07)
 (03)

−  + (07)
 (03)

− (1− )

!


The second line is a useful simplification (which we use in appendix 1) whereas

the bracketed fraction in the third line is the probability of obtaining the  white

balls when Urn 1 is drawn versus the total probability of obtaining this number of

white balls.

Quasi-Bayesian Updating

In our version of Quasi-Bayesian updating (QB), agents use Bayesian updating

as each new draw is received, but they incorrectly weight the bracketed probability

fraction:



 =

Ã
(07)

 (03)
−

(07)
 (03)

−  + (07)
 (03)

− (1− )

!



(4)

The parameter  may be thought of as the QB parameter, and if  = 1, we are

back to rational expectations. Agents in this framework can exhibit:   1 where

they overuse information and under-weight priors, 0 ≤   1 where they underuse

information and over-weight priors, or even   0 where they respond the wrong way

to information–raising the conditional probability when they should be lowering it,

and vice versa.
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Agents’ attitude towards the extent of belief change in the light of evidence can

be summarized by the distribution  across subjects. If  has most probability

mass between 0 and 1, most agents only partially adjust, and subjects converge to

full adjustment to the extent that the probability mass in  is towards unity.

Inferential Expectations

In this version of state dependent belief adjustment, agents form a belief and do

not depart from that belief until the weight of evidence against the belief is sufficiently

strong, as measured by the result of the hypothesis test applied to the test statistic

 in the bottom right hand corner of Table 1.

Under inferential expectations (IE), each agent starts with a belief about the

probability of U (that is, 0 = 06) and an implied probability of a white ball (0 =

054) and conducts a test that the latter is true after drawing a test size from their

own distribution of , namely  (). They are assumed to draw this every round

during the experiment. The -value of the test is derived using the measure in the

bottom right hand corner of Table 1 as the test statistic. We assume for simplicity

that  is distributed as a standard Normal.

Agents’ attitude towards changing beliefs in the light of evidence can be summa-

rized by the distribution  (). If  () has most probability mass near zero, agent

 is sluggish to adjust. Probability mass in  () near unity implies a very strong

willingness to use evidence, and probability mass at unity implies time dependent

updating. That is, if the probability mass at unity in  () is, say, 0.3, it implies

that there is a thirty per cent chance that agent  will update regardless of what the

evidence says.

This is because the decision rule in a hypothesis test is to reject 0, the status

quo, if the -value ≤ . A value for  of unity implies the status quo will be rejected,

which is the same as updating in this context, for any -value whatsoever.

Relationship between Expectations Benchmarks

When agent  rejects 0 within the IE framework we assume she updates her

probability guess. This agent can either be fully Bayesian (when she does update)

and adopt RE, or she can adopt QB and only update partly (or over-react, if   1).

In the QB case where 0    1, she moves by a fraction  of the distance she

should move.

Since each agent has a full distribution of , namely  (), we need a representa-

tive  to summarize the extent of sticky belief adjustment for agent  and to relate

to her . There are a number of possibilities, but a natural choice which permits

analytic solutions is the median  from their  (). For the purposes of our empirical

analysis a fully rational (Bayesian) agent is one who has  =  = 1, whereas any

other sort of agent does not have RE.6

6As we shall see, there is a minor technical qualification to this last sentence because our estimated
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We now parameterize all three expectation processes in a double hurdle model.

We find evidence for all of them in our data, and importantly we find that the IE

representation of  () has non-zero measure at unity. As discussed above, this is

the fraction of agents who undertake random belief adjustment.

4 Experimental Results

4.1 Preliminary Analysis of “No-change”

The baseline and complex treatments each had 82 subjects, and the inattention treat-

ment had 81 subjects. In this sub-section, we consider the number of times our sub-

jects executed a “no-change”, meaning a guessed probability equal to that of the

previous period. This is interesting because, given the nature of the information and

comparatively small number of draws, incidences of “no-change” are not predicted by

either Bayesian or Quasi-Bayesian updating, and so, if such observations are wide-

spread in the data, this is the first piece of evidence that these standard models are

unlikely to be enough to describe the data.

The maximum of the number of “no-changes” for each subject is 49: seven oppor-

tunities for no change out of eight draws, times the seven stages. The distributions

over subjects separately by treatment are shown in Figure 1. The baseline distrib-

ution shows a concentration at low values; for both Complex and Inattention, there

appears to be a shift in the distribution towards higher values, as one might expect.

The means for each treatment are represented by the vertical lines.

 () densities turn out to be a discrete/continuous mixture.
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The mean is higher under C (22.79) than under B (18.74) (Mann-Whitney test

gives  = 0007); and higher under I (26.97) than under B (  0001).7 This is

expected: complexity and inattention are both expected to increase the tendency to

leave guesses unchanged. When C and I are compared, the p-value is 0.06, indicating

mild evidence of a difference between the two treatments.

It is clear from the nonparametric evidence in Figure 1, of widespread incidence

of “no-changes”, that any successful model of our data will have to deal with the

phenomenon of whether to adjust, before considering how much to adjust. This in

turn can imply that the waiting process is stochastic and is unrelated to the actual

information arriving (random belief adjustment) or, that the information that arrives

influences the timing (state-dependent belief adjustment). Our double hurdle model

enables us to consider both.

7All -values in the paper are two tailed. All bivariate tests use subject level means as the

independent observations to avoid the problem of non-independence of within-subject choices.
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4.2 A Double Hurdle Model of Belief Adjustment

In this section, we develop a parametric double hurdle model which simultaneously

considers the decision to update beliefs and the extent to which beliefs are changed

when updates occur. Our econometric task is to model the transformed implied belief

∗ = Φ−1 (∗ ()), which in turn requires an estimate for risk aversion. We estimate
this at the individual level using the technique by Offerman et al. (2009). Appendix

2 contains the subject-level details surrounding the estimation of  and a scatterplot

of the resultant guesses ∗ against .
We will refer to ∗ as subject ’s “belief” in period , as shorthand for ‘transformed

implied belief’. We will treat ∗ as the focus of the analysis, because 
∗
 has the same

dimensionality as , the test statistic defined in the far right of row 1 of Table 1.

That is, both have support (−∞∞). Sometimes ∗ changes between  − 1 and ;

other times, it remains the same. Let∆∗ be the change in belief of subject  between
− 1 and . That is, ∆∗ = ∗ − ∗−1.
In the following estimation, justified in Appendix 1, we use changes in the Bayes’

probability as an ‘as if’ proxy for the IE test statistic that we assume agents mentally

compute in order to decide whether to update their belief. Since we equate  to

 we use  for both from now on. In round 1  equals the prior 0.6 and the

movement of the guess for a given subject is ∆∗ = ∗1 −Φ−1 (06). That is, both the
objective measure of the information change and the subjective guess of the agent are

assumed to anchor onto the prior probability that Urn 1 is chosen, 0.6, in the first

period.

First Hurdle: The probability that a belief is updated (in either direction) in

period  is given by:

 (∆∗ 6= 0) = Φ [ + ( + 01) ||]  (5)

where Φ [·] is the standard Normal cdf and  represents subject ’s idiosyncratic

propensity to update beliefs, and therefore models random probabilistic belief ad-

justment. The probability of an update is assumed to depend (positively) on the ab-

solute value of , the test statistic. The expression in round brackets represents the

effect of this variable, hence representing the impact of cumulative evidence (in either

direction) on the propensity to update. The vector  contains treatment (dummy)

variables, which are time invariant, and consequently  represents the impact of cu-

mulative evidence for a baseline subject, which is connected to state-dependent belief

adjustment. Finally, the elements of 1 tell us how this impact differs by treatment.

One econometric problem that arises is the endogeneity of the variable ||: sub-
jects who are averse to updating tend to generate large values of || while subjects
who update regularly do not allow it to grow beyond small values. This is likely to

create a severe downward bias in the estimate of the parameter  in the first hurdle.

To address this problem, we use an instrumental variables (IV) estimator which uses

a variable in place of ||, where |b| comprises the fitted values from a regression
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of || on a set of suitable instruments. This IV procedure is explained in detail in
Appendix 3.

Second hurdle: Conditional on one or more subjects choosing to update beliefs in

draw , the next question relates to how much they do so. This is given by:

∆∗ = ( + 02)  +   ∼ 
¡
0 2

¢
 (6)

As a reminder, the Quasi-Bayesian belief adjustment parameter  represents

subject ’s idiosyncratic responsiveness to the accumulation of new information: if

 = 1, subject  responds fully; if  = 0, subject  does not respond at all. Remember

that  is not constrained to [0 1]. In particular, a value of  greater than one would

indicate the plausible phenomenon of over-reaction. Again, treatment variables are

included: the elements of the vector 2 tell us how responsiveness differs by treatment.

There are two idiosyncratic variables,  and . These are assumed to be distributed

over the population of subjects as follows:µ



¶
∼ 

∙µ
1
2

¶


µ
21 12

12 22

¶¸
 (7)

In total, there are eleven parameters to estimate: 1, 1, 2, 2, , , , and four

treatment effects.

The results are presented in Table 2, for four different models.
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Model 1 estimates the QB benchmarks, in which it is assumed that the “first

hurdle” is crossed for every observation–that is updates always occur. Zero updates

are treated as zero realizations of the update variable in the second hurdle, and their
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likelihood contribution is a density instead of a probability. Because of this difference

in the way the likelihood function is computed, the log-likelihoods and AICs cannot

be used to compare the performance of QB to that of the other models.

Model 2 estimates the IE benchmark, in which the update parameter () is fixed

at 1 for all subjects. Consequently the extra residual variation in updates is reflected

in the higher estimate of . The parameters in the first hurdle are free.

Model 3 combines IE and QB, but constrains the correlation () between  and 

to be zero. Model 4 is the same model with  unconstrained.

The overall performance of a model is best judged using the AIC; the preferred

model is the one with the lowest AIC. Among the models that can be compared, the

best model is the most general model 4: IE-QB with  unrestricted, whose results

are presented in the final column of Table 2.

To confirm the superiority of the general model over the restricted models, we

conduct Wald tests of the restrictions implied by the three less general models. We

see that, in all three cases, the implied restrictions are strongly rejected, implying that

the general model is superior. Note in particular that this establishes superiority of

the general model 4 (IE-QB with  unrestricted) over the QB model 1 (a comparison

that was not possible on the basis of AIC).

We interpret the results from the preferred model as follows. Consider the first

hurdle (propensity to update). The intercept parameter in the first hurdle (1) tells

us that a typical subject has a predicted probability of Φ (−0063) = 047 of updating
in any task, in the absence of any evidence (i.e. when || = 0).

Result 1 There is evidence of random belief adjustment. In every period subjects

update their beliefs idiosyncratically around half of the time.

The large estimate of 1 tells us that there is however considerable heterogeneity

in this propensity to update (see Figure 2 below), something we will explore further

in section 4.3. The parameter  is estimated to be significantly positive, and this tells

us, as expected, that the more cumulative evidence there is, in either direction, the

greater the probability of an update.

Result 2 There is evidence of state-dependent belief adjustment. Subjects are more

likely to adjust if there is more evidence to suggest that an update is appropriate (thus

making it costlier not to update).

The two treatments have the expected signs: complexity reduces the impact of

information on the propensity to update; inattention also has a negative effect. How-

ever, neither of these treatment effects is significant, which suggests the robustness of

Results 1 and 2 to different treatment manipulations, i.e. these results do not require

additional complexity or potential sources of inattention.

In the second hurdle, the intercept (2) is estimated to be 0.41 in our preferred

model 4: when a typical (baseline) subject does update, she updates by a proportion
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0.41 of the difference from the Bayes probability. The large estimate of 2 tells us

that there is considerable heterogeneity in this proportion also (see Figure 2 below).

However, in all models where the second hurdle is meaningful (models 1, 3 and 4),

almost all of the ’s are between 0 and 1. If we take model 4, only 23 out of 245

subjects have   0, which indicates noise or confused subjects who adjusted in

the wrong direction.8 More interestingly, only 3 out of 245 subjects (~1%) display

overreaction to the evidence in model 4, with similar numbers in the other models (1

in model 1 and 4 in model 3).

Result 3 There is evidence of Quasi-Bayesian partial belief adjustment. On av-

erage, subjects who adjust do so by around 40%. There is no evidence of prior

information under-weighting: virtually none of the subjects overreact to evidence

once they decide to adjust.

The estimate of  is strongly positive, indicating that subjects who have a higher

propensity to update, also tend to update by a higher proportion of the difference

from the Bayes probability. This positive correlation is seen in the Model 4 plot in

Figure 2.

8There were a small number of cases in each of the three treatments (B: 7; C: 11; I: 5 cases).
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The treatment effects in the second hurdle are again of the expected sign. The

inattention effect is significant at the 5% level in model 1, but, once we model the first

hurdle the significance is only at the 10% level, and once we recognize the positive

correlation between  and , it disappears. In other words, whatever inattention

effect there is, it is captured by the fact that subjects who update less update by

a lower degree. There is instead evidence of that further complexity in the decision

problem reduces the extent of update by almost 15%.

Result 4 Any inattention effect is captured by the positive correlation between 

and . Complexity does not affect whether subjects decide to update or not, but, if

they do, they partially adjust by almost 15% less on average.

4.3 The Empirical Distribution of  and 

To get a better sense of the population heterogeneity in sticky belief adjustment, this

subsection maps out the empirical distribution of the IE  across subjects and QB 
parameters across subjects against each other. Estimating , the distribution of  is

easy enough to infer from our double hurdle models and we have done so in Figure 2.

We next use the first hurdle information to generate  (), the empirical distribution

of .

As we flagged earlier each agent has a full distribution of  and so we need a

representative  to summarize the extent of sticky belief adjustment for agent ,

to then relate to their . As will be clear below, the choice that permits analytic

solutions is the median  from  ().

The econometric equation for the first hurdle is equivalent to the probability of

rejecting the null under IE. We omit the dummy variables, which are insignificant.

We begin by re-writing the first hurdle, namely (5) without dummies:

Pr (reject 0) = Φ ( +  ||)  (8)

where  and  are estimated parameters and || is the test statistic based on the
proportion of white balls.

 =
 − 054p

052
 (9)

For any || it is possible to work out an implied -value and we do so by assuming

that (9) is approximately distributed (0 1). This in turn allows us to work out

 () from the econometric equation for the first hurdle. When || = 0, the -value
for a hypothesis test is unity, and so the equation says that a fraction of agents will

reject 0 if the -value is unity. Since the ciriteria for rejecting 0 in a hypothesis

test is always  ≥  value it implies that there must be a non-zero probability mass

on  () at the value of  exactly equal to 1. The distribution of  will thus have
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a discrete ‘spike’ at unity and be continuous elsewhere. We know what that spike is

from equation (8) with || = 0, namely Φ ().

The probability of rejecting 0 depends on the probability that the test size is

greater than the -value, but this is also equal to the econometric equation for the

first hurdle.

Pr (reject 0) =

Z 1

-value

 ()  = 1−  (-value) = Φ ( +  ||) (10)

Upper case  in the last equality is the anti-derivative of the density. We define

 (1) to be unity since 1 is the upper end of the support of  but we also note

that there is a discontinuity such that  jumps from 1 − Φ () to 1 at  = 1, as a

consequence of the non-zero probability mass on  () at unity. To solve the equation

we use an expression for the -value of || on a two-sided Normal test.

-value = 2 (1−Φ (||))  (11)

We use a ‘single parameter’ approximation to the cumulative Normal (see Bowling

et al. 2009). For our purposes
√
3 is sufficient for the single parameter.

Φ (||) = 1

1 + exp
¡−√3 ||¢  (12)

We can now write down || as a function of the -value using (12).

|| = 1√
3
ln

µ
2− -value

-value

¶
 (13)

Intuitively, a -value of zero implies an infinite || and -value of unity implies

|| is zero. We can now use the relationship between  (-value) and our esti-

mated first hurdle to generate  ().

1−  (-value) = Φ ( +  ||)
∴  (-value) = 1−Φ ( +  ||)

= Φ

µ
 + 

½
1√
3
ln

µ
2− -value

-value

¶¾¶
 (14)

In the above expression the variable ‘-value’ is just a place-holder and can be

replaced by anything with the same support leaving the meaning of (14) unchanged.

Thus, it can be replaced by  giving the cumulative density of .

 () = 1−Φ

µ
 + 

½
1√
3
ln

µ
2− 



¶¾¶
= 1− 1

1 +
£


2−
¤
exp

¡−√3¢  (15)
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Substitution of  = 1 does not give unity, which is what we earlier assumed for

the value of  (1). However, it does give 1 − Φ (), which of course concurs with

the econometric equation for the first hurdle when || = 0. This discontinuity in 

is consistent with a discrete probability mass in  () at unity, as we noted earlier.

It now just remains to differentiate  to obtain the continuous density  () for

 strictly less than unity. The description of the function at the upper end of the

support (unity) is completed with a discrete mass at unity of Φ ().

 () =
2 exp(−

√
3)−1

(2−)1+{1[ 
2− ]


exp(−

√
3)}2    1

Pr ( = 1) =
1

1+exp(−
√
3)

= Φ ()   = 1

⎫⎬⎭ (16)

Figure 3 illustrates the distribution  () for  = −0063 and  = 0566. The former
is the mean of  across subjects, from our estimation. On the right-most of the chart

is the probability mass when  = 1. As discussed earlier, this corresponds to the

proportion of agents who update without any evidence at all (|| = 0).

Since there are idiosyncratic values of  there will be an equivalent for Figure 3

for every subject varying over . So we must use a summary statistic for  (), and

the one which comes to hand is the median  value, obtained by solving  () = 05

in equation (15). In Figure 4, we plot the collection of subject ’s (median , )

duples for models 3 and 4 from Figure 2, where model 4 was our preferred equation.

Table 3 lists the percentage of subjects in each (median , ) 0.2 bracket.
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Fully rational agents, whose  are always identically equal to unity, are hard to

come by since they would require a modelled probability mass of unity at  = 1 in

the distribution of  (16), which in turn would require an infinite  in (5). So, our

procedure in Table 3 is to describe agents as rational on the -dimension (the rows

of Table 3) if they have a median in the bottom range (0.8 to 1.0).

With that in mind, we can now comment on the subjects’ use of information.

Roughly half of the subjects update regardless of evidence, so the median ’s cluster

at unity along the bottom axis with over half of them (53 per cent) in the range

at or above 0.8. Roughly one quarter of median ’s point to strong sticky belief

adjustment, with -values no more than 0.2. The remaining quarter of median ’s

point to weaker forms of sticky belief adjustment.

Regarding the size of updating, we already know from Result 3 that it is far from

complete. In Table 3 just over one third of subjects (35 per cent) only update between
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20 and 40 per cent of what they should, and we have already noted from model 4

of Table 2 that the average amount of updating over all subjects is just over 40 per

cent (41.2 per cent). Figure 4 and Table 3 show that those agents who are relatively

likely to update (→ 1) are likely to accomplish relatively more complete updating

than those who do not.

Result 5 Estimated test sizes spread over the whole support [0 1]. There is a

positive correlation between the median  and the extent of belief adjustment when

it occurs.

This positive correlation between  and  suggest the existence of a small group

(not more than 10 per cent) of rational agents. They inhabit the bottom RHS of

Table 3, where  and  both exceed 0.8.

5 Discussion and Conclusion

We present a novel and general double hurdle model to consider how agents update

their beliefs in an environment where multiple pieces of new information arrive dy-

namically and sequentially. Our experiment shows how, in such an environment, there

is no evidence of underweighting of prior information. It uses a quadratic scoring rule

to incentivize beliefs and employs the Offerman et al. (2009) technique to control for

risk attitudes. Our regression models in the paper use risk attitude adjusted beliefs,

but our key findings are unchanged if raw elicited beliefs are used instead, though

the goodness of fit is lower.

We observe random belief adjustment taking place in aggregate around half of

the time, which is consistent with stochastic time-dependent belief adjustment. De-

viations from Bayesian updating are systematically in the direction of sticky belief

adjustment, with only 1% of the subjects showing belief under-weighting in our sam-

ple. The likelihood of a belief change increases as the amount of evidence against the

null hypothesis increases. This is consistent with state-dependent models of sticky

belief adjustment. Because of the incentive mechanism, in our experimental setting

the greater the amount of evidence against the currently held belief, the greater the

expected costs of keeping to such belief. Because of this, in our experiment threshold-

based rational inattention models of belief adjustment (Sims, 2003) are equivalent to

agents holding inferential expectations (Menzies and Zizzo, 2009). That is, they stick

to their current belief as the null hypothesis until the evidence cumulating against

it passes a threshold determined by the test size , at which point they switch. We

estimate that roughly 23% of agents are belief conservative with  ≤ 02, 53 per cent
have  ≈ 1 in terms of likelihood of changing beliefs, and the rest is somewhere in
the middle.

We also find that, when beliefs change, in our preferred regression specification

they do so by only around 40% of the amount required by the Bayesian prediction.
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We therefore also find support for a partial adjustment version of Quasi-Bayesian

modeling. Furthermore, subjects who are less likely to adjust their beliefs are also

subjects who adjust their beliefs less when they do adjust them.

There are different ways to model sticky belief adjustment, which gives the lit-

erature the appearance of divergence. However, what we found overall is that there

is support for stochastic time-dependence (beliefs change around 50% other things

being equal) and state-dependent sticky belief adjustment (around one quarter of

subjects are strongly belief conservative on this respect) and Quasi-Bayesian partial

belief adjustment (when adjustment takes place, it is by around 40%). We also find

significant population heterogeneity in the extent of the sticky belief adjustment bias.

Current applications consider each of these channels separately, and this has

clearly been a good starting point to identify their effect. Sticky belief adjustment

is not a novel idea, and initial experimental evidence for it in settings with evidence

presented all at once were discussed as long ago as Phillips and Edwards (1966) and

Edwards (1968). A pilot study described in Menzies and Zizzo (2005) found evidence

for sticky belief adjustment in an experiment with dynamically provided information,

but, apart from the small nature of the study, it neither controlled for risk aversion

nor did it test among different forms of sticky belief adjustment. Massey and Wu

(2005) contains a related but different experiment with dynamically provided infor-

mation where the goal of the subjects is to identify whether a regime shift has taken

place, but they are allowed to change their mind only once; they identify conditions

where, in a decision problem of this kind, their subjects display underweighting or

overweighting of priors.

In the context of an experiment in which there is only one piece of information

provided at the beginning of trading, Camerer (1987) argues that probability up-

dating anomalies wash away in the light of market discipline. Conversely, again in

a setting where information is provided all at once, Menzies and Zizzo (2012) find

greater evidence of stickiness in market prices in a Walrasian auction market setting

intended to model an exchange rate market, than in the corresponding individual

beliefs as revealed by the market choices of traders. While this is obviously an area

for future research, there is a range of empirical applications where belief stickiness

appears plausible in natural economic environments, including markets. Applications

of sticky belief adjustment include, among others, optimal principal agent contracts

(Rabin and Schrag, 1999), individual responses to market signals (Sims, 2003), a

micro-foundation for the New Keynesian Phillips curve (Mankiw and Reis, 2002),

consumer and producer behavior (Reis, 2006a, 2006), and pricing under informa-

tion costs (Woodford, 2009). Inferential expectations modeling has been applied to

explain the uncovered interest rate parity failure (Menzies and Zizzo, 2009, 2012),

central bank credibility (Henckel et al., 2011, 2013) and merger decisions by compe-

tition regulators (Lyons et al., 2012).To conclude, there are different ways to model

sticky belief adjustment. What we found overall is that there is support for stochastic

time-dependence (beliefs change around 50% of the time, other things being equal)
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and state-dependent sticky belief adjustment (almost half of the subjects are belief

conservative to some degree) and Quasi-Bayesian partial belief adjustment (when

adjustment takes place, it is by around 40%). We also find significant population

heterogeneity in the extent of the sticky belief adjustment bias.
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6 Appendices

6.1 Appendix 1: Closeness of Two Strength-of-evidenceMea-

sures

The task of this appendix is to explain why the two measures in the final column

of Table 1 are numerically similar when simulated in an online appendix ‘Two 

measures as functions of  · ’. We focus here on the expected values of  and
 to make a statement of similarity that is not clouded by sampling variability.

We first consider the evolution of the expected value of  at the start of the

experiment, when  () = 06, or equivalently when the expected probability of a

white ball is  ( ) = 07 (06)+03 (1− 06) = 054. We now calculated the expected
value of  from the second row of the table, when Urn 1 is in fact drawn, so that

the true  ( ) = 07.

 () = 2
√
 [ ()− (07 (06) + 03 (04))]

≈ 2
√
 [07− 054]

= 032
√
 (19)

If Urn 2 is chosen, () = 03, and making this substitution gives () =

048
√
.
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We now compare these to the expected value of  = Φ−1 ()− Φ−1 (06). The
cumulative Normal Φ is approximated by a ‘one parameter equation’ logistic approxi-

mation (Bowling et al. 2009). We use
√
3 below, but one could use the other standard

parameters 
√
3 or 1.7 without any substantive difference to the results. Here is the

approximation we use together with its inverse.

Φ () ≈ 1

1 + exp
¡−√3¢ ⇐⇒ Φ−1 () =

1√
3
ln

µ


1− 

¶


The components of  at the beginning of the experiment are thus:

Φ−1 () =
1√
3
ln

µ


1− 

¶
& Φ−1 (06) =

1√
3
ln

µ
3

2

¶
 (20)

Writing  in terms of , and noting that the number of white balls is , we

obtain:

 =
(07)

 (03)
− (06)

(07)
 (03)

− (06) + (03) (07)− (1− 06)

=
1

1 +
(03) (07)−

(07) (03)−
2
3

=⇒ 

1− 

=
3

2

µ
7

2

¶2−

 = Φ−1 ()−Φ−1 (06) =
1√
3
ln

Ã
3

2

µ
7

2

¶2−!
− 1√

3
ln

µ
3

2

¶
=

√
3
(2 − 1) ln

µ
7

3

¶
 (20)

Finally, the expectation of 2 − 1 is 0.4 if Urn 1 is chosen and -0.4 if Urn 2 is
chosen.

 () =

(
04√
3
ln
¡
7
3

¢ ≈ 02 for Urn 1
−04√

3
ln
¡
7
3

¢ ≈ −02 for Urn 1
)

(22)

In Figure A1 we show () and () as a function of  when Urn 1 is chosen

and when Urn 2 is chosen. () under the two states of nature (Urn 1 and Urn

2) is solid, and based on (19). ( ) is dashed and based on (22). If Urn 1 is chosen,

both strength-of-evidence measures can be expected to raise the prior probability

of 0.6 upwards as  increases (towards the true value of unity). If Urn 2 is chosen,

both strength-of-evidence measures can be expected to draw the prior probability

down (towards the true value of zero). As is clear from looking at the numerical

simulations, the highly stochastic paths of  differ from those shown in Figure A1,

but as one observes a number of simulations are done, the patterns of (19) and (22)

shown in Figure A1 can indeed be discerned.
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While the expected function pairs (one pair for each urn draw) in the figure are

not identical, we judge them to be close enough for our approximation in the text.

6.2 Appendix 2: Method for Estimating CRRA Risk Para-

meter

The log relationship between transformations of  and ∗ in the text has an i.i.d.
error added to it and run with 10 observations as an OLS regression. The variable

 in (23) refers to the 10 rounds in the practice part, not to the rounds in the main

part. The estimated parameter  is subscripted for subjects, because (23) is run for

each subject to provide her own .

ln

µ
∗ (1− )

 (1− ∗ )

¶
=  ln

µ
 (2− )

(1 + ) (1− )

¶
+   = 1 2     10 (23)

We note the following:

1. The regression has no intercept. If an intercept is included the  estimates are

inefficient.

2. For some subjects  = 05 in every period. In this case, the RHS variable is

ln (1) in every period. This means that  approaches +∞. These estimates
need to be re-coded to a high positive number, and we use +10.

3. There is a logical requirement that  cannot be less than -1 in this model.

Hence, any estimates less than -1 need to be re-coded to -1.
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The above procedure gives rise to the following distribution of  over the 245

subjects:

Once each subject has her own estimated , the full set of implied 
∗
 values can be

generated from the observed guesses  in the main experiment. As discussed in the

main text, this is accomplished by rewriting (21) without an error, which is identical

to equation (1), exponentiating both sides, and then solving for ∗ . The following
figure shows ∗ against  for the full sample. The multiple values of 

∗
 for every 

are due to the different estimated values of  for each subject.
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6.3 Appendix 3: IV Estimator

As mentioned in subsection 4.2, there is an endogeneity problem with using the

strength of evidence against the previously chosen value as an explanatory variable

in the first hurdle, and in this appendix we resolve this problem. (We continue to drop

the subscript ‘P’ in what follows, since we have equated the two measures of strength

of evidence and refer to both of them as ). The problem is that the variable is

endogenous, because subjects with a low propensity to update are clearly likely to

generate large values of || simply by virtue of rarely updating. Hence || always
appears to have a perverse negative effect on the propensity to update.

In order to address this problem, we use an IV estimator. We first create a

prediction |b| for use in the second stage of a two-staged least squares estimation.
The two instruments for || that we use to create this predictor are the round number
(), and the absolute value of the contribution to || in the current round |∆|.
This is not to be confused with the difference built into  which spans the current

period to period , namely, Φ−1 ()−Φ−1 (). We note that, because Φ
−1 ()

is fixed, a difference operator will eliminate it, leaving ∆ as the change in Φ
−1 ()

over the last period.

The stage 1 OLS regression is, therefore:

|| = 0 + 1+ 3 |∆|+  (24)

The results are shown below. Both variables show strong significance in the ex-

pected direction, implying that they are good instruments.
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Coefficient s.e. t-stat

constant 0.0954 0.0117 8.18

t 0.0263 0.0018 14.24

|∆| 0.8168 0.0106 77.14

Obs. 13,720

R-Squared 0.3065

Having estimated the stage 1 regression we obtain the predicted values, |b|, and
use these in place of || in the first hurdle of the main model. To underline the
importance of the instruments, we show two plots below. Figure A4 shows the esti-

mated itprobability of updating against ||, while Figure A5 displays the estimated
probability of updating against |b|.

Figure A4 (left panel) makes clear the endogeneity problem identified above: over

most of the range of || its effect on the propensity to update is negative. Figure A4
(right panel) is of the same binary variable against |b| (the prediction from the stage
1 regression). It shows completely the opposite pattern: a monotonically increasing

effect of |b| on the propensity to update.
6.4 Appendix 4: Adjustment costs and beliefs

In Offerman et al. (2008)  is the probability of choosing Urn 1 and  is the guess

that maximizes expected utility:

 ( ) = 
¡
1− (1− )

2
¢
+ (1−  )

¡
1− 2

¢


31



Optimal , denoted ∗, solves the following expression which is derived from the first
order condition:

∗ =


 +
(1− ) 0(1−∗2)
 0(1−(1−∗)2)



If an agent has a standing choice of , say 0, and moving to the optimal ∗ costs
 (whereas maintaining 0 costs nothing), then the agent will move iff:

 (1−(1−∗)2−)+(1− ) (1−∗2−)   (1−(1−0)2)+(1− ) (1−02)

Thus the presence of an adjustment cost creates inertia. Note that this is increas-

ing the greater the difference is between 0 and ∗, and that this difference will be
monotonically greater the greater the evidence against 0 and in favour of ∗ in an
inferential expectations framework. Thus, there is a connection between adjustment

costs and the use of inferential expectations.
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