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1 Introduction

The vast literature on univariate and multivariate financial times series provides compelling

evidence for the presence of time-varying volatilities, time-varying correlations, leverage effects,

conditionally heavy tails, and often skewness as common features of stock and index return

series. Stochastic volatility (SV) is large class of models that incorporate these stylized facts

into a range of univariate and multivariate specifications. Among many others, Shephard and

Pitt (1997) and Durbin and Koopman (1997) develop estimation procedures for SV models with

Student’s t errors. Koopman and Hol Uspensky (2002) and Yu (2005) discuss leverage effects in

SV models. Asai et al. (2006) and Chib et al. (2009) review several approaches for multivariate

stochastic volatility (MSV).

This paper addresses the challenge of extending flexible stochastic volatility models to the

multivariate setting. We follow Pitt and Shephard (1999a) and Chib et al. (2006) and consider a

factor stochastic volatility (FSV) framework. FSV models represent each individual asset return

as a linear combination of factor (shared) innovations and an asset-specific innovation, where

each model component follows a univariate SV process. To achieve flexibility in this multivariate

setting, we introduce a model that allows every systematic and idiosyncratic component to follow

the univariate SV model proposed by Nakajima and Omori (2012), which incorporates leverage

effects, skewness, heavy-tails via the (generalized hyperbolic) skew Student’s t distribution of

Aas and Haff (2006).

The motivation for Nakajima and Omori (2012) model as the basis of the factor SV speci-

fication is twofold. First, it ensures that each marginal series is consistent with a flexible spec-

ification found to be empirically accurate in the univariate SV context. Second, the Nakajima

and Omori (2012) specification for the factor components leads to higher flexibility in the de-

pendence structure, allowing us to incorporate important multivariate features into the model.

Ang and Chen (2002) and Patton (2004) find that correlations between US stocks are much

higher during downturns, and for downside moves. By incorporating factor leverage effects,

and allowing for asymmetric factor innovations, our model can account for these asymmetries.

Beine et al. (2010) and Oh and Patton (2017a), among others, emphasize the important of tail

co-movements, moving the use of a heavy-tailed distribution for the factor innovations in our

model.

We follow a Bayesian approach and develop an efficient Markov Chain Monte Carlo (MCMC)

algorithm for the univariate and factor versions of the model based on the particle Gibbs method
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of Andrieu et al. (2010). Our sampling scheme for latent SV processes builds on the efficient

importance sampling (EIS) algorithm of Richard and Zhang (2007) and the particle Gibbs

with ancestral sampling algorithm of Lindsten et al. (2014). The EIS method constructs a

globally optimal approximation to the distribution of the latent volatility process conditional

on the data which is typically orders of magnitude more accurate than methods based on local

approximation, such as those used in multi-move sampling. In this paper, we use the particle

Gibbs sampler of (Lindsten et al., 2014)as an efficient way to implement the EIS proposal within

our MCMC scheme. Grothe et al. (2017) follow a similar approach for general state space models,

including a canonical SV model.

Other common methods for posterior simulation in SV models include the pseudo-marginal

Metropolis-Hastings algorithm of (Andrieu and Roberts, 2009; Andrieu et al., 2010), Gibbs

sampling with data augmentation (Kim et al., 1998), and Metropolis-within-Gibbs (Gilks et al.,

1995, Geweke and Tanizaki, 2001, Koop et al., 2007, Watanabe and Omori, 2004) sampling.

In a classical setting, several authors have considered simulated maximum likelihood (Durbin

and Koopman, 1997; Liesenfeld and Richard, 2006). All of these approaches may infeasible or

inefficient for complex SV specifications, or in high-dimensional settings. Our simulation and

empirical results of Sections 4 and 5 show that our particle Gibbs approach is instrumental for

efficient estimation in practice, whether in the univariate or multivariate setting.

Scalability in the number of assets is a primary concern in multivariate financial time series

modeling. Quantitative investment funds typically have tens and even hundreds of positions

in their portfolio, requiring the development of high-dimensional multivariate models for risk

and investment management (Dempster et al. 2008, Vardi 2015). However, multivariate models

typically suffer from the curse of dimensionality: the number of model parameters or the com-

putational cost can grow fast with number of assets, making estimation extremely challenging

for large portfolio sizes. As in Chib et al. (2006), our factor SV specification addresses this

problem in two ways. First, the number of parameters is a linear function of the number of

assets, as in other factor models. Second, the factor structure leads to a convenient sampling

scheme which reduces to parallel treatment of many univariate series after marginalization of

the factors. With the use of the efficient simulation methods proposed in this paper, we are

able to estimate our general specification for moderately large number of assets (up to 80 in our

empirical application), despite the complexity of the model.

We organize the discussion as follows. Section 2 discusses the Nakajima and Omori (2012)

model and introduces our new Bayesian estimation method for the univariate case. Section 3
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extends the model and methodology of Section 2 to the factor SV setting. Section 4 presents

simulation studies for the univariate model of Nakajima and Omori (2012) and our new the high-

dimensional factor model. Section 5 presents empirical applications for two portfolios based on

stock return for of the S&P100 and ASX50, including extensive comparison with alternative

methods in terms of key metrics such as value-at-risk (VaR) accuracy and minimum-variance

portfolio performance. Section 6 concludes.

2 Univariate estimation

In this section we develop an efficient Bayesian estimation method for the univariate SV model

of Nakajima and Omori (2012). Our objective is to introduce key ideas and methods that will

apply more generally to the factor SV model of Section 3. In particular, our MCMC algorithm

for the multivariate model will follow from the efficient univariate particle Gibbs sampler of

Section 2.2. Our simulation results in Section 4 suggest that our method can lead to large gains

in efficiency and reliability compared to the MCMC algorithm proposed in Nakajima and Omori

(2012), extending the scope of their flexible univariate SV model.

2.1 SV with leverage effects, skewness, and heavy tails

Nakajima and Omori (2012) introduce the following model

yt = exp(ht/2)νt, t = 1, ..., T,

νt = α+ βWtγ +
√
Wtγεt, t = 1, ..., T,

ht+1 = µ(1− φ) + φht + ηt, t = 2, ..., T − 1,

h1 ∼ N

(
µ,

σ2

1− φ2

)
,εt

ηt

 ∼ N(
0

0

 ,
 1 ρσ

ρσ σ2

), t = 1, ..., T,

Wt ∼ IG
(
ζ

2
,
ζ

2

)
, t = 1, ..., T,

(1)

where yt is a return series, ht is the unobserved log-volatility (modeled as a stationary AR(1)

process), νt is the return innovation, and ηt is the log-volatility innovation. The return innovation

follows the (standardized and) generalized hyperbolic skew Student’s t-distribution, which we

write as a location-scale mixture of Gaussian variables for convenience. The mixing variable
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Wt follows the inverse Gamma (IG) distribution. We choose α = −βζ/(ζ − 2) and γ = (µW +

β2σ2
W )−1/2 with µW and σ2

W denoting the mean and variance of IG(ζ/2, ζ/2)-distributed Wt,

respectively, so that νt has zero mean and unit variance. ζ > 4 is imposed to ensure the existence

of a finite variance. The asymmetry parameter β and the degrees of freedom ζ jointly determine

the skewness and heavy-tailedness of νt.

Aas and Haff (2006) provide a detailed account of generalized hyperbolic skew Student’s

t-distribution including its density function fν , the p-th moment E(|ν|p), and an EM algorithm

for parameter estimation. β = 0 corresponds to a symmetric Student’s t-distribution for νt and

a standard normal distribution if ζ further becomes large. As argued by Aas and Haff (2006), a

unique feature of the distribution of νt is that in the tails

fν(ν) ∝ |ν|−ζ/2−1exp(−|βν|+ βν) as ν → ±∞.

This means that fν has semi-heavy tails, meaning that depends on the value of β and ζ one

tail can decay polynomially (heavy tail) whereas the other exponentially (light tail), which is an

appealing feature for financial data.

We allow the log-volatility innovation ηt and the normal component ε)t to have correlation

ρ, leading to a leverage effect when ρ < 0. We can show that Corr(νt, ηt) = Le(β, ζ)ρ where the

multiplier Le(β, ζ) is

Le(β, ζ) =
Γ( ζ−1

2 )

Γ( ζ2)

√
(ζ − 2)2(ζ − 4)

2ζ2 + (4β2 − 12)ζ + 16
, ζ > 4. (2)

The proof is in the supplementary appendix. Basic algebra shows that Le(β, ζ) ∈ (0, 1), ∀β, ζ ∈

R with ∂Le
∂ζ > 0, ∂

2Le
∂ζ2

< 0, ∂Le∂|β| < 0, and ∂2Le
∂β2 < 0. Given β, when ζ becomes large the density of

νt is less skewed and has lighter tails (Aas and Haff, 2006), so Le(β, ζ) tends to one or leverage

effect tends to ρ, similar to the case of a standard SV model with normal error. Given ζ > 4,

the magnitude of leverage decreases to zero with |β| even though ρ 6= 0. It means that if the

return innovation νt puts a large weight on the mixing variable Wt (i.e. large |β|), leverage effect

vanishes.

2.2 MCMC algorithm

Let θ = (σ, ρ, φ, µ, β, ζ) collect the model parameters and x1:T = (x1, x2, . . . , xT ) for a general

process x. We propose an MCMC algorithm that iterates over

5



1. Sampling (h1:T ,W1:T )|y1:T , θ;

2. Sampling θ|y1:T , h1:T ,W1:T ,

as a Metropolis-within-Gibbs procedure (e.g., Gilks et al. 1995, Geweke and Tanizaki 2001 which

Koop et al. 2007). The key feature of our algorithm is the joint sampling of the entire trajectories

h1:T and W1:t as single block via the particle Gibbs algorithm. In comparison, Nakajima and

Omori (2012) sample ht using the multi-move sampler of Shephard and Pitt (1997) conditional

on Wt (see also Watanabe and Omori 2004 and Takahashi et al. 2009); They subsequently sample

Wt conditional on ht using the Metropolis-Hastings algorithm.

2.2.1 Approximating p(h1:T ,W1:T |y1:T , θ) via efficient importance sampling

We turn to the EIS method of Richard and Zhang (2007) to build a proposal for the latent

trajectories h1:T and W1:T conditional on the data y1:T and the parameters θ. We rewrite the

model as

yt = (α+ βWtγ +
√
Wtγεt)e

ht/2, t = 1, ..., T

ht+1 = µ(1− φ) + φht + ρσε̄t +
√

1− ρ2ση∗t , t = 1, ..., T − 1

where ε̄t = (yte
−ht/2 − α − βWtγ)/

√
Wtγ, and η∗t is standard normal independent on εt. Note

that ε̄t ∈ Ft, where Ft is the filtration generated by both observables y1:t and unobservables

h1:t and W1:t such that the model is Markovian and yt forms a martingale difference sequence,

allowing factorization of the likelihood.

Model (1) is a non-linear non-Gaussian state space model. Let xt = (ht,Wt)
′ denote the

state vector and p(·) a generic density function, possibly with a subscript to indicate a specific

distribution. For notational simplicity, we suppress the dependence on θ. The likelihood is given

by the integral

L(y1:T ) =

∫
p(y1:T , x1:T )dx1:T =

∫
p(y1|x1)p(x1)

T∏
t=2

p(yt|xt)p(xt|xt−1, yt−1)dx1:T , (3)

where the transition density for t = 2, ..., T follows

p(xt|xt−1, yt−1) = pN (ht|ht−1, yt−1,Wt−1)pIG(Wt)

= N
(
ht;µ(1− φ) + φht−1 + ρσε̄t−1, (1− ρ2)σ2

)
· IG

(
Wt;

ζ

2
,
ζ

2

)
.

(4)
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The EIS method suggests the following importance sampler:

q(x1:T |y1:T ) = q(x1|y1:T )

T∏
t=2

q(xt|xt−1, y1:T ),

with the conditional density q(xt|xt−1, y1:T ) for t = 2, ..., T written as

q(xt|xt−1, y1:T ) =
kq(xt, xt−1; δt)

χq(xt−1; δt)
with χq(xt−1; δt) =

∫
kq(xt, xt−1; δt)dxt,

where kq(xt, xt−1; δt) is a kernel in xt with integration constant χq(xt−1; δt) and δt is a set of

importance parameters (which are a function of y1:T ). At the initial period, the importance

density is simply

q(x1|, y1:T ) =
kq(x1; δ1)

χq(δ1)
with χq(δt) =

∫
kq(x1, ; δ1)dx1.

Using the above importance density, we can express the likelihood (3) as

∫
p(y1|x1)p(x1)

q(x1|y1:T )

T∏
t=2

p(yt|xt)p(xt|xt−1, yt−1)

q(xt|xt−1, y1:T )
q(x1:T |y1:T )dx1:T

=
1

χq(δ1)

∫
p(y1|x1)p(x1)

kq(x1; δ1)/χq(x1; δ2)

T∏
t=2

p(yt|xt)p(xt|xt−1, yt−1)

kq(xt, xt−1; δt)/χq(xt; δt+1)
q(x1:T |y1:T )dx1:T ,

(5)

with χq(xT ; δT+1) = 1.

The EIS method is particularly suitable to our problem since both the inverse Gamma

and normal distributions are closed under multiplication. This implies that we can choose an

importance kernel that is conjugate with the transition density (4),

kq(xt, xt−1; δt) = k(xt, xt−1; δt) · kp(xt, xt−1; yt−1),

where

kp(xt, xt−1; yt−1) = p(xt|xt−1, yt−1)χp(xt−1; yt−1), with χp(xt−1; yt−1) =

∫
kp(xt, xt−1; yt−1)dxt.

The likelihood (5) then becomes

χq(δ1)

∫ p(y1|x1)
χq(x1;δ2)
χp(·;)

k(x1; δ1)

T∏
t=2

p(yt|xt) χq(xt;δt+1)
χp(xt−1;yt−1)

k(xt, xt−1; δt)
q(x1:T |y1:T )dx1:T ,
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where χp(·; ) corresponds to the integration constant with respect to the unconditional distribu-

tionN(h1;µ, σ2

1−φ2 ) and IG(W1; ζ2 ,
ζ
2). It follows from the transition density pN (ht|ht−1, yt−1,Wt−1)

and pIG(Wt) in (4) that

kp(xt, xt−1; yt−1) = exp

(
µ(1− φ) + φht−1 + ρσε̄t−1

(1− ρ2)σ2
ht −

h2
t

1
2(1− ρ2)σ2

)
·W−

ζ
2
−1

t exp(−ζ
2
W−1
t ).

Let δt = (bt, ct, st, rt). For conjugacy, we choose the kernel

k(xt, xt−1; δt) = exp(btht −
1

2
cth

2
t ) ·W

st
t exp(rtW

−1
t ) (6)

with the ratio of integration constant given by

χq(xt; δt+1)

χp(xt−1; yt−1)
=

√
vt

(1− ρ2)σ2
exp

(
1

2
(
µ2
t

vt
− (µ(1− φ) + φht−1 + ρσε̄t−1)2

(1− ρ2)σ2
)

)
×

Γ(ζ/2 + rt)

(ζ/2 + rt)ζ/2+st

(ζ/2)ζ/2

Γ(ζ/2)
,

where

vt =
(1− ρ2)σ2

1 + (1− ρ2)σ2ct
, and µt = vt

(
bt +

µ(1− φ) + φht−1 + ρσε̄t−1

(1− ρ2)σ2

)
. (7)

The choice of kernel (6) corresponds to an importance density that is the product of a normal

density with mean µt and variance vt as defined in (7) and an inverse Gamma density with shape

parameter ζ/2 + st and rate parameter ζ/2 + rt, i.e.

q(xt|xt−1, y1:T ) = N(ht;µt, vt) · IG
(
Wt;

ζ

2
+ st,

ζ

2
+ rt

)
. (8)

Kleppe and Liesenfeld (2014) originally considered this formulation in a continuous mixture

setting.

We obtain the set of importance parameters δt iteratively via a sequence of auxiliary least

square regressions. Briefly, given an initial set of importance parameters δ
(n)
t , we can draw J

trajectories of x
(j)
t = (h

(j)
t ,W

(j)
t )′ for j = 1, ..., J using (8). For each t, we update δ

(n+1)
t such

that

δ
(n+1)
t = arg min

δt

J∑
j=1

[(
log p(yt|x(j)

t ) + log
χq(x

(j)
t ; δ

(n+1)
t+1 )

χp(x
(j)
t−1; yt−1)

)
−
(
γt + log k(x

(j)
t , x

(j)
t−1; δt)

)]2

,

(9)

where γt is a normalizing constant. In essence, EIS finds an approximate minimiser δt for the
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variance of the ratio or the importance weight

p(yt|xt) χq(xt;δt+1)
χp(xt−1;yt−1)

k(xt, xt−1; δt)
=

p(yt|xt)p(xt|xt−1, yt−1)

kq(xt, xt−1; δt)/χq(xt; δt+1)
. (10)

Because exponential family kernels such as (6) are log-linear, the regression is a basic OLS

with regressors (h
(j)
t , h

(j)
t

2
,− logW

(j)
t ,−1/W

(j)
t ). As shown by Richard and Zhang (2007) and

Scharth and Kohn (2016), the backward-shift of the period t+1 integration constant χq(xt; δt+1)

is crucial for obtaining a globally efficient importance density as it depends on both the lagged

and future states.

2.2.2 Sampling h1:T ,W1:T |y1:T , θ

We sample from p(h1:T ,W1:T |y1:T ) by using the EIS state proposal within the particle Gibbs

with ancestor sampling (PGAS) algorithm of Lindsten et al. (2014). We abbreviate this sampler

as PGAS-EIS, as it belongs to the family of particle Gibbs algorithms (see e.g., Chopin et al.,

2013) based on particle filtering or sequential Monte Carlo methods (see Pitt and Shephard,

1999b and Doucet et al., 2001 for a general discussion). Assuming at t − 1, we have a particle

system containing M particles {xi1:t−1}Mi=1 and associated weights {ωit−1}Mi=1 which approximates

the filtering density p(x1:t−1|y1:t−1) by a sum of Dirac delta functions D(.), we have

p̂(x1:t−1|y1:t−1) =

M∑
i=1

ωit−1∑M
j=1 ω

j
t−1

D(x1:t−1 − xi1:t−1).

PGAS-EIS propagates the particle system by first sampling {ait, xt}Mi=1 from

It(at, xt) =
ωatt−1∑M
j=1 ω

j
t−1

q(xt|xatt−1, y1:T ),

with at indexing the ancestor particle, i.e. xi1:t = (x
ait,x

i
t)

1:t−1 . PGAS-EIS differs from a standard

PG algorithm because it then samples the ancestor for the reference trajectory according to

P(aM+1
t = i) =

ωit−1p(x
?
t |xit−1, yt−1)∑M+1

j=1 ωjt−1p(x
?
t |x

j
t−1, yt−1)

, (11)

and then we “rewrite” the history of the reference trajectory by setting xM+1
1:t = (x

aM+1
t

1:t−1 , x
M+1
t ).
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We finish the recursion for each t by re-weighting the augmented system according to

ωit =
p(yt|xit)p(xit|xit−1, yt−1)

q(xit|xit−1, y1:T )
, for i = 1, ...,M + 1. (12)

Once the propagation reaches t = T , PGAS-EIS samples a new path x+
1:T from

p̂(x1:T |y1:T ) =
M+1∑
i=1

ωiT∑M+1
j=1 ωjT

D(x1:T − xi1:T ), (13)

which serves as the reference trajectory x?1:T in the next MCMC iteration.

As shown in Lindsten et al. (2014), the AS step effectively breaks the reference trajectory

into pieces, and as a result x+
1:T is substantially different from x?1:T with high probability. This

improves mixing compared to standard PG. Our sampler further improves efficiency through the

globally optimal EIS importance density. From Chopin et al. (2013) and Lindsten et al. (2014),

it follows immediately that the Markov kernel implied by the PGAS-EIS sampler leaves the

conditional posterior distribution p(x1:T |y1:T ) invariant. Furthermore, assuming a boundedness

condition for the importance weight ωit for all i and t to hold, we can also show uniform ergodicity

of the implied Markov kernel, which is an essential requirement for sampling the parameter vector

θ.

2.2.3 Sampling θ|y1:T , h1:T ,W1:T

We here focus on σ and ρ only. We sample the remaining parameters according to Nakajima

and Omori (2012); See the appendix for details. Let π0(·) and π(|·) denote prior and posterior

distributions respectively. The joint posterior probability distribution π(σ, ρ|·) is

π(σ, ρ|·) ∝ π0(σ, ρ)σ−T (1− ρ2)−
T−1
2 exp

{
−(1− φ2)h̄2

1

2σ2
−
T−1∑
t=1

(h̄t+1 − φh̄t − ρσε̄t)2

2σ2(1− ρ2)

}
,

where h̄t = ht − µ.

We re-parameterize the likelihood in the above expression by ϑ = ρσ and $ = σ2(1 − ρ2).

By factorizing the joint prior as π0(ϑ|$)π0($) and choosing π0($) = IG(s0, r0) and π0(ϑ|$) =

N(ϑ0, v
2
ϑ$), i.e. a normal-inverse-gamma conjugate prior, we can efficiently generate new draws
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from ϑ|· ∼ N(µϑ, σ
2
ϑ$), where $|· ∼ IG(r1, s1) and

σ2
ϑ =

{
1

v2
ϑ

+
T−1∑
t=1

ε̄2t

}−1

, µϑ = σ2
ϑ

{
ϑ0

v2
ϑ

+
T−1∑
t=1

ε̄t(h̄t+1 − φh̄t)

}
,

s1 = s0 +
T

2
, r1 = r0 +

1

2

{
T−1∑
t=1

(h̄t+1 − φh̄t)2 −
µ2
ϑ

σ2
ϑ

+
ϑ2

0

v2
ϑ

}
.

(14)

We update the Markov chain accordingly using σ =
√
ϑ2 +$ and ρ = ϑ/σ.

3 Factor SV with leverage effects, skewness, and heavy tails

3.1 Model specification

We propose the following factor SV model

yt = Λft + ut, t = 1, ..., T,

{fj,t}Tt=1 ∼ Model (1), ∀j ∈ {1, ..., p},

{ui,t}Tt=1 ∼ Model (1), ∀i ∈ {1, ..., n},

(15)

where yt ∈ Rn, ft ∈ Rp and Λ ∈ Rn×p. Model (15) tells that each factor process fj,t and

asset-specific process ui,t follow the univariate dynamics as in the univariate model (1). The

above model is related to the specifications in Chib et al. (2006) and Nakajima (2015), but is

considerably more flexible than these two. Chib et al. (2006) consider a factor structure, but do

not allow for possible leverage, heavy-tailedness and skewness in the factors. Nakajima (2015)

incorporate model (1), but do not achieve dimension reduction through a factor structure in

asset returns.

Let hj,t and Wj,t denote the SV process and the inverse gamma mixing variable for the

factor process fj,t, j = 1, ..., p. Let li,t and Qi,t denote those for the asset-specific process ui,t,

i = 1, ..., n. We use superscripts fj and ui for the parameters associated with these processes.

That is, for the i-th return series the model reads

yi,t =

p∑
j=1

Λij(α
fj + βfjWj,tγ

fj +
√
Wj,tγ

fjξj,t)e
hj,t/2

+ (αui + βuiQi,tγ
ui +

√
Qi,tγ

uiεi,t)e
li,t/2.

(16)

Let h and l denote the set of SV processes corresponding to ft and ut respectively for

11



t = 1, ..., T ; namely h = {h1, ..., hp} where hj = {hj,t}Tt=1 for j = 1, ..., p, and l = {l1, ..., ln}

where li = {li,t}Tt=1 for i = 1, ..., n. We denote the set of mixture components by W and Q in a

similar fashion. A model with n assets and p factors has 6(n+ p) + np− (p2 + p)/2 parameters

with usual identification restrictions imposed on the factor loadings Λ.

3.2 Selection priors for leverage and skewness

The general formulation (15) allows for leverage effects and skewness across all factor and asset-

specific components in a non-discriminatory fashion, which may lead to excessive flexibility. At

the same time, there is no solid empirical evidence to guide us the specification leverage effects

and skewness for particular model components. For example, are leverage effects are systematic,

idiosyncratic, or both? This is an important and unanswered question that is amenable to

investigation under our flexible multivariate framework.

We adopt selection priors to reduce model complexity and improve interpretability. As

in Section 2.2.3, consider the convenient re-parametrization ϑk = ρkσk and $k = σ2
k(1 − ρ2

k),

k = 1, ..., n+p. We modify the normal-inverse-gamma conjugate priors for (ϑk, $k) with sparsity

priors similar to the Bayesian variable selection approach of Clyde and George (2004). The

reparametrisation equips ϑk|$k with a normal prior as in Section 2.2.3,, so that πsparse
0 (ϑk|$k)

takes the form

∆ϑD0(ϑk) + (1−∆ϑ)N(ϑ0, v
2
ϑ$k),

where D0(.) denotes the Dirac delta function at zero, and N(ϑ0, v
2
ϑ$k) is the (conditional)

conjugate normal prior. This prior means that ϑk has ∆ϑ point mass at zero and probability

1−∆ϑ of taking a value that follows the N(ϑ0, v
2
ϑ$k) distribution.

3.3 MCMC algorithm

As in Chib et al. (2006), the factor SV model (15) is a linear combination of n+p univariate SV

models specified as (1) due to independence structure conditional on factor process {ft}Tt=1 and

loadings Λ. This model structure allows us to design an efficient MCMC algorithm that iterates

over

1. sampling the factor loadings Λ by marginalizing the factors;

2. sampling the factors;

12



3. sampling the latent trajectories h, l, W , Q and associated parameters using the univariate

method of Section 2.2,

as a simplified outline. In the third and most computationally intensive step, we separately

work with n+ p separate univariate SV series, making our framework scalable and amenable to

parallelization.

3.3.1 Sampling the factor loadings Λ

Factor models generally require identification on the factor loadings; for example, one can restrict

the upper p-by-p sub-matrix of Λ to be lower triangular with ones on the diagonal. Due to the

presence of the multiplicative term Λft in the likelihood, drawing Λ and ft conditional on

each other is likely to be inefficient. We follow Chib et al. (2006) and achieve efficiency by

marginalizing ft via a straightforward extension of the corresponding step in their algorithm to

model (15).

We sample the matrix of factor loadings Λ conditional on the data, all the latent log-volatility

trajectories {h1, . . . , hp} and {l1, . . . , ln}, all the latent inverse Gamma series {W1, . . . ,Wp} and

{Q1, . . . , Qn}, and the parameters associated with all state variables. Define

ỹi,t = yi,t − (αui + βuiQi,tγ
ui)eli,t/2,

Fj,t = (αfj + βfjWj,tγ
fj )ehj,t/2,

Vt = diag(W1,t(γ
f1)2eh1,t , ...,Wp,t(γ

fp)2ehp,t),

Ut = diag(Q1,t(γ
u1)2el1,t , ..., Qn,t(γ

un)2eln,t),

(17)

ỹt = (ỹ1,t, ..., ỹn,t)
′, Ft = (F1,t, ..., Fp,t)

′.

Given h, l, W and Q, the conditional log-likelihood function is

l(y1:T |Λ) =

T∑
t=1

lt(yt|Λ) = logN(ỹt; ΛFt,Ωt)

= −1

2

T∑
t=1

{
k log 2π + log |Ωt|+ (ỹt − ΛFt)

′Ω−1(ỹt − ΛFt)
}
,

(18)

where Ωt = ΛVtΛ
′ + Ut. We apply the MH step of Chib et al. (2006) to sample vec(Λ)|· using

a multivariate Student’s t-proposal density T(µΛ,ΣΛ, v) where µΛ is the mode of l(y1:T |Λ) and

ΣΛ equals minus the inverse of the approximate Hessian matrix of l(y1:T |Λ) around its mode.

See the appendix for further details.
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3.3.2 Sampling the factors ft

Given the factor loadings Λ, we have that

ỹt|ft ∼ N(Λft, Ut), ft ∼ N(Ft, Vt),

where simplify the notation by suppressing the dependence on h, l, W and Q, as well as on all

parameters.

Standard results for the multivariate Gaussian distribution imply that ft|· ∼ N(µft ,Σft)

where

Σft = (Λ′U−1
t Λ + V −1

t )−1, µft = Σft(Λ
′U−1
t ỹt + V −1

t Ft),

3.3.3 Sampling h, l, W , Q and associated parameters

Given the previous step, we obtain p factor series {fj,t}Tt=1, j = 1, . . . , p, and n idiosyncratic

series {ui,t}Tt=1, i = 1, . . . , n, all of which follow the univariate model (1). We use the univariate

procedure of Section 2.2 for each of these components, except for a modification to account for

the selection priors of Section 3.2.

The conditional distribution for ϑk as defined in 3.2 is given by

ϑk|· ∼ ∆ϑkD0(ϑk) + (1−∆ϑk)N(µϑk , σ
2
ϑk
$k),

where µϑk and σ2
ϑk

are defined in (14), and where

∆ϑk =
1−∆ϑ

∆ϑσ̃
2
ϑk

+ 1−∆ϑ
, with σ̃2

ϑk
=
σϑk
vϑ

exp

(
µ2
ϑk

2σ2
ϑk
$k

)
.

The probability of a zero value ∆ϑ has a beta conjugate prior, so we that can generate posterior

draws from the number of non-zero ϑk’s (i.e. non-zero ρk’s) in the Markov chain. We treat the

skewness parameter βk in a similar way.

3.3.4 Initialization

The initialization of the Markov chain is important when the number of assets is large. Our

experience has shown that careful initialization can save hours of computation time and accel-

erate the convergence of the Markov chain to its stationary distribution. See the appendix for

our initialization procedure.

14



4 Simulation study

We implement univariate and multivariate simulation studies to investigate the efficiency of

the MCMC algorithms of Sections 2.2 and 3.3. We highlight the contribution of the PGAS-

EIS algorithm for sampling parameters and latent processes in comparison with the method

developed by Nakajima and Omori (2012), and show that all the components of the methodology

are fundamental for accurate estimation, relative to simpler implementations. In the factor SV

setting, we also study the usefulness of the selection priors for leverage effect and skewness

introduced in Section 3.2.

4.1 Univariate estimation

4.1.1 Simulation design

We simulate 500 series of length T = 2000 from model (1) with parameter values φ = 0.95,

σ = 0.15, ρ = −0.5, µ = −9, β = −0.5, and ζ = 20. We specify the following prior distributions:

φ+ 1

2
∼ Beta(20, 1.5), $ ∼ IG(2.5, 0.025), ϑ|$ ∼ N(0, 20$),

µ ∼ N(−10, 5), β ∼ N(0, 1), ζ ∼ Gamma(20, 1.25)1(ζ>4),

(19)

where $ = (1− ρ2)σ2, ϑ = ρσ and where 1(.) is an indicator function.

The above prior distributions reflect popular choices in the literature of SV models. Table 1

shows alternative algorithms for comparison with the PGAS-EIS sampler:

Table 1: Sampling methods for the univariate SV model

Acronym Algorithm No. of particles

MM-MH Sampler proposed by Nakajima and Omori (2012) – 500
multi-move sampler of Pitt and Shephard (1999b) for ht,
conditional on which Wt is sampled via accept-reject
Metropolis-Hastings algorithm

PG-EIS Particle Gibbs with EIS importance density 10
PGAS-BF Particle Gibbs with ancestor sampling using the bootstrap filter 2000

Due to the efficiency of the EIS proposal, we use only 10 particles for the PGAS-EIS and

PG-EIS samplers . The PGAS-BF method needs to rely on a much larger number of particles

since it is based on the bootstrap filter, which simply uses the state transition density as a

proposal. We run 22000 Markov Chain iterations with a burn-in period of 2000. We base the

comparisons on the inefficiency factor IE(θ) = 1+2
∑∞

j=1 ρj(θ) for a certain parameter θ, where
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Table 2: Simulation results for the the univariate SV model

PGAS-EIS MM-MH
θ Mean RMSE 95% CI. IE(θ) Mean RMSE 95% CI IE(θ)

φ 0.955 0.022 [0.939 0.978] 4.526 0.942 0.062 [0.921 0.973] 81.532
σ 0.151 0.012 [0.148 0.172] 11.046 0.167 0.048 [0.139 0.202] 159.406
ρ -0.512 0.073 [-0.602 -0.415] 23.218 -0.542 0.112 [-0.731 -0.444] 79.157
µ -8.979 0.411 [-9.081 -8.755] 4.326 -8.920 0.869 [-9.124 -8.795] 27.582
β -0.573 0.186 [-0.790 -0.400] 16.027 -0.714 0.415 [-1.346 -0.318] 163.733
ζ 18.963 5.717 [16.462 26.348] 36.356 21.655 8.619 [16.067 37.881] 299.057

PG-EIS PGAS-BF
θ Mean RMSE 95% CI IE(θ) Mean RMSE 95% C.I. IE(θ)

φ 0.965 0.083 [0.942 0.975] 64.057 0.872 0.0.180 [0.764 0.992] 16.746
σ 0.162 0.025 [0.154 0.187] 132.744 0.237 0.180 [0.167 0.304] 73.569
ρ -0.522 0.129 [-0.712 -0.424] 92.246 -0.204 0.705 [-0.421 0.086] 52.74
µ -9.343 0.651 [-9.547 -8.834] 15.321 -10.657 2.224 [-11.050 -8.891] 24.315
β -0.688 0.286 [-0.842 -0.460] 93.682 -0.137 0.727 [-1.143 0.722] 51.985
ζ 22.462 8.482 [16.785 30.114] 123.37 32.864 18.196 [19.674 65.049] 96.781

1 We report the average posterior mean (across the simulation replications), root mean squared error, average lower

and upper bounds of 95% credible interval (CI), and average inefficiency factors (IE(θ)).
2 True DGP: φ = 0.95, σ = 0.15, ρ = −0.5, µ = −9, β = −0.5 and ζ = 20.

ρj(θ) is the j-th sample autocorrelation. We choose Parzen window with bandwidth 1000 for

computing the inefficiency factors.

4.1.2 Results

Table 2 reports the estimated posterior means together other statistics measuring accuracy and

stability under the four sampling methods, averaged across all simulated series. The results show

that the the PGAS-EIS sampler outperforms the alternative methods. The average posterior

mean is close to the true DGP values for the PGAS-EIS, PG-EIS, MM-MH methods and closest

for the PGAS-EIS sampler; the latter is also the stablest sampler according to the root mean

squared error criterion. The inefficiency factors for the PGAS-EIS sampler range from low to

moderate, and are substantially lower than those from other samplers. The comparison between

PGAS-EIS with PG-EIS suggests that the ancestor sampling step employed in particle Gibbs

algorithm is the main driver of efficiency relative to the MM-MH sampler. However, note the

PGAS method requires a proposal for the state trajectory, which is enabled by the EIS method.

The poor performance of the PGAS-BF sampler suggests that a tailored proposal such as in the

EIS method is crucial for reliable estimation.
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4.2 Factor SV simulation

4.2.1 Simulation design

We simulate the factor SV model 15 with n = 50 assets and p = 8 factors as in Chib et al.

(2006). We consider a range of scenarios for the presence of leverage effects and skewness in the

model components, as outlined in Table 3.

Table 3: Different datasets simulated from the factor SV model

Acronym Data generating process

sLE sSK For some k ∈ {1, ..., n+ p}, ρk 6= 0 and βk 6= 0.
That is, leverage effect and return asymmetry are present in some processes among
factors {fj,t}pj=1 and asset-specific components {ui,t}ni=1.

sLE aSK For some k, ρk 6= 0; and for all k, βk 6= 0.
aLE sSK For all k, ρk 6= 0; and for some k, βk 6= 0.
aLE aSK For all k, ρk 6= 0 and βk 6= 0.
nLE nSK For all k, ρk = 0 and βk = 0.

Our empirical results in the next section suggest that the scenario in which only a subset of

factors ft and asset-specific processes ut display leverage effect or skewness (sLE sSK) is the most

relevant one. When a dataset has leverage effects or skewness, we generate an n+p-dimensional

vector from the binomial distribution with 0.5 probability of success indicating which series

among {fj,t}pj=1 and {ui,t}ni=1 have leverage effect or skewness. We choose the Beta(2, 2) prior

for the probability parameters in the selection priors of Section 3.2. We assume a flat N(0, 10)

prior for each free element of Λ, and generate the true loadings from the N(1, 1) distribution.

We generate the other parameters from the prior distributions given in (19), except that we only

allow for zero or negative skewness.

4.2.2 Results

Table 4 summarizes the correlation between the posterior means of all parameters and their

DGP values under different samplers and scenarios, a well as the mean absolute deviations in

brackets. The PGAS-EIS method achieves the highest correlations and lowest mean absolute

deviations, with only two correlations below 0.9 and none smaller than 0.8, followed by PG-EIS.

This relative outperformance is especially pronounced for the degrees of freedom parameter

ζ, which seems to be hardest parameter to estimate across all methods and datasets. As in

the univariate setting, the the PGAS-BF does not lead to reliable estimation, displaying much

lower correlations much and higher mean absolute deviations much higher than the other three
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Table 4: Accuracy comparisons of different methods under different datasets

PGAS-EIS
φ σ ρ µ β ζ Λ

sLE sSK .94 [.01] .94 [.01] .98 [.07] .95 [.21] .98 [.28] .85 [3.89] .99 [.11]
sLE aSK .94 [.01] .92 [.01] .96 [.04] .95 [.18] .99 [.35] .91 [5.34] .99 [.13]
aLE sSK .95 [.02] .97 [.02] .99 [.08] .97 [.28] .97 [.24] .88 [3.07] .98 [.09]
aLE aSK .97 [.01] .96 [.02] .99 [.06] .98 [.18] .99 [.26] .95 [4.41] .99 [.12]
nLE nSK .96 [.01] .91 [.02] .95 [.01] .97 [.29] .92 [.08] .82 [4.27] .98 [.06]

MM-MH
sLE sSK .87 [.09] .81 [.02] .91 [.15] .92 [.33] .88 [.38] .73 [9.01] .97 [.24]
sLE aSK .84 [.11] .96 [.02] .97 [.07] .95 [.84] .92 [.67] .67 [11.91] .93 [.34]
aLE sSK .91 [.03] .88 [.01] .89 [.12] .88 [1.11] .93 [.56] .81 [8.49] .98 [.19]
aLE aSK .93 [.03] .92 [.02] .87 [.11] .89 [.78] .91 [.44] .74 [5.76] .97 [.40]
nLE nSK .93 [.16] .90 [.02] .97 [.03] .93 [.27] .95 [.12] .83 [7.63] .99 [.09]

PG-EIS
sLE sSK .93 [.01] .92 [.02] .99 [.08] .94 [.27] .97 [.22] .88 [4.12] .99 [.07]
sLE aSK .96 [.02] .91 [.01] .95 [.09] .94 [.31] .98 [.52] .93 [8.69] .99 [.03]
aLE sSK .91 [.04] .94 [.02] .94 [.10] .96 [.29] .94 [.32] .84 [6.11] .99 [.10]
aLE aSK .97 [.02] .92 [.03] .98 [.06] .97 [.62] .98 [.43] .96 [5.57] .99 [.07]
nLE nSK .97 [.01] .96 [.01] .94 [.03] .93 [.46] .95 [.11] .79 [6.79] .99 [.09]

PGAS-BF
sLE sSK .77 [.19] .64 [.04] .51 [.18] .87 [.57] .78 [.86] .24 [15.04] .86 [.98]
sLE nSK .82 [.14] .77 [.06] .62 [.26] .84 [1.34] .69 [.67] .31 [9.60] .87 [1.64]
nLE sSK .84 [.09] .68 [.05] .41 [.33] .76 [.88] .74 [.93] .24 [11.24] .79 [1.44]
nLE nSK .91 [.10] .81 [.04] .57 [.41] .63 [.76] .84 [.34] .47 [10.07] .85 [.67]
aLE aSK .84 [.12] .83 [.02] .45 [.43] .81 [1.21] .62 [.88] .35 [8.65] .89 [1.27]

The table reports the correlations between posterior means true DGP values under four sampling methods and dif-

ferent datasets. The sample mean of absolute deviations are in brackets.

methods.

Table 5 reports the median inefficiency factors under the scenario in which all components

display leverage and skewness (aLE aSK). The results for the other scenarios are similar. The

efficiency is comparable to that for the univariate case in Table 2, highlighting the scalability

of the factor approach. The PGAS-EIS achieves the smallest inefficiency factors. In particular,

the results suggest that it greatly improves performance for the skew-t parameters β and ζ

relative to the MM-MH produces IE(µ) that is six times larger than PGAS-EIS. Similar to the

univariate case, ancestor sampling contributes to the efficiency of our MCMC sampler. PGAS-

EIS is at least twice as efficient as PG-EIS, and for β it is more than five times more efficient.

The four methods perform similarly for Λ, since they all marginalize the factors when sampling

Λ in similar way.
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Table 5: Inefficiency factors under leverage effects and skewness for all param-
eters

PGAS-EIS MM-MH PG-EIS PGAS-BF

φ 8.12 [4.97 14.86] 24.68 [18.94 29.52] 14.69 [10.64 19.48] 18.87 [14.31 22.49]
σ 21.33 [8.62 27.53] 124.20 [111.37 134.79] 78.54 [34.73 94.39] 64.61 [48.03 92.59]
ρ 22.74 [18.40 28.69] 107.56 [84.16 147.33] 84.57 [41.58 106.34] 87.53 [55.21 104.46]
µ 7.48 [5.97 9.06] 42.48 [37.64 48.76] 16.06 [10.55 23.74] 27.45 [14.62 44.78]
β 19.73 [14.82 26.45] 214.78 [149.60 307.43] 117.41 [89.65 134.80] 54.73 [39.06 82.36]
ζ 43.80 [31.69 67.81] 371.81 [256.14 504.26] 108.56 [86.17 134.89] 53.29 [45.88 67.21]
Λ 41.43 [24.74 51.12] 37.85 [27.84 48.57] 38.94 [32.50 57.93] 46.28 [37.66 63.18]

The table reports the median inefficiency factor with 10-th and 90-th percentiles in the bracket.

Table 6: Posterior zero probability of leverage effect and skewness

mink P(ρk = 0) where ρDGPk = 0 mink P(βk = 0) where βDGPk = 0
PGAS-EIS MM-MH PG-EIS PGAS-BF PGAS-EIS MM-MH PG-EIS PGAS-BF

sLE sSK 0.91 0.86 0.93 0.56 0.95 0.92 0.95 0.81
sLE aSK 0.94 0.87 0.90 0.66 – – – –
aLE sSK – – – – 0.95 0.94 0.94 0.76
nLE nSK 0.94 0.92 0.90 0.79 0.98 0.96 0.97 0.91

maxk P(ρk = 0) where ρDGPk 6= 0 maxk P(βk = 0) where βDGPk 6= 0
sLE sSK 0.77 0.86 0.76 0.92 0.52 0.74 0.61 0.90
sLE aSK 0.71 0.74 0.81 0.88 0.21 0.22 0.18 0.64
aLE sSK 0.44 0.51 0.46 0.71 0.57 0.68 0.60 0.86
aLE aSK 0.37 0.52 0.41 0.68 0.18 0.21 0.19 0.58

The table reports thee lowest or highest posterior probability of leverage effect ρk and skewness parameter βk be-

ing zero for k ∈ A and A ⊂ {1, ..., n + p} such that ρDGPk = 0 (top left section), βDGPk = 0 (top right), ρDGPk 6= 0

(bottom left) and βDGPk 6= 0. The superscript DGP indicates the corresponding true values. P(.) denotes a posterior

probability.

Table 6 investigates the performance of the selection priors for skewness and leverage. The

table reports the lowest posterior probability of a parameter being zero when associated DGP

values are zero, and the highest probability when the DGP values are not zero. The PGAS-EIS,

PG-EIS, and MM-MH methods produce reliable zero probability when the true parameters are

zero, with the PGAS-EIS algorithm slightly outperforming the other two. When leverage effect

and skewness are absent, the PGAS-EIS method consistently produces a posterior probability

of above 0.9 for the parameter being zero, confirming the usefulness of the selection priors. At

the same time, the estimated posterior can be conservative when leverage effects and skewness

are present, regardless of the sampling algorithm.
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Figure 1 shows correlations between the posterior means of selected factors, SV series with

their inverse gamma mixture components and their DGP values. The PGAS-EIS sampler is the

best performing method across all datasets, followed by PG-EIS in most cases. This suggests that

ancestor sampling contributes to precision on top of the EIS proposal. The PGAS-BF method

again suffers from inaccuracy. The correlations between many estimated latent processes and

their DGP values are lower than 0.5 when bootstrap filter is used.
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Figure 1: Correlations between posterior mean estimate of latent processes and DGP values.
Purple: PGAS-EIS; Blue: MM-MH; Green: PG-EIS; Yellow: PGAS-BF; Top row: the 1st, 3rd, 6th and 8th

factor; Middle row: the 2nd and 7th log-volatility process of factors (h), 16th and 45th log-volatility process of

asset-specific processes (l); Bottom row: the 2nd and 7th inverse gamma mixing components of factors (W ), 16th

and 45th inverse gamma mixing components of asset-specific processes (Q); Columns from the left to the right

indicate different simulated datasets.

5 Empirical study

We consider an empirical application to a sample of daily returns for 80 stock constituents of

the S&P100 index. We exclude the other 20 stock components of the index due to their short

trading history. Our sample period has a total of T = 5663 trading days from January 1996

to June 2018. Section 5.2 provides detailed estimation results for the high-dimensional factor

SV model of Section 3.1 under two specifications of factor structure. Section 5.3 studies the

forecasting performance of the two models in terms of evaluation of value-at-risk and predictive

density score, including a comparison with other models.
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5.1 Selecting the number of factors

Selecting the number of factors is an important and challenging problem for dynamic factor

modeling. We perform model selection by designing a feasible marginal likelihood estimation

procedure for the high-dimensional factor SV model (15), based on the importance sampling

squared (IS2) method of Tran et al. (2014); see the supplemental appendix for the description.

This marginal likelihood criterion leads us to select four or five factors for two specifications

discussed in this empirical application. As a comparison, this choice is consistent with the

(non-Bayesian) IC p1 and IC p2 criteria of Bai and Ng (2002).

5.2 Estimation results

Because factor models as in (15) are identified up to scaling and rotation of factors, identification

restrictions are usually imposed. We consider two specifications in this study. Let HFSV1 and

HFSV2 denote model (15) with Λ restricted to be lower-triangular with ones on its diagonal

and the one with the three Fama-French (FF) factors (Fama and French, 1993), i.e. ft =

((Rm-Rf)t, SMBt,HMLt)
′ stacked onto the observation vector yt and the upper-left block of Λ

restricted to have identity matrix of dimension three, respectively. Notice HFSV1 gives exact

identification whereas HFSV2 has overidentification for p = 4 and exact identification for p = 5;

for p ≥ 6, HFSV2 requires further restrictions. HFSV2 has “economically meaningful” factors

that correspond to the seminal FF factors. The latter is also used by other factor models that

we compare with in section 5.3.

The Bayes factor analysis based on the feasible marginal likelihood method developed for

the proposed models (see the supplementary appendix) points to decisive evidence favoring 4

factors for HFSV1. Although there is either strong or decisive evidence supporting HFSV2 with

4 or 5 factors against other specifications, comparisons between these two are ambiguous. To

be conservative, we choose 5 factors for HFSV2.

Table 7 summarizes selected posterior mean and standard deviation (s.d.) for a selection of

model parameters. The sample mean and sample s.d. (in parenthesis) of these posterior statistics

across all factor and idiosyncratic components, for both HFSV1 and HFSV2, are reported. The

mean of autoregressive parameter φ is close to unity with a small standard deviation under both

specifications, suggesting persistent time-varying log-volatility for latent components. We find

that only 5 assets with φli smaller than 0.9, and 21 assets smaller than 0.95 for HFSV1. In

general, estimation results of two specifications are similar, except for more heterogeneous d.o.f.
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Table 7: Estimated posterior (summary)

HFSV1 HFSV2

posterior mean s.d. mean s.d.
sample mean s.d. mean s.d. mean s.d. mean s.d.

φ 0.98 0.09 0.02 0.01 0.97 0.12 0.03 0.01
σ 0.20 0.10 0.03 0.01 0.22 0.13 0.03 0.01
µ -10.61 1.45 0.33 0.09 -9.86 1.68 0.41 0.11
ζ 16.20 8.58 1.03 0.46 12.64 16.11 1.12 0.61

The table shows the sample mean and standard deviations of posterior mean and standard deviation estimates of

selected parameters for both HFSV1 and HFSV2.

parameters from HFSV2 as seen by the large sample s.d. of posterior means.

Table 8 summarizes the inefficiency factors (IE) for the Markov chain of parameters in

terms of median (med), minimum (min), maximum (max) and, interquartile range (IQR) across

parameters of all model components. We conclude that the MCMC algorithm of Section 3.3

is highly efficient for the proposed high-dimensional model, leading to moderate (often low)

inefficiency factors despite the complex model structure of HFSV1 and HFSV2. In particular,

we note that these inefficiency factors are comparable to those we obtained for the univariate

SV model in the simulation study. Except for IE(σ), parameters of HFSV2 are estimated with

slightly more efficient Markov chain than HFSV2. The last five columns show the inefficiency

factors for the loadings. Interestingly, under HFSV1 compared to IE(Λ2) and IE(Λ4), the IQR

of IE(Λ1) and IE(Λ3) are tighter due to many near-zero loadings on the 2-nd and 4-th factor.

This is however not the case for HSFV2, where we have comparably small IEs across all factor

loadings, suggesting identified systematic content of the 4-th and 5-th factors on top of what

is captured by the factors aligned with the FF factors; though IE(Λ4) and IE(Λ5) are clearly

larger than those of factors identified using FF factors.

Figure 2 shows the posterior estimates for ρ, β and ζ, sorted in ascending order. Both

HFSV1 and HFSV2 show that leverage effects and skewness or return asymmetry are associated

with common factors, especially the latter. All assets share the non-zero leverage effects of some

factors, while the third and fourth factor, from HFSV1 and HFSV2 respectively, contributes

the most to the observed return asymmetry for individual returns. Nevertheless, asset-specific

leverage effects are still present for many assets. From the right panels we find evidence sup-

porting factor heavy-tailedness regardless of factor structure, which explains the stylized fact of

tail events correlation, particularly with a negative factor skewness, downturn correlation among
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Table 8: Inefficiency factors (summary)

HFSV1 φ σ µ ζ Λ1 Λ2 Λ3 Λ4 Λ5

med 11.3 27.8 6.4 67.2 14.9 45.2 33.6 69.7 -
min 5.7 22.4 3.8 32.9 8.9 25.5 21.7 42.6 -
max 21.3 52.5 13.4 84.2 19.6 87.0 50.4 108.7 -
IQR 13.7 30.6 8.1 45.2 6.3 51.9 18.7 57.8 -

HFSV2

med 8.1 31.2 4.6 58.5 10.1 11.7 8.6 34.6 27.8
min 2.3 14.6 2.2 24.0 6.2 5.3 4.8 18.9 19.5
max 12.4 61.4 14.7 109.6 13.6 16.1 17.2 88.2 51.7
IQR 6.5 31.3 3.8 43.8 5.0 8.3 8.3 28.7 22.6

The table summarizes the inefficiency factors for the posterior draws by averaging over the model components. Λj

stands for the loadings on the j-th factor. IQR is the interquartile range.
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Figure 2: Posterior estimates of ρ, β and ζ. Graphs show posterior median with 10-th and 90-th percentile.

From the left to the right are the estimates of leverage effect, return asymmetry (skewness) and, d.o.f. parameters

of mixing components governing heavy-tailedness, rearranged in ascending order. Colored dots indicate estimates

corresponding to factors. Top and bottom panels refer to HFSV1 and HFSV2, respectively.

Figure 3 illustrates estimates of some time series of interest from HFSV1 and HFSV2. The

top-left panel shows the average factor log-volatility 1
p

∑p
i=1 hi,t whereas the top-right panel

shows the average asset-specific log-volatility 1
n

∑n
i=1 li,t. Both specifications indicate similar

evolution of factor and asset-specific volatilities. Interestingly, we find that the average of

asset-specific volatilities explains on average over 70% of their variation (similar to the first

principal component), which suggests strong second-order comovement on top of stochastic
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volatility coming from market factors as in HFSV2 or statistical factors as in HFSV1. This

result strengthens the findings in Campbell et al. (2001) and Herskovic et al. (2016) which also

find commonality in idiosyncratic volatilities1.

The middle panels show the role of factors in explaining return dynamics, ignoring the inverse

gamma mixing component Wj,t, j = 1, ..., p and, Qi,t, i = 1, ..., N given in (16). Denote asset i’s

volatility at time t as

σi,t =

 p∑
j=1

Λ2
ij exp(hj,t) + exp(li,t)

 1
2

, i = 1, ..., n, t = 1, ..., T.

The middle-left and -right panels show the average share of return explained by factors 1
n

∑n
i=1 Sharei,t

and the average correlation 2
n(n+1)

∑
i 6=j Corrij,t among returns, respectively, where

Sharei,t =

∑p
j=1 Λ2

ij exp(hj,t)

σ2
i,t

, Corrij,t =

∑p
k=1 ΛikΛjk exp(hk,t)

σi,tσj,t
. (20)

It is clear that both average share and correlation peak during 2008 crisis, highlighting the sys-

tematic influence of this event. On the contrary, though both factor and asset-specific volatilities

increase during 2000 ‘high-tech bubble’, factors only explains 35% of return variation and aver-

age correlation dives to nearly zero in 2001. Ignoring mixing components amounts to treating

factors and asset-specific components as Gaussian, which discards tail dependence. The bottom

panels of Figure 3 show the counterparts of (20) with mixing components taken into account.

Not surprisingly, mixing components in factors amplify the common volatility during market

turmoil and thus explains more variations, leading to higher correlation among asset returns.

5.3 Value-at-risk

We now carry out a brief study on the performance of our model for value-at-risk (VaR) eval-

uation. We consider S = 3600 out-of-sample periods and estimate all competing models using

a rolling window of T = 2000 days. We focus our comparison on alternative factor models

proposed in the literature, since they are the most computationally viable approach for the

dimensionality of our dataset.

1The authors find significant comovement among idiosyncratic volatilities after projecting asset returns onto
the space spanned by market returns; however they do not model factor volatility explicitly. The presence of com-
monality in idiosyncratic volatilities on top of factor volatility has consequence on asset pricing and diversification,
which we leave for future research.
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Figure 3: Posterior mean estimate of volatility and correlation trajectories. Left: SV associated

with the 1st and 4th factor; Middle: SV associated with three randomly chosen assets; Right: Correlations.

5.3.1 Alternative models

The first model is the factor stochastic volatility model (FSV) of Chib et al. (2006), which is

based on Gaussian SV models for the factors. The second model, also from Chib et al. (2006),

augments the previous specification with stochastic jumps (FSV-J), yt = Λft +Ktqt +ut, where

they model each factor fj,t as standard Gaussian SV model. The asset-specific ui,t process follows

the Student’s-t SV model. Kt records jump size at time t with Bernoulli jump variable qi,t. We

use the PGAS-EIS procedure for estimation. Subscripts 1 and 2 indicate factors identified via

restricting the loading matrix or the FF factors, as in our proposed HFSV1 and HFSV2.

The third model, introduced by Chan et al. (1999) (CKL), is given by yt = Λft + ut with

covariance matrix Ωt = ΛVtΛ
′ + Ut. Here ft is directly observable, e.g. the three FF factors.

We compute the covariance matrix Vt from rolling-windows, and estimate covariance matrix Ut

from the residuals of asset-by-asset regressions.

The fourth model is the dynamic factor multivariate GARCH (DFMG) model of Santos

and Moura (2014), which is also based on observed factors. They specify yt = Λtft + ut with

covariance matrix Ωt = ΛtVtΛ
′
t + Ut and time-varying loadings λk,t+1 = λk,t + ηt, where λk,t is

the k-th element of vec(Λt), k = 1, ..., p× n. Vt and Ut are diagonal matrices with each element

evolving according to a standard GARCH dynamics. We find Vt and Ut by fitting GARCH to

factors and regression residuals. Conditional on Vt and Ut, we obtain vec(Λt) for all t via the

Kalman filter.
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The last specification is the factor copula (FCO and FCOt) model of Oh and Patton (2017b).

Their model separates the modeling of the marginals (assets) and the dependence structure

(factors). Refer to the original paper for a detailed description. We estimate GARCH/GARCH-

t marginals for FCO/FCOt and a copula implied by Gaussian bi-factor model.

5.3.2 Value-at-risk

We consider an equally weighted portfolio and investigate the one-day and five-day ahead forecast

of the portfolio VaR, i.e. VaRt+h|t, h = 1, 5. The evaluation of VaR requires the simulation

of predictive density. To this end, for each rolling-window M draws of parameter vector θ are

generated from their posterior samples, say θ̂(i), i = 1, ...,M; given θ̂(i), N trajectories with

length h of latent processes including stochastic volatility series and inverse-gamma mixing

components are simulated, say ĥ
(j)
t+h, l̂

(j)
t+h, Ŵ

(j)
t+h and, Q̂

(j)
t+h, j = 1, ...,N; given each set of

trajectories, K predicted return vectors are simulated. This means that a forest of size MNK of

return vectors are simulated to construct the empirical predictive distribution of the portfolio,

denoted by F̃t+h|t(.). We choose M = N = K = 30. h-step ahead VaR at α is given by

VaRt+h|t(α) = F̃−1
t+h|t(α), which is the 100α-th percentile of the predictive distribution function

of the portfolio. We can readily approximate the predictive distribution of yt+h|t for the HFSVi,

FSVi and FSV-Ji, i = 1, 2 based on particle system at time t (see also the appendix). For the

other models, we derive the predictive densities in a similar fashion to GARCH-type models.

Define the following binary sequence It(α)

It(α) =


1 if 1

n

∑n
i=1 yi,t+h < VaRt+h|t

0 if 1
n

∑n
i=1 yi,t+h ≥ VaRt+h|t

,

where It(α) = 1 denote hits or violations. Well-behaved VaR estimates mean that the sequence

It(α) is serially independent, i.e. It(α) ⊥ Is(α),∀t 6= s; and has correct unconditional coverage

ratio, i.e. P[It(α)] = E[It(α)] = α. Christoffersen (1998) develops likelihood ratio (LR) tests

based on the violation process It(α) and hit rate (HR) 1
T

∑T
t=1 It(α).

Table 9 reports the p-values of likelihood ratio test for unconditional coverage (LRuc), in-

dependence (LRind) and, conditional coverage (based on the combined test statistic LRcc =

LRuc + LRind). Shaded cells indicate a rejection at the 5% level. In general, the proposed

HFSV1 and HFSV2 perform the best with the former marginally violating independence for

h = 5 at α = 0.01. Followed by the performance of FSV-J1 and FSV-J1, these models make

26



Table 9: Comparisons of VaR estimates

h = 1
α=0.05 α=0.01
HR LRuc LRind LRcc HR LRuc LRind LRcc

FSV1 0.107 0.00 0.43 0.15 0.024 0.03 0.00 0.01
FSV2 0.093 0.00 0.28 0.06 0.043 0.00 0.00 0.00
FSV-J1 0.061 0.27 0.60 0.34 0.011 0.84 0.03 0.63
FSV-J2 0.048 0.46 0.49 0.33 0.009 0.30 0.07 0.08
HFSV1 0.047 0.35 0.77 0.56 0.012 0.47 0.08 0.18
HFSV2 0.044 0.60 0.61 0.52 0.009 0.29 0.11 0.08
CKL 0.141 0.01 0.19 0.03 0.051 0.00 0.07 0.00
DFMG 0.086 0.01 0.42 0.14 0.018 0.08 0.14 0.02
FCO 0.080 0.03 0.04 0.00 0.074 0.00 0.00 0.00
FCOt 0.061 0.17 0.37 0.13 0.022 0.03 0.10 0.01

h = 5

FSV1 0.112 0.00 0.44 0.16 0.014 0.18 0.04 0.03
FSV2 0.127 0.00 0.34 0.09 0.044 0.01 0.21 0.03
FSV-J1 0.075 0.04 0.02 0.00 0.013 0.26 0.67 0.41
FSV-J2 0.044 0.08 0.01 0.01 0.008 0.07 0.42 0.15
HFSV1 0.056 0.07 0.63 0.33 0.015 0.21 0.03 0.04
HFSV2 0.048 0.14 0.48 0.20 0.011 0.61 0.06 0.31
CKL 0.091 0.00 0.71 0.43 0.052 0.00 0.01 0.00
DFMG 0.055 0.24 0.62 0.35 0.020 0.02 0.32 0.08
FCO 0.104 0.00 0.12 0.01 0.030 0.00 0.17 0.02
FCOt 0.051 0.61 0.84 0.74 0.028 0.01 0.27 0.06

The table shows p-values of coverage ratio tests for the equally weighted portfolio constructed using 80 stocks in-

cluded in the S&P 100 index. α is the nominal level of VaR. Shaded cells indicate rejections in the coverage ratio

tests at the 5% level. Daily (h = 1) and weekly (h = 5) forecasts are considered.

clear that VaR estimation depends on the modeling of mixing variables with sudden swings or

jumps. This can also be seen if we compare FCOt which incorporates Student’s t marginals

with FCO. However, that HFSV1 and HFSV2 outperform the latter three provides evidence on

the importance of modeling factors with richer features such as skewness and leverage effect.

Failure to do so, as in the other competing models, lead to violations of unconditional coverage

and independence, suggesting inaccuracy and misspecification. It is worth noting that models

with subscript 1 performs very similarly to their counterpart with subscript 2 (see also Figure 3).

So regardless of the rotation of factors, as long as econometricians treat them as latent processes

and model them similarly, VaR forecasting performances are expected to be comparable. Lastly,

we conjecture using observed factors directly without careful modeling may ignore important

local information of market comovements and result in poor performance.
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6 Conclusion

In this paper, we leveraged advances in Monte Carlo methods such as the efficient importance

sampling (EIS) algorithm of Richard and Zhang (2007) and the particle Gibbs method of Andrieu

et al. (2010) to design an MCMC algorithm that enables the estimation of a highly flexible factor

stochastic volatility model in moderately high dimensions (up to 80 stocks in our empirical

application). Our framework bridges contributions from authors such as Ang and Chen (2002)

and Patton (2004), who have long documented that correlations between stocks are substantially

higher for downside moves and during downturns, among other findings, and the literature

on multivariate financial time series, which aims to address the curse of dimensionality and

computational challenges towards the estimation of increasingly more accurate models in higher

dimensions.
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Appendix

A MCMC algorithm details for the univariate process

A.1 Sampling the autoregressive coefficient φ

Given the remaining variables, the conditional posterior distribution for φ is

π(φ|·) ∝ π0(φ)
√

1− φ2 exp

{
−(1− φ2)h̄2

1

2σ2
−
T−1∑
t=1

(h̄t+1 − φh̄t − ρσε̄t)2

2σ2(1− ρ2)

}

∝ π0(φ)
√

1− φ2 exp

{
−

(φ− µφ)2

2σ2
φ

}
,

where h̄t = ht − µ and

µφ =

∑T−1
t=1 (h̄t+1 − σρε̄t)h̄t
ρ2h̄2

1 +
∑T−1

t=2 h̄2
t

, σ2
φ =

σ2(1− ρ2)

ρ2h̄2
1 +

∑T−1
t=2 h̄2

t

.

We employ the Metropolis-Hastings (MH) algorithm to sample from the above posterior. We

draw a candidate φ∗ from N(µφ, σ
2
φ) truncated within (−1, 1) to ensure stationarity. We accept

the proposed value with probability

min

{
π0(φ∗)

√
1− φ∗2

π0(φ)
√

1− φ2
, 1

}
.

A.2 Sampling the unconditional mean µ of ht.

Let the prior distribution of the unconditional mean µ be N(µ0, v
2
µ). The conditional posterior

distribution is given by

π(µ|�) ∝ exp

{
−(µ− µ0)2

2v2
µ

− (1− φ2)h̄2
1

2σ2
−
T−1∑
t=1

(h̄t+1 − φh̄t − ρσε̄t)2

2σ2(1− ρ2)

}
.

We can generate a new draw µ|� ∼ N(µµ, σ
2
µ) with

σ2
µ =

{
1

v2
µ

+
(1− ρ2)(1− φ2) + (T − 1)(1− φ)2

σ2(1− ρ2)

}−1

,

µµ = σ2
µ

{
µ0

v2
µ

+
(1− ρ2)(1− φ2)h1 + (1− φ)

∑T−1
t=1 (ht+1 − φht − ρσε̄t)

σ2(1− ρ2)

}
.
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A.3 Sampling the skewness parameter β

.

Let the prior distribution of the skewness parameter β beN(β0, v
2
β). Denoting W̄t = Wt− ζ

ζ−2 ,

the conditional posterior distribution follows

π(β|�) ∝ exp

{
−(β − β0)2

2v2
β

−
T∑
t=1

(yt − βW̄tγe
ht
2 )2

2Wtehtγ2
−
T−1∑
t=1

(h̄t+1 − φh̄t − ρσ(yte
−ht
2 − βW̄tγ)/

√
Wtγ)2

2σ2(1− ρ2)

}
,

from which we can generate a new draw β|� ∼ N(µβ, σ
2
β) with

σ2
β =

{
1

v2
β

+
1

1− ρ2

T−1∑
t=1

W̄ 2
t

Wt
+
W̄ 2
T

WT

}−1

,

µβ = σ2
β

{
β0

v2
β

+
1

1− ρ2

T−1∑
t=1

ytW̄t

Wte
ht
2 γ

+
T−1∑
t=1

(h̄t+1 − φh̄t)ρW̄t

σ(1− ρ2)
√
Wt

}
.

A.4 Sampling the Wt degrees of freedom parameter ζ

.

We adopt a Gamma prior π0(ζ) ≡ G(sζ , rζ) for the d.o.f parameter of the mixture process

Wt. The conditional posterior distribution of ζ involves the full joint likelihood,

π(ζ|�) ∝ π0(ζ)
T∏
t=1

IG(Wt;
ζ

2
,
ζ

2
) exp

{
−

T∑
t=1

(yt − βW̄tγe
ht/2)2

2Wtehtγ2
−
T−1∑
t=1

(h̄t+1 − φht − ρσε̄t)2

2σ2(1− ρ2)

}
.

The we use the MH algorithm to draw δ = log(ζ − 4) based on a normal approximation of the

logarithm of the transformed posterior density function log π̃(δ|�), whose mode and the second

derivative around the model are µδ and σ2
δ , respectively. We accept the draw with probability

min

{
π(ζ∗|�)N(δ;µδ,−σ−2

δ ) exp(ζ)

π(ζ|�)N(δ∗;µδ,−σ−2
δ ) exp(ζ∗)

, 1

}
.

32



B MCMC algorithm details for the factor SV model

B.1 Sampling the factor loadings

We sample the loadings matrix Λ using the MH algorithm based on a Laplace approximation

and a multivariate Student’s t-proposal distribution with arbitrarily chosen degrees of freedom

v. To find the mode, we propose a Hessian-free optimisation routine (e.g. any quasi-Newton

methods), based on the score function ∂l(y1:T |Λ)/∂Λij =
∑T

t=1 ∂lt(yt|Λ)/∂λij with λij denoting

the ij-th free element of Λ and

∂lt(yt|Λ)

∂λij
=− 1

2

{
∂ log |Ωt|
∂λij

+
∂

∂λij

(
ỹ′tΩ
−1
t ỹt − 2ỹ′tΩ

−1
t ΛFt + F ′tΛ

′Ω−1
t ΛFt

)}
=− tr

(
Ω−1
t ΛVt

∂Λ′

∂λij

)
+ ỹ′tΩ

−1
t

∂Λ

∂λij
VtΛ

′Ω−1
t ỹt + ỹ′tΩ

−1
t

∂Λ

∂λij
(Ip − 2VtΛ

′Ω−1
t Λ)Ft

+ F ′t

(
Λ′Ω−1

t

∂Λ

∂λij
VtΛ

′Ω−1
t Λ− 1

2
(
∂Λ′

∂λij
Ω−1
t Λ + Λ′Ω−1

t

∂Λ

∂λij
)

)
Ft,

where Ω−1
t = U−1

t −U
−1
t Λ(V −1

t +Λ′U−1
t Λ)−1Λ′U−1

t . After some convergence criterion is met, we

compute the inverse of observed information matrix, i.e. ΣΛ = (G(µΛ)G(µΛ)′)−1 where G(µΛ) is

the gradient matrix whose t-th column equals vec({∂lt(ỹt|Λ)/∂λij}i,j) with i, j running through

all free elements of Λ. We then draw a candidate vec(Λ∗) from the proposal, with acceptance

probability

min

{
π0(vec(Λ∗)) exp(l(y1:T |Λ∗))T (vec(Λ);µΛ,ΣΛ, v)

π0(vec(Λ)) exp(l(y1:T |Λ))T (vec(Λ∗);µΛ,ΣΛ, v)
, 1

}
.

B.2 Initialization

We initialize our model using principal components (PC). Let us rewrite model (15) as Y =

FΛ′+ u where Y ∈ RT×n, F ∈ RT×p and u ∈ RT×n. So the t-th row in of Y , F and u are y′t, f
′
t

and u′t respectively, and ft is the PC’s. Or equivalently we have

y = (In ⊗ F )λ+ u, (21)

where y = vec(Y ), λ = vec(Λ′), and u = vec(u). Under conditions specified by Doz et al. (2011),

PCs are consistent estimators of the factors. We apply the criterion in Bai and Ng (2002) to

choose the preliminary number of factors. Because we impose identification restriction on Λ,

the matrix of eigenvectors in relation to PCs cannot initialize Λ. Notice that (21) is a linear
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regression model in λ. So the identification restriction implies a linear constraint of the form

Rλ = r.

This gives us the constraint OLS estimate λ̂cols to initialize Λ, which is

λ̂cols = λ̂ols − (In ⊗ (F ′F )−1)R′(R(In ⊗ (F ′F )−1)R′)−1(Rλ̂ols − r), (22)

where λ̂ols = (In ⊗ (F ′F )−1F ′)y. Given λ̂cols, Doz et al. (2011) suggest that the estimate of

factors E(ft|y1:T ) can be obtained by

ft = (Λcols
′Λcols)

−1Λcols
′yt, t = 1, ..., T. (23)

We complete the initialization of factors ft for t = 1, ..., T and loadings Λ with iterations over

(22) and (23) until convergence. The above procedure delivers sound initialization, especially

for the loading matrix Λ with identification restrictions. Chan et al. (2013) show that there

exists a unique mapping which rotates the PCs towards the factors under certain identification

scheme imposed on the loadings.

Given the initialized Λ and ft, we compute the residuals as ut = yt −Λft. Hence, we obtain

n + p univariate series zj,t = fj,t for j = 1, ..., p and zp+i,t = ui,t for i = 1, ..., n. For any

k ∈ {1, ..., n + p}, we treat {zk,t}Tt=1 as a basic SV model re-parametrized according to Ruiz

(1994). We can then efficiently implement a quasi-maximum likelihood (QML) estimator based

on the following approximate linear Gaussian state space model

log(z2
k,t) = log(2) + ψ(1/2) + hk,t +

√
ψ′(1/2)εk,t, t = 1, ..., T,

hk,t+1 = µk(1− φk) + φkhk,t + σkηk,t, t = 1, ..., T − 1,
(24)

where ψ(·) is the digamma function and ψ′(·) is its first order derivative. εk,t and ηk,t are i.i.d

normal with correlation coefficient ρk. Maximizing the log-likelihood via Kalman filter (Durbin

and Koopman 2012) gives the QML estimate of φk, σk, ρk and µk, which serve as initializations

for k = 1, ..., n+ p. We choose the initial value of the skewness parameter βk to be zero and the

d.o.f ζk to be 20 for all k.

We initialize the SV process {hj,t}Tt=1 and {li,t}Tt=1 for all i and j by applying the simulation

smoother of De Jong and Shephard (1995) to model (24). We initialize the inverse gamma

mixing component Wj,t and Qi,t for all i and j by drawing from IG(sk, rk,t), where sk = ζk/2+1
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and rk,t = ζk/2 + z2
k,t exp(−hk,t)/2.

C Forecasting and filtering

The filtering algorithm mainly follows from Chib et al. (2006). Keeping θ at some posterior

estimate, at time T the particles {xkT }Kk=1 with normalized weights {ωkT }Kk=1 are propagated

1-period forward based on their transition dynamics. The 1-period ahead forecast ẏT+1 is given

by

ẏT+1 =
K∑
k=1

ωkT ŷ
k
T+1,

where for k = 1, ...,K, ŷkT+1 is imputed from

ŷkT+1 ∼ N(ỹkT+1 + ΛF kT+1,Ω
k
T+1), Ωk

T+1 = ΛV k
T+1Λ′ + UkT+1.

We can obtain the S-period ahead forecast ẏT+S similarly. The predicted total return over S

periods
∑S

s=1 ẏT+s thus follows a mixture Gaussian distribution

S∑
s=1

ẏT+s ∼
K∑
k=1

ωkTN(
S∑
s=1

ỹkT+s + ΛF kT+s,
S∑
s=1

Ωk
T+s),

we can use to estimate return moments over S periods. This is essential for portfolio manage-

ment, and for computing risk metrics such as the tail index and the VaR.

The filtered mean return and covariance matrix are

µt|t−1 = E(yt|y1:t−1, θ), Ωt|t−1 = E(Ωt|y1:t−1, θ),

which we can estimate by

µ̂t|t−1 =

K∑
k=1

ωkt−1(ỹkt + ΛF kt ), Ω̂t|t−1 =

K∑
k=1

ωkt−1Ωk
t ,

where Ωk
t = ΛV k

t Λ′ + Ukt and {ωkt−1}Kk=1 are the normalized weights pertaining to the particle

system at time t− 1. Chib et al. (2006) express the filtered correlation as

Rt|t−1 = E(Υt|y1:t−1, θ).
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Υt is thus the conditional correlation matrix for yt|{hj,t}pj=1, {Wj,t}pj=1, {li,t}ni=1, {Qi,t}ni=1, or

Υt = D(Ωt)
− 1

2 ΩtD(Ωt)
− 1

2 ,

where D(Σ) denotes the matrix with diagonal elements equal to those of Σ and zero off-diagonal

elements. We can thus estimate Rt|t−1 by

R̂t|t−1 =
K∑
k=1

ωkt−1Υk
t =

K∑
k=1

ωkt−1D(Ωk
t )
− 1

2 Ωk
tD(Ωk

t )
− 1

2 .
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