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Abstract

Natural rate of interest or r-star and the natural rate of output growth are important

policy benchmarks widely used by central banks to determine the stance of an economy. It

is well recognized that r-star, linearly related to the natural rate of output growth within the

New Keynesian framework, is subject to low-frequency fluctuations. To track its evolution

over time, we propose an unobserved components model with similar cycles based on the

work of Holston et al. (2017). Our model takes an estimate of the time-varying natural

rate of output growth as input via a first-stage model based on a first-difference version of

Okun’s law with time-varying parameters. In the second-stage, the full model is estimated

using Kalman filter. We also show that the similar cycles imply a Taylor rule and a hybrid

New Keynesian Phillips curve. For US, EA and UK, our estimates suggest that the decline

of natural rate of output growth started from the 1960s, while r-star for US and EA started

to fall from 1985. R-star of UK started low during 1960s, but rose and stayed relatively high

in the 80s until a big drop took place during the GFC.
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1 Introduction

There has been a lively debate over the past decade on whether the natural rate of interest,

or the so-called r-star, in developed economies is around zero. The century-old notion of r-star

originates from Wicksell (1898) who defines it as the rate of bank loans that neither stimulates

nor curbs commodity prices. R-star has re-emerged as a monetary policy benchmark and started

gaining popularity since the beginning of 21-st century and nowadays is widely used in central

banks. Following literature, we define the natural rate of interest as the rate that is compatible

with an economy growing at its potential giving stable maximum employment and output in

an environment of stable inflation. Accordingly, the corresponding output growth in such an

environment is the natural rate of output growth, or potential output growth rate1.

In this paper, we propose a model that builds on the definition given above for estimating

the unobserved natural rate of interest and output growth. As a result, we also obtain two

coincidental indicators. One is the real interest rate gap which is the deviation of real interest rate

from its natural rate and measures the monetary stance; that is, an accommodative monetary

policy leads the real rate to exceed the r-star. The output gap is defined similarly.

Papers by Laubach and Williams (2003) and Holston et al. (2017) set an important framework

for estimating the r-star. Importantly, they argue that central banks cannot reply on r-star or

the real interest rate gap exclusively when making monetary policy; because there are gradual

shifts in both the natural rate of output growth and natural rate of interest. A simple equilibrium

relationship suggests that the gradual shifts of r-star is driven by that of potential output growth

rate and by the time-variation of factors including time preference and risk aversion of economic

agents. Their contributions can be seen as relating the r-star to economic growth. While Laubach

and Williams (2003) initially studies only US, Holston et al. (2017) considers similar models for

three more economies. Within this strand of literature, Garnier and Wilhelmsen (2005) extend

analysis to EA and document some modifications to the model of Laubach and Williams (2003).

Fries et al. (2016) consider a mixed frequency extension for four European countries, and find a

significant drop in r-star during the GFC. McCririck et al. (2017) embrace a Bayesian approach

for estimating the model of Holston et al. (2017) using Australian data, and link the drop in

r-star to the widening gaps between policy rate and market interest rates. All these researches

find that the uncertainty around the estimate of r-star and the potential output growth rate is

quite large, emphasizing that cautions should be made when one makes the claim about recent

1We use natural rate of output growth, potential output growth rate and trend growth rate interchangeably
in this paper.
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value of r-star. This is also noted by Matthew and Justin (2017) and Lewis and Vazquez-Grande

(2017). Another strand of literature studying the natural rate is based on dynamic stochastic

general equilibrium (DSGE) models with nominal rigidities. Lombardi and Sgherri (2007) find

it critical to account for time-variation of the underlying productivity and inflation trend to

ensure consistency between the estimated r-star and the evolution of economy. Johannsen and

Mertens (2016) model the effect of zero lower bound on nominal interest rates and find the drop

in natural rate is less profound if one takes stochastic volatility into account. Del Negro et al.

(2017) build a comprehensive DSGE model with financial frictions which reconciles findings from

a simple VAR model with local mean, and use convenience bond yield to explain the changes

in inflation expectation and the drop in natural rate. Finally, Gerali and Neri (2017) provides

evidence on the difference between drivers of the natural rate in US and EA, where the former

is mainly related to technology and investment shocks while the latter to risk premium shocks.

Our paper follows the framework of Holston et al. (2017) and makes several modifications

by noting some important pitfalls if one fits their model directly to economies other than the

US. Firstly, we pin down the potential output growth rate by making the link between observed

growth rate of output and unemployment explicit via a first-difference version of Okun’s law with

time-varying parameters. Secondly, we model the gap variables, i.e. deviations from natural

rate, through a similar cycles model. Harvey (2011) uses similar cycles to model the interaction

between output gap and inflation gap and finds the implied Phillips curve provides better fit

than a regression specification for US data. Our model extends to tri-variate stochastic similar

cycles. Furthermore, our model also takes into account the reaction function of central banks

via a Taylor rule, which is ignored in Holston et al. (2017). Our econometric model takes two-

stage estimation and is able to reconcile some unintuitive findings from previous literature and

perform robustly across different economies. Empirically, we find that for US and EA, r-star

starts to drop from 1985 while the natural rate of output growth starts to fall from the initial

sample period. For UK, r-star starts low in the 1960s and rises up until the onset of the GFC.

The paper is organized as follows. Section 2 discusses the model of Holston et al. (2017)

and introduces our model with detailed two-stage estimation procedure. Section 3 gives esti-

mation results from both stages, followed some robustness checks in terms of different model

specification. We conclude and comment on future research in Section 4.
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2 Empirical methodology

The natural rate of interest is a long-run equilibrium or flexible price steady-state concept in

the DSGE literature. For example, the recent research by Barsky et al. (2014) and Cúrdia et al.

(2015) define the natural rates of macroeconomic variables as the long-run rate when an economy

is growing at its potential. Under this framework, the natural rate of interest is such that the

growth rate of output and unemployment rate are at their natural rates in an environment with

stable inflation. However, it is clear that although equilibrium is termed long-run, natural rates

may be subject to low-frequency fluctuations due to advancement of technology and changing

time preference of the representative agent that are difficult to detect (Stock and Watson, 1998).

Holston et al. (2017) thus develop a New Keynesian modeling framework (the HLW model

hereafter) based on a Phillips curve and an intertemporal IS curve to describe the stochastic

driving forces behind output gap and real interest rate gap but allows for low-frequency gradual

shifts in the potential growth rate of output and the natural rate of interest. Empirically, the

HLW does not seem to adequately capture output gap and real interest rate gap compared

with estimates produced by various institutions. Before we introduce our model and estimation

procedure, the next section discusses the HLW model and some of its limitations.

2.1 The HLW model and discussions

On a balanced growth path, the intertemperal utility maximization by representative agent with

CES preference in standard monetary DSGE models implies a constant inflation steady-state

that links the equilibrium real interest rate r∗ with the equilibrium per capita consumption

growth gc via

r∗ =
1

α
gc + z, (1)

where α is the risk aversion or the intertemporal elasticity in consumption, and z is the rate

of time preference that is inversely related to discount rate. Off equilibrium, the natural rate

of interest is time-varying in response to shifts in the right-hand side variables of equation (1).

Based on this link, the HLW model assumes a law of motion for the natural rate given by

r∗t = g∗t + zt, (2)
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where g∗t is the potential growth rate of output and zt is a stochastic process capturing fluctua-

tions in other determinants of r∗t
2. The HLW model imposes a unity risk aversion, i.e. α = 1.

The econometric treatment of the rest of the HLW model is given within a New Keynesian

framework (e.g. Woodford, 2001 and Gaĺı, 2015) with a Phillips curve identifying the output

gap, i.e. the deviation of output from its potential. The latter is also affected by the real interest

rate gap ψr,t = rt − r∗t where rt is the real interest rate. In particular, Holston et al. (2017)

estimate the following equations:

IS curve: ψy,t+1 = a1ψy,t + a2ψy,t−1 +
ay
2

(ψr,t + ψr,t−1) + εψy ,t

Phillips curve: πt+1 = bππt + (1− bπ)π̄t−1 + byψy,t + επ,t,

(3)

where the output gap ψy,t = yt − y∗t ; yt and y∗t are 100 times the logarithm of real GDP

the potential rate of output, respectively. πt denotes the annulized core CPI inflation, with

π̄t = 1
3

∑2
i=0 πt−i. The error terms εψy ,t and επ,t capture transitory shocks to output and

inflation. Low-frequency shifts in r∗t is modeled via (2) with zt being a random walk. g∗t is a

random walk that drives an integrated random walk of order 2 for the potential output growth

rate y∗t , namely

y∗t+1 = y∗t + g∗t + εy∗,t,

g∗t+1 = g∗t + εg∗,t.
(4)

The measurement equation in the HLW model decompose the output and real rate as

yt = y∗t + ψy,t,

rt = r∗t + ψr,t.
(5)

The star variables are the nonstationary local mean of the above system and they are of primary

interest because they serve as policy benchmarks. The stationary gap variables are important

as well because they are coincidental indicators the reflect the stance of the economy. Equation

(2) makes it clear that the potential or trend growth rate of output g∗t is a major source of low-

frequency time-variation of r∗t , an argument supported by (1) and used extensively at institutions

(see, e.g. Laubach and Williams, 2003, Garnier and Wilhelmsen, 2005, Fries et al., 2016, Lewis

and Vazquez-Grande, 2017 and McCririck et al., 2017).

2For example, theoretical researches by Woodford (2011) and Hamilton et al. (2016) show that changes in the
time-preference of consumers may lead to fluctuations in the equilibrium real rate; Laubach (2009) shows the
impact of budget deficits and debt on the interest rate; Bernanke et al. (2005) provides evidence of the impact
of global supply of savings on domestic long-term interest rate; Chatterjee (2016) documents the global factor
affecting nominal rate due to coordinated monetary policy across developed economies.
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The HLW model uses the median unbiased estimator of Stock and Watson (1998) to pin

down the variation of the potential growth rate g∗t and that of the r-star specific component zt
3.

One pitfall of the HLW model estimation is that when deciding the variation of g∗t , HLW apply

the median unbiased estimator based on a “handicapped” version of the model which discards

the IS curve. As a result, the variation of g∗t is incorrectly calibrated, as thus is that of zt and r∗t
4.

It turns out these two signal-to-noise ratios are highly consequential on the final estimates of the

model (see Garnier and Wilhelmsen, 2005 and Matthew and Justin, 2017 for a discussion). From

the comparison between our estimates and theirs in section 3, it is likely that the variation of

two stars in the HLW model are biased downward. Secondly, the HLW model fits US data quite

sensibly, yet its fit to EA and UK data is problematic. The EA output gap shows a prolonged

stagnation between 1980 and 2000, which is in stark contrast to institutional estimates. The UK

real interest rate gap attains very negative values between 1975 and 1980, down to lower than

-10% followed by a 30-year long positive real rate regime, which calls for cautious take on this

result. Some possible explanations for these puzzling results can be attributed to the nearly fixed

starting values used by the HLW model for unobserved components; highly consequential use of

4-quarter moving average measure of ex-ante inflation expectations; and the lack of information

content in the data to pin down the output gap. We introduce our model in the next section

with remedies to all these concerns.

2.2 Implementation of two-stage estimation

Our model builds on the HLW model that links r-star to the potential growth rate and emphasizes

that one source of gradual changes in r-star comes from the changes in potential growth rate

of an economy. In other words, the two unobservables: potential output y∗t and real interest

rate rt are cointegrated due to the common random walk g∗t . One pathology of the HLW model,

especially when fitted to EA and UK, comes from the weak identification of g∗t and zt
5. To better

estimate these two components, we isolate them and propose a two-stage procedure by firstly

estimating g∗t following the model of Li and Mendieta-Muñoz (2018), and secondly estimating an

3As Stock and Watson (1998) noted in linear state space models, due to small sample size, maximum likelihood
estimation tends to underestimate the innovation variance, and thus variation for a nonstationary unobserved
process. This phenomenon is well documented in macroeconometric studies. If estimated freely, g∗t and zt in the
HLW model are found to be a deterministic trend and a constant, respectively.

4In particular, they propose a three-step estimation method where they firstly use the model without the IS
curve to determine the signal-to-noise ratio λg∗ = σg∗/σy∗ and secondly determine λz = σz/σψy . In the third
step, they plug in λg∗ and λz into the model and estimate other parameters and unobserved processes.

5They are identified in the model, but information about their variation may be weak in the data due to, for
example, measurement errors.
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unobserved components model with similar cycles and a model-consistent measure of inflation

expectation.

2.2.1 The trend growth rate

As in (5), the output yt can be written as the sum of a time-varying local mean y∗t and a

stationary cycle ψy,t. It follows

yt = y∗t + stationary.

The potential output y∗t is an integrated random walk of order 2 as in (4). This means by taking

difference, we have

∆yt = g∗t + stationary, (6)

where g∗t is an integrated random walk of order 1. This is a reduced form model which enables us

to directly estimate g∗t . Let Yt = exp yt denote the actual output in level. We have the identity

Yt =
Yt
Ht

Ht

Nt

Nt

Lt
Lt = PtQtEtLt,

where Ht, Nt, Lt represent hours worked, total employment, and labor force, respectively. There-

fore, Yt/Ht = Pt, Ht/Nt = Qt and Nt/Lt = Et indicate labor productivity, hours worked per

worker, and the employment rate, respectively. Taking the first difference of logarithm in the

above equation, we have

∆yt = pt + qt + et + lt.

This means that the growth rate of output ∆yt is the sum of growth rates of labor productivity

pt, hours worked per worker qt, the employment rate et and the labor force lt.

When an economy is at its potential, the growth rate should maintain a constant employment

rate Et, or et = 06. Also, that goods market clear indicates the growth rate of supply of goods

equals that of demand, i.e. ∆yS,t = ∆yD,t, and any disequilibrium in the goods market is thus

captured by the growth rate of employment, i.e. et = ∆yS,t −∆yD,t. So a necessary condition

for an economy at its potential is ∆yt = pt + qt + lt. Let ut = 1−Et denote the unemployment

6Alternatively, the potential gorwth rate should be such that the employment rate Et is at its potential. This
is to say 1−Et should be the natural rate of unemployment, or NAIRU. In literature, NAIRU is a low-frequency
nonstationary stochastic process, meaning that et is an innovation term of limited variation which can be assumed
to be accommodated by the transitory shock ε∆y,t in (7).
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rate. Using the fact ∆ut = −Et−1(Et/Et−1 − 1) = −Et−1et, we can easily show that

∆yD,t = ∆yS,t −
1

Et−1
∆ut.

This gives rise to a time-varying parameter model (TVPM) if one assumes the discrepancy

between the left- and right-hand side of the above equation is due to transitory shocks ε∆y,t

hitting the system. From (6) and the above equation, we can thus write

∆yt = g∗t +Ot∆ut + ε∆y,t. (7)

Equation (7) is a first-difference version of Okun’s law with time-varying Okun coefficient Ot

which measures the inverse relationship between changes in the unemployment rate and growth

rate of output. The variation in g∗t is captured by pt + qt + lt, which measures the long-run

growth rate of labor productivity pt + qt and of the labor force lt, that are free from aggregate

demand fluctuations7.

Since g∗t is an integrated random walk of order 1, it can be modeled by a smooth local level

model with a stochastic drift (Harvey, 1990). Assuming Ot is also a gradual shift that follows a

random walk, the full model thus reads

∆yt = g∗t +Ot∆ut + ε∆y,t, ε∆y,t ∼ N(0, σ2
∆y),

g∗t+1 = g∗t + µt,

µt+1 = µt + εµ,t, εµ,t ∼ N(0, σ2
µ),

Ot+1 = Ot + εO,t, εO,t ∼ N(0, σ2
O).

(8)

Due to nonstationarity, we use diffuse initialization for g∗1, µ1 and O1 (Koopman, 1997). One

can specify an agnostic moving average dynamics for ε∆y,t with stochastic volatility as in Li and

Mendieta-Muñoz (2018) to mitigate possible error autocorrelation and heterskedasticity.

Importantly, model (8) may suffer from endogeneity problem due to possible correlation

between ∆ut and ε∆y ,t. Kim (2006) shows that in such a case, maximum likelihood estimation

of the TVPM via Kalman filter leads to invalid inference. To tackle this, Kim (2006) proposes

a Heckman-type two-step bias correction procedure. Suppose that we have a m-dimensional

7Li and Mendieta-Muñoz (2018) argue that, on a balanced growth path with maximum employment, g∗t serves
as a “threshold growth rate” that equals the sum of labor force and productivity growth (Klump et al., 2008). If
∆ut = 0, g∗t represents a natural or long-run output growth rate since it is the minimum level of output required
to reduce ut given labor force and productivity growth.
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vector of instruments zt for all t; and that there is a standard TVPM that we can use to project

∆ut onto the space spanned by zt, i.e.

∆ut = z′tγt + ε∆u,t, ε∆u,t ∼ N(0, σ2
∆u), (9)

where γt is m×1 vector of time-varying coefficients where each component γi,t follows a random

walk with innovation variance σγi , i = 1, ...,m. Kalman filter allows for decomposition of ∆ut

into a predicted value E(∆ut|Ft−1) and an orthogonal prediction error ε̂∆u,t = σ∆uε̂
∗
∆u,t where

Ft−1 is the information set available at t− 1 and ε̂∗∆u,t is standard normal.

If we assume that E(ε̂∗∆u,tε∆y,t) = ρσ∆y, we can write

ε∆y,t = ρσ∆y ε̂
∗
∆u,t + ε∗∆y,t, ε∗∆y,t ∼ N(0, (1− ρ2)σ2

∆y).

Substituting the above equation into the measurement equation of the TVPM (8), we have

∆yt = g∗t +Ot∆ut + ρσ∆y ε̂
∗
∆u,t + ε∗∆y,t. (10)

The standardized prediction errors ε̂∗∆u,t in (10) augment the measurement equation in (8) as

bias correction terms similar to Heckman (1976)’s two-step procedure for sample selection. A

t-test for the maximum likelihood estimate of ρ can be used to check the necessity of this

procedure. Lastly, to estimate the model using the two-step bias correction procedure, we need

to deal with the “limited variation” of g∗t or the so-called “pile-up” problem documented by

Stock and Watson (1998). We firstly estimate the TVPM treating g∗t as a constant and apply

the exponential Wald statistic for structural breaks to determine the signal-to-noise ratio (SNR)

λ =
σµ
σ∆y

; and secondly re-estimate the model by imposing σ2
µ ≡ λ2σ2

∆y. In this first stage, we

estimate the parameter vector θ1 = (σ∆u, σγ1 , ..., σγm , ρ, σ∆y, σO, λ)′.

2.2.2 Unobserved components model with similar cycles

The trend growth rate g∗t is estimated using a reduced form model with diffuse initialization.

We find this appealing compared to the estimation of the HLW model which initializes the state

vector from HP filter. In this section, we introduce our model and and its estimation.

Harvey (2011) finds that the US Phillips curve can be well modeled by a bivariate unobserved

components model with similar cycles. We follow his approach by introducing a trivariate similar

cycles model for both the Phillips curve and IS curve in the spirit of (3). In particular, denoting
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ψt = (ψy,t, ψr,t, ψπ,t)
′ and an auxiliary cycle vector ψ̃t, we specify the following model for the

gap variables,

ψt+1

ψ̃t+1

 =

ϕ
 cosω sinω

− sinω cosω

⊗ I3


ψt
ψ̃t

+

εψ,t
εψ̃,t

 , εψ,t, εψ̃,t ∼ N(0,Σψ), (11)

where ψy,t is the output gap; ψr,t is the real interest rate gap; ψπ,t is the inflation gap; ϕ ∈ (−1, 1)

is a damping factor ensuring stationarity of stochastic cycles; ω ∈ (0, 2π) is the angular frequency

of the cycles such that τ = 2π/ω is the cycle period; and the stochastic forces driving the cycles

are such that E(εψ,tε
′
ψ̃,t

) = 0 with covariance matrix

Σψ =


σ2
ψy

ρyrσψyσψr ρπyσψπσψy

σ2
ψr

ρrπσψrσψπ

σ2
ψπ

 . (12)

ρπy and ρyr reflect the Phillips curve and IS curve, respectively. ρrπ captures the Taylor principle

that models the reaction function of central banks. It is easy to see that the Taylor rule implied

by the similar cycles is given by

it = πet + r∗t + βψTAψπ,t + γψTAψy,t + εi,t.

The regression equation can be rearranged such that the left-hand side variable is the real interest

gap ψr,t = rt − πet − r∗t . β
ψ
TA and γψTA are the Taylor coefficients; εi,t is a monetary shock. This

specification is in line with the original definition of Taylor rule in Taylor (1993) and Taylor

(1999) where Taylor suggests βψTA ≈ 0.5. One can calculate Cov(ψr,t, ψy,t) and Cov(ψr,t, ψπ,t)

and solve for βψTA and γψTA. For example, βψTA is given by

βψTA =
Var(ψy,t)Cov(ψr,t, ψπ,t)− Cov(ψr,t, ψy,t)Cov(ψπ,t, ψy,t)

Var(ψπ,t)Var(ψy,t)− Cov(ψπ,t, ψy,t)2
=
σψr(ρrπ − ρyrρπy)
σψπ(1− ρ2

πy)
, (13)

which captures the reaction of real interest rate to the inflation cycle. Notice that the uncondi-

tional moments of the cycles reduce to those of the cycle innovations because the multipliers in

front of unconditional moments cancel out in the numerator and denominator. Since it reacts

one-to-one to πet in our model, the magnitude of βψTA indicates the activeness of monetary policy

rule (Lubik and Schorfheide, 2004). The implied Phillips curve and IS curve coefficients βψPC

and βψIS can be computed similarly, allowing comparisons between similar cycles specification
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and regression specifications such as equation (3).

The similar cycles model is a parsimonious specification for the gap variables which imposes

identical autocorrelation function for ψy,t, ψr,t and ψπ,t. Indeed, from a New Kenyesian perspec-

tive, these gap variables should all resonate with real activities, i.e. the business cycle. From

Figure 1, which shows the EA output gap, interest rate gap and inflation cap obtained from HP

filter, we see that all cycles share the same frequency with similar amplitudes.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

-3

-2

-1

0

1

2

3

4

Figure 1: Cyclic components obtained from HP filter for the EA. Red: output gap; Blue: interest

rate gap; Green: inflation gap; Dashed black: average of gap variables.

Furthermore, much literature mentioned in Section 2.1 that studies r-star has found the

HLW model is quite sensitive to different measures of ex-ante real interest rate rt = it − πet

with short-term nominal rate it and inflation expectation πet . Since any arbitrary filter gives a

different expectation measure which may lead to episodic performance of the HLW model (Stock

and Watson, 2007), we consider it more robust to use a model-based inflation expectation when

fit our model to data of different economies. In particular, we have the following system of

measurement equations in our unobserved components model:

yt = y∗t + ψy,t,

it = πet + r∗t + ψr,t,

πt = πet + ψπ,t + επ,t, επ,t ∼ N(0, σ2
π).

(14)
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The extra transitory noise term επ,t in the inflation equation of (14) is an ad-hoc choice for

measurement errors in core inflation and is optional8. πet is the unobserved trend inflation. In

the presence of the cyclic component ψπ,t, the trend πet equals the long-run inflation expecta-

tion lims→∞Et(πt+s) (Beveridge and Nelson, 1981). In the appendix we show the equivalence

between the inflation equation of (14) and a hybrid New Keynesian Phillips curve. It is worth

noticing that instead of taking an ad-hoc measure of inflation expectation as in the HLW model,

we model a stable path, or long-run expectation, of inflation πet . Explicitly modeling a stable

path for inflation is necessary, because all natural rates are defined in such an environment. For

example, when an economy is at its flexible price equilibrium, we have ψi,t = 0 for i = y, r

and π; that is πt = πet (up to a measurement error), which is the stable inflation. Should this

not hold, monetary policy becomes non-neutral in equilirbium which violates the definition of

r-star. As comparison, in equilibrium the HLW model gives πt = bππt−1 + (1− bπ)π̄t−1 as in (3),

hardly justifying the “stable inflation”9. πet goes into the interest rate equation of system (14)

such that the real interest rate subject to long-run inflation expectation consists of the r-star

and the real interest rate gap.

We have the following local mean state transition equations:

y∗t+1 = y∗t + g∗t + εy∗,t, εy∗,t ∼ N(0, σ2
y∗),

r∗t = g∗t + zt,

zt+1 = φzt + εz,t, εz,t ∼ N(0, σ2
z),

πet+1 = πet + επe,t, επe,t ∼ N(0, σ2
πe).

(15)

The equation for potential output y∗t and the natural rate of interest r∗t is linked by the trend

growth g∗t , similar to the HLW model (4); but in our model, the trend growth is found by the

first-stage estimation. We let the r-star specific component zt follow a stationary AR(1) process

with AR coefficient φ ∈ (−1, 1) such that it can be initialized from its unconditional distribution

N(0, σ2
z/(1 − φ)). This specification makes maximum likelihood estimation more stable and is

also applied by Garnier and Wilhelmsen (2005) who explain why one should prefer a stationary

zt over a random walk. y∗t and πet are initialized using diffuse initialization and the model is

8In our empirical study, this term is only modeled for the UK, because the core inflation we get from Bank of
England is much more volatile than the ones for the US and EA. We find that adding this term to account for
this excess volatility delivers more robust results.

9Among many others, literature that also introduces a stocashtic trend in Phillips curve includes Cogley and
Sbordone (2008), Harvey (2011), Goodfriend and King (2012), Kim et al. (2014) and Berger et al. (2016).
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Table 1: Estimation Results of Time-varying Okun’s Law

First stage
Parameter vector θ̂1

ρ σ∆y σO λ LB1 LB2

US −0.194(0.082)∗∗ 2.326(0.114)∗∗ 0.039(0.042) 0.042 0.757 0.166
EA −0.267(0.104)∗∗ 1.600(0.107)∗∗ 0.528(0.201)∗∗ 0.079 0.760 0.026∗∗

UK −0.180(0.073)∗∗ 3.309(0.159)∗∗ 0.046(0.082) 0.035 0.475 0.054∗

The table reports a selection of estimated parameters from the first-difference Okun’s law with time-varying param-

eters (8)-(10), which is the first stage of our modeling framework. Within brackets are standard errors with ∗∗ and
∗ indicating statistical significance at 5% and 10% level, respectively. LB1 and LB2 report the p-value of Ljung-Box

test of no residual serial correlation resulted from the first-step IV projection (9) and the second-step estimation of

(8) and (10).

estimated by maximizing the likelihood with respect to the 13-dimensional parameter vector

θ2 = (φ, ϕ, ω, ρIS , ρPC , ρTA, σψy , σψr , σψπ , σy∗ , σz, σπe , σπ)′.

The appendix details the state space representation of our model. All computations are carried

out using OxMetrics7 with the state space model package SsfPack3.0 (Koopman et al., 1999).

3 Estimation results

In this section, we report estimation results for US, EA and UK. Section 3.1 shows the estimate

of potential growth rate of output, or the trend growth rate, based on the time-varying parameter

model for the first-difference version of Okun’s law. Section 3.2 shows the estimation results

of the proposed unobserved components model with similar cycles for natural rate of interest.

Some robustness checks are provided in Section 3.3.

3.1 Estimates of trend growth rate and Okun’s law

Estimation of the time-varying Okun’s law model (8)-(10) takes two steps where the first step

addresses potential endogeneity problem. Using the Heckman-type two-step bias correction

procedure proposed by Kim (2006), we can estimate all parameters and time-varying components

via Kalman filter and maximum likelihood.

Table 1 shows the estimated parameter vector θ̂1 in our first stage model, where the hat

symbol indicates the maximum likelihood estimate. As is seen, estimates of ρ are significant

with minus sign for the three economies considered. This highlights the endogeneity problem;
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Table 2: Time-varying Okun Coefficient

First stage
Time-varying Okun cofficient Ot

1961Q1 1972Q1 1981Q1 2008Q4 2017Q2

US (-1.92, -0.82) (-1.84, -1.06) (-1.82, -1.12) (-1.54, -0.65) (-1.63, -0.42)
EA (-4.71, -0.41) (-2.45, 0.16) (-4.23, -3.21) (-3.72, 1.98)
UK (-2.15, -0.48) (-1.94, -0.60) (-1.84, -0.61) (-1.70, -0.24) (-1.79, -0.05)

The table shows the 95% confidence interval of the time-varying Okun coefficient from model (8) and (10) for the

three economies. Five periods are selected, including initial period, end of sample period, the period after the oil

crises (1981Q1) and the global financial crisis (2008Q4).

thus we should indeed apply the two-step bias correction for estimating g∗t as well as other

parameters in the model. The Ljung-Box test LB1 for the first-step IV time-varying regression

(9) suggests that the TVPM is sufficient to capture changes in ∆ut and thus able to deal with

potential endogeneity via orthogonal decomposition of prediction errors. However, LB2 rejects

the null of no serial correlation in the residuals of (10) for EA at 5% level. This misspecification

can be mitigated following the method of Li and Mendieta-Muñoz (2018) by allowing some

parametric form of autocorrelation and stochastic volatility.

Table 1 also reports the estimated value of σO which shows the variation of the time-varying

Okun coefficient. Only the parameter for EA suggests significant time variation of Ot, whereas

US and UK are expected to have an Okun coefficient of limited variation10. Table 2 summarizes

the 95% confidence interval of Ot, for five selected periods. It is easy to see a weakening effect

of ∆ut on ∆yt for the three economies, confirming the findings in Knotek II (2007) and Zanin

and Marra (2012) which attribute this weakening effect in developed countries to advancement

in technology and increasing labor resource utilization. This weakening Okun’s law is the most

evident for the EA, as Ot becomes insignificant at the end of sample period.

We present our estimates of the trend growth rate g∗t for the three economies in Figure 2

together with the estimates from the HLW model. For US, the Congressional Budget Office

(CBO) routinely publishes an estimate of the potential output y∗t . We fit model (4) to it and

obtain the CBO estimate of g∗t .

From Figure 2 it can be seen that the HLW estimate of g∗t is more of a slowly decreasing

linear trend. Our estimated trend growth from our model resembles the one given by CBO after

1980. In particular, it captures the trough in 1981 (the Volcker-Greenspan regime), the peak in

the late 90’s, and the drop of potential growth rate after the global financial crisis. However,

10The significance is based on likelihood ratio test, but one should notice that the test statistic is non-standard
because the null is at the boundary of parameter space, i.e. zero variance.
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Figure 2: Estimates of trend growth rate for US, EA and UK. Blue: Estimated trend growth rate g∗t

with 95% confidence band; Red: The HLW estimate; Dashed black: Estimate of the US potential output growth

rate by the Congressional Budget Office.

prior to 1980 our estimate seems to lead the CBO estimate, because CBO’s data set starts two

decades before ours thus the initial value effect is minor.

Similar to the US trend growth. For both economies, the HLW g∗t for EA and UK is effectively

a linear trend. Although estimation of the HLW model uses the median unbiased estimator, but

it is expected to still suffer from the “pile-up” problem11. Our first-stage model is well suited

for capturing shifts in g∗t because the changes in the unemployment rate isolates the effect of

demand shocks on changes in output (Blanchard and Quah, 1989 and Sinclair, 2009), and thus

identifies changes in g∗t . In particular, g∗t of EA shows a sharp drop before 1980 due to the

oil crises and decreasing labor productivity in the periphery countries of the then European

Economic Community (Dew-Becker and Gordon, 2008); g∗t of UK shows three drops (the mid

1970s, 1990 and 2008) on top of a decreasing trend.

3.2 Estimates of natural rate of interest and gap variables

With the trend growth rate obtained from the first stage model, we estimate the proposed

unobserved components model with similar cycles (11)-(15) to the three economies. Firstly, we

11The first step estimation in the HLW model builds on a model without the real rate equation. As a result,
the signal-to-noise ratios for g∗t and zt are incorrectly calibrated.
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Table 3: Estimation Results of Unobserved Components Models

Secend stage
Parameter vector θ̂2

US EA UK

φ 0.968 (0.030)** 0.986 (0.012)** 0.991 (0.010)**
ϕ 0.911 (0.018)** 0.949 (0.023)** 0.915 (0.017)**

ω 0.179 (0.029)** 0.126 0.154 (0.051)**
period 2π/ω 35.147 50 40.893

ρry -0.007 (0.185) 0.000 (0.001) 0.000 (0.001)
ρπy 0.420 (0.111)** 0.578 (0.208)** 0.401 (0.165)**
ρrπ 0.092 (0.088) 0.260 (0.129)* 0.146 (0.177)

βψIS -0.039 / -0.071 -0.139 / -0.036 -0.047 / -0.009

βψPC 0.110 / 0.079 0.689 / 0.065 0.650 / 0.490

βψTA 0.538 / - 0.380 / - 0.134 / -

σψy 0.591 / 0.354 0.358 / 0.290 0.644 / 0.110
σψr 0.870 / - 0.582 / - 0.811 / -
σψπ 0.685 / 0.791 0.949 / 1.001 1.046 / 2.737
σy∗ 0.356 / 0.575 0.430 / 0.400 0.557 / 0.878
σz 0.500 / 0.150 0.375 / 0.323 0.201 / 0.287
σψe 0.422 / - 0.347 / - 0.495 / -
σπ - / - - / - 3.719 / -

The table reports estimated parameters from the unobserved components model with similar cycles (11)-(15), which

is the second stage of our modeling framework. Within brackets are standard errors with ∗∗ and ∗ indicating sta-

tistical significance at 5% and 10% level, respectively. Our estimates (on the left-hand side of the slash symbol) are

compared with their HLW counterparts whenever possible. Cycle period is restricted to be within (20, 50) quarters.

Implied beta’s are calculated as in (14).

report parameter estimates in Table 3.

The period of business cycle for US and UK is estimated to be 35 and 41 quarters, respec-

tively, which is line with the literature; however that of EA is estimated to be at the boundary,

i.e. 50 quarters. This can be seen from Figure 8 that the output gap behave like a random walk

locally and have a longer period than those of US and UK. Yet the damping factor ϕ is well

within the stationary regime, so we can safely conjecture that there exists a business cycle for

EA.

For the three economies, only ρπy is found to be statistically significant (though ρrπ for UK

is significant at 10% level). This suggests that the main cyclical correlation is between output

and inflation. Due to our trivariate similar cycles specification, statistically near-zero ρry or ρrπ

does not necessarily imply economically near-zero IS curve, Phillips curve and Taylor principle
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coefficients. Using equation (13), we find that for US, the IS coefficient βψIS is smaller than the

HLW estimate in absolute value, whereas for both EA and UK, EA in particular, it is found to be

larger. As for the Phillips curve coefficient βψPC , our estimates are larger than the HLW estimates

for all three economies. Noticeably, βψPC for EA is found to be ten times larger than the HLW

counterpart. This mainly results from the contemporaneous relationship modeled by similar

cycles, rather than a lagged structure. One appealing feature of our model is that, although the

implied beta’s differ across economies, the cycle innovation correlation coefficients are found to

be rather homogeneous, ρry and ρrπ in particular. So the difference among beta’s are mainly

from cycle innovation variances. Furthermore, our model also incorporates the Taylor principle

while this important channel of central bank reaction is not modeled in the HLW framework.

βψTA for the US is found to be 0.538, which is quite close to what John Taylor originally suggests.
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Figure 3: Estimate of US natural rate of interest. Blue: Estimated natural rate of interest r∗t with 95%

confidence band; Red: The HLW estimate.

Figure 3-5 show the estimates of natural rate of interest for the three economies. In compari-

son with the estimates from the HLW model (the red line), we can see that our r-star show more

variation. For US, no statistical difference is present if the confidence band is taken into account.

The r-star of EA from our model starts 1 percentage point (pp) higher than the HLW value,

and from 1990 a drop can be spotted which prevails until recently. Even if taking uncertainty

around the estimate into account, our model still suggests a level shift in r-star for EA, whereas
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Figure 4: Estimate of EA natural rate of interest. Blue: Estimated natural rate of interest r∗t with 95%

confidence band; Red: The HLW estimate.
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Figure 5: Estimate of UK natural rate of interest. Blue: Estimated natural rate of interest r∗t with 95%

confidence band; Red: The HLW estimate.

the HLW does not. The result of UK from our model is surprisingly different from that of the

HLW model. Similar to the case of EA, UK’s r-star suggested by the HLW model does not show
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Table 4: Changes of Percentage Points in Natural Rates

PP change
baseline model / the HLW model

sample period US EA UK

∆r∗
- 1990 -1.275 / -2.076 0.505 / 0.146 1.883 / -1.105

1990 - 2006 -2.104 / -1.330 -4.358 / -1.287 -0.891 / -0.176
2006 - 2017 -0.547 / -0.630 -0.433 / -1.369 -1.433 / -0.543

∆g∗
- 1990 -2.915 / -1.445 -3.256 / -0.488 -1.171 / -0.542

1990 - 2006 -0.831 / -0.944 -1.464 / -0.826 0.362 / -0.455
2006 - 2017 -0.291 / -0.265 0.337 / -0.255 -0.514 / -0.072

This table shows the changes in terms of percentage point (pp) of estimated r∗t and g∗t over three periods for the US,

EA and UK from our baseline model (on the left-hand side of the slash symbol) and the HLW model.

any statistical changes if one takes into account the uncertainty around the estimate. Our r-star

however starts 2pp lower than the HLW value and shows a rise from 1975 to 1985, after which

a big drop takes place due to the GFC.

In Table 4, we summarize percentage point changes of the natural rate of interest and output

growth based on estimates from both models. We see that both model suggest that most of

the fall in natural rate of output growth took place before 1990; but our model suggests that

the major drop in r-star took place during 1990-2006, whereas the HLW model suggests r-star

dropped the most before 1990. Our result tells that r-star of EA stayed at around 4.8% until the

downward shift started in 1990, while the HLW model estimates the fall to be most profound

after the GFC. Furthermore, our model suggests that most of the fall in potential output growth

rate took place before 1980, amounting to a -3.2 pp change, and the HLW model simply suggests

a gradual decrease of g∗t . According to our model, the changes in UK’s r-star experienced an

1.88pp-increase before 1990 and a big fall during the GFC in 2008. With the HLW mode, r-star

shows a gradual fall, similar to its estimate of g∗t . Despite these differences, both models suggest

near-zero r-star for the three economies in the current period, in line with literature; however,

it cannot not emphasized more that one should have a cautious take on this as the uncertainty

around the estimated r-star is rather large (see extensive discussions in Matthew and Justin,

2017 and Holston et al., 2017).

The above summary can also be seen from Figure 6. Importantly, the initial value of r∗t and

g∗t in the HLW model almost coincides, because it treats z1 to be zero almost deterministically.

As a result, together with a potentially downward-biased estimate of σz what we obtain is an

expanding wedge between the two stars, for US and UK particularly. Additionally, the HLW
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Figure 6: Baseline model and the HLW estimates. Thick line: Estimated natural rate of interest r∗t ;

Dashed line: Estimated trend growth rate g∗t . Blue: estimates from our baseline model; Red: estimated from the

HLW model; Top to bottom: results for US, EA and UK, respectively.

model initializes the potential output y∗t from their HP-filtered values almost deterministically,

while we initialize all nonstationary components in our model diffusely; thus we let the data

speak, which causes the big difference between our estimates of UK’s natural rates and those of

the HLW model at the beginning of the sample period.

Due to the differences in estimates of natural rates between our model and the HLW model,

we expect to see different gap variables since both models decompose left-hand side variables

into a nonstationary and a stationary component. Figure 7-9 show the estimate of output gap

ψy,t for the three economies, and Figure 10-12 show the estimate of real interest rate gap ψr,t.

It can be easily seen that both models produce similar gaps for the US economy and track other

institutional estimates closely, which reassures our model specification. Main differences are

observed from the output gap for EA and the real interest rate gap for EA and UK.

EA’s outputgap ψy,t estimated by the HLW model shows a twenty-year long secular stag-

nation between 1980 and 2000, whereas our model finds such evidence only during the 1990s.

Similar to the OECD, IMF and Oxford Economics estimates, we find a 2% peak for EA output

gap in 1991. The trough in the HLW output gap in the 1980s goes into the dip in our estimate
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Figure 7: Estimate of US output gap. Blue: Estimated output gap ψy,t; Red: The HLW output gap;

Colored dashed lines indicate estimates given by other institutions.
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Figure 8: Estimate of EA output gap. Blue: Estimated output gap ψy,t; Red: The HLW output gap;

Colored dashed lines indicate estimates given by other institutions.

of g∗t ; however by definition of the potential output growth rate given in section 2, this dip in

g∗t is free from output growth fluctuations explained by the changing unemployment rate of EA
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Figure 9: Estimate of UK output gap. Blue: Estimated output gap ψy,t; Red: The HLW output gap;

Colored dashed lines indicate estimates given by other institutions.

during 1980s. Thus the drop is indeed from the potential output rather than the output gap,

same as the findings in Dew-Becker and Gordon (2008) who document a significant drop in the

growth rate of productivity in Europe during that period.

The estimated real interest rate gap of EA differs from the HLW estimates mostly during

1983-1993. Our estimates form a trough from 5% to -2.5% and come back to 4%, while the HLW

real interest rate gap levels off at around 4%. The high real interest rate during the second half

of the 1980s in the HLW model comes from low inflation expectation calculated using an ad-hoc

4-quarter moving average measure. In other words, the HLW model implicitly assumes that the

representative agent always discounts four quarters in the recent past to form expectation. On

the contrary, we directly treat inflation expectation as unobserved, thus is able to derive a model-

consistent measure of inflation expectation. The fact that the HLW model is sensitive to different

ad-hoc measures of inflation expectation renders a model-consistent inflation expectation more

preferable. This can also be seen from the HLW real interest rate gap of UK which shows a

nearly 27-year long positive regime between 1982 and 2009. Surprisingly, during the 1970s the

UK’s real interest gap is estimated to as low as -12.5% by the HLW model, whereas our model

attributes these low values to the dip in the natural rate of interest r∗t due to the drop of natural

rate of output growth during that time.
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Figure 10: Estimate of US real interest rate gap. Blue: Estimated real interest rate gap ψr,t; Red: The

HLW rate gap.
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Figure 11: Estimate of EA real interest rate gap. Blue: Estimated real interest rate gap ψr,t; Red: The

HLW rate gap.
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Figure 12: Estimate of UK real interest rate gap. Blue: Estimated real interest rate gap ψr,t; Red: The

HLW rate gap.

3.3 Robustness

To check the robustness of the proposed model, we consider some basic alternatives. Table 5

shows a selection of estimated parameters. Firstly, we consider a model for US that directly

uses the potential output growth rate g∗t from CBO. Both estimated parameters and unobserved

components are literally the same as the estimates obtained using our baseline model. This is

expected as our first-stage model produces g∗t that closely tracks the one given by CBO, as is

seen in Figure 2. Furthermore, we can estimate the risk aversion parameter or even make it time-

varying because g∗t is obtained prior to the second-stage estimation. For all three economies,

this parameter is estimated to be close to one when considered static and shows a small gradual

increase over time when considered stochastic, suggesting the representative agent effectively

has a log utility function. Under both cases, other estimated parameters are quite close to the

ones estimated by the baseline specification, i.e. restricting α = 1. The estimated natural rate of

interest r∗t for the three economies when either static or stochastic risk aversion is estimated does

not suggest any noteworthy difference from the baseline, thus we do not show the comparisons.

Yet we should notice that Garnier and Wilhelmsen (2005) estimate the risk aversion in the HLW

model when fitting it to EA data and find quite different r-star. Our model thus shows robustness

in terms of estimation of risk aversion. Lastly, we re-estimate the baseline model using only data
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Table 5: Other Model Specifications

Other specifications
Selected parameters

βψPC βψIS βψTA σψr σz

US
CBO 0.099 -0.055 0.454 0.846 0.517
α 0.108 -0.034 0.534 0.89 0.454
αt 0.107 -0.032 0.535 0.876 0.486
after 1990 0.081 -0.027 0.355 0.29 0.137

EA
α 0.709 -0.149 0.390 0.577 0.381
αt 0.759 -0.175 0.414 0.562 0.389
after 1990 0.168 -0.262 0.751 0.414 0.174

UK
α 0.648 -0.051 0.148 0.808 0.212
αt 0.713 -0.058 0.138 0.753 0.197
after 1990 0.064 -0.032 0.919 0.368 0.146

The table reports some estimated parameters for the three economies under different model specifications. For US,

CBO indicates we directly use the trend growth g∗t published by the Congressional Budget Office. α indicates the

model with estimated risk aversion parameter as in (1). αt indicates the model with a time-varying risk aversion.

“After 1990” uses data after 1990Q1.

after 1990Q1. The results suggest flattening Phillips curve for the three economies, EA and UK

in particular, which is in line with literature on weakening response of inflation to output gap

(Berger et al., 2016). IS curve also seems to be weaker after 1990 for US and UK, but stronger

for EA. The implied Taylor principle coefficient shows that central banks in Europe have made

more responsive monetary policy since 1990, whereas the estimate for US suggests the opposite.

The difference between full sample estimates and estimates obtained using sample after 1990

leaves the room for time-varying parameter modeling, which is an important avenue for future

research on r-star. Apparently, this model uncertainty attributes to the estimation uncertainty

of r-star, as Holston et al. (2017) notice.

4 Conclusion

The natural rate of interest or r-star plays a central role in monetary policy. It is recognized

that r-star is subject to low-frequency time-variation due to gradual shifts in potential output

growth rate. Literature has devoted much effort in estimating these natural rates. Our paper

complements this discussion by proposing an unobserved components model with similar cycles
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estimated using a two-stage procedure. In the first stage, we pin down the potential output

growth rate using a first-difference version of Okun’s law with time-varying parameters. In the

second stage, the unobserved components model is estimated with the output gap, real interest

rate gap and inflation gap identified by similar cycles through Phillips curve, IS curve and a

Taylor rule. Our model is not only robust to initialization of nonstationary components in the

model, but also to inflation expectation measures. Empirically, we fit our model to US, EA and

UK data with comparisons to the results from the Holston et al. (2017)’s model. We find that

the fall in potential output growth starts much before the GFC for the three economies, whereas

the r-star of US and EA starts to fall after 1985. The UK’s r-star starts low in the 1960s and

1970s, and experiences an increase from 1980s until its significant drop during the GFC. All

r-stars are near-zero in the recent periods, but uncertainty suggests that policy makers should

take extra caution until we can be more certain about their exact values.
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Appendices

Similar cycles and the New Keynesian Phillips curve

The similar cycles model imposes identical autocorrelation functions for variables in the system.

Only looking at output, we have

yt = y∗t + ψy,t,ψy,t+1

ψ̃y,t+1

 = ϕ

 cosω sinω

− sinω cosω

ψy,t
ψ̃y,t

+

κy,t
κ̃y,t

 , κy,t, κ̃y,t ∼ N(0, σ2
ψyI2).

It can be shown that the reduced form model for the output gap ψy,t = yt − y∗t follows an

ARMA(2,1) dynamics,

ψy,t = ρ1ψy,t−1 + ρ2ψy,t−2 + θηt−1 + ηt, ηt ∼ N(0, σ2
ψy), (16)

where ρ1 = −ϕ2, ρ2 = 2ϕ cosω and θ = −ϕ(cosω + sinω).

Cogley and Sbordone (2008) and Harvey (2011) derive a New Keynesian Phillips curve when

a stochastic trend inflation is present. They show that such a model with only forward-looking

components provides better in-sample fit for the US data. We follow this literature and show that

the similar cycles model permits a hybrid New Keynesian Phillips curve between the deviation

of inflation from its trend πet and output gap ψy,t. Define the following inflation variable with a

backward-looking component

πct =
(πt − πet )− a(πt−1 − πet−1)

1− a
,

and consider the standard Phillips curve

πct = γEt(π
c
t+1) + βψy,t + επc,t, (17)

where a is the backward-looking weight; επc,t is a white noise disturbance; γ is a discount factor.

The question thus becomes if there exists a pair (a, b) such that the inflation gap is proportional

to the output gap, or equivalently, if for some b we have

ψπ,t = πt − πet = bψy,t + ζt, (18)
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where ζt is a noise term. If the above holds true, then we know ψπ,t has the same autocorrelation

function as ψy,t; so they are similar stochastic cycles.

Provided the usual transversality condition, iterating (17) forward gives

πct = β

∞∑
s=0

γsEtψy,t+s + επc,t.

Inserting (16) into the above, we can solve for the inflation path as

πct = β[1 0]

I2 − γ

ρ1 1

ρ2 0

−1  ψy,t

ρ2ψy,t−1 + θηt

+ επe,t,

or equivalently

1

1− a
(ψπ,t − aψπ,t−1) =

β

1− γρ1 − γ2ρ2
(ψy,t + γρ2ψy,t−1 + γθηt) + επc,t.

Using (18) and by undetermined coefficients, we see

a = −γρ2,

b =
(1 + γρ2)β

1− γρ1 − γ2ρ2
,

ζt =
t∑

s=1

as
(
γθηs +

1− γρ1 − γ2ρ2

β
επc,s

)
.

State space representation

A linear Gaussian state space model takes the following form:

xt+1 = δt + Φxt + ηt, ηt ∼ N(0,Ση), (19)

zt = τt + Λxt + εt, εt ∼ N(0,Σε). (20)

Equation (19) and (20) are the state transition and measurement equation, respectively. ηt and εt

are the vector of state innovations and idiosyncratic disturbances, respectively, and E(ηtε
′
t) = 0.

δt, τt, Λ, Φ, Ση and Σε are either fixed or predetermined system matrices which may contain

unknown parameters that need to estimated.
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In our model, we have zt = (yt, it, πt)
′ and

xt = (y∗t , zt, π
e
t , ψy,t, ψr,t, ψπ,t, ψ̃y,t, ψ̃r,t, ψ̃π,t)

′.

The system matrices are given by

δt =



g∗t

0

0

0

0

0

0

0

0



, Φ =



1 0 0 0 0 0 0 0 0

0 φ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 ϕ cosω 0 0 ϕ sinω 0 0

0 0 0 0 ϕ cosω 0 0 ϕ sinω 0

0 0 0 0 0 ϕ cosω 0 0 ϕ sinω

0 0 0 −ϕ sinω 0 0 ϕ cosω 0 0

0 0 0 0 −ϕ sinω 0 0 ϕ cosω 0

0 0 0 0 0 −ϕ sinω 0 0 ϕ cosω



,

τt =


0

g∗t

0

 , Λ =


1 0 0 1 0 0 0 0 0

0 1 1 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

 ,

Ση =



σy∗ 0 0 0 0

0 σz 0 0 0

0 0 σπe 0 0

0 0 0 Σψ 0

0 0 0 0 Σψ


, Σε =


0 0 0

0 0 0

0 0 σπ

 ,

where Σψ is defined as (12). Estimation of the model is based on prediction error decomposition

using Kalman filter, which also produces estimate of state xt.
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