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Abstract

We analyze the behavior of expectations-based loss-averse bidders in �rst-price and second-

price common-value auctions. Highlighting the distinction between the uncertainty bidders

face over whether they win the auction (extensive risk) and that over the value of the prize

conditional on winning (intensive risk), we show that loss-averse bidders react di¤erently

to these di¤erent kinds of risk. In particular, the intensive risk pushes bidders to behave

less aggressively in a common-value environment compared to one with private values. Yet,

despite this �precautionary bidding� e¤ect, in equilibrium bidders can be exposed to the

�winner�s curse�. We consider two alternative speci�cations for how bidders assess outcomes

as either gains or losses. Under narrow bracketing, bidders experience gains and losses sepa-

rately over whether they receive the prize and how much they pay. Under broad bracketing,

instead, bidders assess gains and losses over their net surplus. With narrow bracketing, �rst-

price auctions expose bidders to less intensive risk and yield a higher expected revenue than

second-price auctions, while the opposite result might hold with broad bracketing.
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1 Introduction

In many auctions the value of the good for sale is subject to ex-post risk and bidders will learn

its true value only after the auction is over. A preeminent example of such auctions are so-called

�common-value�auctions where bidders share the same value for the good up for sale, but at the

time of the auction each bidder is only partially informed about this value. In particular, a bidder

participating in a common-value auction is exposed to two di¤erent kinds of risk. First, there is the

uncertainty regarding losing and winning the auction, and if so at what price. Second, uncertainty

does not fully resolve for the winner because the value of the good is unknown and a¤ected by

the information held by the other bidders. Hence, common-value auctions are intrinsically risky

for bidders. In such auctions, therefore, bidders� attitudes towards risk play a crucial role in

determining their bidding strategies and in turn the auction�s performance in terms of revenue.

In this paper, we analyze �rst-price (FPA) and second-price (SPA) common-value auctions

with bidders who are expectations-based loss-averse à la K½oszegi and Rabin (2006, 2007). For

each auction format, we derive the unique symmetric equilibrium. We also provide a thorough

characterization of the impact of loss aversion on bidding, highlighting how the equilibrium strategy

of loss-averse bidders di¤ers from that of risk-neutral as well as from that of risk-averse bidders.

Moreover, we show that revenue equivalence between the FPA and the SPA fails even if bidders

have independent private signals about the good�s common value.

Our paper is the �rst to study the role of loss aversion in common-value auctions where,

di¤erently from the case of private values, bidders are exposed to two sources of risk. First, when

submitting his bid a bidder faces a lottery between losing and winning the auction; we call the

risk associated with this lottery the �extensive risk�. The extensive risk captures the strategic

uncertainty as it stems from the uncertainty about whether a bidder submitted the highest bid.

Moreover, a bidder is also exposed to uncertainty over the good�s true value and, depending on

the auction format, the price to pay; we call the risk associated with this lottery the �intensive

risk�. The intensive risk relates to the uncertainty to which a bidder is exposed even conditional

on the fact that he submitted the largest bid. We show that loss-averse bidders react di¤erently

to these two sources of risk. In particular, equilibrium bids might be increasing or decreasing in

extensive risk, but they are always decreasing in intensive risk.

When analyzing models of reference-dependent preferences, it is crucial to specify what are

the dimensions of utility over which an individual experiences gains and/or losses. We consider

two alternative speci�cations for how bidders evaluate outcomes relative to reference points. The

�rst speci�cation, narrow bracketing of gains and losses, posits that bidders feel gains and losses

separately in each dimension of consumption utility so that, for instance, winning the auction

and acquiring a good at a particular price entails a gain in the good dimension and a loss in the

money dimension. This speci�cation builds on the concept of mental accounting (Thaler 1985,

1999) and is consistent with the endowment e¤ect observed in many laboratory trade experiments
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(Kahneman et al. 1990, 1991). Moreover, several studies in �nance argue that well-known puzzles

like the disposition e¤ect and the evidence that people are averse to small, independent gambles,

even when actuarially favorable, can be explained by narrow bracketing/framing; see, for instance,

Barberis and Huang (2001), Barberis et al. (2006) and Barberis and Xiong (2009). The second

speci�cation, broad bracketing of gains and losses, posits that bidders evaluate gains and losses over

their net consumer surplus; i.e., the good�s value minus its price. For example, this speci�cation is

appropriate for most experimental auctions in the lab. Moreover, it also applies to those real-world

auctions where the goods for sale are sought after by bidders not for their consumption value, but

rather for commercial purposes, e.g. a production or a resale motive. Both speci�cations are

sensible from a theoretical perspective. For instance, auctions are a popular means for selling

residential real estate in Australia, New Zealand and Singapore.1 Both prospective �rst-home

buyers as well as investors, who are interested in acquiring the property for sale in order to either

rent it out or ��ip� it, participate in these auctions. Even though both types of bidders can

conceivably be loss averse, narrow bracketing is likely to apply to prospective �rst-home buyers

who do not possess a home yet and are interested in using the property for housing; by contrast,

broad bracketing seems more appropriate for investors who look at the property as an asset and

are mainly interested in its returns.

The distinction between narrow and broad bracketing is also crucial to identify which auction

format fetches a higher revenue for the seller. If bidders use symmetric strategies, all formats lead

to the same allocation of the good and, hence, expose bidders to the same extensive risk. Thus,

the format that induces less intensive risk will yield a higher revenue. In the SPA the winner pays

the second-highest bid, whereas in the FPA he pays his own bid. Therefore, the winner�s payment

is deterministic in the FPA but stochastic in the SPA. This, in turn, implies that under narrow

bracketing, where bidders evaluate uncertainty over the good�s value and money separately, the

FPA results in less intensive risk than the SPA. By contrast, under broad bracketing bidders focus

on the uncertainty in their net surplus. Therefore, it may well be that the SPA is the less risky

format in this case. Hence, under narrow bracketing the FPA yields a higher revenue than the

SPA while the opposite ranking might hold under broad bracketing.

Section 2 introduces the auction environment, the bidders�preferences, and the solution con-

cept. We focus on an environment with pure common values where bidders receive independent

private signals as in Klemperer (1998)�s �Wallet Game�. This formulation of the common value

preserves revenue equivalence under risk neutrality; hence, any di¤erence in the expected revenue

between the two auction formats will be driven by the bidders�preferences and not by correlation

in the bidders�signals or values. Following K½oszegi and Rabin (2006), we posit that in addition to

classical consumption utility, a bidder also derives gain-loss utility from comparing his consump-

tion outcomes to a reference point equal to his lagged expectations regarding the same outcomes,

1For empirical evidence on residential real estate auctions, see Mayer (1995, 1998), Dotzour et al. (1998) and
Chow et al. (2015).
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with losses being more painful than equal-sized gains are pleasant. The solution concept is Choice

Acclimating Personal Equilibrium (CPE) as de�ned in K½oszegi and Rabin (2007). According to

this solution concept, bidders are fully aware of how a change in their bids a¤ects the distribution

of outcomes and take this into account when forming their reference point so that, in equilibrium,

the distribution of the reference point and the distribution of outcomes coincide.

Section 3 analyzes the FPA and the SPA with loss-averse bidders who bracket gains and losses

narrowly. For each auction format we derive the unique symmetric equilibrium and characterize

how the behavior of loss-averse bidders di¤ers from that of risk-neutral bidders. In both formats,

loss aversion has a �bifurcating�e¤ect whereby bidders with high signals overbid relative to risk-

neutral bidders playing a Bayesian Nash equilibrium, while those with low signals underbid. Hence,

in equilibrium bidders with high signals might be exposed to the �winner�s curse�.2 Moreover, we

also identify a �precautionary bidding�e¤ect � akin to the one identi�ed by Es½o and White (2004)

for bidders displaying decreasing absolute risk aversion (DARA) � that pushes bidders to bid less

aggressively in a common-value environment compared to a private-value one. The reason is that

loss-averse bidders dislike the uncertainty over the good�s value and, in turn, react by shading

their bids. Yet, di¤erently from the e¤ect identi�ed by Es½o and White (2004), the precautionary

bidding e¤ect in our model is entirely driven by the intensive risk and, therefore, it vanishes as

the number of bidders in the auction grows large. Intuitively, with many bidders the Law of Large

Numbers applies. Hence, the average signal realization converges to its expected value so that there

is no uncertainty regarding the good�s common value and therefore the intensive risk disappears.

Regarding revenue, we show that the FPA fetches a higher expected revenue than the SPA. The

reason is that in the FPA, conditional on winning, a bidder knows what he will pay; i.e., his bid.

In the SPA, instead, bidders are exposed to risk in their monetary outcomes even conditional on

winning. As loss-averse bidders dislike the additional intensive risk with respect to their payment

ingrained in the SPA, their expected bids are larger in the FPA than in the SPA.

Section 4 analyzes the FPA and the SPA with loss-averse bidders who bracket gains and losses

broadly. We show that, as under narrow bracketing, the intensive risk induces a precautionary

bidding e¤ect that leads bidders to behave less aggressively compared to the case of private values.

Yet, under broad-bracketing loss-averse bidders react di¤erently to the extensive risk than under

narrow bracketing. Indeed, the extensive risk creates an upward pressure on the bidding strategy

of broad-bracketing bidders. This happens because the bidders evaluate gains and losses with

respect to their overall net surplus rather than separately in each dimension; hence, the extensive

risk induces a hedging motive which pushes bidders to be more aggressive than under narrow

bracketing. However, di¤erently from the case of narrow bracketing, winning the auction might be

2We say that a bidder is exposed to the �winner�s curse�if he overbids compared to the risk-neutral (Bayesian)
Nash Equilibrium. Some researchers, like Kagel and Levin (1986) and Eyster and Rabin (2005), use a more stringent
de�nition: that the winning bidder obtains a negative payo¤. Under this alternative de�nition, a loss-averse bidder
is never exposed to the �winner�s curse�. Yet, we think our weaker de�nition corresponds more closely to the
deviations from the risk-neutral (and risk-averse) equilibrium that are the main focus of our paper.
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bad news ex-post for a loss-averse bidder who brackets broadly; i.e., the winning price is higher

than the realized value of the prize. In this case, the hedging motive switches sign and bidders

react by bidding less aggressively compared to a situation when winning is always good news.

Moreover, this reduction in bids increases bidders�equilibrium utility. Indeed, whether winning is

good news for a given bidder depends on his type, and the fact that winning can be bad news ex-

post increases his deviation payo¤when mimicking a bidder with a lower type, as winning is more

often good news for him than for the type he mimics. Hence, bidders with high types now garner

an additional information rent. In terms of revenue, we now �nd that the SPA might yield a higher

expected revenue than the FPA. The reason is that, under broad bracketing, a loss-averse bidder is

concerned only with the risk in his overall net surplus, rather than the risk in each separate utility

dimension. Therefore, the SPA can give rise to fewer intensive risk and be a less risky format than

the FPA. The reason is that the risk in the payment embedded in the SPA counterbalances the

risk in the value of the prize, thereby reducing the intensive risk in the bidder�s overall surplus

conditional on winning.

In section 5 we discus the di¤erences between narrow and broad bracketing, and compare the

behavior of loss-averse bidders to that of bidders with preferences displaying constant absolute risk

aversion (CARA) and decreasing absolute risk aversion (DARA). In both auction formats, a loss-

averse bidder�s expected payment is higher under broad bracketing than under narrow bracketing

if winning the auction is always good news. Indeed, under broad bracketing bidders can hedge

against the extensive risk, and this induces them to bid more aggressively. We also discuss how

extensive and intensive risks shape the behavior of CARA bidders, and argue that their reaction

to these two di¤erent kinds of risk is similar to that of broad-bracketing loss-averse bidders when

winning is always good news. However, while CARA bidders always bid less than risk-neutral

ones, loss-averse bidders instead might bid more aggressively than risk-neutral ones. Finally, if

winning the auction can be bad news ex post, we show that the behavior of loss-averse bidders

who bracket broadly resembles that of DARA bidders.

Section 6 concludes the paper by recapping its results and discussing possible avenues for future

research. All proofs are relegated to Appendix A. The remainder of this section discusses the two

strands of literature most closely related to our paper.

Common-Value Auctions with Risk-Averse Bidders As recognized already by Milgrom
andWeber (1982), for models that include both risk aversion and common values the FPA and SPA

cannot generally be ranked by their expected revenues. Hence, subsequent papers in this literature

have restricted attention to speci�c cases. Es½o andWhite (2004) identify a �precautionary bidding�

e¤ect whereby symmetric DARA bidders prefer bidding in a common-value setting to bidding in a

private-value one; hence, the potential for a �winner�s curse�can be a blessing for rational DARA

bidders.3 The intuition for this e¤ect is that DARA bidders prefer a higher income when they

3Conducting experimental auctions in the laboratory, Kocher et al. (2015) �nd strong evidence for precautionary
bidding. Moreover, the authors report that, although their study was inspired by Es½o and White (2004), their results
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win the auction and so they reduce their bids by more than the appropriate risk premium; in

other words, DARA bidders are �prudent�(see Kimball, 1990 and Eeckhoudt et al., 1996). Our

precautionary bidding e¤ect, instead, is driven by the intensive risk and has a �rst-order nature in

the sense that it does not depend on the curvature of the utility function.4 Moreover, while we also

identify a precautionary bidding e¤ect, in our model we have bidder-payo¤ equivalence between an

environment with common values and one with private values (up to a scaling factor) under narrow

bracketing as well as, if winning the auction never leads to a loss, broad bracketing. Thus, with

loss-averse preferences increasing the risk regarding the good�s value, by moving from a private-

value environment to a common-value one, does not a¤ect the bidders�equilibrium payo¤s but

reduces the seller�s revenue. Menicucci (2004) analyzes �rst-price auctions with CARA bidders

and shows that, di¤erently from the private-value case, with common values risk aversion may

reduce the seller�s revenue compared to the risk-neutral benchmark. In contrast, we �nd that

loss aversion might increase the seller�s revenue compared to risk neutrality. Murto and Valimäki

(2015) consider common-value auctions with a large number of risk-averse bidders and show that

if bidders have CARA preferences, in the limit as the number of bidders increases towards in�nity,

the SPA yields a higher expected revenue than the FPA. This is line with our results under broad

bracketing where the SPA might be the less risky format; under narrow bracketing, instead, we

obtain the opposite result.

Expectations-Based Loss Aversion Next to expected utility theory (EUT), Kahneman

and Tversky�s (1979, 1991) Prospect Theory has arguably become the most prominent approach

for modeling risk preferences. Together with probability weighting and diminishing sensitivity,

the central building blocks of Prospect Theory are reference dependence and loss aversion. In a

series of in�uential papers, K½oszegi and Rabin (2006, 2007, 2009; henceforth, KR) have developed

a model of reference-dependent preferences and loss aversion where �gain�loss utility� is derived

from standard �consumption utility�and the reference point is determined endogenously within the

model by rational expectations. The KR model has found many fruitful applications in di¤erent
areas of economics, including �rms�pricing (Heidhues and Köszegi, 2008, 2014; Spiegler, 2012;

Herweg and Mierendor¤, 2013; Karle and Peitz, 2014; Rosato, 2016) and advertising strategies

(Karle and Peitz, 2017; Karle and Schumacher, 2017), incentives�provision (Herweg et al., 2010;

Eliaz and Spiegler, 2015; Macera, 2018; Daido and Murooka, 2016), rank-order tournaments (Gill

and Stone, 2010; Dato et al., 2017a; Gül Mermer, 2017), asset pricing (Pagel, 2016), life-cycle

consumption (Pagel, 2017), and bilateral negotiations (Rosato, 2017a; Benkert, 2017; Herweg et

al., 2018). In particular, there have been several theoretical contributions analyzing the role of

expectations-based loss aversion in auctions. Lange and Ratan (2010) study FPA and SPA with

can also be explained by loss aversion.
4The di¤erence between our precautionary bidding e¤ect and the one identi�ed by Es½o and White (2004) for

DARA bidders is similar to the di¤erence between the expected-utility-of-wealth theories of precautionary savings
that rely on prudence and the �rst-order precautionary-savings motive that induces loss-averse consumers to increase
their savings in response to an in increase in background risk; see also K½oszegi and Rabin (2009) and Pagel (2017).
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independent private values and show that the two formats are not revenue equivalent. Furthermore,

they also show that the predictions of the KR model vary greatly depending on whether the auction

analyzed is a real-object one or an induced-value one. This implies that transferring qualitative

behavioral �ndings from induced-value laboratory experiments to the �eld may be problematic if

subjects are expectations-based loss-averse. Eisenhuth (2018) shows that with expectations-based

loss averse bidders who bracket narrowly and have independent private values, the all-pay auction

yields the highest revenue among sealed-bid formats, while Ehrhart and Ott (2014) show that the

Dutch auction yields a higher expected revenue than the English auction. von Wangenheim (2017)

compares the English auction with the second-price one, showing that the latter yields a higher

expected revenue. Rosato (2017b) studies sequential sealed-bid auctions of multiple objects and

shows that expectations-based loss aversion can explain the afternoon e¤ect � the puzzling yet

robust empirical phenomenon whereby prices of identical goods tend to decline between rounds.

Moreover, he also shows that sequential and simultaneous auctions are not revenue equivalent

anymore. All these previous contributions, however, restrict attention to auctions where bidders

have independent private values. Hence, our paper is the �rst one to study the role of expectations-

based loss aversion in auctions with common values.

2 The Model

2.1 Environment

A seller auctions o¤ an item to N � 2 bidders via a sealed-bid auction. Each bidder i 2
f1; 2; :::; Ng observes a private signal ti independently and identically distributed on the support
[t; t], with t � 0 and t > t, according to the cumulative distribution function F . We assume that
F is continuously di¤erentiable, with positive density f on its support. The value of the object

for sale is the same for all bidders and is given by V =
PN
i=1 ti=N . This structure is a re-scaled

version of the �Wallet Game�(Klemperer, 1998; Bulow and Klemperer, 2002).5 The normalization

1=N allows us to study how loss-averse bidders react to an arbitrary increase in the number of

competitors. We consider two canonical selling mechanisms: the �rst-price auction (FPA) and

the second-price auction (SPA). Both auctions have a zero reserve price.6 We restrict attention to

symmetric equilibria in increasing strategies.

5An advantage of this formulation is that it preserves revenue equivalence under risk neutrality. An alternative
formulation is one where the common value V has some known prior distribution and signals are drawn conditional
on a particular realization of V . We point out that both formulations have similar qualitative features. First, the
object is worth the same to all bidders. Second, in both formulations bidders should realize that winning means
that their signal is likely to be too optimistic; hence, to avoid the �winner�s curse�, bidders must shade their bids.

6See Rosenkranz and Schmitz (2007) for an analysis of reserve prices as reference points in auctions.
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2.2 Bidders�Preferences

Bidders have reference-dependent preferences as formulated by K½oszegi and Rabin (2006). A

bidder�s utility function has two components. First, if he wins the auction at price p, a bidder

experiences consumption utility V � p, which represents the classical notion of outcome-based
utility. Second, the bidder also derives utility from comparing his actual consumption to a refer-

ence consumption outcome given by his recent expectations (probabilistic beliefs).7 Hence, for a

deterministic outcome (V; p) and deterministic reference point
�
rV ; rp

�
, a bidder�s total utility is

U
h
(V; p) j

�
rV ; rp

�i
= V � p+ �

�
V � rV

�
+ � (rp � p) ; (1)

where

� (x) =

8<: �x if x � 0
��x if x < 0

is gain-loss utility, with � > 0 and � > 1. The parameter � captures the relative weight a consumer

attaches to gain-loss utility while � is the coe¢ cient of loss aversion. Importantly, the marginal

utility from gains is constant and lower than the constant marginal disutility from losses. Thus,

the employed formulation captures Prospect Theory�s loss aversion, but without its diminishing

sensitivity.8 Moreover, according to (1), a bidder assesses gains and losses separately over each

dimension of consumption utility. For instance, if his reference point is not getting the good and

paying nothing, then he evaluates getting the good and paying for it as a gain in the good dimension

and a loss in the money dimension rather than as a single gain or loss. This is consistent with

much of the experimental evidence commonly interpreted in terms of loss aversion.9

In our setting, reference points are random variables. Hence, following K½oszegi and Rabin

(2006), we allow for the reference point to be stochastic. Let HV and Hp denote the reference

points�distributions; then, a bidder�s overall utility from the outcome (V; p) can be written as

U
h
(V; p) j

�
HV ; Hp

�i
= V � p+

Z
rV
�
�
V � rV

�
dHV

�
rV
�
+
Z
rp
� (rp � p) dHp (rp) :

In words, for each utility dimension a bidder compares the realized outcome with each possible

outcome in the reference lottery. Moreover, the weight on the loss (resp. gain) in the overall

experience is equal to the probability with which he was expecting to win (resp. lose) the auction.

7Recent experimental evidence lends support to K½oszegi and Rabin�s (2006) expectations-based model of
reference-dependent preferences and loss aversion; see, for instance, Abeler et al. (2011), Ericson and Fuster
(2011), Gill and Prowse (2012), Karle et al. (2015) and Sprenger (2015). More pertinently, Banerji and Gupta
(2014), Eisenhuth and Grunewald (2018) and Rosato and Tymula (2018) provide experimental evidence supporting
the KR model in the context of sealed-bid auctions with independent private values.

8K½oszegi and Rabin (2006) allow for gain-loss utility to be non-linear to capture diminishing sensitivity. For
simplicity, we only focus on loss aversion.

9This feature can rationalize the endowment e¤ect observed in many laboratory experiments (see Kahneman et
al. 1990, 1991). The common explanation of the endowment e¤ect is that owners perceive giving up an object as
a painful loss that counts more than the money received in exchange.
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For example, if he expected to win the auction and pay price p � 0 with probability q � 0 and to
lose the auction and pay nothing with complementary probability, then winning the auction feels

like a gain of �V (1� q) in the item dimension and a loss of ��p (1� q) in the money dimension;
similarly, losing the auction results in a loss of ��V q and a gain of �qp. Finally, notice that when

submitting his bid, a bidder has only an estimate of the good�s value which is based on his signal,

and knows that if he wins the true value will be revealed only some time after the auction. Hence,

as the value of the good is subject to ex-post risk, a loss-averse bidder is also exposed to feelings of

loss and/or gain that stem from comparing the actual realized value of the good to all the possible

values the good could have taken with positive probability.

2.3 Solution Concept

A bidder learns his signal (or type) before submitting a bid and, therefore, maximizes his

interim expected utility. If the distribution of the reference points is H =
�
HV ; Hp

�
and the

distribution of consumption outcomes is G =
�
GV ; Gp

�
, a bidder�s interim expected utility is

EU [GjH] =
Z
fV;pg

Z
frV ;rpg

U
h
(V; p) j

�
rV ; rp

�i
dH

�
rV ; rp

�
dG (V; p) :

In a sealed-bid auction setting, uncertainty is resolved after all bids are submitted. Thus,

holding his opponents�strategies �xed, a bidder�s strategy a¤ects the distribution over the �nal

consumption outcome. As pointed out by K½oszegi and Rabin (2007), it is natural to assume that

the bidder is aware of this relation so that, in equilibrium, G = H. Hence, we employ Köszegi

and Rabin (2007)�s Choice Acclimating Personal Equilibrium (CPE) as solution concept. Thus,

bidders are forward looking, correctly anticipate how their actions a¤ect the distribution over basic

outcomes, and hold reference points that depend on their rational expectations both on and o¤ the

equilibrium path. A strategy for bidder i is a function �i : [t; t] ! R+. Fixing all other bidders�
strategies, ��i, the bid of bidder i with type t, �i(t); induces a distribution over the set of �nal

consumption outcomes. Let �
�
�i(t);��i

�
denote this distribution.

De�nition 1. A strategy pro�le �� constitutes a Choice Acclimating Personal Equilibrium (CPE)
if for all i and for all t:

EU
h
�
�
��i (t); �

�
�i

�
j�
�
��i (t); �

�
�i

�i
� EU

h
�
�
b; ���i

�
j�
�
b; ���i

�i
for any b 2 R+.10

Let �m > 0 and �m > 1 be the relative weight a consumer attaches to gain-loss utility and

the coe¢ cient of loss aversion for the money dimension, respectively. Similarly, let �g > 0 and

10As shown my Dato et al. (2017b), focusing on equilibria in pure strategies is without loss of generality.
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�g > 1 be the the relative weight a consumer attaches to gain-loss utility and the coe¢ cient of loss

aversion over the good dimension, respectively.11 The following assumption, maintained for the

remainder of the paper, guarantees that all bidders participate in the auction for any realization

of their type, and that the equilibrium bidding functions derived in the next sections are strictly

increasing:

Assumption 1. (No dominance of gain-loss utility in the item dimension) �g (�g � 1) � 1:

For given �g; Assumption 1 places an upper bound on �g (and vice versa).12 This bound ensures

that a bidder�s expected utility is increasing in his type by imposing that the weight he puts on

gain-loss utility does not (strictly) exceed the weight he puts on consumption utility.13 Finally,

notice that risk neutrality is embedded in the model as a special case (for either �g = �m = 0 or

�g = �m = 1).

3 Narrow Bracketing

3.1 First-Price Auctions

We focus on symmetric pure-strategy equilibria which feature bidding functions that are in-

creasing in bidders� types. To begin, we take the point of view of bidder i with type ti; and

consider the order statistics associated with the types of the other bidders. Let t(N�1)1 � t1 be

the highest of N � 1 values, t(N�1)2 � t2 be the second-highest and so on. Also, let F1 and

F2 be the distributions of t1 and t2 respectively, with corresponding densities f1 and f2. We

claim the existence of a symmetric equilibrium and then verify the claim. Consider bidder i

with type ti = t who plans to bid as if his type were et when all other N � 1 bidders follow the
posited equilibrium strategy ��I (�). This bidder faces a lottery X

~t
ti
= (V; p) 2 R2 which realizes

as (0; 0) if t1 > ~t, and as
�
t+
PN�1

i=1
ti

N
; ��I(~t)

�
otherwise. The support of the lottery therefore is

(0; 0) [
n�
x; ��I(~t)

�
jx 2 [(t+ (N � 1) t) =N;

�
t+ (N � 1) et� =N ]o. Moreover, let ~F (�j~t) denote the

11We allow for di¤erent parameters of gain-loss utility and loss aversion in the good and money dimensions,
because the two have di¤erent implications for bidding in auctions. In particular, our formulation is rich enough
to capture situations where bidders are loss-averse only regarding the consumption dimension. Such case applies
if bidders�income is subject to large background risk, as argued by Köszegi and Rabin (2009); in a similar vein,
Novemsky and Kahneman (2005) argue that money given up in purchases is generally not subject to loss aversion.
12We relax this assumption Appendix B, where we show that most of our results continue to hold qualitatively.

The main di¤erence is that, if Assumption 1 does not hold, the equilibrium entails partial pooling at the bottom
whereby some bidders bid zero in order to lose the auction for sure and avoid any risk.
13Herweg et al. (2010) �rst introduced Assumption 1 and referred to it as �no dominance of gain-loss utility�.

This assumption, which has been used also by Lange and Ratan (2010), Eisenhuth (2018) and Rosato (2017b),
ensures that a loss-averse agent does not select �rst-order stochastically-dominated options (see also Masatlioglu
and Raymond, 2016). Using data from �rst-price and all-pay auctions, Eisenhuth and Grunewald (2018) obtain an
estimate for � of 0.42 (with a standard error of 0.16); similarly, using data from a BDM-like auction, Banerji and
Gupta (2014) obtain an estimate for � of 0.283 (with a standard error of 0.08).
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distribution of the sum of i�s opponents�signals,
P
j 6=i tj, conditional on t1 � ~t and ~f(�j~t) denote

its corresponding density. Then, the bidder�s expected payo¤ is

EU
�et; t� = F1

�et�
264t+ (N � 1)

Ret
t xf

�
xj~t
�
dx

N
� ��I

�et�
375

+F1
�et�

8><>:�g
264t+ (N � 1)

Ret
t xf

�
xj~t
�
dx

N
� 0

375+ �m�m h0� ��I �et�i
9>=>;
h
1� F1

�et�i

+
h
1� F1

�et�i
8><>:�g�g

2640� t+ (N � 1)
Ret
t xf

�
xj~t
�
dx

N

375+ �m h��I �et�� 0i
9>=>;F1

�et�

+F1(~t)

8><>:�g
et(N�1)Z
t(N�1)

xZ
t(N�1)

�
x� y
N

�
~f(yj~t)dy ~f(xj~t)dx+ �g�g

et(N�1)Z
t(N�1)

et(N�1)Z
x

�
x� y
N

�
~f(yj~t)dy ~f(xj~t)dx

9>=>;F1(~t) (2)

where f
�
xj~t
�
= f (x) =F

�et� ; and F1 �et� = F
�et�N�1 denotes the probability that t1, the high-

est signal among N � 1, is less than et. The �rst term on the right-hand-side of (2) captures

standard expected consumption utility. The other terms capture expected gain-loss utility and

are derived as follows. A bidder of type t bidding as if his type were et expects to win the
auction with probability F1

�et� and, conditional on winning, the expected value of the item is�
t+ (N � 1)

Ret
t xf

�
xj~t
�
dx
�
=N and the payment is ��I

�et�. This outcome needs to be compared
to the outcome of losing the auction, that is, not getting the good and paying nothing, which

the bidder expects to happen with probability
h
1� F1

�et�i. Thus, winning the auction feels

like a gain of �g
��
t+ (N � 1)

Ret
t xf

�
xj~t
�
dx
�
=N � 0

�
in the item dimension and like a loss of

�m�m
h
0� ��I

�et�i in the money dimension. Similarly, with probability h1� F1 �et�i the bidder
loses the auction in which case he gets nothing and pays nothing; thus, losing the auction entails a

loss of �g�g
�
0�

�
t+ (N � 1)

Ret
t xf

�
xj~t
�
dx
�
=N

�
and a gain of �m

h
��I
�et�� 0i compared to win-

ning the auction, which the bidder expects to happen with probability F1
�et�. Finally, the last

term on the right-hand-side of (2) captures the feelings of gain and loss in the good dimension

when the bidder wins the auction and compares the realized value of the good to the other values

it could have taken.14 This last term arises from the fact that in common-value auctions a bidder�s

value is subject to ex-post risk which gives rise to additional feelings of gain and loss compared to

the private-value case. The following lemma allows us to re-write expression (2) in a more compact

form.

14Notice that as a bidder knows his own signal, the uncertainty is only with respect to the realizations of his
competitors�signals.
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Lemma 1. Let �l := �l
�
�l � 1

�
for l 2 fg;mg and de�ne


(~t) := (1� �g)F1
�et�+ �gF1 �et�2 ; q(~t) := (N � 1)

Z et
t
xf
�
xj~t
�
dx;


(~t) := F1(~t)
2

"Z ~t(N�1)

t(N�1)
~F (xj~t)dx�

Z ~t(N�1)

t(N�1)
~F (xj~t)2dx

#
;

TI(~t) := F1(~t)�
�
I(~t)

n
1 + �m

h
1� F1(~t)

io
:

Then, EU(~t; t) as de�ned in (2) admits the following representation

EU(~t; t) =

(~t)

N

h
t+ q(~t)

i
� �g
(

~t)

N
� TI(~t): (3)

Lemma 1 re-formulates the direct utility in a form that is suitable to apply the envelope

theorem. Hence, in equilibrium ~t = t maximizes (3) so that

dEU(t; t)

dt
=

(t)

N
) EU(t; t) =

Z t

t


(s)

N
ds+ EU(t; t): (4)

Moreover, F1(t) = 0 implies that EU(t; t) = 0. Combining (3) and (4) implies that a symmetric

equilibrium bidding function satis�es


(t) [t+ q(t)]� �g
(~t)
N

� TI(t) =
Z t

t


(s)

N
ds:

By re-arranging the above equation and solving for ��I (t), we obtain the following proposition.

Proposition 1. Suppose Assumption 1 holds. Then symmetric equilibrium strategies in a sealed-

bid FPA are given by:

��I (t) =

tR
t

"
2s+

(N�2)
R s
t
xf(x)dx

F (s)

#
dF1 (s)

NF1 (t) f1 + �m [1� F1 (t)]g
�
�g

tR
t

(
2s+

(N�2)
R s
t
xf(x)dx

F (s)
� F1 (s)

"
3s+

(2N�3)
R s
t
xf(x)dx

F (s)

#)
dF1 (s)

NF1 (t) f1 + �m [1� F1 (t)]g

� �g
(t)

NF1 (t) f1 + �m [1� F1 (t)]g
: (5)

Condition (4) is only a necessary condition. In the proof of Proposition 1 in Appendix A we

show that Assumption 1 is su¢ cient for (5) to constitute a symmetric equilibrium. Moreover, it is

easy to verify that for �g = �m = 0, ��I (t) reduces to the well-known risk-neutral bid.

To highlight the e¤ect of the common-value risk on the behavior of a loss-averse bidder, it is

useful to compare the bidding function in (5) with its private-value analogue in Lange and Ratan
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(2010). With private values (i.e., Vi = ti) the equilibrium strategy in the FPA is given by

b�I (t) =

tR
t
sdF1 (s)

F1 (t) f1 + �m [1� F1 (t)]g
�
�g

tR
t
s [1� 2F1 (s)] dF1 (s)

F1 (t) f1 + �m [1� F1 (t)]g
: (6)

The �rst terms on the right-hand-side of (5) and (6) are simply the risk-neutral bids re-scaled

by f1 + �m [1� F1 (t)]g. The second term on the right-hand-side of (6) captures how the extensive
risk a¤ects a bidder�s reference point. With private values, in a symmetric equilibrium a bidder

with type t expects to win (resp. lose) the auction with probability F1 (t) (resp. 1�F1 (t)); hence,
his expected gain-loss utility in the good dimension is given by ��gF1 (t) [1� F1 (t)] t. Therefore,
the second term in (6) captures how a bidder�s deviation at the margin a¤ects his reference point

and hence his expected gain-loss utility. A similar intuition applies to the second term on the

right-hand-side of (5). The only di¤erence is that with common values a bidder�s deviation from

equilibrium a¤ects not just his likelihood of winning but also the expected value of the good

conditional on winning. Indeed, the integrand in the second term of (5) can be re-written as

"
s+

(N � 1)
R s
t xf (x) dx

F (s)

#
[1� 2F1 (s)] +

"
s�

R s
t xf (x) dx

F (s)

#
[1� F1 (s)] : (7)

The �rst term in (7) is the common-value analogue of the second term on the right-hand-side

of (6), but now the good�s private value is replaced by the expectation of the good�s common value

(conditional on winning). Hence, as in the private-value case, this term captures how a change in

the bid a¤ects the likelihood of winning and losing the auction. The second term in (7), instead,

captures how the estimate of the good�s value changes if a bidder deviates from the symmetric

equilibrium strategy. For example, if a bidder deviates by bidding as if his signal was lower than

it actually is, he might win against rivals with lower signals and acquire a good with a lower

expected value. Finally, compared to the private-value case, the bidding function in (5) contains

an additional term. This last term arises because the bidder is unsure about the good�s true value;

hence, this term captures the impact of (ex-post) intensive risk on the bidder�s equilibrium strategy.

As a loss-averse bidder dislikes uncertainty in his consumption outcomes, the intensive risk creates

a �precautionary bidding�e¤ect that pushes bidders to behave less aggressively compared to the

case of private values.

Next, we compare ��I (t) to the risk-neutral bid �
RN
I (t). We start with the following observation:

Observation 1. @��I (t)
@�m

� 0 8t and the inequality is strict if t 2 (0; t).

Intuitively, loss aversion over money lowers equilibrium bids compared to the risk-neutral bench-

mark, as loss-averse bidders dislike the extensive risk in monetary outcomes. Yet, the strategy of

the bidder with the highest signal is not a¤ected by loss aversion over money as in equilibrium he

expects to win the auction and pay his bid with probability one. A similar argument applies to
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the bidder with the lowest signal who expects to never win the auction and hence to never pay.

The e¤ect of loss aversion in the good dimension is more intricate. We begin with an informal

discussion, highlighting the di¤erent roles of extensive and intensive risk. Suppose �rst that �m =

0, so that bidders are not loss-averse with respect to money. Then, re-arranging the �rst two terms

in (5) yields a convex combination between the risk-neutral bid and a term that depends on the bid-

der�s reference point: (1� �g)
tR
t

"
2s+(N�2)

R s
t
xf(xjs)dx

NF1(t)

#
dF1 (s)+�

g
tR
t
F1 (s)

"
3s+(2N�3)

R s
t
xf(xjs)dx

NF1(t)

#
dF1 (s).

In this convex combination, (1� �g) is the weight put on the risk-neutral bid. Hence, when �g

increases the weight on the second term becomes larger. Furthermore, notice that in this second

term, the value of the good is scaled by F1 (s) which, in equilibrium, represents the bidder�s expec-

tation of how likely he is to win the auction. Hence, this term relates to the extensive risk, whereby

a bidder compares the expected consumption value from winning to that from not winning. For

bidders with relatively high signals, the second term of the convex combination dominates the �rst

term. Indeed, bidders with high signals expect to win with a high probability and are optimistic

about the good�s value; thus, they perceive losing the auction as a rather painful loss. Vice versa,

bidders with low signals do not expect to win the auction and are pessimistic about the good�s

value; hence, they prefer to submit a rather low bid. Thus, the extensive risk in consumption

leads loss-averse bidders with high signals to bid more aggressively compared to their risk-neutral

counterparts, whereas the opposite holds for loss-averse bidders with low signals. Finally, notice

that the larger �g is, the larger is the weight on the third and last term in (5) which pushes

all bidders to behave less aggressively compared to the risk-neutral benchmark. This additional

e¤ect, which is driven by the intensive risk in consumption, represents a form of precautionary

bidding. Hence, the intensive risk pushes loss-averse bidders to reduce their bids compared to the

risk-neutral benchmark, independently of their signal. The following proposition compares ��I (t)

to �RNI (t) for any �g and �m.

Proposition 2. Let tm be such that F1(tm) = 0:5. Comparing ��I (t) to �
RN
I (t) we have:

(i) If t � tm, then ��I (t) < �RNI (t).

(ii) There exists a t0 > tm such that ��I(t) � �RNI (t) 8 t 2 [t0; �t] if and only if

tZ
t

F1 (x) [1� F1 (x)] dx� F1 (t) [1� F1 (t)] [t+ q (t)]

�������
t=t

�
(N�1)tZ
(N�1)t

eF (xj �t) h1� eF (xj �t)i dx
| {z }


(t)

: (8)

Proposition 2 characterizes how the bidding behavior of loss-averse bidders di¤ers from their

risk-neutral counterparts. Condition (8) shows that whether a loss-averse bidder behaves more or

less aggressively than a risk-neutral one depends on the relative magnitude of the extensive and

intensive risk. In particular, while the intensive risk always pushes loss-averse bidders to behave
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less aggressively compared to the risk-neutral benchmark, the e¤ect of the extensive risk depends

on the bidder�s type. First, consider those bidders whose type is below tm. These bidders have less

than a 50% chance of winning the auction and always bid less than their risk-neutral counterparts.

The intuition for this result is as follows. When comparing the outcome of winning (resp. losing)

the auction to the counterfactual, a loss-averse bidder with type t experiences expected gain-

loss disutility proportional to ��gF1 (t) [1� F1 (t)]. Notice that F1 (t) [1� F1 (t)] is maximized at
F1(t) = 0:5, which is the point where the bidder faces the highest uncertainty between winning and

losing the auction; that is, the point with the highest extensive risk. Bidders who expect to win

with less than 50% probability do not feel attached to the good and therefore bid less aggressively

to keep their expectations low and mitigate their disappointment if they lose. Hence, for these

bidders both the intensive risk and the extensive risk have a negative e¤ect on bids. In contrast,

loss aversion induces bidders whose type is above tm to increase their bids, as imitating a lower type

would expose them to a fairly large extensive risk. Therefore, the extensive risk has positive e¤ect

on the strategy of those bidders who have more than a 50% chance of winning the auction. On the

other hand, the intensive risk always has a negative e¤ect on bids. Hence, the e¤ect of the extensive

risk must outweigh that of the intensive risk for these bidders to bid more aggressively than their

risk-neutral counterparts. Consider, for instance, a type-t bidder. In equilibrium, this bidder

expects to win with probability one. Hence, the only uncertainty this bidder faces is with respect

to the value of the good; that is, with respect to the realization of his opponents�signals. The

uncertainty over the good�s value a¤ects the bidding function via two separate channels. The �rst

e¤ect, which is positive, relates to how the expected value of the good a¤ects the bidder�s reference

point: �xing the probability of winning, the higher the expected value of the good is, the higher

the reference point and the more the bidder will tend to bid. The second e¤ect, which is negative,

relates to the bidder�s dislike of intensive risk: the more uncertain the value of the good is, the

lower the bid. When N = 2, these two e¤ects completely o¤set each other and condition (8) holds

as an equality, as a change in the signal of the bidder�s sole opponent a¤ects the expected value

of the good as well as the uncertainty over the good�s value by exactly the same amount. Hence,

when N = 2, a loss-averse bidder with type t bids exactly the same as a risk-neutral one, whereas

all other types bid less compared to the risk-neutral benchmark. For higher values of N it is not

possible to say a priori which of the two aforementioned e¤ects will dominate. However, condition

(8) reveals that this depends on the comparison between the extensive and the intensive risk. If the

condition holds as a strict inequality then a bidder with type t bids strictly more compared to the

risk-neutral benchmark. In this case, therefore, there is a positive measure of types at the top of

the types�distribution who bid more than in the risk-neutral benchmark. Thus, if the e¤ect of the

extensive risk outweighs that of the intensive risk, loss aversion has a �bifurcating�e¤ect compared

to the risk-neutral benchmark, inducing bidders with high signals to bid more aggressively and

bidders with low signals to bid more conservatively.15 Hence, bidders with high signals can be

15A similar result arises in Laohakunakorn et al. (2017) who consider common-value auctions where bidders have
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exposed to the winner�s curse in equilibrium. This prediction stands in contrast to the one made

by Eyster and Rabin (2005)�s model of �cursedness� whereby bidders with low signals overbid

while bidders with high signals underbid compared to the risk-neutral benchmark. Therefore,

while �cursedness�predicts that those bidders who are more pessimistic about the item�s value

will overbid and be exposed to the winner�s curse, loss aversion with expectations as the reference

point yields the exact opposite prediction.

3.2 Second-Price Auctions

In this section we analyze the SPA. Consider bidder i with type ti = t who plans to bid as if

his type were et when all other N � 1 bidders follow the posited symmetric equilibrium strategy

��II . His expected payo¤ is

EU
�et; t� = 
(~t)=N h

t+ q(~t)
i
� �g
(~t)=N � TII(~t); (9)

with TII(~t) :=
R ~t
t �

�
II(s)f1(s)ds

n
1 + �m

h
1� F1(~t)

io
+�m

R ~t
t

�R x
t (�

�
II (x)� ��II (v)) f1 (v) dv

�
f1 (x) dx.

Comparing (9) with (3), it is easy to see that the two expressions di¤er only in those terms related to

the bidder�s payment. Intuitively, as we are focusing on equilibria in increasing strategies, the two

auction formats lead to the same allocation of the good. Yet, in the SPA a bidder faces uncertainty

regarding his monetary payment when winning while this uncertainty is not present in the FPA. In

particular, expression (9) contains an additional term,��m
R ~t
t

�R x
t (�

�
II (x)� ��II(v))f1 (v) dv

�
f1 (x) dx.

This term captures the expected gain-loss (dis)utility in the money dimension arising from the in-

tensive risk in the payment that is ingrained in the SPA. The following proposition describes the

symmetric equilibrium strategies for the SPA.

Proposition 3. Suppose Assumption 1 holds. Then symmetric equilibrium strategies in the sealed-
bid SPA are given by:

��II (t) =
(
(t)q(t))0 + 
0(t)t� �g
0(t)

N (1 + �m) f1(t)
+
2�m

R t
t

h
(
(v)q(v))0 � �g
0(v) + 
0(v)v

i
e
2�m[F1(t)�F1(v)]

1+�m dv

N (1 + �m)2
: (10)

Again, it is easy to verify that for �g = �m = 0, ��I (t) reduces to the well-known risk-neutral

bid. Moreover, it is insightful to compare the bidding function in (10) with its private-value

analogue derived by Lange and Ratan (2010). With private values (i.e., Vi = ti) the equilibrium

strategies in the SPA are given by

b�II (t) =

0(t)t

(1 + �m) f1(t)
+

2�m

(1 + �m)2

tZ
t


0(v)ve
2�m[F1(t)�F1(v)]

1+�m dv: (11)

ambiguity over the joint information structures generating their signals. Their model di¤ers from ours as they
consider an environment with a¢ liated and discrete signals, and restrict attention to auctions with two bidders.
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Comparing expression (10) with expression (11), it is easy to see that the former di¤ers from

the latter only for the presence of (
(t)q(t))0��g
0(t). Indeed, as these terms capture how bidder
i�s value depends on the signals of his competitors, they do not appear in the private-value case.

Next, we compare ��II to the risk-neutral bid, �
RN
II . Suppose �rst that �

m = 0, so that bidders

are not loss-averse with respect to money. Then, ��II (t) reduces to

(
(t)q(t))0 + 
0(t)t� �g
0(t)
Nf1(t)

= (1� �g)
242t+ (N � 2) R tt xf(xjt)dx

N

35
+�gF1 (t)

243t+ (2N � 3) R tt xf(xjt)dx
N

35� �g
0(t)=N: (12)

Notice that the �rst two terms on the right-hand-side of expression (12) represent a convex

combination between the risk-neutral bid and a term that depends on the bidder�s reference point

with weights (1� �g) and �g, respectively. The second term of the convex combination captures

the extensive risk and dominates the �rst term for a bidder with a relatively high signal. Hence,

similar to the FPA discussed in Section 3.1, the extensive risk pushes loss-averse bidders with high

signals to bid more aggressively than their risk-neutral counterparts whereas the opposite holds

for loss-averse bidders with low signals. Finally, notice that the larger �g is, the larger is the

weight on the disutility from the intensive risk which pushes bidders to behave less aggressively

compared to the risk-neutral benchmark. This last e¤ect is a precautionary bidding e¤ect akin to

that described in Section 3.1 for the FPA. The following proposition compares ��II (t) to �
RN
II (t)

for any �g and �m.

Proposition 4. Let tm be such that F1(tm) = 0:5. Comparing ��II (t) to �
RN
II (t) we have:

(i) If t � tm, then ��II (t) < �RNII (t) for any �m .

(ii) There exists a �̂m > 0 and a t0 such that if �m < �̂m then ��II (t) � �RNII (t) 8t 2 [t0; �t] if and
only if 0B@ tZ

t

F1 (x) [1� F1 (x)] dx� F1 (t) [1� F1 (t)] [t+ q (t)]

1CA
0�������
t=t| {z }

f1(�t)[�t+q(�t)]

> 
0 (t) : (13)

Proposition 4 describes how the bidding behavior of loss-averse bidders di¤ers from that of risk-

neutral ones. As in the FPA, loss aversion has a bifurcating e¤ect. First, loss-averse bidders who

have less than a 50% chance of winning the auction bid less than their risk-neutral counterparts;

this holds true irrespective of the strength of loss aversion over money. Second, when loss aversion

over money is not too strong, those bidders with relatively high signals might overbid compared

to the risk-neutral benchmark. This happens if and only if condition (13) is satis�ed. Notice that

condition (13) results from di¤erentiating both sides of (8), the condition determining whether in
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the FPA a loss-averse bidder overbids compared to the risk-neutral benchmark. In the FPA the

sign of the di¤erence in the bids is determined by the di¤erence in the expected payments; in the

SPA, instead, it is the derivative of the di¤erence in expected payments that determines whether a

loss-averse bidder overbids compared to the risk-neutral case. The reason why money loss aversion

cannot be too strong for this e¤ect to hold is that the SPA exposes bidders to intensive risk also

in the money dimension. Hence, if loss aversion over money is strong enough, bidders will reduce

their bid compared to the risk-neutral benchmark, irrespective of their signals.

3.3 FPA vs. SPA under Narrow Bracketing

We have seen that a loss-averse bidder reacts di¤erently to extensive risk than intensive risk.

In particular, the extensive risk creates an upward (resp. downward) pressure on the bid of a

loss-averse bidder who expects to win the auction with probability larger (resp. smaller) than 0.5.

In contrast, the intensive risk unambiguously creates a downward pressure on bids. In equilibrium,

both auction formats lead to the same allocation of the good and thus expose the bidders to the

same extensive risk. However, because of its payment rule, the SPA exposes bidders to more

intensive risk. This di¤erence in intensive risk implies that loss-averse bidders have a lower direct

utility in the SPA than in the FPA. In equilibrium, bidders react by appropriately shading down

their bids in the SPA and, as a result, enjoy the same indirect utility in both auction formats. The

seller, however, bears the costs of the additional risk in the SPA. Hence, we have the following

result.

Proposition 5. In equilibrium, bidders attain the same utility in both auction formats. However,
the expected payment of type-t bidder, for t > t, is strictly larger in the FPA than that in the SPA

if �m > 0.

The following corollary is an immediate consequence of Proposition 5.

Corollary 1. Let �g > 0. The expected revenue in the SPA is the same as in the FPA if �m = 0
and it is strictly lower if �m > 0.

Corollary 1 extends Lange and Ratan (2010)�s revenue-ranking result under narrow bracketing

for independent private-value auctions to the case of common values. The intuition for this result

is that a bidder�s equilibrium utility is the same in either auction format; that is, even though the

two auctions are not revenue equivalent for the seller, they are payo¤ equivalent for the bidders. If

�m = 0, the di¤erence in the expected payo¤s between the two auction formats coincides with the

di¤erence between the expected payments and is zero. If �m > 0, as bidders dislike the additional

uncertainty that the SPA entails for their monetary outcomes, the expected payments are larger

in the FPA than in the SPA for every bidder�s type.

Recall that with risk-neutral bidders the revenue equivalence theorem applies to the common-

value framework considered in this paper because signals are independent. Moreover, in Milgrom
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and Weber (1982)�s general symmetric model with risk-neutral bidders and a¢ liated signals, the

SPA yields a higher expected revenue than the FPA. Our analysis instead shows that if bidders

are loss averse and bracket narrowly, revenue-maximizing sellers should always favor the FPA over

the SPA.

4 Broad Bracketing

In this section we study auctions for monetary prizes. In this case, there is only one dimension

of consumption utility, namely money; hence, a loss-averse bidder�s gains and losses are de�ned

with respect to the value of his net surplus, i.e. V � p. This broad-bracketing formulation is
appropriate for those auctions where the items for sale are not sought after by the buyers for their

consumption value, but rather for their commercial (or resale) value such as commercial licenses,

mineral rights, production equipment, real estate for commercial (or investment) purposes, etc.16

4.1 First-Price Auctions

We begin by deriving the symmetric equilibrium of the FPA. Let �g = �m = � � 1. The

expected payo¤ of a type-t bidder who plans to bid as if his type were et when all other N � 1
bidders follow the posited equilibrium strategy �BBI is given by

EU
�et; t� = F1

�et�
24t+ q

�
~t
�

N
� �BBI

�et�
35

��F1
�et� h1� F1 �et�i Z ~t

t
:::
Z tN�2

t

�����t+
P
j 6=i tj
N

� �BBI
�et������ fN�1(tN�1jtN�2)dtN�1:::f1(t1j~t)dt1

��
I(et)=N (14)

where q
�
~t
�
and 
I

�
~t
�
= 


�
~t
�
are de�ned as in Section 3.

Comparing (14) with its narrow-bracketing analogue (3) in Section 3.1, it is easy to see that

the two expressions di¤er in the expected gain-loss (dis)utility term that captures the comparison

between the feelings of gain and loss arising from winning the auction and those arising when

losing the auction; that is, the extensive risk. Indeed, under narrow bracketing, winning the

auction entails a gain in consumption and a loss in money compared to the outcome of losing the

auction; similarly, losing the auction entails a loss in consumption but a gain in money compared

to winning the auction. Therefore, bidders are simultaneously exposed to gains and losses in both

utility dimensions. Under broad bracketing, however, there is only one relevant utility dimension.

16The broad-bracketing framework is also the most appropriate one for analyzing loss aversion in experimental
auctions as the majority of laboratory experiments use an induced-value procedure whereby the auction�s prize is
a voucher that the subjects can redeem from the experimenter in exchange of money.
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Hence, winning (resp. losing) the auction feels like a gain (resp. loss) if and only if the value of

the prize exceeds the price. Thus, the extensive risk term under broad bracketing is di¤erent than

that under narrow bracketing. By contrast, the intensive risk is the same under both narrow and

broad bracketing.

When analyzing the impact of the extensive risk on the equilibrium bid under broad bracketing,

it is crucial to distinguish whether winning the auction unambiguously leads to a gain compared to

losing the auction. Let ~�
BB

I be a candidate equilibrium bidding strategy that is strictly increasing.

Then, winning the auction unambiguously leads to a gain if and only if 8t the following condition
holds

N ~�
BB

I (t) � t+ (N � 1)t : (�)

When condition (�) is satis�ed, the realized value of the prize always exceeds the price paid
by the winning bidder. In this case, winning the auction always leads to a feeling of gain whereas

losing the auction always generates a feeling of loss. Next, de�ne 
BB(~t) := (1��)F1
�et�+�F1 �et�2.

If condition (�) holds then, as in Section 3, we can re-write (14) in a more compact form:

EU
�et; t� = 
BB �et�

24t+ q
�
~t
�

N
� ~�BBI

�et�
35� �
(et)=N: (15)

Taking the �rst-order condition yields

0@
BB �et�
24t+ q

�
~t
�

N

351A0 j~t=t � �
0(et)=N j~t=t = �

BB

�et� ~�BBI �et��0 j~t=t:
The solution to this di¤erential equation then reads

~�
BB

I (t) =
t+ q(t)

N
�
R t
t 


BB(s)ds+ �
(t)


BB(t)N
: (16)

If ~�
BB

I (t) satis�es condition (�), then it is the equilibrium bid. Moreover, it is easy to verify

that ~�
BB

I (t) coincides with the risk-neutral bid when N = 2, in which case condition (�) is satis�ed.
However, if condition (�) does not hold for all types, then winning the auction might be bad news
ex-post for some types. Indeed, suppose that N ~�

BB

I (t) > t + (N � 1)t for some bidder i with
type t. Then, if this bidder behaves as if his type were ~t, for ~t in a neighborhood of t, the term

capturing the extensive risk in (14) can be rewritten as

Z ~t

t
:::
Z tN�2

t

�����t+
P
j 6=i tj
N

� �BBI
�et������ fN�1(tN�1jtN�2)dtN�1:::f1(t1j~t)dt1

=
Z (N�1)~t

N�BBI (~t)�t

�
t+ x

N
� �BBI (~t)

�
~f(xj~t)dx�

Z N�BBI (~t)�t

(N�1)t

�
t+ x

N
� �BBI (~t)

�
~f(xj~t)dx; (17)
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where ~f(�j~t) is the density of Pj 6=i tj conditional on t1 � ~t. The �rst term on the LHS of (17)

captures the cases where winning the auction leads to a gain, whereas the second term captures

the cases where the bidder obtains a negative intrinsic payo¤ from winning so that winning the

auction leads to a loss. Applying partial integration to (17) and substituting into (14) yields

EU(~t; t) = 
BB(~t)

"
t+ q(~t)

N
� �BBI (~t)

#
� �
(~t)� 2�F1(~t)

h
1� F1(~t)

i "Z N�BBI (~t)�t

(N�1)t

~F (xj~t)
N

dx

#
:

In the expression above, the �rst two terms represent the direct utility if winning the auction

were always good news, whereas the last term captures the disutility from the possibility of being

disappointed ex post from winning. We now derive a uni�ed representation for the direct utility

which is applicable independently of whether condition (�) holds. De�ne the increasing and dif-
ferentiable function S : R 7! R as follows: S(x) =

R x
(N�1)t

~F (sj~t)
N
ds if x � (N � 1)t, and S(x) = 0

otherwise. Now consider the following modi�ed expression for the direct utility

EU(~t; t) = 
BB(~t)

"
t+ q(~t)

N
� �BBI (~t)

#
� �
(~t)� 2�F1(~t)(1� F1(~t))S

�
N�BBI (~t)� t

�
: (18)

The �rst-order condition of (18) de�nes a di¤erential equation. In the appendix we show that

this equation has an increasing solution. This solution is the equilibrium bid, �BBI . If N ~�
BB

I (t) <

t + (N � 1)t, then S(N�BBI (t) � t) = 0 and winning is always good news for a type-t bidder.

Otherwise, this bidder might be disappointed from winning. As a result, he will shade his bid

below ~�
BB

I , and so will do all bidders with a higher type than his. By a small abuse of notation,

let EUBB(t) be type-t bidder�s indirect equilibrium utility under broad bracketing and EUNB(t)

that under narrow bracketing. Then, we have the following result.

Proposition 6. A unique equilibrium in strictly increasing strategies exists, and has the following
properties:

1. �BBI (t) = ~�
BB

I (t) if and only if N ~�
BB

I (t0) � t0 + (N � 1)t for all t0 � t.

2. �BBI (t) < ~�
BB

I (t) for all t > t0 if and only if N ~�
BB

I (t0) > t0 + (N � 1)t for some t0.

3. EUBB(t) > EUNB(t) for all t > t0 if and only if N ~�
BB

I (t0) > t0 + (N � 1)t for some t0.

The �rst part of Proposition 6 states the equilibrium bidding strategy when winning the auction

always leads to a feeling of gain. We can re-write ~�
BB

I (t) as follows

~�
BB

I (t) =
t+ (N � 1)

R t
t xf (xjt) dx
N

�
R t
t F1(s) f1� � [1� F1(s)]g ds
N [(1� �)F1(t) + �F1(t)2]

� �
I(t)

N [(1� �)F1(t) + �F1(t)2]
:

It is easy to verify that for � = 0, �BBI reduces to the risk-neutral bid. Moreover, it is also easy

to see that the �rst two terms in ~�
BB

I (t) resemble the private-value bidding strategy in Lange and
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Ratan (2010) � with the bidder�s conditional estimate of the good�s common value in place of

the bidder�s private value. With common values, however, the bidding function has an additional

term capturing how bidders shade their bids to account for the intensive risk regarding the good�s

value. Hence, also under broad bracketing a loss-averse bidder is less aggressive in a common-value

auction than in a private-value auction. The second part of Proposition 6 points out that a type-t

bidder reduces his bid if and only if for some type below him winning the auction can be bad

news ex post. Notice that this is true independently of whether winning the auction with the bid
~�
BB

I (t) is unambiguously good news. As long as there is some type below type t, say t0, for whom

bidding ~�
BB

I (t0) leads to a possible loss from winning compared to losing, type t decreases his bid.

Indeed, note �rst that type t0 decreases his bid because he values winning less due to the possibility

of making an ex-post loss. The reason why type t also reduces his bid can be best explained in

combination with the last part of Proposition 6. This part states that type t, t > t0, achieves

a higher utility under broad bracketing than under narrow bracketing. Indeed, by the envelope

theorem we have that the indirect utility satis�es the following condition

EUBB(t) =
Z t

t

@EU(s; s)

@t
ds =

Z t

t

h

BB(s)=N + 2�F1(s) [1� F1(s)]S 0(N�BBI (s)� s)

i
ds: (19)

Thus, under broad bracketing loss-averse bidders receive an additional information rent and

therefore enjoy a higher equilibrium utility than under narrow bracketing. The intuition is that by

shading his bid below ~�
BB

I (t) and imitating a type t0, a type-t bidder can reduce the probability

that he will be disappointed from winning the auction. That is, imitating a lower type does not

only reduces a bidder�s expected payment but it also makes it more likely that he will experience

a gain when winning the auction. Thus, having a high type is intrinsically more valuable under

broad bracketing than under narrow bracketing.

In the remainder of this section, we restrict attention to cases where winning the auction is

always good news. This happens if N is small and/or low types are relatively likely. In such cases,

a bidder expects that the good�s common value is rather low and thus bids relatively little; hence,

he is never disappointed when comparing winning to losing.17 The next proposition compares the

equilibrium strategy of loss averse bidders who bracket broadly with that of risk-neutral bidders.

Proposition 7. Assume condition (�) holds 8t. Then, �BBI (t) � �RNI (t) if and only if

tZ
t

F1 (xjt) [1� F1 (xjt)] dx �
(N�1)tZ
(N�1)t

eF (xjt) h1� eF (xjt)i dx
| {z }


I(t)=F1(t)2

: (20)

With private values, Lange and Ratan (2010) showed that broad-bracketing loss-averse bidders

17This holds, for example, when types are distributed on [0; 1] according to F (t) = ta, with a being su¢ ciently
small, independently of N .
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always bid more than risk-neutral ones. Yet, condition (20) reveals that this result does not

necessarily extend to the case of common values, even when winning is always good news. The

reason is that loss-averse bidders react di¤erently to intensive and extensive risk. Indeed, the left-

hand-side of (20) captures the e¤ect of the extensive risk on the equilibrium bid whereas the right-

hand-side captures the e¤ect of the intensive risk. Under broad bracketing, the extensive risk pushes

every type of a bidder to bid more aggressively than in the risk-neutral case. Yet, as under narrow

bracketing, the intensive risk pushes bids down. Hence, whether a loss-averse bidder behaves more

or less aggressively than a risk-neutral one depends on which e¤ect dominates. Moreover, notice the

di¤erence between the result in Proposition 7 and that in part (ii) of Proposition 2. Under narrow

bracketing, the fact that the extensive risk dominates the intensive risk leads to a more aggressive

bidding behavior only for (some of) those types above the median; under broad bracketing, instead,

all types bid more aggressively (compared to risk neutrality) when the extensive risk dominates

the intensive risk. This stems from the di¤erence in when bidders experience gains and losses.

Consider a bidder whose type is below the median. Under narrow bracketing, imitating a bidder

with a lower type leads to less extensive risk than bidding according to his true type. Hence,

pretending to have a lower type is relatively more attractive than under risk neutrality. Therefore,

a bidder who expects to win the auction with less than 50% probability bids less compared to

the risk-neutral benchmark. Under broad bracketing instead, when condition (�) holds, even a
bidder who expects to win the auction with a fairly small probability overbids compared to the

risk-neutral benchmark. This happens because a bidder can reduce the expected loss from not

winning by increasing his bid. That is, instead of mimicking a lower type to reduce the extensive

risk, under bracketing the bidder hedges to reduce the loss from not winning. Therefore, under

broad bracketing of gains and losses all bidders can be exposed to the winner�s curse.

4.2 Second-Price Auctions

We now turn to the analysis of the SPA. As before, let �g = �m = � � 1 and consider bidder
i with type ti = t who plans to bid as if his type were et when all other N � 1 bidders follow the
posited equilibrium strategy �BBII . His expected payo¤ is

EU
�et; t� = F1

�et�
24t+ q

�et�
N

35� Z et
t
�BBII (t1)f1(t1)dt1

��F1
�et� h1� F1 �et�i Z ~t

t
:::
Z tN�2

t

�����t+
P
j 6=i tj
N

� �BBII (t1)
����� fN�1(tN�1jtN�2)dtN :::f1(t1j~t)dt1

��
II(~t)=N (21)

22



where


II(~t) = F1(~t)
2=2

Z ~t

t

Z t1

t
:::
Z tN�2

t

Z ~t

t
:::
Z y1

t

Z yN�2

t

������
X
j 6=i
(tj � yj)�N

h
�BBII (t1)� �BBII (y1)

i�������
fN�1(tN�1jtN�2)dtN :::f1(t1j~t1)dt1fN�1(yN�1jyN�2)dyN :::f1(y1j~t)dy1:

Notice that, di¤erently from the SPA under narrow bracketing, the intensive risk is now de�ned

with respect to the overall net surplus. Moreover, di¤erently from the FPA under broad bracketing,

the net surplus depends on the bid of i�s toughest competitor, ~�
BB

II (t1), which is a random variable.

Hence, whether the intensive risk in the SPA is larger or smaller than that in the FPA now depends

on the sign of N ~�
BB

II (t1)�t1. That is, it depends on whether the uncertainty in the price dominates
the uncertainty in the prize�s value.

We begin by focusing on a two-bidder auction and show that in this case, like for the FPA,

winning is always good news; i.e., winning (resp. losing) the auction always leads to a feeling of

gain (resp. loss). Let us reformulate the term capturing intensive risk as follows:


II(~t) = �
Z ~t

t

Z t1

t
(t1 � y1)f1(y1)dy1f1(t1)dt1| {z }

=
I

+
Z ~t

t

Z t1

t

h
�BBII (t1)� �BBII (y1)

i
f1(y1)dy1f1(t1)dt1:

(22)

This formulation highlights how the risk regarding the value of the prize is counterbalanced

by that regarding the payment. This pushes the bidders to bid more aggressively compared to

the narrow-bracketing case. By substituting (22) into the expression for the direct utility and

evaluating the �rst-order condition at ~t = t, we arrive at the following result:

Proposition 8. Suppose N = 2. Then winning is always good news and the equilibrium bidding

function in the SPA takes the form �BBII (t) = t:

Hence, when N = 2, loss-averse bidders who bracket broadly behave the same as risk-neutral

bidders. As in the FPA, the extensive risk creates a hedging motive inducing bidders to increase

their bids; by contrast, the intensive risk creates a downward pressure on the bids. In the equi-

librium described in Proposition 8 these two e¤ects exactly o¤-set each other as for N = 2 the

upward pressure on the equilibrium bid induced by the extensive risk has the same magnitude as

the downward pressure created by the intensive risk. Moreover, notice that for N = 2 the intensive

risk, which is conditional on winning, stems from the randomness in the di¤erence between the

type of the bidder�s competitor, t1=2, and the winning payment �
BB
II (t1). Thus, the intensive risk

is generated by the randomness of the variable t1=2 � �BBII (t1) = �t1=2. This random variable,

however, is the mirror image of the random variable that generates the intensive risk in the FPA,

t1=2, where the uncertainty is solely about the value of the good conditional on winning. Thus,

if N = 2 the FPA and the SPA lead to the same intensive risk. Therefore, as summarized in the

next proposition, revenue equivalence holds in this situation.
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Proposition 9. If N = 2 the FPA is revenue equivalent to the SPA.

Next, we turn to the general case and account for the possibility that winning the auction can

sometimes lead to a loss. The analysis shares strong similarities with that of the FPA. Let ~�
BB

II

be the equilibrium bid in an auxiliary model where we ignore the fact that winning might be bad

news.18 We have the following result.

Proposition 10. A unique equilibrium in strictly increasing strategies exists, and has the following
properties:

1. �BBII (t) = ~�
BB

II (t) if and only if for all t1 � t0 � t we have N ~�
BB

II (t1) � t0 + t1 + (N � 1)t.

2. �BBII (t) < ~�
BB

II (t) for all t > t0 if and only if there exist a t1 � t0 such that N ~�
BB

II (t1) >

t0 + t1 + (N � 1)t.

3. EUBB(t) > EUNB(t) for all t > t0 if and only if there exist a t1 � t0 such that N ~�
BB

II (t1) >

t0 + t1 + (N � 1)t.

Hence, as for the FPA, if winning can be bad news ex post, loss-averse bidders who bracket

broadly will reduce their bids and achieve a higher equilibrium utility than under narrow bracketing.

In the remainder of this section, we separately analyze the extensive and intensive risk and highlight

how they a¤ect the strategies in Proposition 10. Without loss of generality, we focus on the case

where N � 3 and begin by deriving a tractable expression for the intensive risk. For a given

bidder i; �x two realizations of his toughest competitor�s signal, t1, and y1 with t1 � y1 and

de�ne ~D2 := y1 � �BBII (y1) � t1 + �BBII (t1). For given y1 and t1, whenever the random variable

D2 �
P
i�2(ti � yi)=N falls short of this threshold, a bidder experiences a loss when winning.

Suppose that y1 � �BBII (y1) � t1 + �BBII (t1) >
P
i�2(ti � yi)=N for some y1 and t1. Then the

risk in the payment dominates that in the prize�s value and the intensive risk has the following

representation.

Lemma 2. Suppose N � 3. If y1 � �(y1)� t1 + �(t1) >
P
i�2(ti � yi)=N for some y1 and t1, then

the intensive risk reads


II(~t) =
Z ~t

t

Z ~t

t

h
2�2( ~D2jt1; y1)� 1

i h
�BBII (t1)� �BBII (y1)

i
f1(y1)dy1f1(t1)dt1 + 
̂(~t); (23)

where �2(�jt1; y1) is the CDF of D2 conditional on the realizations t1 and y1, and 
̂(~t) is some

function of 
I(t).

It is easy to see that the intensive risk in the SPA under broad bracketing di¤ers from that

of the SPA under narrow bracketing as well as from that of the FPA under broad bracketing.

18Di¤erently from the FPA, a closed-form solution for the bidding function is not available in the SPA when
bidders bracket broadly.
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The �rst term in (23) captures the uncertainty regarding the payment; that is, the uncertainty

regarding the signal of bidder i�s toughest competitor. This uncertainty is weighted by a measure

of how likely it is that the uncertainty in the winning payment dominates that in the prize�s value,h
2�2( ~D2jt1; y1)� 1

i
; since the more likely it is that D2 falls short of the threshold ~D2, the more

likely it is for the bidder to experience a loss when facing an unexpectedly tough competitor. The

second term in (23), 
̂(~t), instead captures the uncertainty in the prize�s value conditional on

winning.

Next, we focus on the extensive risk. Below we state a general formulation which uni�es the

case when winning is unambiguously good news and the case when winning might be bad news

for some realizations of a bidder�s toughest competitor�s signal.

Lemma 3. There exists a non-negative and di¤erentiable function ~S : R2 7! R+ such that

Z ~t

t
:::
Z tN�2

t

�����t+
P
j 6=i tj
N

� �BBII (t1)
����� fN�1(tN�1jtN�2)dtN�1:::f1(t1j~t)dt1

= t+ q(~t)�
h
1� F1(~t)

i Z ~t

t
�BBII (t1)f1(t1)dt1 + 2

Z ~t

t

~S(�BBII (t1)� t1 � t; t1)
N

f1(t1)dt1: (24)

Notice that the expression for the extensive risk in the SPA, (24), is similar to that in the FPA.

That is, (24) uni�es the direct utility for those cases when winning is always good news and those

when sometimes winning is bad news. Substituting both (24) and (23) into the direct utility leads

to the following representation

EU(~t; t) = 
BB(~t)
h
t+ q(~t)

i
=N + �~
(~t)=N

�2�F1(~t)
h
1� F1(~t)

i Z ~t

t

~S(�BBII (t1)� t1 � t; t1)
N

f1(t1)dt1 �

BB(~t)

F1(~t)

Z ~t

t
�BBII (x)f1(x)dx

�
Z ~t

t

Z t1

t

h
2�2( ~D2jt1; y1)� 1

i h
�BBII (t1)� �BBII (y1)

i
f1(y1)dy1f1(t1)dt1: (25)

As for the FPA, whenever winning might be bad news � that is whenever ~S 6= 0 � loss-

averse bidders who bracket broadly experience an additional disutility that leads them to bid less

aggressively compared to the case where winning is always good news. Moreover, like in the FPA,

this reduction in bids leads to a larger indirect equilibrium utility compared to the case where

winning is always goods news and compared to the case of narrow bracketing. To formally see

this, in Appendix A we evaluate the �rst-order condition of the direct utility at t = ~t , and show

that the corresponding di¤erential equation has a unique solution. Once established the existence

of an equilibrium, the envelope theorem reveals that the indirect equilibrium utility reads

EUBB(t) =
Z t

t

(

BB(s)=N � 2�F1(s) [1� F1(s)]

Z s

t

~S1(N�
BB
II (t1)� t1 � t; t1)f1(t1)dt1

)
ds; (26)
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where ~S1(N�
BB
II (t1)� t1� t; t1) = ~F2(N�

BB
II (t1)� t1� tjt1)=N if N�BBII (t1)� t1� t > (N � 2)t and

zero otherwise. Thus, type t enjoys an additional information rent if and only if there is a lower

type t0 for whom winning is not unambiguously good news. That is, there is a type t0 � t such

that N�BBII (t1) � t1 � t0 > (N � 2)t for some type t1 � t0. The intuition for this result is that,

similar to the FPA, whenever winning might be bad news for a type t0, this type will reduce his

bid. Higher types like t, in turn, receive a larger information rent because by mimicking type t0,

they not only reduce their expected payments but are also less likely than type t0 to su¤er a loss

when winning with bid �BBII (t
0).

4.3 FPA vs. SPA under Broad Bracketing

In the SPA, the winning price and the good�s value conditional on winning are positively

correlated. Thus, under narrow bracketing the intensive risk is lower in the FPA than in the SPA,

and, as a result, the FPA yields a higher revenue than the SPA. The next proposition shows that

this is not necessarily the case under broad bracketing.

Proposition 11. Suppose winning is always good news. The auction format that gives rise to less
intensive risk fetches a higher revenue. Moreover, we have payo¤ equivalence between the FPA and

the SPA.

Proposition 11 states that revenue equivalence between FPA and SPA fails when bidders are loss

averse and bracket broadly. In particular, while under narrow bracketing the FPA always yields a

higher expected revenue than the SPA, the opposite might happen under broad bracketing. Indeed,

under narrow bracketing the SPA is a riskier format for loss-averse bidders who, compared to the

FPA, are exposed to additional uncertainty with respect to their payment, even conditional on

winning the auction. Yet, under broad bracketing the SPA can sometimes be a less risky format

than the FPA because the uncertainty over the payment embedded in the SPA counterbalances the

uncertainty over the value of the prize and reduces the uncertainty over the bidder�s net surplus

conditional on winning. Hence, under broad bracketing the SPA can expose bidders to less intensive

risk than the FPA. In either case, as long as winning is unambiguously good news, the seller bears

the entire cost of the additional intensive risk and both auction formats are payo¤ equivalent for

the bidders. Finally notice that the result that under broad bracketing the SPA might yield a

higher expected revenue than the FPA is a direct by-product of the common-value framework and

stands in stark contrast with the result obtained by Lange and Ratan (2010) according to which,

in a private-value environment, the FPA always yields a higher expected revenue than the SPA

under narrow as well as under broad bracketing.
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5 Loss Aversion vs. Risk Aversion

Bidders in common-value auctions are exposed to two kinds of risk: extensive risk and intensive

risk. We showed that both under narrow bracketing as well as under broad bracketing the intensive

risk always induces loss-averse bidders to shade their bids down. However, our analysis also revealed

some important di¤erences between how loss-averse bidders behave under narrow bracketing and

under broad bracketing. These di¤erences are related to (i) whether winning the auction can lead

to experiencing a loss ex post and (ii) how bidders are a¤ected by the extensive risk. Below we

elaborate on both of these points and compare the behavior of loss-averse bidders with that of

risk-averse bidders.

With respect to point (i), recall that under narrow bracketing winning the auction always leads

to a gain in the consumption dimension. Under broad bracketing, however, winning the auction

might sometimes generate a feeling of loss for the winner. In this case, in both the FPA and the

SPA, bidders shade their bids and obtain a larger equilibrium utility than under narrow bracketing.

Thus, the behavior of loss-averse bidders in this case resembles that of DARA bidders who enjoy

a similar e¤ect as shown by Es½o and White (2004). This e¤ect arises because, under DARA, the

degree of risk aversion decreases in a bidder�s wealth, which intrinsically depends on the bidder�s

privately known type. Thus, the bidder gains an additional information rent. By contrast, when

winning is always good news, loss-averse bidders who bracket broadly are similar to CARA bidders

in that they obtain the same payo¤ in the SPA and FPA; moreover, for such bidders common-value

auctions are payo¤ equivalent to private-value auctions (up to a scaling factor).

Next, let us turn to point (ii) and focus on the case when, under broad bracketing, winning the

auction is always good news. In this case, the extensive risk is the same under narrow bracketing

and under broad bracketing. However, how bidders are a¤ected by this risk depends on whether

they bracket broadly or narrowly. Under broad bracketing, every bidder�s type increases his bid

to reduce the magnitude of potential losses. By contrast, under narrow bracketing winning the

auction entails a gain in the good dimension and a loss in the monetary dimension. Therefore,

hedging is not possible. Instead, bidder types increase their bids if and only if mimicking a bidder

with a lower type leads to a larger extensive risk.

Finally, we compare the behavior of loss-averse bidders who bracket broadly (and when winning

is always good news) with that of CARA bidders. With CARA preferences, bidders are exposed

to the same extensive risk in the FPA and the SPA. Thus, also under CARA it is the intensive

risk that determines the performance of a given selling mechanism. Indeed, the next proposition

mirrors Proposition 11.

Proposition 12. With CARA bidders the auction format that induces the smaller variance in the
bidders�payo¤ conditional on winning raises the highest revenue. Moreover, CARA bidders behave

less aggressively than risk-neutral bidders.

The �rst part of Proposition 12 highlights that also for CARA bidders it is the intensive risk

27



that determines the performance of a selling mechanism. Indeed, both auction formats implement

the same allocation regarding the good and thereby generate the same extensive risk. Yet, under

CARA preferences the SPA might entail a smaller intensive risk than the FPA. In this case,

the winner�s expected payment is larger in the SPA than in the FPA and a revenue-maximizing

auctioneer facing CARA bidders will prefer the SPA over the FPA. The same result might also

arise with loss-averse bidders under broad bracketing (and when winning is always good news),

while the opposite result holds under narrow bracketing.

Even though the ranking in terms of revenue between the SPA and the FPA under CARA is

the same as under broad-bracketing loss aversion, notice that the implications for bidders�behavior

are di¤erent. Indeed, the second part of Proposition 12 states that in both auction formats CARA

bidders bid less than risk-neutral bidders. In contrast, as shown in the previous section, loss-

averse bidders who bracket broadly might bid more than risk-neutral bidders. Therefore, while

under CARA the negative e¤ect of the intensive risk dominates the positive e¤ect of the extensive

risk, pushing bidders to bid less aggressively and thereby lowering the seller�s expected revenue

compared to the risk-neutral benchmark, the opposite might happen when bidders are loss averse.

6 Conclusion

Ample evidence, gathered from both the �eld and the lab, indicates that people evaluate

outcomes not (only) in absolute terms but (also) relative to a reference point, and that losses

(relative to this reference point) loom larger than equal-size gains; see, for instance, Kahneman et
al. (1990) on the endowment e¤ect in laboratory trade experiments, Odean (1998) and Genesove

and Mayer (2001) on the disposition e¤ect in the stock and housing market respectively, and

Crawford and Meng (2011) on cabdrivers� labor supply decisions. In particular, as shown by

Lange and Ratan (2010), Banerj and Gupta (2014), Eisenhuth (2018), Rosato (2017b), Rosato

and Tymula (2018) and von Wangenheim (2017), expectations-based loss aversion has important

implications for auction design.

While previous contributions have focused solely on auctions with private values, our paper is

the �rst to study the role of expectations-based loss aversion in common-value auctions. We have

provided a full characterization of the behavior of loss-averse bidders in �rst-price and second-

price common-value auctions, contrasting it with the behavior of risk-neutral bidders as well as

that of risk-averse bidders. Our analysis highlights how the behavior of loss-averse bidders and

the performance of di¤erent auction formats depend on how bidders react to the extensive and the

intensive risk, and on whether they bracket narrowly or broadly. Moreover, we have shown that

with loss-averse bidders revenue equivalence fails even if bidders have independent signals about

the common value; indeed, under narrow bracketing the FPA always yields a higher revenue than

the SPA whereas the opposite might hold under broad bracketing. In particular, we �nd that the

performance of a selling mechanism crucially depends on the relative magnitude of intensive risk
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and extensive risk as the former generates a precautionary bidding e¤ect that pushes bidders to

be less aggressive whereas the latter can induce bidders to be more aggressive. These �ndings

have important implications for the design of optimal selling mechanisms. For instance, consider

a private-value setting where bidders are only partially informed about the value of the good,

e.g. Vi = ti + X, where X is a stochastic component that can be realized either before or after

the selling mechanism is implemented. Our results imply that a revenue-maximizing seller prefers

bidders to learn the realization of X before the mechanism takes place, as in this way the intensive

risk disappears. More generally, the extensive risk stems from strategic uncertainty � that is, the

uncertainty with respect to the behavior of a bidder�s opponents; by contrast, the intensive risk is

conditional on winning and independent of the behavior of a bidder�s opponents. Our results imply

that sellers should favor mechanisms that give rise to as little non-strategic uncertainty as possible.

The case of strategic uncertainty is more intricate. If bidders bracket broadly, the performance

of a selling mechanism increases in the extensive risk, while the opposite holds true under narrow

bracketing. Indeed, the extensive risk can be directly in�uenced through the design of the selling

mechanisms. For example, buyers are exposed to more extensive risk in a sealed-bid auction than

in an Dutch auction or in bilateral negotiations.

There are several directions left for future research. One that strikes us as particularly interest-

ing is to analyze common-value English auctions with loss-averse bidders using the dynamic model

of reference-dependent preferences introduced in K½oszegi and Rabin (2009). von Wangenheim

(2017) uses this model to analyze English auctions with private values and shows that loss-averse

bidders bid less aggressively in the English auction than in the second-price auction. The intuition

is that, as the English auction unfolds, a loss-averse bidder becomes more pessimistic about his

chances of eventually winning the auction � because the fact that the auction is not over yet

implies that his opponents�values are relatively high � and this pushes him to bid less aggres-

sively. However, in a common-value environment there is an additional e¤ect going in the opposite

direction because as the auction unfolds a bidder becomes more optimistic with respect to the

prize�s value. Without a thorough investigation of loss aversion in common-value English auctions,

it is not possible to say which of these two e¤ects dominates.

Another interesting direction for future research would be to investigate the relationship be-

tween expectations-based loss aversion and the winner�s curse. As we have shown, the winner�s

curse can be a by-product of equilibrium bidding for expectations-based loss-averse bidders. In

particular, under narrow bracketing, bidders with high signals overbid relative to the risk-neutral

Bayesian Nash equilibrium, while those with low signals underbid. Hence, expectations-based loss

aversion makes the opposite prediction of �cursedness�à la Eyster and Rabin (2005). Furthermore,

as shown by Crawford and Iriberri (2007), �level-k�thinking can also provide a non-equilibrium

explanation for the winner�s curse in common-value auctions, often yielding similar predictions as

cursedness. Hence, future theoretical and experimental work could attempt to further tease out

and test the di¤erent implications of these models.
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A Proofs
Proof of Lemma 1: Comparing (2) and (3), the terms 


�et� ; q �et� and TI(~t) are readily identi�ed.
To identify the term 


�
~t
�
in (2), observe that

�g
Z et(N�1)
t(N�1)

Z x

t(N�1)

�
x� y
N

�
~f(yj~t)dy ~f(xj~t)dx+ �g�g

Z et(N�1)
t(N�1)

Z et(N�1)
x

�
x� y
N

�
~f(yj~t)dy ~f(xj~t)dx

= ��g (�g � 1)| {z }
��g

Z et(N�1)
t(N�1)

Z x

t(N�1)

�
x� y
N

�
~f(yj~t)dy ~f(xj~t)dx

= ��
g

N
~F ((N � 1)~tj~t)

Z ~t(N�1)

t(N�1)
~F (xj~t)dx�

Z ~t(N�1)

t(N�1)
~F (xj~t)2dx| {z }

=
(~t)=F1(~t)
2

;

where the �rst equality follows by changing the order of integration and the second equality follows
by partial integration. �
Proof of Proposition 1: First, we need to show that ��I (t) is increasing in t. De�ne F

� (b) =
Pr [maxn6=i f��Ign � b]. Moreover, de�ne e
(b) := F � (b) f1� �g [1� F � (b)]g. With this notation,
it is easy to see that ��I (t) satis�es

��I (t) 2 argmax
b

e
(b) ht+ eQ (b)i =N � T (b)
where eQ and T are some functions. Observe that

@2
ne
(b) ht+ eQ (b)i =N � T (b)o

@t@b
=

@e
(b)
@b

1

N

=
dF � (b)

db
f1� �g [1� 2F � (b)]g =N > 0;

because dF �(b)
db

> 0 on the support of F � (b) and �g � 1. Therefore, the objective function satis�es
the strict Spence�Mirrlees condition as de�ned in Milgrom and Shannon (1994). Because b 2 R,
the objective function is also quasi-supermodular in b. Thus, Theorem 4 in Milgrom and Shannon
(1994) implies that every maximizer of the objective must be increasing. As a result the objective
satis�es single crossing and thus the maximizer, for every non-constant ��I (t), must be increasing.
Next, we establish su¢ ciency by using standard mechanism design arguments. Fix t and t0 6= t.

Then,

EU(t0; t) = 
(t0) [t+ q(t0)] =N � TI(t0)� �g
(t0)=N
= EU(t0; t0) + 
(t0)(t� t0)=N
, EU(t0; t)� EU(t; t) + EU(t; t)� EU(t0; t0) = 
(t0)(t� t0)=N
, EU(t0; t)� EU(t; t)

= �I[t > t0]
Z t

t0

(s)=Nds+ I[t < t0]

Z t0

t

(s)=Nds+ 
(t0)(t� t0)=N: (27)
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Observe that the RHS is of (27) is negative (independently whether t > t0 or t < t0) because 
(t)
is increasing by Assumption 1. �
Proof of Proposition 2: We proceed in several steps. First, we use the envelope theorem to
derive an inequality that determines the sign of the di¤erence �RNI (t)� ��I(t). In step 2 we derive
a necessary condition for when this inequality is satis�ed for the highest type and prove claim (ii).
In step 3 we use the condition to prove claim (i).
Step 1: Expression for the Di¤erence in Bids. Recall that the envelope theorem implies


(t)t+ 
(t)q(t)� �g
(t)�NTI(t) =
Z t

t

(s)ds

, (1� �g)
(
F1(t)[t+ q(t)]�

Z t

t
F1(v)dv

)
�NTI(t) = �g

(Z t

t
F 21 (v)dv � F 21 (t)[t+ q(t)] + 
(t)

)
:

By the envelope theorem we also know that in the risk-neutral case, F1(t)[t+ q(t)]�
R t
t F1(v)dv =

NF1(t)�
RN
I (t). Thus,

F1(t)
h
�RNI (t)� ��I(t)

i
= �g

(
F1(t)[t+ q(t)]�

Z t

t
F1(v)dv +

Z t

t
F 21 (v)dv � F 21 (t)[t+ q(t)] + 
(t)

)
=N

+�mF1(t) [1� F1(t)] ��I(t):

Dividing both sides of the above expression by F1(t) and re-arranging yields

�RNI (t)���I(t) = �g
8<:[1� F1(t)] [t+ q(t)]�

R t
t F1(v) [1� F1(v)] dv � 
(t)

F1(t)

9=; =N+�m [1� F1(t)] ��I(t):

Substituting ��I(t) =

(t)[t+q(t)]��g
(t)�

R t
t

(s)ds

NF1(t)f1+�m[1�F1(t)]g into this expression leads

�RNI (t)� ��I(t) = �g

8<:[1� F1(t)] [t+ q(t)]�
R t
t F1(v) [1� F1(v)] dv � 
(t)

F1(t)

9=; =N
+

(t)[t+ q(t)]� �g
(t)�

R t
t 
(s)ds

NF1(t)

�m [1� F1(t)]
1 + �m [1� F1(t)]

: (28)

The RHS of (28) is an expression of the primitives alone. First, notice that 
(t) [t+ q(t)]��g
(t)�R t
t 
(s)ds is positive, as otherwise equilibrium payo¤s and bids were negative. Hence, the RHS

increases in �m. Moreover, lim�m!1
�m[1�F1(t)]
1+�m[1�F1(t)] = 1 for all t 2 [0; t) whereas

�m[1�F1(t)]
1+�m[1�F1(t)] = 0 for

t = t.
Step 2: Proof of claim (ii). Focus on (28). For the highest type the sign of the term in brackets
after �g is determined by whether 
(t) �

R t
t F1(v)� F1(v)2dv or not, that is, (8).

Finally observe that whenever ��I(�t) > �
RN(�t) then continuity of the bid di¤erence in t implies

that this assertion holds true for an interval of types at the top.
Step 3: Prof of claim (i). Now, let us focus on a bidder whose type is below tm, with F1(tm) =
0:5. We show that (28) is positive. Thus, w.l.o.g. let �m = 0. We establish that the term in
brackets after �g is strictly positive. That is, F1(t) [1� F1(t)] [t+ q(t)]�

R t
t F1(v)(1� F1(v))dv +
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(t) > 0. A su¢ cient condition for this is F1(t) [1� F1(t)] t�
R t
t F1(v)(1� F1(v))dv > 0. Because

F1(t) [1� F1(t)] is increasing in t on [0; tm], this last inequality is satis�ed. �
Proof of Proposition 3: Recall that the objective readsEU(~t; t) = 
(~t)

h
t+ q(et)i =N��g
(~t)=N�

TII(~t): The �rst-order condition yields:

(
(t)q(t))0 =N � �g
0(t)=N + 
0(t)t=N = T 0II(t); (29)

where T 0II(t) =
h
��II(t)[1 + �

m]� 2�m
R t
t �

�
II(v)f1(v)dv

i
f1(t). De�ne Q(t) := (
(t)q(t))0��g
0(t)

Nf1(t)
and

G(t) := 
0(t)
Nf1(t)

. Multiplying both sides of (29) by 1
f1(t)(1+�m)

and di¤erentiating yields

1

1 + �m
[Q0(t) + G(t) + G 0(t)t] = ��0II(t)�

2�mf1(t)

1 + �m
��II(t):

Solving this �rst-order linear di¤erential equation gives:

��II(t) =
e
2�mF1(t)

1+�m

1 + �m

Z t

t
e�

2�mF1(v)

1+�m [Q0(v) + G(v) + G 0(v)v] dv: (30)

Next, we simplify (30) by applying partial integration. Observe that

e
2�mF1(t)

1+�m

Z t

t
e�

2�mF1(v)

1+�m Q0(v)dv = Q(t)�Q(0)e
2�mF1(t)

1+�m +
2�m

1 + �m

Z t

t
Q(v)e�

2�m[F1(v)�F1(t)]
1+�m f1(v)dv

=
(
(t)q(t))0 � �g
0(t)

Nf1(t)
+

2�m

1 + �m

Z t

t

"
(
(v)q(v))0 � �g
0(v)

N

#
e
�2�m[F1(v)�F1(t)]

1+�m dv:

Similarly, we have

e
2�mF1(t)

1+�m

Z t

t
e�

2�mF1(v)

1+�m [G(v) + G 0(v)v] dv = G(t)t+ 2�m

1 + �m
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t
G(v)ve�

2�m[F1(v)�F1(t)]
1+�m f1(v)dv

=

0(t)t

Nf1(t)
+

2�m

1 + �m
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0(v)v

N
e�

2�m[F1(v)�F1(t)]
1+�m dv:

Substituting into (30) leads to (10) from the main text. Su¢ ciency and monotonicity of ��II
follows from similar arguments as those employed in the proof of Proposition 1. �
Proof of Proposition 4: We begin by noticing that integration by parts implies that

Z t

t

 Z x

t
(��II(x)� ��II(y))f1 (y) dy

!
f1 (x) dx =

Z t

t
F1 (x) �

�
II(x)f1 (x) dx�

Z t

t

 Z x

t
��II(y)f1 (y) dy

!
f1 (x) dx

and

Z t

t

 Z x

t
��II(y)f1 (y) dy

!
f1 (x) dx = F1 (t)

Z t

t
��II(x)f1 (x) dx�

Z t

t
F1 (x) �

�
II(x)f1 (x) dx:
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Hence, type-t�s dis-utility from the expected payment reads

TII (t) =
Z t

t
��II(x)f1 (x) dx+ �

m

(
[1� 2F1 (t)]

Z t

t
��II(x)f1 (x) dx+ 2

Z t

t
F1 (x) �

�
II(x)f1 (x) dx

)
| {z }

:=C(t)

: (31)

Moreover, the envelope theorem implies that

NTII (t) = 
(t) [t+ q (t)]�
Z t

t

(s)ds� �g
 (t) (32)

= (1� �g)
(
F1 (t) [t+ q (t)]�

Z t

t
F1 (s) ds

)
+ �g

(
F 21 (t) [t+ q (t)]�

Z t

t
F 21 (s) ds

)
� �g
 (t) :

Similarly, for the risk-neutral case the envelope theorem implies that

N
Z t

t
�RNII (x)f1 (x) dx = F1 (t) [t+ q (t)]�

Z t

t
F1 (s) ds: (33)

Combining (31), (32) and (33) we obtain

N
Z t

t
��II(x)f1 (x) dx = N (1� �g)

Z t

t
�RNII (x)f1 (x) dx+�

g

(
F 21 (t) [t+ q (t)]�

Z t

t
F 21 (s) ds

)
��g
 (t)��mNC (t) :

Therefore, we have that

N
Z t

t

h
��II(x)� �RNII (x)

i
f1 (x) dx = �g

(
F 21 (t) [t+ q (t)]�N

Z t

t
�RNII (x)f1 (x) dx�

Z t

t
F 21 (s) ds

)
��g
 (t)��mNC (t)

= �g
(Z t

t
F1 (s) [1� F1 (s)] ds� F1 (t) [1� F1 (t)][t+ q (t)]

)
��g
 (t)��mNC (t) ;

where the last step follow from (33). Observe further that
d

�R t
t
��II(x)f1(x)dx�

R t
t
�RNII (x)f1(x)dx

�
dt

=

f1 (t)
�
��II(t)� �RNII (t)

�
. Therefore, ��II(t) > �

RN
II (t) if and only if

�g
(Z t

t
F1 (s) [1� F1 (s)] ds� F1 (t) [1� F1 (t)] [t+ q (t)]

)0
� �g
0 (t)� �mNC 0 (t) > 0: (34)

To prove the �rst claim notice that the sign of the expression on the LHS of (34) depends on
the sign of the following expression

�gf1 (t) [2F1 (t)� 1] [t+ q (t)]� F1 (t) [1� F1 (t)] q0 (t)� �g
0 (t)� �mNC 0 (t) : (35)

Fix now a t such that F1 (t) � 1
2
. As q0 (t) > 0 and �
0 (t) < 0, a su¢ cient condition for
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expression (35) to be negative is that C 0 (t) � 0. We have

C 0 (t) = �2f1 (t)
Z t

t
��II(x)f1 (x) dx+ �

�
II(t)f1 (t) � 0

, ��II(t) � 2
Z t

t
��II(x)f1 (x) dx

, ��II(t)� 2
"
F1 (t) �

�
II(t)�

Z t

t
��0II(x)F1 (x) dx

#
> 0

, ��II(t) [1� 2F1 (t)] +
Z t

t
��0II(x)F1 (x) dx > 0:

As ��II(t) is increasing, it follows that C
0 (t) � 0 for any t � tm: Hence, for any such type

expression (35) is negative, which proves the �rst claim.
Finally, to prove the second claim, let �m = 0. Then, it is easy to see that for t = �t equation (35)

is satis�ed if and only if condition (13) is satis�ed. Hence, since (35) is continuous in t and �m,
there exists a positive measure of types at the top of the signal distribution�s support for which
��II(t) > �

RN
II (t) if �

m is su¢ ciently small. �
Proof of Proposition 5: Recall that the envelope theorem implies that in both auction formats
EU (t; t) =

R t
t 
 (s) =Nds, which proves the �rst statement.

Moreover, this indirect utility implies

NTk (t) = 
 (t) [t+ q(t)]� �g
(t)�
Z t

t

 (s) ds;

where k 2 fI; IIg. Therefore, TI = TII . Moreover, notice that

NTI (t) = f1 + �m [1� F1 (t)]g � F1 (t) �
�
I (t)| {z }

Expected payment to the seller from type t

;

and
NTII (t) = f1 + �m [1� F1 (t)]g �

Z t

t
��II (s) f1 (s) ds| {z }

Expected payment to the seller from type t

+ �mI (t) ;

where I (t) =
R t
t

�R x
t (�

�
II(x)� ��II(v))f1 (v) dv

�
f1 (x) dx. Thus, F1 (t) �

�
I (t) =

R t
t �

�
II (s) f1 (s) ds

for �m = 0. Next, suppose �m > 0. Because tI (t) > 0 and TI (t) = TII (t), it follows that
t
h
F1 (t) �

�
I (t)�

R t
t �

�
II (s) f1 (s) ds

i
> 0. �

Proof of Proposition 6: First, assume that winning is always good news, that is, N e�BBI (t) <
t+ (N � 1)t for all t.
A straightforward application of the envelope theorem yields

e�BBI (t) =

BB (t) [t+ q(t)]�

R t
t 


BB (s) ds� �
I(t)
N
BB (t)

:

Substituting and re-arranging yields the expression in the main text. Su¢ ciency and monotonic-
ity of e�BBI follow from a similar argument as in the proof of Proposition 1.
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Next, assume without loss of generality that N ~�
BB

I (t) > t+ (N � 1)t for some t.
Existence and Uniqueness. De�ne c as the in�mum of the set ft 2 [t; �t]jN ~�BBI (t) >

t + (N � 1)tg. For any t 2 [t; c) it is easy to see the equilibrium strategy is ~�
BB

I . For any
t 2 (c; �t], we take the �rst-order condition of (18), evaluate it at ~t = t, rewrite it in the standard
form of an ordinary di¤erential equation and obtain

�BBI (t)0 =

�

BB(~t)( t+q(

~t)
N
)
�0
j~t=t � �
0I(t)� (2�F1(t) [1� F1(t)])

0 S
�
N�BBI (t)� t

�
� 
BB(t)0�BBI (t)


BB(t) + 2�F1(t)(1� F1(t))NS 0
�
N�BBI (t)� t

� (36)

Call the term on the RHS M(t; �BBI ). First, note that M(t; b) is continuos in both in t and b.
Moreover, M(t; b) is continuously di¤erentiable in b and therefore Lipschitz continuous. Thus, we
know that the di¤erential equation has exactly one solution on (c; �t] given the boundary condition

�BBI (c) = ~�
BB

I (c).

Monotonicity. For any t 2 [t; c] it follows that ~�BBI is increasing from a similar argument as
provided in the proof of Proposition 1. Thus, �BBI is increasing on that interval. Now �x t 2 (c; �t]
and note that

@EU(~t; t)

@t
= 
BB(~t)=N + 2�F1(~t)

h
1� F1(~t)

i
S 0
�
N�BBI (~t)� t

�
(37)

Note that (37) is di¤erentiable, because S is. Suppose �rst that S 0
�
N�BBI (~t)� t

�
= 0. Then,

@2EU(~t; t)

@t@~t
=
�

BB(~t)

�0
� 0

Next, if S 0
�
N�BBI (~t)� t

�
= ~F (N�BBI (~t)�tj~t) rewrite that CDF in terms of �rst-order statistics,

that is, F1(~t) ~F (N�
BB
I (~t) � tj~t) =

R ~t
t

RN�BBI (~t)�t�t1
(N�2)t

~f2(xjt1)dxf1(t1)dt1, where ~f2(�jt1) is the pdf ofP
i�2 ti conditional on being lower than (N � 2)t1 and observe that (37) becomes


BB(~t) + 2�(1� F1(~t))
Z ~t

t

Z N�BBI (~t)�t�t1

(N�2)t
~f2(xjt1)dxf1(t1)dt1 (38)

We di¤erentiate the second term of (38) w.r.t. ~t:

f1(~t)2�
�
�
R ~t
t

RN�BBI (~t)�t�t1
(N�2)t

~f2(xjt1)dxf1(t1)dt1 +
RN�BBI (~t)�t�~t
(N�2)t

~f2(xjt1)dx
�

+2�
h
1� F1(~t)

i �
�BBI (~t)

�0 R ~t
t
~f2(N�

BB
I (~t)� t� t1jt1)f1(t1)dt1 � �2�F1(~t)f1(~t)

The inequality follows because the �rst term in the �rst square bracket is smaller than F1(~t).
This holds because the density in the integrand, f1, is weighed down by some number lower than
1, ~f2(�jt1). All other terms are positive. Therefore, the derivative of (38) satis�es

@2EU(~t; t)

@t@~t
� f1(~t)

h
(1� �) + 2�F1(~t)

i
� 2�f1(~t)F1(~t) = f1(~t)(1� �) > 0:
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We therefore conclude that EU(~t; t) satis�es the strict Spence-Mirrlees conditions. Using the
same argument as in the proof of Proposition 1 establishes that �BBI is also increasing on (c; �t].
Su¢ ciency. Fix t and ~t 6= t. Then, using (18)

EU(~t; t) = 
BB(~t)(
t+ q(~t)

N
� �BBI (~t))� �
I(~t)� 2�F1(~t)(1� F1(~t))S

�
N�BBI (~t)� t

�
(39)

= EU(~t; ~t) + 
BB(~t)(t� ~t)=N � 2�F1(~t)
h
1� F1(~t)

i h
S(N�BBI (~t)� t)� S(N�BBI (~t)� ~t)

i
, EU(~t; t)� EU(t; t) + EU(t; t)� EU(~t; ~t)
= 
BB(~t)(t� ~t)=N � 2�F1(~t)

h
1� F1(~t)

i h
S(N�BBI (~t)� t)� S(N�BBI (~t)� ~t)

i
Substitute the representation (19) into (39) to get

EU(~t; t)� EU(t; t) = (40)


BB(~t)(t� ~t)=N + 2�F1(~t)
h
1� F1(~t)

i h
S(N�BBI (~t)� ~t)� S(N�BBI (~t)� t)

i
�I[t > ~t]

Z t

~t

@EU(s; s)

@t
ds+ I[t < ~t]

Z ~t

t

@EU(s; s)

@t
ds

� 
BB(~t)(t� ~t)=N + 2�F1(~t)
h
1� F1(~t)

i h
S(N�BBI (~t)� ~t)� S(N�BBI (~t)� t)

i
�I[t > ~t]

Z t

~t

@EU(s; ~t)

@t
ds+ I[t < ~t]

Z ~t

t

@EU(s; ~t)

@t
ds;

where the inequality follows from the fact that @EU(t;
~t)

@t
� 0. Finally, evaluating the integrals reveals

that the upper bound on (40) is zero.

Proof of Proposition 7: Recall that �BBI (t) =

BB(t)[t+q(t)]�

R t
t

BB(s)ds��
I(t)

N
BB(t)
and �RNI (t) =

t+q(t)
N

�
R t
t
F1(s)ds

NF1(t)
. Therefore, it follows that

�BBI (t)� �RNI (t) =
�

N
BB(t)

"
F1 (t)

Z t

t
F1 (s) ds�

Z t

t
F1 (s)

2 ds� 
I(t)
#
:

Finally, observe that

F1 (t)
R t
t F1 (s) ds�

R t
t F1 (s)

2 ds

F1(t)2
=
Z t

t
F1(xjt)[1� F1(xjt)]dx:

Proof of Proposition 8: We apply a guess and verify approach. First, we guess that winning
is always good news and that �BBII (t1)� t1 is increasing. Under these hypothesis, we have that


II(~t) = �
Z ~t

t

Z t1

t
t1 � y1f1(y1)dy1f1(t1)dt1| {z }

=
I

+2
Z ~t

t

Z t1

t

h
�BBII (t1)� �BBII (y1)

i
f1(y1)dy1f1(t1)dt1

= 
I(~t)� 2
"
2
Z ~t

t
F1(x)�

BB
II (x)f1(x)dx� F1(~t)

Z ~t

t
�BBII (x)f1(x)dx

#
: (41)
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The direct utility becomes


BB(~t)[t+ q(~t)]=2 + �
I(~t)=2� 2�
Z ~t

t
F1(x)�

BB
II (x)f1(x)dx� (1� �)

Z ~t

t
�BBII (x)f1(x)dx: (42)

Di¤erentiating (42) and evaluating the derivative at ~t = t reveals

�BBII (t) =
(
BB(t))0[t+ q(t)]=2 + 
BB(t)q0(t)=2 + �
0I(t)=2

((1� �) + 2�F1(t))f1(t)
:

Straightforward substitution shows that �BBII (t) = t which veri�es the initial guess. �

Proof of Proposition 9: For N = 2 the bid in the SPA is equal to the risk-neutral bid. We
now show that the same is true in the FPA. Recall that �BBI (t) = (t + q(t))=N � (

R t
t 


BB(s)ds +

�
I(t))=(

BB(t)N) and note that

�BBI (t) = �RNI (t) = (t+ q(t))=N �
Z t

t
F1(s)ds=(F1(t)N)

, (
Z t

t

BB(s)ds+ �
I(t))=(


BB(t)) =
Z t

t
F1(s)ds=(F1(t))

, F1(t)(
Z t

t

BB(s)ds+ �
I(t)) = 


BB(t)
Z t

t
F1(s)ds

, �
Z t

t
F1(s)

2ds+ �
I(t) = �F1(t)
Z t

t
F1(s)ds

, 
I(t) = F1(t)
Z t

t
F1(s)ds�

Z t

t
F1(s)

2ds;

which is true for N = 2. �

Proof of Proposition 10: Di¤erentiating the direct utility, (25), and evaluating the �rst-order
condition at ~t = t yields

�BBII (t) =
��

BB(~t)(t+ q(~t))

�0
j~t=t=N + �~
0II(t)=N + 2�f1(t) [2F1(t)� 1]

R t
t

~S(�BBII (t1)�t1�t;t1)
N

f1(t1)dt1

�2�F1(t) [1� F1(t)]
~S(�BBII (t)�2t;t)

N
f1(t)� �f1(t)

R t
t �

BB
II (x)f1(x)dx

��
R t
t (2�2(

~D2jt; y1)� 1)
h
�BBII (t)� �BBII (y1)

i
f1(y1)dy1f1(t)

�
=
�
[1� � + �F1(t)] f1(t)

�
:

Simplifying and re-arranging the above equation, we obtain

n
�
R t
t (2�2(

~D2jt; y1)� 1)f1(y1)dy1 + [1� � + �F1(t)]
o
�BBII (t) =

��
BB(~t)(t+q(~t))�0j~t=t+�~
0II(t)
f1(t)N

+2� [2F1(t)� 1]
R t
t

~S(�BBII (t1)�t1�t;t1)
N

f1(t1)dt1 � 2�F1(t)(1� F1(t))
~S(�BBII (t)�2t;t)

N
f1(t)

��
R t
t �

BB
II (x)f1(x)dx+ �

R t
t (2�2(

~D2jt; y1)� 1)�BBII (y1))f1(y1)dy1
� (43)
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Di¤erentiate (43) w.r.t. t and re-arrange the FOC such that only terms containing (~�
BB

II (t))
0

are on the RHS. Let us denote the terms on the LHS of the so constructed di¤erential equation
by M(t; �BBII (t)) which is is continuous in both arguments. Moreover, M(t; b) is continuously
di¤erentiable in b (and thus Lipschitz continuous) because [1� � + �F1(t)] > 0. Hence, the
di¤erential equation has a unique solution on (t; �t]. Su¢ ciency and monotonicity follows from
similar steps than those in the FPA.
Then, the �rst statement in the Proposition is a direct consequence of the de�nition of ~S. The

second statement is a direct implication of the indirect utility, (26), presented in the main text.
Finally, the third statement follows from the envelope theorem.�
Proof of Lemma 2: Fix bidder i and two realizations of his toughest competitor, t1, and y1
with t1 � y1. Recall that ~D2 = y1 � t1 + N

h
�BBII (t1)� �BBII (y1)

i
. For given y1 and t1, whenever

D2 �
P
i�2(ti � yi) falls short this threshold, then t1 � �BBII (t1)� y1 + �BBII (y1) +D2 < 0 and else

positive. Let �2(�jt1; y1) be the density of D2 conditional on the realizations t1 and y1. Moreover,
assume for the moment that ~D2 > �(N � 2)(y1 � t). Then, 
II(~t) reads

Z ~t

t

Z t1

t

Z (N�2)(t1�t)

~D2

n
(t1 � y1 + x)�N

h
�BBII (t1)� �BBII (y1)

io
�2(xjt1; y1)dxf1(y1)dy1f1(t1)dt1

+
Z ~t

t

Z t1

t

Z ~D2

�(N�2)(y1�t)

n
�(t1 � y1 + x) +N

h
�BBII (t1)� �BBII (y1)

io
�2(xjt1; y1)dxf1(y1)dy1f1(t1)dt1

Now use that

Z (N�2)(t1�t)

~D2
(�)�2(xjt1; y1)dx =

Z (N�2)(t1�t)

�(N�2)(y1�t)
(�)�2(xjt1; y1)dx�

Z ~D2

�(N�2)(y1�t)
(�)�2(xjt1; y1)dx:

The intensive risk therefore reads


II(~t) =
Z ~t

t

Z t1

t

h
2~�2( ~D2jt1; y1)� 1

i h
�BBII (t1)� �BBII (y1)

i
f1(y1)dy1f1(t1)dt1 + 
̂(~t);

where


̂(~t) = 
I(~t)� 2
Z ~t

t

Z t1

t

Z ~D2

�(N�2)(y1�t)
(t1 � y1 +D2)�2(xjt1; y1)dxf1(y1)dy1f1(t1)dt1:

Finally, we account for the possibility that ~D2 < �(N � 2)(y1 � t). De�ne the non-negative,
increasing and di¤erentiable functionW (�jt1; y1) the following way: W ( ~D2jt1; y1) =

R ~D2
(N�2)(y1�t)(t1�

y1 +D2)�2(xjt1; y1)dx if ~D2 � �(N � 2)(y1 � t) and else W (xjt1; y1) = 0. Then, it is easy to see
that


̂(~t) = 
I(~t)� 2
Z ~t

t

Z t1

t
W ( ~D2jt1; y1)f1(y1)dy1f1(t1)dt1

as stated in the text. �
Proof of Lemma 3: Assume for the moment that there exists a t such that N�BBII (t1)� t1� t >
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(N � 2)t for all t1 � t. Let ~t be in a neighborhood of t. Then we have that

Z ~t

t
:::
Z tN�2

t

����t+
P
ti

N
� �BBII (t1)

���� fN�1(tN�1jtN�2)dtN�1:::f1(t1j~t)dt1
=

Z ~t

t

Z (N�2)t1

N�II(t1)�t1�t

�
t+ x+ t1

N
� �BBII (t1)

�
~f2(xjt1)dt1f1(t1j~t)dt1

�2
Z ~t

t

Z N�II(t1)�t1�t

(N�2)t

�
t+ x+ t1

N
� �BBII (t1)

�
~f2(xjt1)dt1f1(t1j~t)dt1

= t+ q(~t)�
h
1� F1(~t)

i Z ~t

t
�BBII (t1)f1(t1)dt1 + 2

Z ~t

t

Z N�BBII (t1)�t1�t

(N�2)t

~F2(xjt1)
N

dxf1(t1)dt1;

where ~F2(xjt1) is the CDF of
P
i=2 ti conditional on t1, with density ~f2(xjt1). Note that the last

equality follows by partial integration. Next, assume that there is a t such that N�BBII (t1)�t1�t <
(N � 2)t for all t1. We have that

Z ~t

t
:::
Z tN�1

t

����t+
P
ti

N
� �BBII (t1)

���� fN�1(tN�1jtN�2)dtN�1:::f1(t1j~t)dt1
=

Z �t

t

Z (N�2)t1

(N�2)t

�
t+ x+ t1

N
� �BBII (t1)

�
~f2(xjt1)dxf1(t1j~t)dt1:

Thus, let ~S(�BBII (t1) � t1 � t; t1) = 0 if N�BBII (t1) � t1 � t < (N � 2)t and else equal toRN�BBII (t1)�t1�t
(N�2)t

~F2(xjt1)
N

dx. Then the formula for the direct utility presented in the main text easily
follows. �
Proof of Proposition 11: Observe that the envelope theorem implies that both in the FPA
and in the SPA a bidder�s indirect utility satis�es

R t
t 


BB(s)ds, which proves the last statement.
Moreover, equating the direct utility with the indirect utility yields the following condition:

Z t

t

BB (s) ds = 
BB (t) [t+ q(t)]� �
k(t)�NT BBk (t),

�
k(t) +NT BBk (t) = 
BB (t) [t+ q(t)]�
Z t

t

BB (s) ds; (44)

where T BBII (t) := f1� � [1� F1 (t)]g
R t
t �

BB
II (x) f1 (x) dx, T BBI (t) := �BBI (t)F1 (t) f1� � [1� F1 (t)]g,

k 2 fI; IIg and 
I(t) = 
(t).
Notice that equation (44) implies that

�
I(t)=N + T BBI (t) = �
II(t)=N + T BBII (t): (45)

Substituting and re-arranging, it is straightforward to see that (45) is equivalent to

f1�� [1�F1 (t)]g
"
F1 (t) �

BB
I (t)�

Z t

t
�BBII (x) f1 (x) dx

#
= � f
II(t)� 
I(t)g =N: �

Proof of Proposition 12: We begin by proving the �rst statement. With a slight abuse of
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notation we denote by EU(t) type-t bidder�s indirect equilibrium utility. We know that

EUCARA;CVII (t) = EUCARA;PVII (t) = EUCARA;PVI (t) = EUCARA;CVI (t)

where the �rst and last equalities follow from Es½o and White (2004) and the middle one follows
from Matthews (1983). Hence,

EUCARA;CVII (t) = EUCARA;CVI (t) ,
U (CEII (t)) = U (CEI (t)) ,

CEII (t) = CEI (t)

where CE is the certainty equivalent. Now observe that in equilibrium, that is, for a �xed bidding
strategy �CARAk , k 2 fI; IIg, a bidder of type ti faces a lottery over basic outcomes. Let X ti

k

denote the random variable associated with this lottery in the FPA and the SPA, respectively.
For the FPA, we have that X ti

I = ti +
P
j 6=i tj � �CARAI (ti) if ti is larger than the signal of i�s

strongest opponent, that is, if ti > t1, and X
ti
I = 0 otherwise. Similarly, in the SPA, we have that

X ti
II = ti +

P
j 6=i tj � �CARAII (t1) if ti > t1 and X

ti
II = 0 otherwise. The FPA gives rise to more

intensive risk than the SPA i¤V ar
�
X ti
I jX ti

I > 0
�
� V ar

�
X ti
II jX ti

II > 0
�
. Both auction formats give

rise to the same extensive risk. That is, the probability that outcome 0 realizes is the same in both
auction formats. Therefore, V ar

�
X ti
I jX ti

I > 0
�
� V ar

�
X ti
II jX ti

II > 0
�
i¤ V ar

�
X ti
I

�
� V ar

�
X ti
II

�
.

As the bidder�s utility function is concave and CEII (t) = CEI (t), it must be that

V ar
�
X ti
I jX ti

I > 0
�
� V ar

�
X ti
II jX ti

II > 0
�

, V ar
�
X ti
I

�
� V ar

�
X ti
II

�
, E

h
X ti
I

i
� E

h
X ti
II

i
) E

h
�CARAII (t1)

i
� E

h
�CARAI (t)

i
: (46)

Finally, as a bidder�s expected payment is higher in the auction that leads to fewer intensive
risk for any type, it follows that the seller�s expected revenue is also higher in that auction.
Next, we turn to the last statement. For the SPA, the result follows from Milgrom and Weber

(1982). For the FPA, we have

F1 (t) �
RN
I (t) =

Z t

t
�RNII (s) f1 (s) ds >

Z t

t
�CARAII (s) f1 (s) ds > F1 (t) �

CARA
I (t)

where the �rst inequality follows from Milgrom and Weber (1982) and the second one follows from
(46). �

B Relaxing Assumption 1
In this section we brie�y show how to amend the analysis of the FPA and SPA if Assumption

1 does not hold.19 Recall that Assumption 1 ensures that the weight a bidder places on expected

19We do this for the narrow bracketing speci�cation, but similar results apply under broad bracketing.
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gain-loss utility does not (strictly) exceed the weight he puts on consumption utility. When
this assumption is violated, a loss-averse agent dislikes uncertainty in his consumption outcomes
so much that he might select �rst-order stochastically-dominated options.20 That is, holding
everything else �xed, the expected utility of a bidder that expects to win the auction with a rather
low probability decreases in the probability of winning the good. As a consequence, single-crossing
fails for low-type bidders. Thus, the equilibrium involves pooling at the bottom. Let t� denote the
unique interior solution to the following equation:


(t) [t+ q(t)]� �g
(t) = 0: (47)

The following proposition describes the equilibrium strategy in the FPA and SPA when Assumption
1 does not hold.

Proposition 13. Assume �g > 1. Let 
� (t) := 1 [t � t�] 
 (t), q� (t) := 1 [t � t�] q (t) and 
� (t) :=
1 [t � t�] 
 (t). Then, in both the FPA and the SPA all types below t� submit a bid equal to zero.
In the FPA all types (weakly) above t� bid according to the following strategy

~�
�
I (t) =


� (t) [t+ q� (t)]� �g
� (t)�
R t
t 


� (s) ds

NF1 (t) f1 + �m [1� F1 (t)]g
:

Similarly, in the SPA all types (weakly) above t� bid according to the strategy for the case with
�g � 1 when replacing 
 (t), q (t) and 
 (t) with 
� (t), q� (t) and 
� (t), respectively and de�ning

�0 (t), q� (t)0 and 
�0 (t) as right-hand-side derivatives.

Proof of Proposition 13: Recall that in both the FPA and SPA the following holds

EU
�et; t� = 
� �et� ht+ q� �et�i =N � 
� �et� =N � T �k �et� ;

where k 2 fI; IIg, and T �k
�et� is de�ned by the posited bidding strategies.

First, notice that bidding according to his signal is optimal for type t�. Indeed, mimicking
a bidder with a lower signal would yield a payo¤ of zero just like reporting truthfully would.
Suppose then that the bidder mimics a bidder with a higher signal than his. As shown in the proof
of Proposition 1 such a deviation is not pro�table whenever �g

h
1� 2F1

�et�i < 1. Furthermore, we
know that 
 (t�) [t� + q (t�)] � 
 (t�) = 0: As 
 (t�) is strictly positive, it follows that 
 (t�) must
be strictly positive as well and this implies that �g [1� 2F1 (t�)] < 1.
Next, consider a bidder with a signal lower than t�. Such a bidder prefers to lose the auction

with certainty rather than winning with probability (weakly) less than F1(t�). Moreover, such a
type, say t0, never wants to deviate globally and mimic type t00 > t� because

EU (t00; t0) � EU (t00; t�) � EU (t�; t�) = 0 = EU (t0; t0) :

Now consider a bidder with a signal weakly higher than t�. The posited equilibrium bidding
functions satisfy the �rst-order conditions by construction. The second-order conditions are satis-
�ed by much the same argument as for type t�.

20To see why, consider a loss-averse agent who is deciding whether to accept a 50-50 gamble between winning
$100 or $0. Under CPE the agent would reject the gamble whenever � (�� 1) > 2.
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Next, we show that the bidding function is increasing. Applying an argument similar to the
one in the proof of Proposition 1, we see that the bidding function is increasing for t 2 [t�; t] if
�g [1� 2F1 (t)] < 1. As F1 is increasing, the result follows.
Finally, it remains to show that the solution to (47) is unique. By contradiction, suppose there

is more than one solution. Let t� be the smallest solution and t0 be the largest one. Then, it must
be that


 (t0) [t0 + q (t0)]� �g
 (t0) = 0 = 
 (t�) [t� + q (t�)]� �g
 (t�)

However, observe that EU (t�; t0) = 
 (t�) (t0 � t�) + EU (t�; t�) > 0. Moreover, by incen-
tive compatibility, EU (t0; t0) � EU (t�; t0) > 0. Because ~�

�
k (t) is increasing and ~�

�
k (t

�) = 0,
EU (t0; t0) > 0 implies that 
 (t0) [t0 + q (t0)]� �g
 (t0) > 0, yielding a contradiction. �
As in the private-value case, if Assumption 1 fails, the equilibrium strategy calls for partial

pooling whereby some bidders with strictly positive types choose not to participate in the auction
and bid zero instead (see Lange and Ratan, 2010). Therefore, only bidders with a su¢ ciently large
probability of winning the auction place positive bids. The intuition for this is that bidders with
relatively low signals do not expect to win with a high probability and hence prefer to eliminate
all the uncertainty in their consumption outcomes by not participating in the auction. These are
those bidders for whom the left-hand-side of (47) is negative: their expected gain-loss disutility is
so large that they would attain a negative total payo¤ even if they were to obtain the good for free.
Moreover, notice that with common values the threshold type t� is larger compared to the case
of private values. The reason is that in a common-value environment bidders face risk not only
with respect to whether or not they get the good for sale, but also with respect to what the good�s
value is. Hence, when Assumption 1 fails more types choose not to participate in the auction in
an environment with common values than in one with private values.
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