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Abstract

We introduce a model of intuition and contemplation in decision

problems under uncertainty. Intuition is a garbling of true informa-

tion and contemplation is the ability to recover the true informational

content of signals. We define natural orders on the quality of intuition

and on contemplative ability. In any non-strategic decision problem,

the agent’s utility increases as either the quality of her intuition or her

contemplative ability improves. We derive versions of Blackwell’s Infor-

mativeness Theorem for our intuitive agent and apply the model to the

canonical Bayesian persuasion problem.

∗We thank Alex Jakobsen, Kentaro Tomoeda, Toru Suzuki, Antonio Rosato, Jun Zhang,
Emil Temnyalov, Isa Hafalir, and seminar participants at the University of Calgary, UTS,
and UNSW for insightful feedback.
†University of Technology Sydney (benjamin.balzer@uts.edu.au)
‡University of Technology Sydney (benjamin.young@uts.edu.au)

1



1 Introduction

The problem of an individual trying to draw inference from observations is the

backbone of many economic problems. Researchers often make the simplifying

assumption that individuals are able to extract the true Bayesian content of

information for free. However, extracting information and drawing inference

in the real world is complicated and individuals may not be Bayesian in every

context. Instead, they may first rely on their intuition to proxy the meaning

of revealed information and then further contemplate in order to discover its

true content. In this paper, we provide a formal model of such a cognitive pro-

cess which is portable to any setting where an individual faces an information

extraction problem.

Consider the following motivating example. An investor needs to manage her

portfolio. There are three states of the economy: Good, Fair, and Bad. Each

state determines a set of optimal trades. The investor, however, does not know

the state and, instead, relies on news to inform her decision making. Suppose

she comes across a newspaper article which she knows will reveal the true state

if carefully read. However, fully reading and interpreting the article is costly.

Instead, the investor can quickly skim the article to intuit whether the state

of the economy is either Good or in the set {Fair, Bad}. Suppose the true

state is Bad. Then, the first impression of the investor from her quick skim of

the article is to rule out state Good. She must now decide whether to adjust

her portfolio on the basis of this first impression or to fully read the article to

resolve the remaining uncertainty. The following diagram conceptualizes this

situation.
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It is natural to model this newspaper article as an experiment that is fully-

revealing. However, instead of observing its outcome (i.e s1 since the state is

Bad), the investor observes for free the noisier signal Not Good (i.e. either s1

or s2 has realized). We think of intuition as the Bayesian update associated

with this first impression. With intuition Not Good, however, the investor still

faces uncertainty as to whether the true signal is s1 or s2 (i.e. the state is Bad

or Fair). We model contemplation as a costly process that allows the investor

to resolve this residual uncertainty.

The details of the model are as follows. An agent faces an experiment which is

a stochastic map from payoff-relevant states of the world into a signal space.

The agent, however, does not initially process the signal generated by the ex-

periment. Instead, she processes information on a mental signal space, which

is reached via some garbling of the experiment. Her intuition is the Bayesian

update of the generated mental signal given the experiment and the garbling.

We allow the intuition-generating process to be any garbling. As such, it is al-

ways noisier than true information and permits stochastic intuition. We model

contemplation as the agent’s ability to invert her intuition back to the true

3



signal. Specifically, for each mental signal, the agent chooses an intensity of

contemplation which determines the probability of successfully identifying the

meaning of the true signal realization. Thus, contemplation serves as a bridge

between intuitive decision-making and its Bayesian counterpart. The agent’s

contemplation decision is governed by a trade-off between the perceived ben-

efits from contemplation (i.e. being able to use all information that has been

revealed) and exogenous cognitive costs.

We define natural orders on the agent’s quality of intuition and contemplative

ability. Our order on the quality of intuition implies that the agent’s intuition

improves as it becomes less noisy. We show that the agent ascribes a higher

value to information in any decision problem as her intuition improves. We say

that the agent’s contemplative ability improves if her cognitive costs uniformly

decrease. In any decision problem, the agent is better off as her contemplative

ability improves. Moreover, we show that, in the prominent case of convex

cognitive costs, this order is also necessary to ensure the agent is better off in

any decision problem.

We characterize the set of experiments that are unambiguously welfare-ranked

for our intuitive agent. First, if nothing is known about the agent’s intuition-

generating process, we can only conclude that the agent prefers some infor-

mation to no information. Second, we introduce a condition on the agent’s

intuition-generating process, intuitive sufficiency, under which Blackwell’s equiv-

alence between garblings and the value of information (Blackwell (1953)) is

restored. Intuitive sufficiency essentially guarantees that, when experiments

become less noisy in the Blackwell sense, the agent’s intuition preserves this

reduction in noise.
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Our model fits with recent empirical evidence. In the context of noisy infor-

mation, Ambuehl and Li (2018) find that individuals (i) differ consistently

in how their beliefs respond to information, (ii) underreact in their value of

information to increased informativeness of the experiment, and (iii) value

experiments that reveal states of the world with certainty disproportionately

highly. We can capture these findings within our model by assuming that

(i) different individuals have different intuition-generating processes, (ii) the

intuition-generating process does not preserve the increased informativeness of

experiments in one-to-one proportion, and (iii) individual’s have perfect intu-

ition at signals that induce certainty, but relatively poor intuition otherwise.

In another experimental study, Enke et al. (2020) find that, for tasks that

do not require high-level problem solving skills, increasing stakes can improve

an individual’s task performance through reduced reliance on intuition. Our

model captures this finding as the agent will contemplate more (i.e. depend

on her intuition less) as the stakes increase.

We embed our intuitive agent in a strategic setting; the canonical Bayesian

persuasion problem introduced by Kamenica and Gentzkow (2011). In this

problem, a sender, whose preferences are misaligned with those of a receiver,

designs an experiment to persuade the receiver to take sender-preferred ac-

tions. By focusing on a particular intuition-generating process and cognitive

cost function, we characterize the sender’s optimal experiment. We show that

the informativeness of this experiment may increase as either the receiver’s

quality of intuition or contemplative ability worsens. This is because poor

intuition and low contemplative ability both serve as a source of commitment

power for the receiver to take undesirable actions from the sender’s perspective
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when using her intuition. This incentivizes the sender to increase the amount

of information he reveals. We show, in turn, when this increased informative-

ness increases the receiver’s equilibrium utility. Consequently, becoming more

cognitively limited, which hurts the agent in non-strategic settings, can make

her better off when information is designed.

The paper proceeds as follows. In Section 2, we discuss the related literature.

Section 3 introduces and discusses the model, and provides a simple example

for illustrative purposes. We present the general implications of the model

in Section 4. In Section 5 we apply the model to the canonical Bayesian

persuasion problem. Section 6 concludes.

2 Related Literature

Our model of intuition and contemplation is related to the literature on costly

information processing, most closely to theories of rational inattention (Sims

(2003), Caplin and Dean (2015), De Oliveira et al. (2017)).1 We provide a

detailed comparison of our model and rational inattention in Section 3.2.3,

where we explain that neither model nests the other. Specifically, while our

model of contemplation is nested in the rational inattention framework, our

model of intuition is a novel concept. This allows us to study the interesting

interaction between intuition and contemplation which is absent in rational

inattention models. Outside the paradigm of rational inattention, Kominers,

Mu, and Peysakhovich (2018) provide a model in which an individual can

1Those cited constitute a selection of conceptual contributions to the field of rational
inattention. Rational inattention has been applied extensively across of myriad of eco-
nomic fields, including macroeconomics, finance, and behavioral economics. See Maćkowiak,
Matejka, and Wiederholt (2018) for a detailed survey.
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make decisions using her prior for free but must pay a fixed cost to access the

true Bayesian content of information. Instead, the information that our agent

receives for free is more general than the prior (i.e. her intuition) and we allow

for more general contemplation processes.

Our paper is related to the model of ‘local thinking’ provided in Gennaioli

and Shleifer (2010). In their model, an agent evaluates new information using

past experience to form representative comparisons. Such an agent can exhibit

heuristical behavior that is difficult to explain within the Bayesian paradigm.

In our model of intuition, past experience may indirectly affect the agent’s

evaluation of information by shaping her intuition-generating process. How-

ever, given her imperfect intuition, she processes information ‘as-if’ she were

Bayesian. This allows us to provide stark predictions for how the value of

information changes as the model’s primitives vary; a task which is difficult

to achieve within the local-thinking framework. Moreover, we also consider

the interaction between intuition and contemplation, which allows the agent

to correctly evaluate information.

We also relate to models of coarse belief updating (Mullainathan (2002),

Jakobsen (2020)). In these papers, the agent’s interpretation of a signal may

also not coincide with its Bayesian update. However, these models assume that

the Bayesian update of a given signal still fully determines the agent’s result-

ing belief update at this signal. In contrast, our agent’s intuition-generating

process ensures that the intuition associated with a realized signal depends on

both the Bayesian update of that signal and counterfactual signals that did

not realize. In particular, our agent may hold different intuitive beliefs for

signals with the same informational content. Moreover, we also explore the
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role of contemplation for our intuitive agent.

In our model of information extraction, the agent makes contemplation de-

cisions by trading off a perceived value of contemplation against exogenous

cognitive costs. Hence, our paper relates to contributions in the literature

that explore a similar trade-off, albeit in completely different contexts. In

the level-k framework, Alaoui and Penta (2016) model an individual who can

endogenously transition between different depths of reasoning as a function

of the perceived benefits and the exogenous costs of doing so. Ergin and

Sarver (2010) provide a decision-theoretic framework where costly contempla-

tion allows for state-contingent planning by revealing information about the

individual’s menu-dependent preferences.

The main application of our theory is Bayesian persuasion, as introduced by

Kamenica and Gentzkow (2011). Other papers have also explored how devia-

tions from the paradigm of Bayesianism impact optimal persuasion. de Clippel

and Zhang (2019) allow for the receiver’s updating rule to not coincide with

Bayes’ rule. Beauchêne, Li, and Li (2019) consider a model with a receiver who

is ambiguity averse with maxmin expected utility, where a sender can utilize

ambiguous experiments. These papers are mainly interested in characterizing

the sender’s value of persuasion. In contrast, our paper is focused on the wel-

fare of the intuitive receiver who is being persuaded. Matyskova and Montes

(2018) are also interested in receiver welfare in a model where the receiver has

access to costly information acquisition. However, their receiver only has the

ability to learn more information than what is provided by the experiment.

In contrast, our receiver can, at most, learn the information provided by the

experiment. As a complement to our finding that cognitive limitations can in-
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crease the receiver’s welfare, they show that it can be harmful to the receiver

to have access to additional information.

Models of cognitively limited agents have been applied elsewhere in the litera-

ture. Ravid (2019) provides a model of bargaining with a rationally inattentive

buyer. He shows that being rationally inattentive can benefit the buyer as it

leads the seller to increase the quality of his products. Similarly, we show that

our intuitive receiver can be better off in a persuasion context as bounded

intuition induces higher quality of information. Martin (2017) considers a ra-

tionally inattentive buyer in a strategic price-setting game. He shows that the

equilibrium informativeness of prices may actually increase in the buyer’s cost

of attention. We establish a similar result: increasing contemplation costs can

lead to more informative experiments.

3 The Model

3.1 Formal Details

3.1.1 Preliminaries

Stochastic Maps: For a finite set X, let ∆(X) denote the set of probability

distributions over X. A stochastic map between two finite sets X and Y is

a function α : X → ∆(Y ). We write α(y|x) to denote the probability of y

given x under stochastic map α. For two stochastic maps α : X → ∆(Y ) and

β : Y → ∆(Z), define the composite of α and β, denoted β ◦ α, as

β ◦ α(z|x) =
∑
y∈Y

β(z|y)α(y|x)
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for all z ∈ Z and x ∈ X. Take two stochastic maps α : X → ∆(Y ) and

β : X → ∆(Z). Then, β is a garbling of α if there exists a stochastic map,

g : Y → ∆(Z) such that β = g ◦ α.

Information Primitives: There is a finite state space, Ω = {ω1, . . . , ωn},

n ≥ 2, with associated full-support prior µ ∈ ∆(Ω). An experiment is the

combination of a finite signal space, S = {s1, . . . , sk}, and a stochastic map

σ : Ω → ∆(S), where σ(s|ω) denotes the conditional probability of signal

s ∈ S given ω ∈ Ω. In a slight abuse of notation we write σ to denote experi-

ment (S, σ). Let E denote the set of all experiments.

Given experiment σ ∈ E and signal realization s ∈ S, define the Bayesian

operator

B(s, σ) ≡ (B(ω1|s, σ), . . . , B(ωn|s, σ)),

where

B(ω|s, σ) ≡ σ(s|ω)µ(ω)∑
ω′∈Ω

σ(s|ω′)µ(ω′)
.

That is, B(s, σ) ∈ ∆(Ω) is the Bayesian update given signal realization s ∈ S

in experiment σ.

Agent Preferences: An agent evaluates the informational content of exper-

iments in order to make decisions. Formally, the agent chooses action a ∈ A

where A is a compact action space. The agent has a state-dependent utility

function, u : A × Ω → R, where u(a, ω) denotes the utility of taking action

a ∈ A in state ω ∈ Ω. We assume u(·, ω) is continuous for all ω ∈ Ω. Let

p ∈ ∆(Ω) denote an arbitrary belief over the state space. The agent chooses
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an action a ∈ A that maximizes her expected utility which is given by

U(a|p) ≡
∑
ω∈Ω

u(a, ω)p(ω). (1)

Let a∗(p) denote the set of optimal actions at belief p.2

3.1.2 Intuition and Contemplation

Fix an experiment σ : Ω → ∆(S) and suppose signal s ∈ S realizes. A

Bayesian agent observes s, computes Bayesian update B(s, σ), and chooses an

action from the set a∗(B(s, σ)). However, an intuitive agent may not process

the meaning of the true signal realization from experiment σ for free. Figure

1 provides a general overview of how we model an intuitive and contemplative

agent.

We now discuss each component of this cognitive process in detail.

Intuition: Fix an experiment σ defined on signal space S and suppose signal

s ∈ S realizes. We want to model a situation in which the agent does not

necessarily understand the true informational content of s, B(s, σ), but does

have an intuition for its meaning. We capture this idea through the modeling

assumption that the agent does not observe the true signal realization s ∈ S

but rather observes a noisier signal, s̃, in a mental signal space, S̃. She then

uses the informational content of s̃ to approximate the true information. We

call this approximation her intuition.

2Since u(·, ω) is continuous for all ω ∈ Ω, a∗(p) 6= ∅. Generically, a∗(p) will be a
singleton. However, it may contain multiple elements in situations in which p makes the
agent indifferent between multiple actions. Depending on the application, one may need to
define a selection rule to break indifferences.
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The agent observes the experiment σ and signal s ∈ S realizes
⇓

The agent does not directly process s but rather observes signal s̃ in mental
signal space S̃

⇓
The agent forms an intuition using the informational content of s̃ as a proxy

for true information
⇓

The agent chooses intensity of contemplation, ρ, which determines the
likelihood of discovering the true signal realization s

⇓
If contemplation is successful, the agent takes a Bayesian optimal action.

Else, she bases her decision on her intuition.

Figure 1: The Cognitive Process

Formally, for any experiment σ there exists a stochastic mapping Γσ : S →

∆(S̃) which (probabilistically) associates true signals in S with signals in some

mental signal space S̃. This stochastic mapping depends on experiment σ for

two reasons: (i) σ determines the true signal space, S; and (ii) we allow for

situations in which the informational content of σ can affect the agent’s in-

tuition.3 Note that Γσ ◦ σ is itself an experiment on S̃; that is, Γσ ◦ σ ∈ E .

We refer to Γσ ◦ σ as the agent’s intuitive experiment. This intuitive exper-

iment is simply a garbling of the true experiment through Γσ. We term Γσ

the agent’s intuition-generating process at σ and let Γ ≡ {Γσ}σ∈E denote the

agent’s intuition-generating process.

Given σ and true signal realization s, process Γσ generates a mental signal,

3For example, the way σ is framed may impact how the agent processes this information
(Tversky and Kahneman (1981), Entman (1993)) or the aspects of this information that are
salient (Price, Tewksbury, and Powers (1997)).
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s̃. We model the agent’s intuition at true signal s to be the informational

content of the realized mental signal s̃ given intuitive experiment, Γσ ◦ σ; that

is, her intuition is B(s̃,Γσ ◦σ). Note that since Γσ is a stochastic map, it holds

that (i) the agent’s intuition at true signal s may be generated stochastically;

and (ii) her intuitive experiment is, overall, noisier than the true experiment σ.

If the agent relies on her intuition, she chooses an action in a∗(B(s̃,Γσ ◦ σ)).

We depict the two extremes cases of intuition-generating processes in Figure

2: perfect intuition (i.e. the agent intuits the true informational content) and

prior-based intuition (the agent intuits no informational content).

Perfect Intuition Prior-Based Intuition

s1

s2

sk

s1

s2

sk

...
...

...
...

s̃2

s̃1

s̃k

s̃

Figure 2: The Extremes of Intuition.

Contemplation: For given mental signal s̃, the agent perceives uncertainty

as to which s ∈ S generated it. We model contemplation as the ability to

resolve this uncertainty. We assume the agent has access to a continuous

contemplation technology. Formally, the agent chooses ρ ∈ [0, 1], where ρ is

the probability that she successfully inverts mental signal s̃ to true signal s.

Instead, with 1−ρ probability, this inversion fails and the agent uses her intu-

ition to make a decision. Contemplation is costly: success probability ρ comes
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at cognitive cost (in utils) C(ρ) ≥ 0. We assume that C(0) = 0, C(·) is weakly

increasing, and left-continuous.4

Given σ and Γσ, we can quantify the agent’s perceived uncertainty over true

signals at mental signal s̃. In particular, the conditional probability of s given

mental signal s̃ is given by

Pr(s|s̃, σ,Γσ) =

Γσ(s̃|s)
∑
ω∈Ω

σ(s|ω)µ(ω)∑
s′∈S

Γσ(s̃|s′)
∑
ω∈Ω

σ(s′|ω)µ(ω)
.

We now describe the agent’s contemplation problem. Let as ∈ a∗(B(s, σ))

denote a Bayesian optimal action at true signal s ∈ S. Let as̃ ∈ a∗(B(s̃,Γσ◦σ))

denote an intuitive optimal action at mental signal s̃. Then, the agent chooses

contemplation intensity ρ to solve

max
ρ∈[0,1]

ρ
∑
s∈S

Pr(s|s̃, σ,Γσ)U(as|B(s, σ))+(1−ρ)U(as̃|B(s̃,Γσ◦σ))−C(ρ). (2)

According to (2), the agent trades off the perceived benefits from contempla-

tion against the cost of contemplation.5 Contemplation is valuable because it

allows the agent to attune her action to the true information that has been

revealed, which may be different from her intuition.

Notice that the benefit from contemplation is not correct at the interim stage.

In particular, while some true signal s has realized (which generated some

mental signal s̃), the agent perceives that there is uncertainty as to which true

4These two assumptions together imply that C(·) is lower semi-continuous, which ensures
there is a solution to the agent’s optimal contemplation problem.

5See Alaoui and Penta (2018) for an axiomatization of the cost-benefit approach to
cognitive problems.
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signal has realized; that is, she may attach positive probability to signals that

have not realized. If contemplation is successful, the agent will observe the

true signal realization with probability one. However, her perception of what

she might observe is correct from the ex-ante perspective. This is precisely

because we assume the agent fully understands how her intuition is generated.

3.2 Discussion of Model

3.2.1 Intuition

We start by emphasizing two important ingredients to our model of intuition.

First, the agent understands the true experiment but does not necessarily pro-

cess its true informational content. Instead, she holds an intuition which is a

garbling of this true information and, as such, is stochastically noisier. Second,

the agent understands her intuition-generating process. These two assumptions

together imply that the agent’s perception of the benefits from contemplation

are correct from an ex-ante perspective, which is important for tractability

and the generality of our results presented in Section 4. This means we do not

capture situations in which the agent’s intuition is systematically biased on

average, as her intuition always averages out to the prior. As such, our model

of intuition is only a minor deviation from the paradigm of Bayesianism.

3.2.2 Contemplation

The contemplation processes we consider are a restricted class of experiments

that reveal information about true signal realizations: our contemplation strate-

gies characterized by ρ ∈ [0, 1]. Similar to the interpretation in Tirole (2009),

one can think of this contemplation process as a form of sampling. Using the

example from the introduction, the choice of ρ could be interpreted as a ran-
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dom sampling of paragraphs from the article that the investor carefully reads.

If the true information she requires is in a sampled paragraph, she learns it;

otherwise, she learns nothing. Cognitive costs associated with contemplation

can arise from a number of sources. For example, one could equally think of

these as opportunity costs or a physical cost in the form of disutility from

mental strain.

For these sampling-based contemplation processes, the agent will choose ac-

tions using either her intuition or the true information (i.e. as a Bayesian).

Thus, these processes are the most straightforward bridge between intuitive

decision-making and its Bayesian counterpart. We impose this restriction

to starkly highlight the difference between intuitive decision-making and its

Bayesian counterpart. Moreover, this simplifying assumption greatly improves

tractability in applications while still providing insightful conclusions.

3.2.3 Relation to Rational Inattention

Our model is most closely related to static models of rational inattention.

There are, however, two important differences. First, in rational inattention

models, the agent chooses her attention strategy using the prior (i.e. acquires

information about the true experiment at the ex-ante stage). In contrast, our

agent receives first some information for free (i.e. her intuition) and then, con-

ditional on this first impression, makes a contemplation decision (i.e. acquires

information about the true experiment at an interim stage). This implies that

our intuitive agent can correlate her contemplation strategy more effectively

with the true signal than a rationally inattentive agent can correlate her at-

tention strategy. In this sense, our model of intuition is a generalization of
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static rational inattention.

Second, rational inattention models generally allow the agent to choose any ex-

periment that reveals information about true signals as an attention strategy.

In contrast, our intuitive agent is restricted to a specific class of experiments

as described in the previous section. In this sense, rational inattention models

allow for more general attention strategies than our contemplation technology.

These two points together imply that, while clearly related, neither model

nests the other. However, if we were to allow for more general contemplation

strategies (i.e. any experiment that reveals information about the true sig-

nal realization), then our model of intuition and contemplation would strictly

generalize the static rational inattention framework. Specifically, rational inat-

tention would be the special case in which our intuitive agent has prior-based

intuition as in Figure 2.

3.3 An Illustrative Example

In what follows, we define a particular intuition-generating process and speci-

fication of cognitive costs and apply them to a particular decision problem in

order to illustrate the mechanics of the model.

Intuition and Contemplation: Take any experiment σ : Ω → ∆(S). We

describe an intuition-generating process that is a mixture of perfect intuition

and prior-based intuition (see Figure 2). In particular, the mental signal space

is given by S̃ ≡ S ∪ {s̃∅}. Define the intuition-generating process at σ to be

Γφσ(s|s) = φ ∈ [0, 1] and Γφσ(s̃∅|s) = 1 − φ for all s ∈ S. Figure 3 illustrates
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this process.

ΓφσS S̃ = S ∪ {s̃∅}
φ

φ

φ

1− φ

...
...

s1

s2

s1

s2

sk sk

s̃∅

Figure 3: A φ-mixture of perfect intuition and prior-based intuition.

Intuition-generating processes within this class are parameterized by a single

variable, φ ∈ [0, 1]. Given true signal s, the agent either learns its content for

free (with probability φ) or entertains mental signal s̃∅ (with probability 1−φ).

At mental signal s̃∅, the agent’s intuition is equal to the prior, µ, regardless of

the experiment. In this sense, this class of intuition-generating processes is a

φ-mixture of perfect intuition and prior-based intuition.

We assume that cognitive costs are given by C(ρ;κ) = κρ2/2, where the pa-

rameter κ ≥ 0 determines the marginal cost of contemplation.

The Decision Problem: There are two states, Ω = {ω1, ω2}, with a uniform

prior. The action space coincides with the state space, A = Ω, and the agent

wants to choose an action to match the state. Formally, utility is given by

u(a, ω) =

1 if a = ω

0 if a 6= ω.

(3)
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The experiment σ is fully informative; that is, there exists a binary signal space

S = {s1, s2} such that σ(si|ωi) = 1 for i = 1, 2. Clearly, B(s1, σ) = (1, 0) and

B(s2, σ) = (0, 1) so that if the agent were Bayesian she would take the action

ωi when signal si realizes, i = 1, 2.

Our agent, however, does not always process information on S. Instead, her

intuitive experiment is given by Γφσ ◦ σ(si|ωi) = φ and Γφσ ◦ σ(s̃∅|ωi) = 1 − φ

for i = 1, 2. Hence, the agent’s intuitive beliefs at each mental signal are

B(s1,Γ
φ
σ ◦σ) = (1, 0); B(s2,Γ

φ
σ ◦σ) = (0, 1); B(s̃∅,Γ

φ
σ ◦σ) = µ = (1/2, 1/2).

In particular, for a given true signal s, the agent’s intuition is B(s, σ) with

probability φ and is (1/2, 1/2) with probability 1 − φ. Therefore, she takes a

Bayesian optimal action at true signal s with probability φ. However, at s̃∅

she is unable to correctly correlate her action with the true signal realization.

As such, her action choice at s̃∅ may not be Bayesian optimal.

Given the potential for flawed decision-making at mental signal s̃∅, the agent

perceives that there is a benefit from contemplating. In particular, if contem-

plation is successful, she receives a payoff of 1. In contrast, if she does not

contemplate, she receives a payoff of 1/2. Her optimal contemplation decision

at s̃∅ solves

max
ρ∈[0,1]

ρ+ (1− ρ)(1/2)− κρ
2

2

which has solution ρ∗(s̃∅) = min
{

1
2κ
, 1
}

.

As φ increases, there is a natural sense in which the agent’s intuition improves:
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it becomes more likely that the agent’s intuition coincides with the meaning of

the actual signal realization. Similarly, as κ decreases there is a natural sense

in which the agent’s contemplative ability improves: the cost of contemplation

at any given level, ρ, decreases. Moreover, the agent’s ex-ante utility from

experiment σ is increasing as φ increases or κ decreases. Specifically, ex-ante

indirect utility, V (φ, κ, σ), can be computed to be

V (φ, κ, σ) =

1− κ
2

if κ ≤ 1/2

φ+ (1− φ)
[

1
2

+ 1
8κ

]
if κ ≥ 1/2,

which is decreasing in κ and (weakly) increasing in φ. Hence, the agent values

σ more as either her intuition or contemplative ability improves. In the next

section we define general notions of better intuition and greater contemplative

ability that ensure these predictions carry over to any decision problem the

agent may face.

4 General Implications

In this section, we present comparative static predictions of our model in ar-

bitrary decision problems. Our main focus is on how the value of information

depends on the primitives of our model. The value of information for some

experiment σ is the difference between the payoff the agent receives when

choosing optimally under σ given (Γ, C), and the payoff she receives when

using her prior.

We explore, in turn, how the intuition-generating process (Γ), the cognitive

cost function (C), and the experiment (σ) affect the value of information. First,
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we provide an order on the quality of intuition which ensures that an agent

always values information more as her intuition improves. Second, we provide

an order on cognitive cost functions such that an agent with greater contem-

plative ability always values information more. Finally, we explore conditions

on the statistical properties of both experiments and intuition-generating pro-

cesses that allow for value of information comparisons across experiments.

4.1 Intuition

We first investigate the role that intuition plays in our model. We define the

following order on the quality of the agent’s intuition.

Definition 1 (Better Intuition). Take two intuition-generating processes, Γ

and Γ′. We say that Γ displays better intuition at σ than Γ′ if Γ′σ is a garbling

of Γσ. We say that Γ displays better intuition than Γ′ if the former displays

better intuition at any σ ∈ E.

This definition is natural in that the agent’s intuition improves as it becomes

less noisy in the Blackwell sense. Recall the intuition-generating process of

the detailed example described in Section 3.3, Γφ (see Figure 3). For this

intuition-generating process, there is a sense in which the agent’s intuition

improves as φ increases for any experiment σ ∈ E . Our definition precisely

captures this idea: for φ, φ′ ∈ [0, 1] with φ > φ′ it is straightforward to show

that Γφ
′
σ is a garbling of Γφσ. Moreover, an agent facing the decision problem in

Section 3.3 becomes better off as φ increases. It turns out that if the agent’s

intuition improves in the sense of Definition 1 then she becomes better off in

any decision problem.
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Proposition 1. Fix σ ∈ E and take two intuition-generating processes, Γ and

Γ′, where Γ displays better intuition at σ than Γ′. Then the agent values σ

more under Γ than under Γ′ for all (A, u, C, µ).

Proposition 1 implies that better intuition leads to (weakly) higher ex-ante

utility, independent of the decision problem the agent faces. Therefore, the

better her intuition the more the agent values σ. The reason for this result

is that the agent can more effectively attune her action to the realized state

of the world as her intuition improves. Indeed, since Γ′σ is a garbling of Γσ,

there exists g such that Γ′σ = g ◦Γσ. Under Γσ, the agent can use g in order to

replicate, for each state ω, the distribution of (a, ρ) that she chooses under Γ′σ.

Since this conditional distribution is sufficient for the agent’s ex-ante utility,

she is better off under Γσ when she optimizes. This argument is similar to

the reason why a Bayesian agent prefers experiments that are less noisy in the

Blackwell sense (see de Oliveira (2018)).

Proposition 1 implies that improving one’s intuition can never be harmful.

However, this does not imply that improved intuition increases the likelihood

of taking a Bayesian optimal action. Example 1 illustrates this point.

Example 1. Consider a decision problem where Ω = {ω1, ω2}, µ(ω1) = 1/2,

A = Ω, utility is given by (3), and σ(si|ωi) = 1 for i = 1, 2. The intuition-

generating process has the structure Γφσ(s̃1|s1) = φ ∈ [0, 1] and Γφσ(s̃2|s2) = 1.

We consider two processes: one with φ = 1/2 and one with φ = 0. Clearly,

Γ
1/2
σ displays better intuition than Γ0

σ.

Suppose the agent’s cognitive cost function is such that C(0) = 0 and C(ρ) = κ

for all ρ ∈ (0, 1]. It follows that, at each mental signal realization, the agent ei-
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ther does not contemplate (ρ = 0) or fully contemplates (ρ = 1). This decision

is determined by comparing the perceived benefits from contemplation to κ. For

Γ0
σ, only mental signal s̃2 realizes. In this case, the agent is indifferent between

choosing ω1 and ω2 and, for any selection, her benefit from contemplation is

equal to (1/2)(1 − 0) + (1/2)(1 − 1) = 1/2. Hence, she fully contemplates if

κ < 1/2. In contrast, under Γ
1/2
σ , the agent takes a Bayesian optimal action

when s̃1 realizes. If, however, s̃2 realizes her benefits from contemplating are

given by (1/3)[1− 0] + (2/3)(1− 1) = 1/3. Hence, if κ ∈ (1/3, 1/2) an agent

with intuition Γ0
σ always contemplates fully leading to the Bayesian optimal

action with probability one. Instead, an agent with intuition Γ
1/2
σ never con-

templates at mental signal s̃2. Thus, she does not take a Bayesian optimal

action when s1 induces intuition s̃2.

In the example above, the less intuitive agent is more likely to take a Bayesian

optimal action because she contemplates more intensely than her more intu-

itive counterpart. Indeed, since a less intuitive agent has access to less infor-

mation for free (and understands this), one may think she always perceives

greater benefits from contemplation than a more intuitive agent. However, this

is not the case. Indeed, take Example 1 but instead suppose that the prior has

µ(ω1) = 2/3. Then, one can easily show that the more intuitive agent always

contemplates more than her less intuitive counterpart. Thus, the propensity

to take Bayesian optimal actions is ambiguously related to the quality of in-

tuition. Indeed, it is the amount of uncertainty the agent perceives after her

intuition is generated that drives this propensity, rather than the quality of

intuition itself.
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4.2 Contemplation

We now investigate the role that contemplation plays in our model. The

following order, defined by comparing cognitive cost functions, measures the

agent’s contemplative ability.

Definition 2 (Greater Contemplative Ability). Let C and C ′ denote two cog-

nitive cost functions. Then C displays greater contemplative ability than C ′ if

C(ρ) ≤ C ′(ρ) for all ρ ∈ [0, 1].

Under Definition 2, the agent’s contemplative ability improves as the cost

of implementing any given contemplation level ρ ∈ [0, 1] decreases. Recall

the cognitive cost function, C(ρ;κ) = κρ2/2, used in the illustrative example

described in Section 3.3. There is a natural sense in which the agent’s contem-

plation process improves as κ decreases. Indeed, for κ < κ′, C(ρ;κ) dislplays

greater contemplative ability than C(ρ;κ′) in the sense of Definition 2. The

following proposition shows that the agent is better off in any decision problem

as her contemplative ability improves.

Proposition 2. Take two cognitive cost functions, C and C ′, where C displays

greater contemplative ability than C ′. Then, for any (A, u, σ,Γ, µ), the agent

is better off with C than with C ′.

Proposition 2 implies that greater contemplative ability leads to (weakly)

higher ex-ante welfare. Obviously, an agent with greater contemplative ability

can always replicate the strategy of her less able counterpart at lower cognitive

cost. Thus, the former’s optimal strategy must yield her higher utility.

If we restrict attention to the prominent class of convex cognitive cost func-

tions, the order from Definition 2 is also necessary for the agent to be better
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off in any decision problem.

Proposition 3. Take two convex cognitive cost functions, C and C ′. The

following two statements are equivalent:

(a) C displays greater contemplative ability than C ′.

(b) For all (A, u, σ,Γ, µ), the agent is better off under C than under C ′.

The proof of Proposition 3 leverages that, with convex cognitive costs, any level

of contemplation ρ ∈ [0, 1] can be an optimal choice in some decision problem.

The following example illustrates why, when the cognitive cost function is not

convex, our order on contemplative ability may not be necessary to ensure the

agent is better off in any decision problem.

Example 2. Take the following two cognitive cost functions: C(ρ) = ρ for all

ρ ∈ [0, 1] and C ′(ρ) = 0 for ρ = 0 and C ′(ρ) = 1/2 for ρ > 0. Clearly, C ′

is not convex and neither C nor C ′ displays greater contemplative ability than

the other. Moreover, for both C and C ′, the agent finds it optimal to choose

either ρ = 0 or ρ = 1 at any mental signal in any decision problem. Hence, it

is without loss of generality to suppose the agent selects ρ ∈ {0, 1} under either

cognitive cost function. Since C ′(ρ) ≤ C(ρ) for ρ ∈ {0, 1}, it follows that the

agent is better off with C ′ for any (A, u, σ,Γ, µ).

The results in Proposition 2 and Proposition 3 do not necessarily imply that an

agent with lower cognitive costs contemplates more. However, if the cognitive

cost function satisfies increasing differences (see Milgrom and Shannon (1994)),

this is the case. Take a cognitive cost function indexed by a parameter κ ∈ R,

C(ρ;κ), where C(ρ;κ) is increasing in κ for all ρ ∈ [0, 1]. This function satisfies

increasing differences in (ρ, κ) if C(ρ;κ)−C(ρ′;κ) is increasing in κ for ρ ≥ ρ′.
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Proposition 4. Suppose C(ρ;κ) satisfies increasing differences in (ρ, κ). Then,

for any σ : Ω→ ∆(S) and Γσ : S → ∆(S̃), the agent contemplates with greater

intensity at each s̃ ∈ S̃ with κ than with κ′ > κ.

As an example, the quadratic cost function C(ρ;κ) = κρ2/2 where κ ≥ 0

satisfies increasing differences in (ρ, κ). The following example illustrates that

the positive association between contemplation intensity and contemplative

ability may fail when increasing differences is not satisfied.

Example 3. Consider the decision problem from Example 1, where Ω =

{ω1, ω2}, µ(ω1) = 1/2, A = Ω, utility given by (3), and σ(si|ωi) = 1 for

i = 1, 2. The agent has prior-based intuition: Γσ(s̃|si) = 1 for i = 1, 2 (see

Figure 2).

Consider the following class of cognitive cost functions, indexed by the param-

eter κ ∈ [0, 1]:

C(ρ;κ) =

0 if ρ ≤ 1− κ

1/3 if ρ > 1− κ.

For a given κ, C(ρ;κ) is such that the agent can contemplate up to inten-

sity 1− κ for free, but incurs a fixed cognitive cost of 1/3 if she contemplates

with greater intensity. We compare the case of κ = 1/2 to κ = 1. Clearly,

by Definition 2, C(ρ; 1/2) displays greater contemplative ability than C(ρ; 1).

However, increasing differences fails.6 We now determine the level of con-

templation chosen by each agent. For C(ρ; 1), the agent chooses between fully

6Indeed, for ρ = 1 and ρ = 1/2,

C(1; 1)− C(1/2; 1) = 0 < C(1; 1/2)− C(1/2; 1/2) = 1/3.
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contemplating (ρ = 1) or no contemplation (ρ = 0). She chooses to fully con-

template as 1 − 1/3 > 1/2. Instead, for C(ρ; 1/2), the agent chooses between

fully contemplating and the maximum contemplation level which is free (i.e.

ρ = 1/2). She chooses ρ = 1/2 as (1/2) + (1/2)(1/2) > 1 − 1/3. Hence, the

agent with higher cognitive costs contemplates with greater intensity and, as

such, takes a Bayesian optimal action more often. Nonetheless, the agent that

displays greater contemplative ability is better off.

4.3 Quality of Information

We now investigate the role that the informativeness of experiments plays in

the agent’s decision-making process. From Blackwell’s Informativeness The-

orem, it is known that a Bayesian agent prefers experiment σ to σ′ for any

(A, u, µ) if and only if σ′ is a garbling of σ. Therefore, experiments ordered

by garblings fully characterize the set of experiments that are unambiguously

welfare-ranked for any Bayesian agent. This, however, may not be the case

for our intuitive agent. Our first result characterizes the set of experiments

that are uniformly welfare-ranked across all decision problems faced by any

intuitive agent.

Proposition 5. Take two experiments, σ, σ′ ∈ E, where σ : Ω → ∆(S) and

σ′ : Ω→ ∆(S ′). The following two statements are equivalent:

(a) σ′ is an uninformative experiment, that is, B(s′, σ′) = µ for all s′ ∈ S ′.

(b) For all (A, u, C,Γ, µ), the agent prefers σ to σ′.

Suppose a third party, who is ignorant of (A, u, C,Γ, µ), wishes to know which

of two experiments the agent prefers. Proposition 5 implies that this third

27



party can only know with certainty that the intuitive agent prefers some in-

formation to no information. Example 4 provides intuition for why this is the

case.

Example 4. There are two states, Ω = {ω1, ω2} with prior µ(ω1) = 1/2.

The action space is A = Ω, with the agent’s state-dependent utility given by

(3). Consider the following two experiments on signal space S = {s1, s2}:

σ(si|ωi) = 1 for i = 1, 2 and σ′(si|ωi) = 3/4 for i = 1, 2. Clearly, σ′ is a

garbling of σ but σ′ is not uninformative. A Bayesian agent prefers experiment

σ to σ′ by Blackwell’s Informativeness Theorem. In contrast, consider an

intuitive agent with intuition-generating process such that Γσ(s̃∅|si) = 1 for

i = 1, 2 and Γσ′(si|si) = 1 for i = 1, 2. This process implies that (i) Γσ ◦ σ is

an uninformative experiment and (ii) Γσ ◦ σ is a garbling of Γσ′ ◦ σ′ = σ′. If

C(ρ) = +∞, then the agent always prefers (sometimes strictly) σ′ to σ even

though σ′ is a garbling of σ. Only an uninformative σ′ ensures that the agent

never strictly prefers σ′ to σ.

Thus, the set of experiments which are unambiguously welfare-ranked is heav-

ily restricted when nothing is known about the agent’s intuition-generating

process. As a result, Blackwell’s Theorem does not hold for an intuitive agent.

A natural question is whether there exists a restriction on the agent’s intuition-

generating process that restores Blackwell’s theorem; that is, when does an

intuitive agent prefer σ to σ′ in any decision problem if and only if σ′ is a

garbling of σ? The answer to this question is affirmative. In order to describe

this condition, we introduce some notation.

Take any experiment σ : Ω → ∆(Sσ) with associated intuition-generating

process Γσ : Sσ → ∆(S̃σ). Let Tσ ≡ Sσ × S̃σ. Note that σ and Γσ jointly
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describe an experiment, πσ, on Tσ. In particular, πσ(sσ, s̃σ|ω) = Γσ(s̃|s)σ(s|ω)

for all sσ ∈ Sσ, s̃σ ∈ S̃σ, and ω ∈ Ω. That is, πσ(sσ, s̃σ|ω) is the probability

that true signal sσ and mental signal s̃σ jointly realize conditional on state ω.

As such, πσ measures the pooled information available to the agent. The next

condition compares pooled information across experiments.

Definition 3 (Intuitive Sufficiency). Take two experiments σ and σ′. We say

that σ is intuitively sufficient for σ′ if there exists a g : Tσ → ∆(Tσ′) such that

(a) πσ′ = g ◦ πσ; and

(b)
∑

sσ′∈Sσ′
g(sσ′ , s̃σ′|sσ, s̃σ) is independent of sσ for all s̃σ′ ∈ S̃σ′ and s̃σ ∈ S̃σ.

Intuitive sufficiency is closely related to the individual sufficiency condition

provided in Bergemann and Morris (2016) and the notion of non-communicating

garblings provided in Lehrer, Rosenberg, and Shmaya (2013), both defined in

the context of many-player games.7 Part (a) of intuitive sufficiency states that

the pooled experiment for σ′ is a garbling of σ. Part (b) of the condition

states that, for this garbling, the marginal probability of s̃σ′ given (sσ, s̃σ) is

independent of sσ. Essentially, these two conditions jointly imply that σ is

less noisy than σ′ and the agent’s intuition-generating process preserves this

reduction in noise. Specifically, condition (a) ensures that σ′ is a garbling of

σ. Moreover, condition (a) and (b) jointly ensure that Γσ′ ◦ σ′ is a garbling

of Γσ ◦ σ. The condition, however, is slightly stronger than these two impli-

cations. In particular, it also places structure on how the intuition-generating

process preserves the garbling of σ to σ′. Indeed, the requirement that the

7The main difference from Bergemann and Morris (2016) and Lehrer, Rosenberg, and
Shmaya (2013) is that we require independence of the marginal of g only for mental signals
and not for true signals. This is because, when our agent makes a decision at some true
signal, she also knows which mental signal realized.
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conditional marginal probability of s̃σ′ is independent of sσ ensures that the

agent can (i) replicate Γσ′ ◦ σ′ from Γσ ◦ σ using a strategy measurable with

respect to only her mental signals s̃σ ∈ S̃σ; and (ii) can do so in a way that

maintains the (correct) perception that σ is “better” than σ′.

We say that the agent’s intuition-generating process, Γ, preserves the Blackwell

order if σ is intuitively sufficient for σ′ whenever σ′ is a garbling of σ. Note

that there are intuition-generating processes that preserve the Blackwell order,

so that this condition is non-vacuous. In particular, it is simple to verify that

the φ-mixture between perfect and prior-based intuition described in Section

3.3 ensures intuitive sufficiency is satisfied whenever σ′ is a garbling of σ.

The following proposition shows that preservation of the Blackwell order is

sufficient for Blackwell’s theorem to hold with an intuitive agent.

Proposition 6. Suppose that Γ preserves the Blackwell order. The following

two statements are equivalent:

(a) σ′ is a garbling of σ.

(b) For any (A, u, C, µ), the agent prefers σ to σ′.

The direction (b) implies (a) is a direct implication of Blackwell’s theorem

if one takes C(ρ) = 0 for all ρ ∈ [0, 1]. Similar to the proof of Proposition

1, (a) implies (b) because intuitive sufficiency ensures that the agent facing

σ can always replicate, for each state of the world, the distribution of (a, ρ)

generated under σ′. The following example highlights why it is not sufficient

to only require that σ′ is a garbling of σ and Γσ′ ◦ σ′ is a garbling of Γσ ◦ σ.

Example 5. There are two states, Ω = {ω1, ω2}, the prior is uniform, A = Ω,

and the agent’s state-dependent utility is given by (3). Suppose that the cogni-
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tive cost function has C(0) = 0 and C(ρ) = 3/8 for ρ ∈ (0, 1]. With this cost

function, the agent either chooses ρ = 0 or ρ = 1 at each mental signal. Figure

4 displays two experiments and their associated intuition-generating processes.
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2
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2
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σ Γσ

s̃1

s̃2

Figure 4: An intuition-generating process impacted by framing effects.

The experiments are equivalent in that they reveal exactly the same informa-

tion. However, the agent’s intuition is generated differently depending on pre-

cisely which experiment is used. This captures a situation where the agent’s

intuition is impacted by framing effects. For example, σ′ may represent a

story on the nightly news and σ may represent the same story in the newspa-

per. Since σ and σ′ are equivalent, σ is a garbling of σ′. Moreover, the agent’s

intuition is equal to the prior for any mental signal under either experiment.

Hence, Γσ ◦σ is a garbling of Γσ′ ◦σ′. Nonetheless, the agent’s payoff is strictly

higher under σ than under σ′. Indeed,

V (Γ, C, σ) = (1/2)(1− 3/8) + (1/2)(1/2) = 9/16 > 1/2 = V (Γ, C, σ′),

where these payoffs arise from the fact that the agent contemplates at s̃1 under

σ but never contemplates under σ′. Conversely, it is simple to verify that σ is

intuitively sufficient for σ′, so that σ is preferred to σ′ in any decision problem.
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5 Application: Bayesian Persuasion

We consider the canonical example of a Bayesian persuasion problem, intro-

duced in Kamenica and Gentzkow (2011), with an intuitive receiver. There

are many situations in which persuaders need to take into account the first

impression or intuition of those people that they are trying to convince. For

example, academics need to present their research in a way that ensures other

researchers (who may only skim-read articles) are able to intuit the main mes-

sage of the paper quickly and are convinced that the paper is worth reading

in detail. Similarly, newspaper articles are often structured to maximize the

amount of information the reader attains by quickly skimming the first few

paragraphs (the so-called “onion method”).

We illustrate that poor intuition can serve as a form of commitment power

to take the sender’s least preferred action while contemplation allows for flex-

ibility to renege on this action if the sender transmits sufficiently convincing

information. As a consequence, we find that cognitive limitations that are

harmful in non-strategic situations can be beneficial in strategic settings.

We now describe the canonical model. A sender designs an experiment σ ∈ E

for a receiver. There are two states, Ω = {ω1, ω2}, with common prior µ ≡

µ(ω1) > 1/2, and two actions, A = Ω. The sender’s utility is state-independent

and given by

û(a, ω) =

1 if a = ω2

0 if a = ω1.
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Instead, the receiver wants to take an action that matches the state; that is,

u(a, ω) =

1 if a = ω

0 if a 6= ω.

To guarantee the existence of an optimal experiment for the sender, we assume

that the receiver resolves indifference according to the sender’s preference.

5.1 Optimal Experiment for a Bayesian Agent

As a benchmark, we derive an optimal experiment that the sender designs

for a Bayesian receiver. Following the arguments in Kamenica and Gentzkow

(2011), it is without loss of generality to focus on experiments with two signals

and we treat an experiment as a distribution of posteriors that average to the

prior (the “Bayes plausibility requirement”). For some experiment σ, let β1 ≡

B(ω1|s1, σ), β2 ≡ B(ω2|s2, σ), and α ≡ Pr(s2|σ) = µσ(s2|ω1)+(1−µ)σ(s2|ω2).

The Bayes plausibility requirement is equivalent to αβ2+(1−α)(1−β1) = 1−µ.

We assume the sender uses s1 to convince the receiver to take action ω1 (i.e

β1 ≥ 1/2) and uses s2 to convince the receiver to take action ω2 (i.e. β2 ≥ 1/2).

The sender’s optimization problem is

max
α,β1,β2

α subject to β1 ≥ 1/2, β2 ≥ 1/2, and Bayes plausibility.

This program has the solution α = 2(1− µ), β1 = 1, and β2 = 1/2. This solu-

tion determines the Bayesian optimal experiment which we denote by σBP .

Our intuitive receiver may face frictions in terms of her intuition and/or her

ability to contemplate. However, in the absence of either of these frictions it
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is clear that the intuitive receiver will be indistinguishable from a Bayesian re-

ceiver and σBP is an optimal experiment. Proposition 7 states this observation

without proof.

Proposition 7. An optimal experiment for the principal is σBP if either

the agent has perfect intuition or has maximal contemplative ability (that is,

C(ρ) = 0 for all ρ ∈ [0, 1]).

Note that the experiment σBP gives the receiver a payoff of µ which is the same

payoff that she would attain under no information. It follows from Proposition

5 that, for any experiment, an intuitive receiver garners higher payoff than µ.

The Bayesian optimal experiment may not effectively convince the receiver

when frictions on both intuition and contemplation are present. This is because

action ω1 is (weakly) optimal for all signal realizations. As such, an intuitive

receiver never contemplates if her intuition directs her to take this action.

The sender needs to take this into consideration when trying to convince the

receiver.

5.2 An Intuitive Agent

We utilize the φ-mixture of perfect and prior-based intuition described in Sec-

tion 3.3. We interpret a receiver with this intuition-generating process to be

conservative since at each true signal she ignores its informational content with

probability 1−φ and intuits to take an action consistent with the prior. Since

this action is ω1, the smaller is φ the more commitment power the receiver has

to take the sender’s least-preferred action.
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We assume the agent’s cognitive cost function takes the quadratic form C(ρ;κ) =

κρ2/2 where κ ≥ 0. Since C(ρ;κ) satisfies increasing differences in (ρ, κ), the

lower is κ the more the receiver contemplates for a given perceived benefit from

contemplation (see Proposition 4). Hence, κ captures the receiver’s flexibility

to deviate from what her intuition prescribes.

Under this cognitive process, it is without loss of generality for the sender to

use an experiment that has only two signals.

Lemma 1. Take any experiment σ ∈ E. There exists an experiment σ′ : Ω→

∆({s1, s2}) such that the sender’s payoff is the same under both σ and σ′.

5.3 An Optimal Experiment

We now state the optimal experiment chosen by the sender. Given Lemma

1, we can restrict attention to σ that generate only two posterior beliefs,

β1 ≡ B(ω1|s1, σ) or β2 ≡ B(ω2|s2, σ). Let α be the probability that s2 re-

alizes under σ. Suppose, without loss of generality, the sender uses si to

convince the receiver to take action ωi (i.e. βi ≥ 1/2 for i = 1, 2). Given the

receiver’s intuition-generating process, she will only perceive a benefit from

contemplation if mental signal s̃∅ realizes. The following proposition describes

the sender’s optimal experiment, (α∗, β∗1 , β
∗
2), as well as the receiver’s optimal

contemplation decision at s̃σ, ρ∗(s̃∅).

Proposition 8. Let κ(φ) ≡ 2(1−µ)(1−φ)
2−φ < κ̄(φ) ≡ 2(1−µ)(1−φ)

φ
. Then β∗1 = 1,

β∗2 = (1− µ)/α∗, and

(a) if κ ≤ κ(φ), α∗ = 2(1− µ)− κ and ρ∗(s̃∅) = 1, or

(b) if κ ∈ (κ(φ), κ̄(φ)), α∗ = 1− µ+ κφ
2(1−φ)

and ρ∗(s̃∅) = 2(1−µ)−α∗
κ

∈ (0, 1), or
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(c) if κ ≥ κ̄(φ), α∗ = 2(1− µ) and ρ∗(s̃∅) = 0.

Proposition 8 shows that there are three distinct regimes. Figure 5 illus-

trates these three regimes and the thresholds that define them. In any regime,

β∗1 = 1. Therefore, the sender’s optimal experiment is more convincing (i.e.

reveals more information) the smaller is α∗. Part (a) of the proposition shows

that, when κ and φ are sufficiently small, the sender’s experiment actually be-

comes more informative (i.e. α∗ decreases) as the agent’s contemplative ability

worsens (i.e. κ increases). This is because (i) when φ is small, the sender’s

benefits from incentivizing contemplation at mental signal s̃∅ are large, and

(ii) κ is so small that it is worth incentizing the receiver to fully contemplate

at s̃∅ (i.e. choose ρ(s̃∅) = 1). As the receiver’s κ increases, so must the per-

ceived benefits from contemplation (i.e. the experiment must become more

informative).

κ

φ1

1− µ

ρ∗(s̃∅) = 1

ρ∗(s̃∅) ∈ (0, 1)
ρ∗(s̃∅) = 0

Figure 5: The sender’s optimal experiment for all (φ, κ).

Part (c) shows that, when either κ or φ are sufficiently large, the sender chooses
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the Bayesian-optimal experiment σBP , where ρ∗(s̃∅) = 0 (see the discussion at

the end of Section 5.1). This is because (i) when φ is large, the receiver intuits

the true content of signals with high probability, and (ii) large κ implies it is

not worthwhile for the sender to incentivize contemplation at s̃∅.

Finally, the regime described in part (b) is an intermediate case of those de-

scribed in (a) and (c). In this region, the sender trades off the gains from

reducing the informational content of the experiment (towards to σBP ) against

the costs of the receiver not valuing contemplation and, hence, using her in-

tuition to make decisions. Thus, the optimal experiment induces an interior

level of contemplation at s̃∅. It is interesting to note that the sender’s optimal

experiment actually becomes more informative (i.e. α∗ decreases) as the re-

ceiver’s quality of intuition decreases (i.e. φ decreases). The reason is that, as

φ decreases, the receiver gains more commitment power to take the sender’s

least-preferred action, ω1. Since κ is not too large, the receiver is sufficiently

flexible in that she will contemplate and take a Bayesian-optimal action if the

sender reveals convincing information in favor of action ω2. The sender finds it

optimal to reveal more information to undo this increased commitment power

from lower φ.

The next proposition describes how the receiver’s equilibrium payoff varies

with φ and κ.

Proposition 9. Let V (φ, κ) denote a (φ, κ)-receiver’s equilibrium payoff where

φ < 1 and κ > 0. Then,

(a) For κ ≤ κ(φ), V is strictly increasing in both φ and κ.

(b) For κ ∈ (κ(φ), κ̄(φ)), V is strictly decreasing in κ, and

37



(i) if κ ≤ 1− µ, V is strictly decreasing in φ; or

(ii) if κ > 1 − µ, there exists φ̄ ∈ (0, κ̄−1(κ)) such that V is increasing

for φ < φ̄ and decreasing for φ > φ̄.

(c) For κ ≥ κ(φ), V is independent of both φ and κ.

Figure 6 graphically displays how the receiver’s utility varies with φ and κ.

Part (a) of Proposition 9 shows that, when κ is sufficiently small, the receiver’s

equilibrium payoff is increasing as her contemplative ability declines (i.e. κ

increases). This stands in stark contrast to Proposition 2 which states that,

in non-strategic settings, an intuitive agent is never better off as her contem-

plative ability worsens. Here, instead, the receiver’s payoff increases as the

sender’s optimal experiment reveals more information as κ increases in this

region. Note that V is increasing in φ, which is consistent with Proposition 1,

as the optimal experiment is independent of φ in this region.

κ

φ1

1− µ

κ

φ1

1− µ

Figure 6: The figure illustrates how receiver utility varies with φ and κ. Utility
increases in the direction an arrow points. The left panel shows how utility
varies with φ. The right panel shows how utility varies with κ.
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Part (b) of the proposition shows that, for any κ, there is a region over which

the receiver’s equilibrium utility increases as the quality of her intuition wors-

ens (i.e. φ decreases). This fact stands in stark contrast to Proposition 1, which

states that in a non-strategic context, any intuitive agent is always better off

as the quality of her intuition improves. Here, instead, the receiver’s payoff

increases because the informativeness of the optimal experiment increases as

φ decreases in this region (see the discussion below Proposition 8). As long

as her intuition is not too poor and her cognitive costs are not too large, she

reaps benefits from this improved information.

In any non-strategic context, the receiver would always want to have φ = 1 (i.e.

perfect intuition) and κ = 0 (i.e. maximal contemplative ability). However,

the preceding analysis shows that the receiver can benefit from either poor

intuition or low contemplative ability as both serve to increase commitment

power to take undesirable actions from the sender’s perspective. Indeed, the

levels of φ and κ that maximize V are φ = 1−
√

3
2
≈ 0.13 and κ = 2(1−µ)

√
3

2+
√

3
≈

0.9(1− µ). Hence, the receiver desires a quality of intuition which is far from

perfect in this application.

6 Conclusion

We have introduced a theory of intuition and contemplation for an agent facing

a decision problem under uncertainty. Our model is general and portable to

any setting in which an individual needs to extract information from a source.

We have provided natural orders on an agent’s quality of intuition and her

contemplative ability. These orders assure that an agent becomes better off in

any non-strategic setting as either her intuition or her contemplative ability
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improves. Moreover, we have derived versions of Blackwell’s Informativeness

Theorem for intuitive agents.

Finally, we have demonstrated that embedding our intuitive agent in a strate-

gic setting generates interesting insights. In particular, in a Bayesian persua-

sion setting an intuitive receiver can be better off the more cognitively limited

she is. As such, bounds on either intuition or the contemplative process that

hurt the individual in non-strategic settings may actually benefit her when in-

formation is strategically designed. This finding arises because poor intuition

and low contemplative ability can both serve as sources of commitment power.
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A Appendix

Proof of Proposition 1

Fix an experiment σ : Ω→ ∆(S). Take two intuition-generating processes, Γ

and Γ′, where Γσ : S → ∆(S̃) and Γ′σ : S → ∆(S̃ ′) and suppose that Γ displays

better intuition at σ than Γ′. Take an optimal solution in pure strategies under

Γ′: a′s ∈ a∗(B(s, σ)) for s ∈ S, a′s̃′ ∈ a∗(B(s̃′,Γ′σ ◦σ)) for s̃′ ∈ S̃ ′, and ρ′s̃′ solves

equation (2) for all s̃′ ∈ S̃ ′. This strategy generates ex-ante utility under Γ′

equal to

∑
ω∈Ω

µ(ω)
∑
s∈S

σ(s|ω)
∑
s̃′∈S̃′

Γ′σ(s̃′|s) [ρ′s̃′u(a′s, ω) + (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)] .

(4)

Since Γ displays better intuition at σ than Γ′, there exists a g : S̃ → ∆(S̃ ′)

such that Γ′σ = g ◦ Γ. Consider the following strategy under Γ: choose a′s for

each s ∈ S, and at s̃, choose (ρ′s̃′ , a
′
s̃′) with probability g(s̃′|s̃). This strategy

generates ex-ante utility under Γ equal to

∑
ω∈Ω

µ(ω)
∑
s∈S

σ(s|ω)
∑
s̃∈S̃

Γσ(s̃|s)
∑
s̃′∈S̃′

g(s̃′|s̃) [ρ′s̃′u(a′s, ω) + (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)]

=
∑
ω∈Ω

µ(ω)
∑
s∈S

σ(s|ω)
∑
s̃′∈S̃′

[ρ′s̃′u(a′s, ω) + (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)]
∑
s̃∈S̃

Γσ(s̃|s)g(s̃′|s̃)

=
∑
ω∈Ω

µ(ω)
∑
s∈S

σ(s|ω)
∑
s̃′∈S̃′

Γ′σ(s̃′|s) [ρ′s̃′u(a′s, ω) + (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)] ,

where the last equality follows from the fact that

∑
s̃∈S̃

g(s̃′|s̃)Γσ(s̃|s) = g ◦ Γσ(s̃′|s̃) = Γ′σ(s̃′|s).
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Since this strategy gives utility under Γ equal to (4), an optimal strategy under

Γ must give weakly larger utility than that under Γ′. �

Proof of Proposition 2

Fix σ : Ω → ∆(S) and Γσ : S → ∆(S̃). Take two cognitive cost functions,

C and C ′, such that C(ρ) ≤ C ′(ρ) for all ρ ∈ [0, 1]. Take an optimal pure

strategy under Γ′: a′s ∈ a∗(B(s, σ)) for s ∈ S, a′s̃ ∈ a∗(B(s̃,Γ ◦ σ)) for s̃ ∈ S̃,

and ρ′s̃ solves equation (2) for all s̃ ∈ S̃. This same strategy is feasible under

C but yields lower cognitive costs. Thus, when the agent optimizes with C,

ex-ante utility is higher under C than under C ′. �

Proof of Proposition 3

(a) ⇒ (b): This is a direct implication of Proposition 2.

(b) ⇒ (a): Suppose that (a) is violated; that is, there exists a ρ̂ ∈ (0, 1] such

that C(ρ̂) > C ′(ρ̂). We construct a profile (A, u, σ,Γ, µ) such that the agent

is strictly better off under C ′ than under C. Suppose that µ(ωi) = 1/n for

i = 1, . . . n and that σ is fully revealing; i.e. σ(si|ωi) = 1 for all i = 1, . . . n.

The action space is A = {ω1, ω2} and the agent has utility given by

u(a, ω) =

nx if a = ω

0 otherwise

where x ≥ 0. The intuition-generating process is prior-based intuition; that

is, Γσ(s̃|si) = 1 for i = 1, . . . , n. We show that, by varying x, we can make the
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agent with C choose ρ̂ at s̃. Define z ≡ lim
ρ→ρ̂−

dC(ρ)/dρ to be the left-derivative

of C at ρ̂ and z̄ ≡ lim
ρ→ρ̂+

dC(ρ)/dρ to be the right-derivative of C at ρ̂. Since C

is convex and weakly increasing, 0 ≤ z ≤ z̄. Choose x ∈ [z, z̄]. In the consid-

ered decision problem, the benefits from contemplation are ρ× 2x+ (1− ρ)x

which implies that the marginal benefit from contemplation is x. For ρ < ρ̂,

the marginal cost of contemplation is less than z which itself is less than x.

Hence, an optimal ρ must be weakly larger than ρ̂. Similarly, for ρ > ρ̂, the

marginal cost of contemplation is greater than z̄ which is itself larger than x.

Hence, ρ̂ is optimal under C. Since C(ρ̂) > C ′(ρ̂), the agent must be strictly

better off under C ′ than under C. �

Proof of Proposition 4

Fix a σ : Ω→ ∆(S) and Γσ : S → ∆(S̃). The contemplation decision at some

s̃ ∈ S̃ is to choose ρ ∈ [0, 1] to maximize

f(ρ,−κ) ≡ m0 +m1ρ− C(ρ;κ); where

m0 ≡ U(as̃|B(s̃,Γσ ◦ σ) and m1 ≡
∑
s∈S

Pr(s|s̃, σ,Γσ)U(as|B(s, σ))− U(as̃|B(s̃,Γσ ◦ σ)

are independent of ρ and κ. Note that f(ρ,−κ) satisfies increasing differences

in (ρ,−κ). Indeed, it is simple to verify that f(ρ,−κ) − f(ρ′,−κ) is increas-

ing in −κ for ρ ≥ ρ′ if and only if C(ρ, κ) − C(ρ′, κ) is increasing in κ. Since

f(ρ,−κ) is supermodular in ρ as ρ ∈ [0, 1], the result follows immediately from

Theorem 5 in Milgrom and Shannon (1994). �
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Proof of Proposition 5

(a) ⇒ (b): Let a′µ ∈ a∗(µ) be the action the agent chooses under the prior.

Since σ′ is uninformative, ex-ante utility under σ′ is equal to U(a′µ|µ). Under

Γσ ◦ σ : Ω → ∆(S̃), suppose that, at every mental signal s̃ the agent chooses

ρ = 0 and the action a′µ. Clearly, this gives ex-ante utility U(a′µ|µ). Hence,

when the agent optimizes at σ, she cannot be worse off than under σ′.

(b)⇒ (a): Suppose that the agent values σ more than σ′ for any (A, u, C,Γ, µ).

Then she must be better off if Γσ◦σ is an uninformative experiment (i.e. prior-

based intuition at σ) and Γσ′ ◦ σ′ = σ′ (i.e. perfect intuition at σ′). Suppose

C(ρ) = +∞ for all ρ ∈ (0, 1] such that the agent is unable to contemplate.

Because she is better off with σ over σ′ for any (A, u, µ) given this Γ and C,

by Blackwell (1953), it follows that σ′ must be a garbling of Γσ ◦ σ. Finally,

since Γσ ◦ σ is uninformative, σ′ must also be uninformative. �

Proof of Proposition 6

(a) ⇒ (b): Fix two experiments σ : Ω → ∆(S) and σ′ : Ω → ∆(S ′), with

corresponding intuition-generating processes Γσ : S → ∆(S̃) and Γσ′ : S̃ →

∆(S̃ ′). Take an optimal pure strategy under σ′: a′s′ ∈ a∗(B(s′, σ′)) for s′ ∈ S ′,

a′s̃′ ∈ a∗(B(s̃′,Γσ′ ◦ σ′)) for s̃′ ∈ S̃ ′, and ρ′s̃′ solves equation (2) for all s̃′ ∈ S̃ ′.

This strategy generates ex-ante utility under σ′ equal to

∑
ω∈Ω

µ(ω)
∑
s′∈S′

∑
s̃′∈S̃′

πσ′(s
′, s̃′|ω) [ρ′s̃′u(a′s′ , ω) + (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)] . (5)

Since σ is intuitively sufficient for σ′, there exists a g : Tσ → ∆(Tσ′) such
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that πσ′ = g ◦ πσ and
∑
s′∈S′

g(s′, s̃′|s, s̃) is independent of s for all s̃′ ∈ S̃ ′ and

s̃ ∈ S̃. Let g̃(s̃′|s̃) denote this sum. Consider the following strategy under σ:

first, at each mental signal s̃, the agent samples s̃′ according to distribution

g̃(s̃′|s̃). If s̃′ realizes, she chooses ρ′s̃′ . If contemplation is unsuccessful, she

chooses a′s̃′ . Instead, if contemplation is successful and she observes signal

s, she chooses a′s′ with probability g(s′,s̃′|s,s̃)∑
s′∈S′

g(s′,s̃′|s,s̃) = g(s′,s̃′|s,s̃)
g̃(s̃′|s̃) . Note that this

strategy is measurable with respect to information that the agent has at each

point in time when making decisions under σ. This strategy generates ex-ante

utility under σ equal to

∑
ω∈Ω

µ(ω)
∑
s∈S

∑
s̃∈S̃

πσ(s, s̃|ω)
∑
s̃′∈S̃′

g̃(s̃′|s̃)

×

[
ρ′s̃′

[∑
s′∈S′

g(s′, s̃′|s, s̃)
g̃(s̃′|s̃)

u(a′s′ , ω)

]
+ (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)

]
=
∑
ω∈Ω

µ(ω)
∑
s′∈S′

∑
s̃′∈S̃′

[ρ′s̃′u(a′s′ , ω) + (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)]
∑
s∈S

∑
s̃∈S̃

g(s′, s̃′|s, s̃)πσ(s, s̃|ω)

=
∑
ω∈Ω

µ(ω)
∑
s′∈S′

∑
s̃′∈S̃′

πσ′(s
′, s̃′|ω) [ρ′s̃′u(a′s′ , ω) + (1− ρ′s̃′)u(a′s̃′ , ω)− C(ρ′s̃′)] ,

where the last equality follows from the fact that

∑
s∈S

∑
s̃∈S̃

g(s′, s̃′|s, s̃)πσ(s, s̃|ω) = g ◦ πσ(s′, s̃′|ω) = πσ′(s
′, s̃′|ω).

Since this strategy gives utility under σ equal to (5), an optimal strategy under

σ must give weakly larger utility than that under σ′.

(b) ⇒ (a): Suppose the agent prefers σ to σ′ for every (A, u, C, µ). This

implies that the agent prefers σ to σ′ when C(ρ) = 0 for all ρ ∈ [0, 1]. Under
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this cost function, she achieves the same payoff as a Bayesian agent. Hence, σ

is preferred to σ′ for a Bayesian agent with any (A, u, µ). By Blackwell (1953),

this implies that σ′ is a garbling of σ. �

Proof of Lemma 1

Take an arbitrary experiment, σ : Ω → ∆(S). Define Sω1 ≡ {s ∈ S :

B(ω1|s, σ) > 1/2} and Sω2 ≡ S \ Sω1 . Consider the following two-signal ex-

periment, σ′ : Ω → ∆({s′1, s′2}), where σ′(s′1|ω) =
∑

s∈Sω1
σ(s|ω) and σ′(s′2|ω) =∑

s∈Sω2
σ(s|ω). Note that, in both experiments, the probability the receiver takes

action ω2 without contemplation is the same. Moreover, with probability 1−φ

the receiver observes mental signal s̃∅ in both experiments. Hence, if the op-

timal choice of contemplation is the same at s̃∅ across σ and σ′, the sender’s

payoff is also the same. At this mental signal, the benefits from contemplation

are the same across both experiments. Indeed, for a given ρ, the benefits from

contemplation under σ are

ρ

∑
s∈Sω1

B(ω1|s, σ)

(∑
ω∈Ω

σ(s|ω)µ(ω)

)
+
∑
s∈Sω2

B(ω2|s, σ)

(∑
ω∈Ω

σ(s|ω)µ(ω)

)+ (1− ρ)µ

= ρ

∑
s∈Sω1

σ(s|ω1)µ(ω1) +
∑
s∈Sω2

σ(s|ω2)µ(ω2)

+ (1− ρ)µ

= ρ [σ′(s′1|ω1)µ(ω1) + σ′(s′2|ω2)µ(ω2)] + (1− ρ)µ

= ρ

[
B(ω1|s′1, σ′)

∑
ω∈Ω

σ′(s′1|ω)µ(ω) +B(ω2|s′2, σ′)
∑
ω∈Ω

σ′(s′2|ω)µ(ω)

]
+ (1− ρ)µ

which is the benefit of contemplation at s̃∅ under σ′. Hence, the optimal choice

of ρ at s̃∅ is the same under both σ and σ′. �

49



Proof of Proposition 8

Recall that the receiver only perceives a benefit from contemplation at mental

signal s̃∅. Given an arbitrary (α, β1, β2), where βi ≥ 1/2, i = 1, 2, the receiver

chooses ρ∗(s̃∅) as the solution to

max
ρ∈[0,1]

ρ [(1− α)β1 + αβ2] + (1− ρ) [(1− α)β1 + α(1− β1)]− κρ
2

2

which, in a small abuse of notation, has solution ρ∗(α, β2) = min
{
α
κ
(2β2 − 1), 1

}
.

The optimization problem of the sender is

max
α,β1,β2

α [φ+ (1− φ)ρ∗(α, β2)]

subject to β1 ≥ 1/2, β2 ≥ 1/2, αβ2 + (1− α)(1− β1) = 1− µ. Note first that

β1 = 1 at an optimum. If not, the sender can jointly increase β1 and α so that

Bayes plausibility remains satisfied. This (weakly) increases ρ∗(α, β2), which

implies the value of the objective strictly increases. Hence, αβ2 = 1 − µ and

we can re-write the sender’s problem as

max
α∈[(1−µ),2(1−µ)]

α

[
φ+ (1− φ) min

{
2(1− µ)− α

κ
, 1

}]
.

The objective is either linear or quadratic in α. Therefore, there are three

candidate solutions: (1) α = 2(1 − µ) − κ (i.e. the α such that ρ∗(α) =

2(1−µ)−α
κ

= 1), (2) α = 1 − µ + κφ
2(1−φ)

(i.e. the unconstrained solution to the

problem with ρ∗(α) = 2(1−µ)−α
κ

), and (3) α = 2(1−µ) (i.e. α attains its upper
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bound ρ∗(α) = 0). (2) strictly dominates (3) if and only if

1− µ+
κφ

2(1− φ)
< 2(1− µ) ⇔ κ <

2(1− µ)(1− φ)

φ
≡ κ(φ).

Instead, (2) strictly dominates (1) if and only if

1− µ+
κφ

2(1− φ)
> 2(1− µ)− κ ⇔ κ >

2(1− µ)(1− φ)

2− φ
≡ κ(φ).

Since κ(φ) < κ̄(φ), it follows that

α∗ =


2(1− µ)− κ if κ ≤ κ(φ)

1− µ+ κφ
2(1−φ)

if κ ∈ (κ(φ), κ̄(φ))

2(1− µ) if κ ≥ κ̄(φ),

and substituting α∗ into ρ∗(α) gives the desired result. �.

Proof of Proposition 9

Case (a): Suppose that κ ≤ κ(φ). In this case the optimal experiment induces

ρ∗(s̃∅) = 1. The receiver’s equilibrium utility, V (φ, κ), is given by

V (φ, κ) = (1− α∗)φ+ α∗φβ∗2 + (1− φ)
[
(1− α∗)φ+ α∗φβ∗2 −

κ

2

]
.

Substituting α∗β∗2 = 1− µ, α∗ = 2(1− µ)− κ and rearranging gives

V (φ, κ) = µ+
κ(1 + φ)

2
.

Clearly, this is increasing in κ and φ.
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Case (b): Suppose that κ ∈ (κ(φ), κ̄(φ)). In this case, the optimal experiment

induces ρ∗(s̃∅) = (2(1 − µ) − α∗)/κ where ρ∗(s̃∅) ∈ (0, 1). The receiver’s

equilibrium utility can be written as

V (φ, κ) = (1− α∗)φ+ α∗φβ∗2 + (1− φ)

[
ρ∗(s̃∅) ((1− α∗)φ+ α∗φβ∗2) + (1− ρ∗(s̃∅))µ− κ

ρ∗(s̃∅)
2

2

]
= µ+ φκρ∗(s̃∅) + (1− φ)κ

ρ(s̃∅)
2

2
.

Substituting α∗ = 1− µ+ κφ
2(1−φ)

into ρ∗(s̃∅) and rearranging gives

V (φ, κ) =
φ(1− µ)

2
+

(1− µ)2(1− φ)

2κ
− 3

8

κφ2

1− φ
.

Clearly, V (φ, ·) is decreasing in κ. Computing the partial derivative of V with

respect to φ gives

∂V

∂φ
=

1− µ
2
− (1− µ)2

2κ
− 3

8

κφ(2− φ)

(1− φ)2
.

Define φ(κ) ≡ max{0, κ−1(κ)}. Note that ∂V
∂φ

is strictly decreasing in φ and is

strictly negative at κ̄−1(κ). Hence, if it is negative at φ = 0, this implies that

the receiver’s equilibrium is decreasing for all φ ∈
(
φ(κ), κ̄−1(κ)

)
. This is true

if 1−µ
2
− (1−µ)2

2κ
≤ 0 or κ ≤ 1 − µ. Instead, for κ > 1 − µ, we have φ(κ) = 0

and, by the intermediate value theorem, there exists a unique φ̄ ∈ (0, κ̄−1(κ))

such that V (·, κ) is increasing for φ < φ̄ and decreasing for φ > φ̄.

Case (c): Suppose that κ ≥ κ̄(φ). In this case the sender uses the Bayesian

optimal experiment and ρ∗(s̃∅) = 0. It follows that the receiver’s equilibrium
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utility is given by

V (φ, κ) = (1− α∗)φ+ α∗φβ∗2 + (1− φ) (1− α∗ + α∗(1− β∗2)) .

Substituting α∗β∗2 = 1− µ and α∗ = 2(1− µ) and rearranging yields

V (φ, κ) = (1− 2(1− µ))φ+ φ(1− µ) + (1− φ)µ = µ

which is independent of φ and κ. �
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