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Abstract

We propose a multivariate simultaneous unobserved components framework to

determine the two-sided interactions between structural trend and cycle

innovations. We relax the standard assumption in unobserved components models

that trends are only driven by permanent shocks and cycles are only driven by

transitory shocks by considering the possible spillover effects between structural

innovations. The direction of spillover has a structural interpretation, whose

identification is achieved via heteroskedasticity. We provide identifiability

conditions and develop an efficient Bayesian MCMC procedure for estimation.

Empirical implementations for both Okun’s law and the Phillips curve show

evidence of significant spillovers between trend and cycle components.
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1 Introduction

In structural time series analysis, unobserved components (UC) models decompose a

(vector) time series into a trend and cycle component driven by permanent and

transitory shocks, respectively (see Harvey and Shephard, 1993; Durbin and Koopman,

2012). Basic UC models assume no correlation between the permanent trend and

transitory cycle innovations, thus neglecting the possible interactions among shocks a

priori. Different studies have shown that this assumption does not hold empirically.

Morley et al. (2003) introduces the correlated UC model which allows for correlation

between permanent and transitory shocks, showing (i) that the zero-correlation

restriction between permanent and transitory shocks can be rejected and (ii) that trend

innovations are strongly negatively correlated with cycle innovations in their application

to U.S. output. Among others, univariate applications of correlated UC models include

Dungey et al. (2015) who document correlation between trend output and output gap

and discuss its implications for determining the nature of recessions; and Hwu and Kim

(2019) who show that the incorporation of correlation between trend inflation and

inflation gap leads to improved forecasting performance. Regarding multivariate

applications, Basistha (2007) estimates inflation and output trends that are correlated

with cyclical fluctuations for Canada; Morley (2007) finds correlation between

permanent and transitory movements in aggregate income and consumption for the

U.S.; and Sinclair (2009) finds evidence suggesting both within-series and cross-series

trend-cycle correlations. Further, Mitra and Sinclair (2012) model correlation between

all the contemporaneous trend and cycle shocks using output for the G-7 countries.

However, as discussed by Morley (2007) and Weber (2011), when shocks are correlated,

the UC model is no longer structural because, similar to a reduced-form VAR model

with non-diagonal covariance matrix, further restrictions are needed in order to recover

the structural shocks. Theoretically, it is possible to achieve identification by assuming

that cycle shocks (commonly associated with aggregate demand fluctuations, monetary

policies, etc.) are neutral in the long-run, an assumption consistent with the seminal

work of Blanchard and Quah (1989) and in line with different interpretations of causality

running from trend to cycle.1 Empirically, however, a decision between the two potential

1Nevertheless, it is worth mentioning that various economic theories also permit different types of
long-run non-neutrality at the theoretical level, see Keating (2013a,b).
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directions of causality crucially depends on the ability to identify the possible simultaneous

effects from the data. As Fisher et al. (2016) point out regarding the interpretation and

identification in structural VARs, whether shocks are permanent or transitory is at large

a subjective choice made by econometricians.2

The present paper introduces the so-called multivariate simultaneous unobserved

components (MSUC) model in order to study the interactions between permanent and

transitory shocks. The proposed framework extends the extant literature in three ways.

First, we show that the model maintains the identifiability of the structural form

without imposing any kind of short-run or long-run restrictions on the contemporaneous

structural matrix.3 Thus, besides within-series and cross-series trend-cycle correlations,

we identify the direction of correlation by tracing back the correlation of reduced-form

residuals to structural spillovers of both trend shocks to the cycle component and of

cycle shocks to the trend component. Our contribution is related to that of Weber

(2011), who derived the spillovers by over-identifying a correlated UC model in a

univariate analysis for US industrial production. With respect to the latter, our

research: (i) identifies the possible spillovers considering a multivariate framework; and

(ii) allows for a more general identification strategy because it does not require the

strong assumption that all reduced-form shocks have unit variance, which may lead to

biased results if there exists heteroskedasticity, thereby providing a clearer interpretation

of the identified structural shocks.

Second, the identification of the proposed MSUC model is achieved by explicitly

considering heteroskedasticity, an important feature of macroeconomic time series, as

documented by the literature on the “Great Moderation” and by the recent literature on

structural VARs with heteroskedasticity.4 Lanne et al. (2010) and Herwartz and

Lütkepohl (2014) show that it is possible to identify the structural matrix if there exists

enough variation in volatility by assuming a Markov regime switching for the variances

2For example, Keating (2013a,b) also shows that the structural interpretation of the Blanchard and
Quah (1989) decomposition (in which transitory and permanent shocks are identified by assuming the
long-run restriction that only permanent shocks affect the level of output) changes if transitory shocks
are assumed to affect the price level in a different manner.

3In structural VARs (see Sims, 1980, Amisano and Giannini, 2012, among many others), it is usually
believed that the correlations of reduced-form shocks are derived from the contemporaneous effects
between variables, and this interpretation is also used in UC models.

4In brief, it is accepted that macroeconomic volatility has experienced a major reduction since the
mid-1980s. The “Great Moderation” continued until the Great Financial Crisis in 2007, when volatility
increased again, although it seems to have decreased again in recent years.
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of structural shocks (SVAR-MRS). Netsunajev (2013), Velinov and Chen (2015) and

Lütkepohl and Netšunajev (2017) (among others) document successful implementations

of this approach. Following this growing strand of literature, we assume that the change

in the covariance matrix of reduced-form shocks in the context of UC models results

from heteroskedasticity, which allows us to identify the complete spillover effects without

imposing further restrictions on the structural matrix.

Third, we develop a Bayesian sampling scheme that directly generates posterior

draws for the structural parameters, similar to Wozniak and Droumaguetb (2015) and

Lütkepohl and Wozniak (2017) in SVAR-MRS models. Because the number of

parameters and model flexibility grows exponentially, Bayesian methods for estimating

SVAR-MRS have been attempted. For example, Kulikov and Netšunajev (2013) and

Lanne et al. (2016) develop methods for sampling the reduced-form parameters from

their posterior distribution and transform draws into structural parameters; therefore,

these methods generate posterior distributions of exactly-identified structural

parameters, which limits the model’s applicability if over-identifying restrictions are of

interest. Although different from this literature, we are able to show the identifiability of

MSUC models in two steps: (i) the reduced-form model, i.e. the correlated UC model,

is identifiable based on Trenker and Weber (2016); and (ii) as in Lanne et al. (2010) and

Lütkepohl and Wozniak (2017), similar conditions are given to ensure the identifiability

of the structural matrix.

Lütkepohl and Wozniak (2017) argue that the identification of structural VARs via

heteroskedasticity can be understood as unrestricted since samples are generated

directly for structural parameters, thus providing a basis for Bayesian tests for

over-identification restrictions. Although this argument also applies to our setting, it

should be noted that the Markov chain Monte Carlo (MCMC) procedure developed in

the literature of SVAR-MRS models falls short because of the following reasons: (i) the

“dependent variables” in MSUC models (i.e. the trend and cycle components) are not

observed, so they need to be inferred from the available data; (ii) trends (which are by

definition non-stationary) appear in the reduced-form model together with stationary

cycle components; (iii) unlike Bayesian VARs, where one can simplify the sampling

procedure by conditioning on initial observations, initialisations of UCs still need to be

inferred from data; and (iv) the volatility of structural shocks corresponds to different
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components in MSUC models, so it can be considered as permanent and transitory

volatility (Stock and Watson, 2007; Shephard, 2015; Li and Koopman, 2018), while a

Markov regime switching imposes abrupt regime switches with identical timing, which is

arguably a questionable assumption.

The efficient MCMC algorithm developed in this paper deals jointly with the first

and second points above by sampling the trends and cycles component-by-component

and the contemporaneous structural matrix row-by-row recursively. This algorithm uses

the fact that drawing from the joint posterior of UCs and the structural matrix can be

facilitated by an efficient Metropolis-Hastings (MH) within Gibbs sampler. One novelty

of the proposed method is that effectively we only apply univariate MH algorithms for

one element in each row of the structural matrix that does not have a standard posterior

distribution, thereby reducing the dimensionality problem in SVAR-MRS models into a

simple univariate problem and maintaining a very high acceptance rate. The third concern

is solved by using state space methods that impute initial values from their conditional

posterior distributions to the reduced-form model implied by the MSUC model. Finally,

because we consider both Markov regime switching volatility and stochastic volatility

(where the volatility of structural shocks changes at each point in time), our method

allows for higher flexibility when modelling permanent and transitory volatilities.

The remainder of the paper is organised as follows. Section 2 introduces the MSUC

model and relates the latter to some relevant examples in the literature in order to

motivate the model specification. Section 3 provides the identifiability conditions for the

MSUC model and discusses the new MCMC algorithm for Bayesian inference. Section 4

conducts an empirical study on the interactions between permanent and transitory

shocks by considering MSUC versions of Okun’s law and the Phillips curve for the US

economy, finding evidence of significant within-components and cross-components

spillovers. Section 5 discusses some relevant policy implications derived from the

empirical findings. Finally, we conclude in Section 6.

2 Multivariate simultaneous unobserved components

As mentioned in the previous section, the correlation between innovations can be

attributed to the contemporaneous effects between unobserved components, as in SVAR
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models. We propose the following state space representation of a MSUC model:

yt = Zτt + ct, (1)

A

τt+1

ct+1

 = Φ(Lp)

τt
ct

+ et, et ∼ N(0,Σ), (2)

for t = 1, ..., T , where yt ∈ RN is the vector of observations; τt ∈ Rk contains non-

stationary components; ct ∈ RN collects stationary cycles; and Z is an N × k selection

matrix such that Zτt is the trend of yt.
5 Notice that if yt only has a vector random

walk trend, then k = N and Z becomes an identity matrix. Importantly, A is a matrix

with ones on its diagonal and Φ(Lp) = Φ1L + ... + ΦpL
p is a p-th order lag polynomial

with (N + k)-dimensional coefficient matrices Φi, i = 1, ..., p that captures the transition

dynamics between lagged components. Moreover, et ∈ RN+k is a vector of uncorrelated

structural errors, i.e. Σ = diag(σ2
1, ..., σ

2
N+k), consisting of permanent shocks that drive

the long-run or trend component τt and transitory shocks that drive the cycles ct.

The state transition (2) can be written in a more familiar form

τt+1

ct+1

 = B

τt
ct

+ εt, εt = A−1et ∼ N(0,Ω), (3)

where Ω = A−1ΣA−1′ and

B =

Bτ 0

0 Bc(Lp)

 = A−1Φ(Lp). (4)

It is important to clarify two points. First, the model represented by equations (1)

and (2) and the one shown in (1) and (3) are observationally equivalent. Although the

latter is similar to the structural time series models that use unobserved components (see

Harvey and Shephard (1993) and Durbin and Koopman (2012, Chapter 2)), it cannot be

considered as “structural” because the elements contained in εt are correlated and, thus,

they represent reduced-form shocks. Most of the studies reviewed in Section 1 estimate

5There is ample evidence that permanent shocks are ubiquitous as many economic time series exhibit
non-stationary behaviour. For example, a close examination of over 130 aggregate measures of economic
variables as in Stock and Watson (2005) and McCracken and Ng (2016) reveals that most of the time
series are integrated, and many of them are integrated of order larger than one. This means that a
significant part of the driving force behind economic variables is of permanent nature.

6



the model given by equations (1) and (3) using Kalman filter and maximum likelihood.

Second, if yt has a vector random walk trend, Bτ is an identity matrix; but Bτ can

also be specified to model other non-stationary dynamics or to incorporate structural

relationships between trends. For example, the Phillips curve unobserved components

model proposed by Harvey (2011), where the vector trend component τt = (τ1,t, τg,t, τ2,t)
′

consists of the output trend τ1,t, which is an integrated random walk of order 2, indicating

that the growth rate of trend output τg,t itself is a random walk (see also Stock and Watson,

1998), while the trend inflation τ2,t is a random walk. Another example is the modelling of

the IS curve in Laubach and Williams (2003) and Holston et al. (2017), who estimate the

natural rate of interest as the trend component of real rate driven by the trend output

growth rate (see also Gaĺı, 2015b, Chapter 3). This specification states that the first

difference of trend output growth and the natural rate of interest are cointegrated.

Apparently, Φ(Lp) is determined by the structural matrix A and the autoregression

coefficient matrix Bc(Lp).
6 Since our main interest consists in testing for spillovers

between permanent and transitory shocks, we do not restrict A for identification as in

numerous structural VAR models. By contrast, we apply the principles of identification

of VAR models via heteroskedasticity discussed in Lanne et al. (2010) and Herwartz and

Lütkepohl (2014) to our proposed simultaneous unobserved components model. The

idea is straightforward. Suppose that the estimated covariance matrix of the

reduced-form innovations Ω = A−1ΣA−1′ can adopt two values, say Ω1 and Ω2. This

gives us K2 + K distinct parameters in total, where K = N + k. If we assume that the

relevant changes come only from the volatility of structural shocks, we will have K2 −K

elements in A and 2K variances in Σ1 and Σ2 to estimate. Therefore, it is possible to

provide exact identification of the system. The next section introduces the estimation

procedure developed for the proposed MSUC models and for an extension that considers

stochastic volatility, which allows to consider that Σt changes at each point in time.

6Note that it is also possible to estimate the Φ(Lp) that corresponds to a reduced-form transition
matrix B with non-zero upper-right block, i.e. assuming that the right-hand side of equation (5) is
non-zero. This may indicate that previous cycle components influence the trend. We do not consider
this possibility because such effects (if any) are expected to be small as the trend component should be
highly persistent with low-frequency movements. In our empirical applications, we did not find statistical
evidence suggesting non-zero upper-right block in B, so we only focus on the contemporaneous effect.
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3 Identification and estimation via

heteroskedasticity

3.1 Identifiability

As discussed by Trenker and Weber (2016), a prerequisite for identifying A is being able

to identify Ω as in the reduced-form system (3). From B = A−1Φ(Lp) we have

(A−1)ττΦ(Lp)ττ + (A−1)τ2Φ(Lp)cτ = Bτ ,

(A−1)cτΦ(Lp)ττ + (A−1)ccΦ(Lp)2τ = 0,

(A−1)cτΦ(Lp)τc + (A−1)ccΦ(Lp)cc = Bc(Lp),

(A−1)ττΦ(Lp)τc + (A−1)τcΦ(Lp)cc = 0. (5)

Xij, i, j = c, τ , indicates the ij-th block of matrix X, where the subscripts τ and c stand

for the rows or columns corresponding to the trend τ and cycle c, respectively. Using

matrix block inversion formula, it can be shown that

Φ(Lp)ττ = AττBτ , Φ(Lp)τc = AτcBc(Lp),

Φ(Lp)cτ = AcτBτ , Φ(Lp)cc = AccBc(Lp).
(6)

Since Bτ is constant, to determine Φ(Lp) is to determine Bc(Lp). It turns out that the

latter is key to the identifiability of Ω in the reduced-form system. For simplicity, we

assume that the trend component is modelled as a vector random walk, i.e. Bτ = IN ; and

let the lag polynomial Bc(Lp) be Bc,1L + ... + Bc,pL
p with the N × N coefficient matrix

Bc,i, i = 1, ..., p. System (1) and (3) leads to a VARIMA(p, 1, p) process for yt:

[IN −Bc(Lp)]∆yt = [IN −Bc(Lp)]ετ,t + ∆εc,t = Θ(Lp)ut, (7)

where Θ(Lp) = IN +Θ1L+ ...+ΘpL
p is a N -dimensional lag polynomial of order p for the

i.i.d. shocks ut ∼ N(0,Σu).
7 As long as the VAR and VMA polynomials are not mutually

cancelling (that is, there exists no common roots to |IN−Bc(Lp)| = 0 and to |Θ(Lp)| = 0)

and provided that all roots to |IN − Bc(Lp)| = 0 are outside the unit circle, the VAR

7Representing the original process for yt as a VARIMA process is simply a result of the Granger’s
lemma (see Lütkepohl, 1984, Athanasopoulos et al., 2016).
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components can be uniquely identified from the reduced VARIMA system (Dufour and

Pelletier, 2005). If Bτ is not an identity matrix (for example, when an integrated random

walk trend is present as in Harvey (2011) and Holston et al. (2017)) it is necessary to

take higher order differences to have an identifiable reduced-form VARIMA(p, d, p) with

d ≥ 2.

3.1.1 Identification of trend and cycle covariance matrix

From the reduced-form VARIMA model (7), the identification of Bc(Lp) is

straightforward. The identification of Ω is achieved by linking the autocovariance

matrices of [IN − Bc(Lp)]ετ,t + ∆εc,t to those of Θ(Lp)ut (that is, a multivariate

Yule-Walker equations procedure). Denote the VMA autocovariance by

Γs =
∑p−s

i=0 Θi+sΣuΘ
′
i, s = 1, 2, ..., such that Γs = 0 for s > p. The order condition for

identification under p ≥ 2 is satisfied because Γ0, Γ1, ..., Γp provide N(N + 1)/2 + N2p

parameters from which Ω is recovered. Clearly, a relevant rank condition in relation to

the system of equations linking the reduced-form and structural matrices needs to be

met (see also, Morley et al., 2003). To proceed, we assume the following.

Assumption 1. In the MSUC model (1) and (3), cycles are stable, i.e. the characteristic

polynomial |IN − Bc(Lp)| has all roots outside the unit circle. Furthermore, besides that

Bc,1 is of full rank, there exists a vector of coefficients ci ∈ R, i = 2, ..., p, such that

B̄ =
∑p

i=1 ciBc,i is of full rank.

As pointed out by Trenker and Weber (2016), this assumption is not primitive, which

means that estimating the model while restricting identifiability via a rank condition is

not feasible. However, one can easily adopt a rule of thumb by simply estimating the

model shown in (1) and (3) with varying p ≥ 2 and checking if a full rank B̄ matrix can

be found, say by choosing ci = 1 for i = 1, ..., p. We have not encountered any problems

regarding the rank condition in all the empirical applications.

Let DN denote the N2 × 1
2
N(N + 1) duplication matrix8 and define the “projector”

D+
N = (D′NDN)−1D′N . Let Ω be partitioned with diagonal blocks Ωτ and Ωc and

off-diagonal blocks Ωτ,c and Ω′τ,c. The system of equations linking reduced-form

8The duplication matrix is such that for any N -dimensional square matrix A, vec(A) = DNvech(A).
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autocovariances to structural parameters in Ω can be written as

Y = Xβ,

where Y = [vec(Γ0)′D+
N
′
, vec(Γ1)′, ..., vec(Γp)

′]′, β = [vech(Ωτ )
′, vec(Ωc)

′, vec(Ωτ,c)
′]′, and

the (N2p+ 1
2
N2+ 1

2
N)× 1

2
(5N2+N) matrix X only involves Bc,i, i = 1, ..., p. Identifiability

is stated in the following proposition.

Proposition 1. Under Assumption 1, rank(X )=1
2
(5N2 + N); β and Ω are uniquely

determined.

The proof is given in Appendix A.

3.1.2 Identification of contemporaneous matrix

Identification of the reduced-form innovation covariance matrix Ω does not grant

identification of the contemporaneous matrix A because the structural transition matrix

Φ(Lp) in (2) does not necessarily have a block structure.

To recover the structural matrix A from the identified reduced-form system (1) and (3),

we assume heteroskedasiticity of the structural shocks et.
9 Two forms of heteroskedasticity

are considered: Markov regime switching and stochastic volatility. The former assumes

two-volatility states Σ1 and Σ2 with a transition matrix governing the probability of

switching between the two states;10 whereas the latter assumes volatility changes smoothly

at each point in time, namely Σt for i = 1, ..., T .

As mentioned previously, the minimum requirement to identify A is to have two

distinct volatility states. Let st = {1, 2} for t = 1, ..., T indicate the volatility state, and

define Σst = diag(σ2
1,st , ..., σ

2
K,st

) and the ratio of variances

ωst =

(
σ2

1,st

σ2
1,1

, ...,
σ2
K,st

σ2
K,1

)′
.

So ω1 is a K-dimensional vector of ones. The definition of variance ratio facilitates the

discussion on identification of A. Let 1· denote the indicator function. We make the

9See Lanne et al. (2010), Herwartz and Lütkepohl (2014), and Lütkepohl and Wozniak (2017) for
examples that use heteroskedasticity to identify contemporaneous effects in VAR analysis.

10For notational simplicity, a two-state volatility regime model is considered, but extensions to multiple
states is straightforward.
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following assumption regarding the volatility states of the reduced-form system.

Assumption 2. In the MSUC model (1) and (3), there exists T1 =
∑T

t=1 1st=1 such that

T1 ≥ K + 1 and T2 =
∑T

t=1 1st=2 = T − T1 ≥ K + 1; furthermore, E(εtε
′
t) = Ω1 for all t

such that st = 1 and E(εtε
′
t) = Ω2 for all t such that st = 2.

Assumption 2 guarantees that Ωi, i = 1, 2 is positive definite such that there exists a

Gramian decomposition of the form

Ωi = A−1ΣiA
−1′, i = 1, 2. (8)

This assumption is line with the vast literature on the “Great Moderation” (see also

Justiniano and Primiceri, 2008). The following proposition provides the conditions for

the determination of A.

Proposition 2. Under Assumption 1 and Assumption 2, A is uniquely identified if and

only if ω2 has distinct elements, or

σ2
i,2

σ2
i,1

6=
σ2
j,2

σ2
j,1

, for i, j ∈ {1, ..., K}, and i 6= j.

The proof is given in Appendix B.

Assumption 2 suggests global identification of A under specified conditions. In VAR

analysis, Lütkepohl and Wozniak (2017) argue that this setup offers an advantage over

other literature on identification via heteroskedasticity that uses the so-called B-models,

resulting in locally identified shocks that are unique up to sign and ordering (Lütkepohl,

2005; Lanne et al., 2010). Such a model assumes that the link between structural and

reduced-form shocks is et = B−1εt. Local uniqueness of B relies on normalisation of

volatility in one state, e.g. E(e1e
′
1) = IK . One potential issue regarding this specification

in a Markov regime switching framework is the scaling problem associated with the label

switching of states that may lead to an irregular shape of posterior distribution

(Droumaguet et al., 2015). Furthermore, working with the contemporaneous matrix A

in the current setup also facilitates Bayesian estimation and inference, as shown in the

next section. Although proposition 2 relies on the heterogeneity in volatility states, it

does not preclude the case where one structural shock is homoskedastic (σ2
1,1 = σ2

1,2).

Proposition 2 guarantees identification as long as there is no proportional change in the
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variances.

Unlike VAR models, identification via heteroskedasticity in MSUC models is not

merely a statistical identification procedure since it also delivers structural errors with

economic interpretation because of the trend-cycle decomposition achieved by UC

models. In the spirit of Beveridge and Nelson (1981), the structural permanent shocks

only drive trend components, and transitory shocks only drive cycle components.

Component-to-component spillovers are modelled via the structural matrix A.

3.2 Bayesian estimation and inference

The sampling of the MSUC model has two main blocks: (i) unobserved components and

(ii) model parameters. In what follows, we explain the sampling procedure and discuss

how it differs from the Bayesian estimation and inference for VAR models identified via

heteroskedasticity. The main complications come from the fact that components are

unobserved and non-stationary. Therefore, it is not possible to assume that the first p

observations are deterministic, which is common in Bayesian VARs. In our case, we have

to consider them as “extra parameters” which have to be imputed from their conditional

posterior. To see this, define the Kp-dimensional vector xt as

xt = (τ ′t , c
′
t, τt−1, c

′
t−1, ..., τt−p+1, c

′
t−p+1)′, t = 1, ..., T.

Apparently, x1 involves “historical” trends τ2−p, ..., τ0 and cycles c2−p, ..., c0 if p ≥ 2. Even

if we restrict ourselves to data {yt}Tt=p+1, we cannot treat xp+1 as deterministic because by

definition it is a vector of unobserved random variables. We choose to impute the initial

state vector such that our estimates are based on the correct posterior; and we define the

transition matrix Ξ as

Ξ =



Ξ1 Ξ2 . . . Ξp−1 Ξp

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


,
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where Ξi, i = 1, ..., p is K ×K such that

Ξ1 =

 Bτ 0k×N

0N×k Bc,1

 , Ξi =

0k×k 0k×N

0N×k Bc,i

 for i = {2, ..., p},

with 0 denoting a matrix of zeros with subscripted dimension. Bc,i is the i-th coefficient

matrix of the VAR(p) cycles in reduced-form and defined via (6). Therefore, the reduced-

form model can be written as the following state space model,

yt = Λxt, xt+1 = Ξxt +Rεt, εt ∼ N(0,Ωst), (9)

with the loading matrix Λ and selection matrix R defined by Λ = [Z : IN : 0N×K(p−1)]

and R = [IK : 0K×K(p−1)]
′, where [M1 : M2] denotes horizontal concatenation of matrix

M1 and M2.11 It is clear that when drawing x1 from its conditional posterior

distribution we automatically impute τ2−p, ..., τ0 and c2−p, ..., c0 such that other

parameters are drawn based on their correct conditional posterior, i.e. without risking

ill-conditioned initialisations.

It is noteworthy that the above model is linear and Gaussian, conditional on the

volatility states ST = {s1, ..., sT}. We assume a two-state Markov regime switching

framework for volatility (i.e. high and low volatility), equipped with a 2 × 2 transition

matrix P whose i, j-entry denotes the probability of switching from state i to j,

i, j = 1, 2. Model (9) is completed by assuming the following initialisation for the

unobserved components:

x1 ∼ N(~x1, V1),

~x1 = (~τ ′1,~c
′
1, ..., ~τ

′
2−p,~c

′
2−p)

′ = 0Kp×1,

V1 =



Vτ,1,1 0 . . . 0 0

0 Vc,1,1 . . . 0 0
...

...
. . .

...
...

0 0 . . . Vτ,1,2−p 0

0 0 . . . 0 Vc,1,2−p


.

11Note that one can model measurement errors in the observation equation in (9); but since such errors
are also considered as transitory one can easily incorporate them into the cycle components.
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The initial covariance matrix V1 is such that Vτ,1, which has diagonal blocks Vτ,1,i = M ·Ik,

i = 1, 0, .., 2 − p with M being a sufficiently large number such that gives the trends an

uninformative initialisation (Durbin and Koopman, 1997); and Vc,1 denotes the covariance

matrix from the ergodic distribution of the cycles consisting of blocks Vc,1,i, i = 1, 0, ...2−p.

It follows that

vec(Vc,1) = (INp −B∗c ⊗B∗c )−1vec

(
2∑
i=1

πiRcΩiR
′
c

)
. (10)

In the above formulation, the Np×Np matrix B∗c is the transition matrix of the VAR(p)

cycles written in companion form. That is,

B∗c =



Bc,1 Bc,2 . . . Bc,p−1 Bc,p

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


,

where Bc,i = A−1
cc Φi,cc as in (6); π = (π1, π2)′ is the stationary distribution of the Markov

process st such that π = πP; and Rc contains rows of R for cycle components in xt.

The conditional likelihood can be computed using the Kalman filter via prediction

error decomposition (Durbin and Koopman, 2012, chapter 4). To facilitate the discussion

on an efficient sequential procedure for sampling the contemporaneous matrix A and the

unobserved components xt, we repeat the seminal Kalman recursion.

Define at = E(xt|Yt−1) and Pt = Var(xt|Yt−1) where Yt = {y1, ..., yt}. Let a1 = ~xt and

P1 = V1 initialise the filter. We have the following recursion:

vt = yt − Λat, Ft = ΛPtΛ
′,

at+1 = Ξat +Gtvt, Pt+1 = ΞPt(Ξ−GtΛ)′ +RΩtR
′,

(11)

for t = 1, ..., T , where Gt = TPtΛ
′F−1
t is the Kalman gain. Notice that Ωt depends on st,

and as a result so do all other variables in the above recursion. Let θ collect all model
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parameters. The conditional likelihood is given by

p(YT |ST ,θ) = exp

(
−TN

2
log 2π − 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

v′tF
−1
t vt

)
.

3.2.1 Prior distribution

For the prior distribution of the first volatility state, each σ2
i,1 is assumed to be IG(αv, βv)-

distributed with the inverse gamma (IG) shape parameter αv = 0.5 and scale parameter

βv = 0.5 such that the prior is noninformative (no moment exists). The prior of each

variance ratio ωi,2 is IG(αω, βω)-distributed with αω = 0.5 and βω = 1.5 such that the

prior is noninformative and its mode equals 1. This is to say that at the mode we have

homoskedasticity and A is not identified. By this design we limit the influence of priors

on identification of structural matrix A to the minimum.

To simplify the notation, we assume that τt is a vector of random walk trend

components, i.e. k = N and Z = IN .12 The novelty of our MCMC algorithm relies on a

recursive sampling scheme for A. To facilitate this, the prior of A is specified

column-by-column for the following transformation of the unrestricted elements in each

column. Notice that (2) implies

τi,t =− Ai,1τ1,t − ...− Ai,i−1τi−1,t − Ai,i+1τi+1,t − ...− Ai,NτN,t

− Ai,N+1c1,t − ...− Ai,N+ici,t − ...− Ai,KcN,t +
N∑
j=1

Φ1,i,jτj,t−1

+
K∑

j=N+1

Φ1,i,jcj−N,t−1 + ...+
N∑
j=1

Φp,i,jτj,t−p +
K∑

j=N+1

Φp,i,jcj−N,t−p + ei,t−1,

for i = 1, ..., N , where Xi,j denotes the ij-th element of matrix X. Similarly, we can have

such an expression for the cycle components. Moving lagged variables to the left-hand

side and noting ci,t = yi,t − τi,t, the above equation becomes

τ ∗i,t =δi,1τ1,t + ...+ δi,i−1τi−1,t + δi,i+1τi+1,t + ...+ δi,NτN,t

+ δi,N+1c1,t + ...+ δi,N+iy
∗
i,t + ...+ δi,KcN,t + (δi,N+i − 1)ei,t−1,

(12)

where τ ∗i,t = τi,t + x∗i,t−1, y∗i,t = yi,t − x∗i,t−1 with x∗i,t−1 =
∑N

j=1 Φ1,i,jτj,t−1 +

12It is straightforward to relax this assumption and to allow for more general specifications of trend
components as discussed in Section 2.
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∑K
j=N+1 Φ1,i,jcj−N,t−1 + ... +

∑N
j=1 Φp,i,jτj,t−p+1 +

∑K
j=N+1 Φp,i,jcj−N,t−p+1 with Φn,i,j

denoting the ij-th element of Φn for n = 1, ..., p, and

δi,j = − Ai,j
1− Ai,N+i

= −Ai,j(1 + δi,N+i), j ∈ {1, ..., i− 1, i+ 1, ..., K}. (13)

In (12), only δi,N+i appears multiplicatively with the error term, so we can easily

implement a Gibbs sampler for all δi,j’s, j 6= N + i conditional on δi,N+i, and an efficient

accept-reject Metropolis-Hastings (MH) algorithm for δi,N+i because Ai,j can be

recovered with draws of δi,j’s.
13 We assume a hierarchical normal prior N(0, γj) for

element δi,j, i = 1, ..., K, where γj is IG(αγ, βγ)-distributed with αγ = βγ = 0.5. The

shrinkage parameter γj controls the tightness of the normal prior which is a random

variable itself to be determined by the data. This design assumes a priori that shocks

from an unobserved component spill over to other components with similar magnitude,

while allowing for heterogeneity of magnitude across components. A posterior, however,

the hierarchical prior leaves ample room for data to speak.

The prior of the autoregressive transition matrix Φ = [Φ1 : ... : Φp] is specified

conditional on A, amounting to specifying a prior of the VAR coefficient matrix

Bc = [Bc,1 : ... : Bc,p] for the VAR(p) cycles. Define the K × Kp matrix

W = [D : 0K×K(p−1)], where D is a diagonal matrix with k ones and N numbers within

[0, 1) on its diagonal suggesting that the first k coefficients of each row of Φ correspond

to persistent trend components and the following N coefficients are for the cycle

components (less persistent than integrated trend process). Define the Kp × Kp

diagonal matrix L with diagonal (11×K ,
1
4
11×K ,

1
9
11×K , ...,

1
p2

11×K)′ where 1 denotes a

matrix of ones with subscripted dimension. The prior of Φ′i− is N(Ai−W, γΦL), where

Xi− denotes the i-th row of matrix X, for i = 1, ..., K; and the shrinkage parameter γΦ

is IG(αγ, βγ)-distributed.14

The prior of the i-th row, i = 1, 2 of the Markov transition probability matrix P for

two-volatility-state is given a 2-dimensional Dirichlet distribution Dir2 with off-diagonal

13This is an appealing feature embedded in MSUC models that Bayesian structural VARs do not have,
as shown in the next section.

14This is similar to the Minnesota prior of Doan et al. (1984), which imposes a tightening pattern on
the variances of coefficients for lagged variables.
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parameter ej = 1 and diagonal parameter ei = 10, i.e.

P′1− ∼ Dir2(e1, e2), P′2− ∼ Dir2(e2, e1).

This design assumes a priori that p(st = i|st−1 = j) = p(st = j|st−1 = i) = 1/11 and

p(st = i|st−1 = i) = p(st = j|st−1 = j) = 10/11 for i, j = 1, 2 and i 6= j, meaning that the

volatility states are persistent over time.

In summary, we have the following prior distribution of θ

p(θ) =p(γΦ)×
K∏
i=1

p(γi)×
K∏
j=1

K∏
i=1;i 6=j

p(δi,j|γj)×
2∏
i=1

p(P′i−)

×
K∏
i

p(Φ′i−|Ai−, γφ)p(σ2
i,1)p(ωi,2),

where component-specific distributions are given by

γΦ ∼ IG(αγ, βγ),

γi ∼ IG(αγ, βγ), i = 1, ..., K,

δi,j|γj ∼ N(0, γj), j = 1, ..., K, i = 1, ..., j − 1, j + 1, ...K,

Φ′i−|Ai−, γΦ ∼ N(Ai−W, γΦL), i = 1, ..., K,

σ2
i,1 ∼ IG(αv, βv), i = 1, ..., K,

ωi,2 ∼ IG(αω, βω), i = 1, ..., K,

P′1− ∼ Dir2(e1, e2), P′2− ∼ Dir2(e2, e1).

3.2.2 Sampling procedure and inference

The Bayesian sampling procedure iterates over the following five sampling blocks to

generate posterior draws:

1. Sample A and xt from p({δi,j}Kj=1,j 6=i, {τi,t}Tt=1|Yi,T , {γj}Kj=1,j 6=i, σ
2
i,1, ωi,2, ST ) for i =

1, ..., N , where Yi,T = {yi,1, ..., yi,T};

2. Sample Φ from p(Φ′i−|Ai−, γΦ, XT , σ
2
i,1, ωi,2, ST ) for i = 1, ..., K, where

XT = {x1, ..., xT};

3. Sample Σ1 from p(σ2
i,1|XT , A,Φ, ωi,2, ST ) and sample ω2 from
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p(ωi,2|XT , A,Φ, σ
2
i,1, ST ) for i = 1, ..., K;

4. Sample ST from p(ST |XT , A,Φ,Σ1,Σ2, P) and sample P from

p(P′i,−|XT , A,Φ,Σ1,Σ2, ST ) for i = 1, 2;

5. Sample γΦ from p(γΦ|Φ) and sample {γi}Ki=1 from p(γi|A−i) for i = 1, ..., K, where

A−i denotes the i-th column of A.

One novelty of our proposed sampling procedure is to sample rows of A and elements

of xt sequentially to complete the sampling in Block 1. In the literature of structural VAR

models identified using heteroskedasticity (Canova and Pérez Forero, 2015 and Lütkepohl

and Wozniak, 2017), a random walk sampler is usually employed to sample ~A as a whole

in an accept-reject MH algorithm. To see why a random walk sampler is inefficient in the

MSUC models, let the structural state equation (2) be rewritten as

Aẋt+1 = Φxt + et, ẋt+1 = (τ ′t+1, c
′
t+1)′, (14)

and define x̃t+1 = (ẋ′t+1 ⊗ IK)h− Φxt and x̂t = −(ẋ′t+1 ⊗ IK)H. Let a ∈ RK(K−1) collect

unrestricted elements in A via vec(A) = Ha + h so that H and h contain zeros and

ones. Without considering initialisation, the latter approach would rely on the following

conditional posterior distribution

p(A|XT ,Φ,Σ1,Σ2, ST ) ∝ | det(A)|T−1 exp

{
−1

2

T−1∑
t=1

(x̃t+1 − x̂ta)′Σ−1
st (x̃t+1 − x̂ta)

}
p(a).

The above posterior prompts one to use a MH algorithm with multivariate normal or

Student’s t-proposal around (
∑T−1

t=1 x̂
′
tΣ
−1
st x̂t)

−1
∑T−1

t=1 x̂
′
tΣ
−1
st x̃t+1 with scale matrix

(
∑T−1

t=1 x̂
′
tΣ
−1
st x̂t)

−1, depending on a chosen prior for a. Due to the factor | det(A)|T−1

outside the Gaussian kernel, a small change generated by the random walk sampler

would potentially lead to big differences in the posterior ordinate, meaning the Markov

chain can get stuck very easily, especially when the dimension of A is large. The

inefficiency worsens in MSUC models because x̃t and x̂t are unobserved and imputed

from data. Apparently, the product form in (14) is the major source of inefficiency. Our

approach, however, circumvents the dimensionality issue based on the transformation

(12).
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Suppressing dependence on other parameters, we notice that draws from the

conditional posterior distribution p(A1−, ..., AK−, τ1,T , c1,T , ..., τN,T , cN,T |YT ) for A and xt

in Block 1, where τi,T = {τi,1, ..., τi,T} and ci,T = {ci,1, ..., ci,T}, can be facilitated by a

Gibbs sampler that iterates over

τi,T , ci,T |. ∼ p(τi,T , ci,T |Ai−, ..., AK−, τ1,T , c1,T , ..., τi−1,T , ci−1,T , τi+1,T , ci+1,T , ..., τN,T , cN,T , YT ),

(15)

Ai−|. ∼ p(Ai−|A1−, ..., Ai−1−, Ai+1−, ..., AK−, τ1,T , c1,T , ..., τN,T , cN,T , YT ), (16)

for i = 1, ..., N . It is interesting to note that the conditional posterior in (15) is implied

by a univariate MSUC model only involving Yi,T . The latter can be represented by the

following state space model:

yi,t = τi,t + ci,t,

A∗i

τi,t+1

ci,t+1

 = dit + Φ∗i,1

τi,t
ci,t

+ ...+ Φ∗i,p

τi,t−p+1

ci,t−p+1

+

 ei,t

eN+i,t

 ,

where

A∗i =

 1 Ai,N+i

AN+i,i 1

 , Φ∗i,n =

 Φn,i,i Φn,i,N+i

Φn,N+i,i Φn,N+i,N+i

 , n = 1, ..., p,

and dit = (diτ,t, d
i
c,t)
′ is a known but time-variant vector conditional on draws of other

unobserved components, defined by

diτ,t = f iτ,t +

p∑
n=1

(
N∑

j=1,j 6=i

[Φn,i,jτj,t+1−n + Φn,i,N+jcj,t+1−n]

)
,

dic,t = f ic,t +

p∑
n=1

(
N∑

j=1,j 6=i

[Φn,N+i,jτj,t+1−n + Φn,N+i,N+jcj,t+1−n]

)
,

f iτ,t = −
N∑

j=1,j 6=i

[Ai,jτj,t+1 + Ai,N+jcj,t+1]

f ic,t = −
N∑

j=1,j 6=i

[AN+i,jτj,t+1 + AN+i,N+jcj,t+1].

The above is a linear Gaussian state space model with time-varying predetermined
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intercept (A∗i )
−1dit and state covariance matrix (A∗i )

−1diag(ωi,stσ
2
i , ωN+i,stσ

2
N+i)(A

∗
i )
−1′

which can be cast into a reduced-form similar to (9). We adopt the simulation smoother

developed by Durbin and Koopman (2002) for the above system to generate draws of

τi,T and ci,T .15

It is worth noticing that, once conditional on other rows of A, the conditioning set

in the conditional posterior distribution of A in (16) is the same as when Yj,T , j 6= i

dropped. This unique feature of MSUC models allows us to sample A row-by-row with

transformation (13) and using (12). For each i = 1, ..., K, the sampling of δi,j for j =

1, ...i− 1, i+ 1, ..., K consists of two steps. In the first step, (12) boils down to a standard

Bayesian least square problem given δi,N+i. In the second step, we can use a MH algorithm

based on importance sampling for the single parameter δi,N+i conditional on δi1, also using

(12).16 The proposal density is constructed from the first and second order derivative of

its conditional posterior distribution. Further details on these sampling procedures are

given in Appendix D.

Instead of using a MH algorithm for sampling A all together, our proposed procedure

effectively separates the sampling of A into pieces while maintaining a high acceptance

rate, which depends on the effectively costless task of finding an univariate proposal

density for δi,N+i. Table 1 shows the result of a small simulation study where we compare

our algorithm with the MH algorithm of sampling A as a whole using a random walk

sampler as in Bayesian VARs with heteroskedasticity (Canova and Pérez Forero, 2015).

As the dimension increases, the number of unrestricted elements in A grows rapidly,

rendering the random walk sampler inefficient. The fact that when N = 5 only 12% of

the draws are accepted highlights the drawback of using a MH algorithm for sampling

A as a whole because of its multiplication by xt, which itself needs to be drawn. Our

proposed algorithm is much less sensitive to dimensionality by iteratively sampling Ai−.

Although one may argue that not sampling A in one step leads to poor mixing, we see

from Table 1 that this is not the case since the algorithm maintains high acceptance rate

and functionality when N increases.17

15The choice of sampler does not affect final results. The precision sampler of Chan and Jeliazkov (2009)
designed for UC models does not gain much efficiency in our case due to correlation between trends and
cycles. We thus adopt the sampler by Durbin and Koopman (2002) because of its easy implementation
and speediness. Alternatively, one can use the one proposed by De Jong and Shephard (1995) or the one
by Carter and Kohn (1994).

16Alternatively, one can apply a Griddy-Gibbs sampler; but we find that the basic Griddy-Gibbs
sampler generates draws of δi,N+i with very high autocorrelation.

17The sampling of other system parameters is relatively standard, taking into account an extra accept-
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Table 1: Comparison of two samplers for structural matrix A in MSUC
models

dim(yt) : N 1 2 3 4 5
dim(a) : K(K − 1) 2 12 30 56 90

Sample A row-by-row with parameter transformation
IF 6.22 8.41 7.63 11.92 10.81
acceptance rate 0.94 0.92 0.82 0.82 0.74

Sample A as a whole with random walk sampler
IF 14.93 22.67 28.93 89.27 > 300
acceptance rate 0.88 0.64 0.60 0.46 0.12

1 We simulate yt with different dimensions from a MSUC model with heteroskedasticity (Markov switching

between two volatility regimes). yt consist of a (vector) random walk trend and (V)AR(2) cycles with

diagonal coefficient matrices in its reduced-form. Both samplers generate a Markov chain with length

30,000, with the initial 2,000 iterations discarded, keeping parameters other than A at their DGP values.
2 IF is the inefficiency factor computed using Parzen window with bandwidth 1000. IF measures efficiency

based on the speed of decaying for the autocorrelation function.

3.2.3 Stochastic volatility

Two-state volatility regime switching satisfies the identification condition, and

extensions with more than two regimes can be estimated similarly. The assumption of

abrupt volatility regime switches and switches occurring at the same time for all

structural shocks, however, can be restrictive. Depending on the nature of shocks,

transitory or permanent, volatility changes may take place in different magnitudes and

at different times (Fisher et al., 2016). Thus, we consider stochastic volatility an

agnostic way for modelling potentially different patterns of volatility changes where the

adjustment occurs at each point in time.

In brief, we assume the following:

Assumption 3. The logarithm of each structural volatility series is a random walk. That

is, for i = 1, ..., K and t = 1, ..., T − 1,

log σi,t+1 = log σi,t + ρiξi,t, ξi,t ∼ N(0, 1),

with diffuse initialisation log σi,1 ∼ N(0, M̄), where M̄ is a big number.

The volatility of volatility parameter ρi is unknown and needs to be estimated. Similar

reject MH step that corrects for initialisation; details are reported in Appendix D.
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to the Markov regime switching case, the identification requires changes of volatility over

time, which is warranted (a.s.) via the random walk specification; therefore we have

Proposition 3. Under Assumption 1 and Assumption 3, A is uniquely identified.

The proof is given in Appendix C.

In this case, we have18

Ωt = A−1ΣtA
−1′, Σt = diag(σ2

1,t, ..., σ
2
K,t).

In our specification we have Ai−ẋt+1 = Φi−xt+ei,t with ei,t ∼ N(0, σ2
i,t) for i = 1, ..., K.

For the sampling procedure, we adopt the 7-component Gaussian mixture method of

Kim et al. (1998) to draw from p(log σi,t|{ei,t}T−1
t=1 , ρi, ST ) and p(st|{log σi,t}T−1

t=1 , {ei,t}T−1
t=1 )

iteratively, where st = {1, ..., 7} here is a tabulated indicator process selecting the mixing

component.19

3.2.4 Bayesian test for no spillover

In order to test for spillover effects between the structural shocks, we consider the Bayes

factor computed using the Savage-Dicky density ratio (SDDR). Suppose that we are

interested in testing the null hypothesis H0 : Ai,j = 0 (or, equivalently, H0 : δi,j = 0

based on (13)), that is to say, the structural shock driving the j-th component does not

spillover to the i-th component. The SDDR is given by

SDDRi,j =
p(δi,j = 0|YT )

p(δi,j = 0)
,

18Note that here we require that all volatility series are time-varying. Bertsche et al. (2018) show
that in structural autoregressive models the same setup allows one structural shock that has constant
volatility. If more than one structural shocks have constant volatility, then the corresponding block A−1

has to be upper diagonal. We, however, do not discuss such cases in this paper.
19The modelling of volatility dynamics is deemed as of secondary importance if the focus is to study

the component-to-component spillover effect via estimating the contemporaneous structural matrix A.
Furthermore, any “intermediate” cases where the number of volatility changes is within [3, T − 1] can be
accommodated by, e.g., the Dirichelet process mixture model of Bauwens et al. (2017). It is reasonable to
assume that, if the structural matrix A estimated under two-state and stochastic volatility are numerically
close (which is what find in our empirical study), any other “intermediate” cases will deliver similar results.
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where the numerator and denominator indicate the posterior and prior density of δi,j

evaluated at zero, respectively. The denominator is given by

p(δi,j = 0) =

∫
γj

p(δi,j = 0|γj)p(γj)dγj =
1√
2π
E(γ

−1/2
j ) =

Γ(αγ + 0.5)

Γ(αγ)
√

2πβγ
,

where Γ(.) denotes the gamma function. The numerator does not have an analytical

expression, but an unbiased estimate is easy to compute using the importance-weighted

marginal posterior density estimator (IWMDE) p̂(δi,j = 0|γj) of Chen (1994). Let ϕ(m)

denote the m-th draw from the MCMC sample of all parameters and unobserved

components; let δ
(m)
i,j denote the m-th draw from the sample of δi,j; and let ϕ

(m)
−(i,j) denote

ϕ(m) but without δ
(m)
i,j . The IWMDE is given by

p̂(δi,j = 0|YT ) =
1

M

M∑
m=1

g(δ
(m)
i,j |ϕ

(m)
−(i,j))

p(YT |δi,j = 0, ϕ
(m)
−(i,j))p(δi,j = 0, ϕ

(m)
−(i,j))

p(YT |ϕ(m))p(ϕ(m))
, (17)

where M the total number of draws and where g(δ
(m)
i,j |ϕ

(m)
−(i,j)) is the proposal

distribution used for drawing δ
(m)
i,j given in Section 3.2.2. Importantly, we omit τ

(m)
i and

c
(m)
i for i = 1, ..., N when computing p(YT |δi,j = 0, ϕ

(m)
−(i,j)) and p(YT |ϕ(m)), but instead

apply the Kalman recursion (11) to integrate out all unobserved components. This

Rao-Blackwellisation step is essential to reducing Monte Carlo noise. Since

E(p̂(δi,j = 0|yT ) = p(δi,j|YT ), we calculate ŜDDRi,j = p̂(δi,j = 0|YT )/p(δi,j = 0) which is

an unbiased estimator of SDDRi,j.

The ŜDDRi,js for all i and j are computed once the MCMC is stopped. This procedure

is easy to implement for testing no spillover effects between unobserved components or

structural shocks. In our empirical study, the ̂SDDRi,js are compared with the scale

proposed by Kass and Raftery (1995) for determining Bayesian statistical significance.

4 Empirical results

In this section, we empirically test for spillovers between permanent and transitory shocks

in the US economy considering MSUC versions of Okun’s law and the Phillips curve.

Okun’s law studies the relationship between output and unemployment; while the Phillips

curve links output and inflation.
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4.1 Data and the MSUC model

Let yt = (y1,t, y2,t)
′, where y1,t is (the natural logarithm of) real GDP and y2,t is either

the unemployment rate or the CPI headline inflation rate. Figure 1 shows the time series

plots for the period 1970Q1-2018Q3 used in our analysis.

Output 
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1980 1995 2010
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Inflation 

Figure 1: USA, 1970Q1-2018Q3. Time series plots of output, unemployment rate and
inflation. Output is the natural logarithm of real GDP; unemployment rate is the civilian unemployment

rate; and inflation is the CPI headline inflation rate.

We consider that each quarterly time series is composed of a non-stationary trend and

a stationary cycle, i.e. yi,t = τi,t + ci,t, i = 1, 2. Augmented Dickey-Fuller tests suggests

that the output series is an I(2) process, in line with the findings of Stock and Watson

(1998) and Harvey (2011). Furthermore, the KPSS test (Charemza and Syczewska, 1998)

rejects the null of trend stationarity for ∆y1,t, where ∆ denotes the difference operator,

thus indicating that the growth rate of trend output is a non-stationary process. Hence, we

consider an integrated random walk for the output trend as in Stock and Watson (1998),

Harvey (2011) and Holston et al. (2017), which means that the drift term measuring the

growth rate of trend output is a random walk itself:

τ1,t+1 = τg,t + τ1,t + ετ1,t,

τg,t+1 = τg,t + ετg ,t,

for t = 1, ..., T − 1. This specification for output characterises two types of permanent

shocks that drive output trend in the reduced-form models: ετ1,t and ετg,t, which affect

the level of the trend and the growth rate of the trend, respectively. Perron and Wada

(2009), Basistha and Startz (2008) and Sinclair (2009) (among others) assume that the

trend growth rate exhibits a one-time structural break. We do not follow this approach
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because the break is assumed to be exogenous; by contrast, we consider the possibility

that trend growth can be affected by both structural permanent and transitory shocks.20

We assume a VAR(2) process for the cycle components in the reduced-form

specification.21 The structural equation describing the dynamics of unobserved

components is given by

A



τ1,t+1

gt+1

τ2,t+1

c1,t+1

c2,t+1


= Φ1



τ1,t

gt

τ2,t

c1,t

c2,t


+ Φ2



τ1,t−p+1

gt−p+1

τ2,t−p+1

c1,t−p+1

c2,t−p+1


+



eτ1,t

eg,t

eτ2,t

ec1,t

ec2,t


, et ∼ N(0,Σst),

where Σst = diag(σ2
τ1,t
, ..., σ2

c2,t
). Regarding the volatility dynamics, we consider both a

two-regime Markov switching model, i.e. st = 1, 2, and a stochastic volatility model with

st = t and log(σi,t) being a random walk process for all i.

4.2 Estimation results

Proposition 2 states that the identifiability of the structural matrix A relies on the

variation of the volatility of structural shocks. As mentioned above, we considered two

different forms of heteroskedasticity for the MSUC version of Okun’s law and the

Phillips curve: a two-state Markov regime switching model and a stochastic volatility

model.22

Figure 2 shows the posterior estimate of the volatility state indicator st obtained from

the MSUC versions of Okun’s law and the Phillips curve. The models clearly identify two

volatility states. The high volatility state takes place before the mid-1980’s, followed by

a fall in volatility — which is consistent with the “Great Moderation” literature, showing

up again during the 2008 Great Financial Crisis (GFC), and declining again since 2010.23

20We also conduct a Bayesian test for non-zero variance σ2
τg of ετg,t by applying the non-centred

parametrisation of Frühwirth-Schnatter and Wagner (2010) to a univariate UC model for output. The
posterior distribution of στg (with a non-centred transformation) unambiguously shows two clusters of
probability mass, suggesting non-zero innovations that drive trend growth.

21We also increased the VAR order to 4 and 8; but our main conclusions remained unaltered. These
results are not reported, but are available on request.

22We also investigated the reduced-form system by considering a full innovation covariance matrix; and
we report those results in Appendix E in order to focus on the description of the spillover effects in this
section.

23Appendix E also shows the posterior estimates of the stochastic volatility series. Note that the Phillips
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Thus, both the stochastic volatility model and the two-regime Markov regime switching

model capture the high volatility period before 1985 and during 2008.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

0.5

1.0

Figure 2: Estimated volatility regimes of MSUC models. The solid and dash lines indicate the

posterior probability of being in the high volatility state based on Okun’s law and the Phillips curve,

respectively.

The posterior estimate of the structural matrix A is reported in Table 2 together with

the SDDR testing for H0 : Ai,j = 0, introduced in Section 3.2.4. As discussed previously,

the correlation between component innovations in correlated UC models results from

multiplying A−1 on both sides of the structural state transition (2). This means that A−1

as in εt = A−1et captures the interplay between structural shocks or how they spillover to

unobserved components, which is reported in Table 3. To summarise, Table 2 reports the

statistical significance of the within-components and cross-components spillovers; while 3

reports the direction and degree of the respective spillovers.

Tables 2 and 3 show several interesting results. First, all the diagonal elements of

A−1 are positive, which means that we can pair identified structural shocks with their

corresponding components. Although we do not restrict all elements on the diagonal of

A−1 to be positive a priori, the MCMC algorithm never delivers negative values for the

diagonal elements of A−1. This enables the structural interpretation of identified

permanent and transitory shocks; but we also notice this may not be true in other

contexts.24

curve suggests a more persistent state dynamics, because inflation is more responsive to volatility changes.
Regarding Okun’s law, only trend unemployment experiences a clear volatility spike during the GFC,
while evidence from the other components seems to be more ambiguous. With respect to the Phillips
curve, trend inflation is not exposed to high volatility during the GFC, while the other components
become quite volatile during that period.

24For example, if (A−1)1,1 were negative, the contemporaneous impulse response of τ1,t to positive of
eτ1,t would be negative, implying an unconventional interpretation of the structural shock eτ1,t driving
τ1,t. In structural VARs, A−1 is usually restricted to have ones on its diagonal; such specification however
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Table 2: Estimated contemporaneous structural matrix obtained from the
MSUC model

Okun’s law The Phillips curve
Two volatility states Markov regime switching

τ1,t τg,t τ2,t c1,t c2,t τ1,t τg,t τ2,t c1,t c2,t

τ1,t 1 0.05
−5.1

−0.07
0.3

0.84
−24.3

0.23
−17.2

1 0.23
−7.2

−0.08
−16.2

0.42
−31.5

0.04
1.2

τg,t 0.02
−0.8

1 −0.12
−14.5

0.00
0.7

0.18
−16.9

0.12
−8.2

1 −0.48
−18.6

0.35
−13.0

−0.23
−34.3

τ2,t 0.03
−0.4

0.04
0.7

1 0.29
−11.8

0.08
−3.7

0.12
−9.3

0.21
−23.0

1 −0.32
−25.6

0.30
−37.1

c1,t−0.18
−14.8

−0.27
−18.7

0.31
−32.5

1 0.22
−16.5

−0.34
−14.4

−0.32
−26.1

0.21
−12.0

1 −0.54
−16.8

c2,t−0.00
0.4

−0.01
1.1

0.74
−19.3

0.65
−11.5

1 0.23
−10.4

−0.00
−0.1

0.14
−8.2

−0.27
−16.6

1

Stochastic volatility

τ1,t 1 0.06
1.4

−0.11
−8.1

0.52
−14.2

0.27
−24.7

1 0.01
0.2

−0.03
0.3

0.30
−17.8

−0.00
−0.0

τg,t 0.02
−1.1

1 −0.12
−15.5

0.01
0.4

0.26
−19.4

0.01
−0.4

1 −0.62
−32.6

0.48
−24.1

−0.45
−16.3

τ2,t 0.11
−8.6

0.03
1.4

1 0.22
−8.1

0.06
−3.2

0.17
−4.0

0.28
−16.2

1 −0.46
−18.6

0.22
−22.4

c1,t−0.20
10.4

−0.23
−17.0

0.21
−9.2

1 0.21
−35.2

−0.32
−21.8

−0.18
−17.2

0.21
−11.6

1 −0.44
−31.2

c2,t−0.00
2.3

0.00
−0.1

0.65
14.4

0.56
−27.8

1 0.18
−8.2

−0.02
0.0

0.18
−8.4

−0.26
−21.7

1

Reported is the posterior mean estimate of the structural matrix A obtained from the MSUC model for

Okun’s law and the Phillips curve. Below the posterior mean is the SDDR for testing H0 : Ai,j = 0,

with boldface number indicating strong evidence against H0. The upper panel shows estimates identified

considering the two-volatility-state Markov regime switching, while the bottom panel shows estimates

identified considering stochastic volatility.
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Table 3: Estimated spillover effects of shocks obtained from the MSUC
model

Okun’s law The Phillips curve
Two volatility states Markov regime switching

eτ1,t eτg ,t eτ2,t ec1,t ec2,t eτ1,t eτg ,t eτ2,t ec1,t ec2,t
ετ1,t 0.86 -0.26 0.35 -0.75 -0.11 0.99 -0.36 0.03 -0.37 -0.33
ετg ,t -0.04 0.98 -0.01 -0.10 0.21 -0.21 0.93 0.44 -0.08 0.05
ετ2,t -0.07 -0.10 1.08 -0.23 -0.04 0.03 -0.11 0.91 0.28 -0.14
εc1,t 0.18 0.27 -0.12 1.01 -0.20 0.16 0.30 -0.13 0.96 0.62
εc2,t -0.06 -0.10 -0.72 -0.49 1.16 -0.19 0.18 -0.17 0.31 1.27

Stochastic volatility

ετ1,t 0.89 -0.15 0.30 -0.41 -0.21 0.94 -0.07 0.07 -0.25 -0.16
ετg ,t -0.05 0.97 -0.05 -0.14 0.30 -0.16 0.85 0.50 -0.07 0.24
ετ2,t -0.14 -0.06 1.01 -0.15 -0.01 0.01 -0.15 0.82 0.43 -0.06
εc1,t 0.20 0.22 -0.03 1.01 -0.21 0.22 0.21 -0.14 0.90 0.53
εc2,t -0.02 -0.09 -0.65 -0.47 1.12 -0.11 0.11 -0.19 0.20 1.18

Reported is the posterior mean of the inverse of structural matrix, i.e. A−1. The upper panel shows

estimates identified considering the two-volatility-state Markov regime switching, while the bottom panel

shows estimates identified considering stochastic volatility.

Second, the estimates obtained from the models that consider stochastic volatility

have the same sign and similar magnitudes compared with those that consider the regime

switching volatility, thus suggesting that our results are robust to different specifications

of volatility dynamics.25

Third, the majority of both the within-components spillovers and the

cross-components spillovers are significant. This suggests relevant interactions between

trend and cycles for GDP, unemployment and inflation.

Regarding the output within-components spillovers, we find significant positive

spillovers from trend-to-cycle and negative cycle-to-trend spillovers when both Okun’s

law and the Phillips curve are considered. However, the element A2,4 is significant only

in the Phillips curve estimation, indicating that only output cycle shocks measured via

the Phillips curve specification (and not via Okun’s law) generate negative spillover

cannot facilitate the proposed efficient sampling scheme introduced in Section 3.2.2.
25It is worth mentioning that, since the identification of A relies on the assumption that the time-

variation of the covariance matrix of reduced-form shocks only comes from heteroskedasticity of structural
shocks, it can be argued that a constant contemporaneous relationship between components may not hold.
To examine this, we estimated the MSUC models using data prior to the GFC and report the results in
Appendix E. It can be observed that the GFC does not change the overall magnitude of the elements in
A and, thus, our discussion is also robust to the inclusion of the GFC period.
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effects to the trend output growth rate. Likewise, the negative spillovers from

cycle-to-trend are larger than the respective positive ones from trend-to-cycle: the

elements (A−1)1,4 are larger than (A−1)4,1 in Table 3. On the other hand, with respect

to the within-components spillovers for the unemployment rate (inflation rate) we find

negative statistically significant spillovers from trend innovations (cycle innovations) to

cycle (trend).

Regarding the cross-components spillovers for Okun’s law, we find that: (i) GDP and

unemployment exhibit statistically significant spillovers if the cyclical components are

considered; (ii) the cycle-to-cycle spillover from GDP to unemployment is larger than

the one of unemployment to GDP: the element (A−1)5,4 is larger than (A−1)4,5; (iii) the

spillovers between GDP and unemployment are much smaller when the trend innovations

are considered: there are no significant spillovers from output trend or output growth rate

trend to unemployment trend, and only a small spillover from unemployment trend to

GDP trend growth. As for the results for the Phillips curve, we find statistically significant

cycle-to-cycle spillovers from GDP to inflation and vice versa —with the spillover from

inflation cycle to GDP cycle being larger since (A−1)4,5 > (A−1)5,4— and also statistically

significant trend-to-trend spillovers —with the ones running from inflation trend to the

permanent components of GDP being larger.26

Finally, the implied correlation between reduced-form shocks considering both the

high and low volatility regimes is reported in Table 4. Compared with results estimated

directly from the reduced-form model, which is reported in Appendix E, we observe that

Υi, i = 1, 2 is smaller here. This is because we assume that a priori each structural

shock affects other components in a similar way via the hierarchical prior. This is not

a restriction but rather a more realistic assumption in order to facilitate the structural

identification rather than the unstructured reduced-form model; and it is reassuring to

corroborate that both correlation matrices have the same sign.

The results in Table 4 allow us to show more clearly the direction of correlation

associated with the cross-components spillovers by linking these results to Tables 2 and

3. Consider the long-run Okun’s law, illustrated via the negative correlation between

26Notice that other differences between GDP-unemployment and GDP-inflation interactions can also be
found. For example, the element A2,5 is significant both in Okun’s law and the Phillips curve; however,
A1,5 is significant only in the Okun’s law estimation. This suggests that unemployment and inflation
cycles influence different long-run components of output. Note also that if we had modelled the change
in trend growth rate as an exogenous structural break, we would not have been able to identify these
effects.
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Table 4: Correlation matrix of UC innovations obtained from the MSUC
models1

Okun’s law The Phillips curve

ετ1,t ετg ,t ετ2,t εc1,t εc2,t ετ1,t ετg ,t ετ2,t εc1,t εc2,t
ετ1,t 1 -0.12 0.16 -0.26 0.09 1 -0.46 0.02 -0.18 -0.47
ετg ,t -0.14 1 -0.04 -0.03 0.16 -0.45 1 0.24 -0.06 0.14
ετ2,t 0.15 -0.06 1 -0.43 -0.24 0.03 0.26 1 0.16 -0.18
εc1,t -0.25 0.02 -0.43 1 -0.59 -0.22 -0.04 0.12 1 0.66
εc2,t 0.10 0.10 -0.26 -0.61 1 -0.48 0.13 -0.20 0.69 1

Partial R-square2

High vol. 0.09 0.05 0.57 0.71 0.66 0.39 0.34 0.31 0.58 0.65
Low vol. 0.08 0.04 0.62 0.75 0.71 0.38 0.33 0.30 0.59 0.66

1 Reported is the correlation matrix Υi estimated from the MSUC model for Okun’s law and the Phillips

curve. The matrix is computed as Υi = (diagΣi)
−1/2Σi(diagΣi)

−1/2 for volatility state i = 1, 2. The

upper and lower triangular parts of the matrix indicate the correlation matrix under the high and low

volatility regime, respectively. 2 Reported is the partial R-squared under both volatility regimes,

computed from the inverse of correlation matrix. It measures the proportion of variation of one shock

that is explained by other shocks.

shocks to trend growth rate ετg ,t and to trend unemployment rate ετ2,t. By comparing

(A−1)3,2 and (A−1)2,3, it is clear that the negative correlation in Table 4 is caused by a

unit structural shock of trend unemployment rate leading to a 0.1 unit decrease in trend

growth rate as shown in Table 3 (considering the estimated effect obtained from the two-

volatility-state Markov regime switching), not the other way around. In the same vein, the

long-run Phillips curve is present considering trend inflation and both trend growth rate

and trend output, but the main channel is the positive spillover from structural shocks of

trend inflation to trend growth rate. On the other hand, the short-run relationships are

captured via Υ4,5 < 0 (or Υ5,4 < 0) for Okun’s law and Υ4,5 > 0 (or Υ5,4 > 0) for the

Phillips curve. However, comparing (A−1)4,5 with (A−1)5,4 for Okun’s law we observe that

the most important negative spillover comes from output cycle shocks to unemployment

cycle; whereas for the Phillips curve the most important spillover is the positive effect of

inflation cycle shocks to output cycle.

The bottom panel of Table 4 also reports the partial R-squared of reduced-form shocks

in high and low volatility states. The latter is computed using the correlation matrix only

(Anufriev and Panchenko, 2015), which measures how much variation of one shock is

explained by the variation of other shocks. Comparing Okun’s law with the Phillips

30



curve, shocks to inflation components tend to explain more variation in shocks to trend

output and trend growth rate. Additionally, approximately 50% and 30% variation in

shocks to trend unemployment and trend inflation, respectively, are explained by other

shocks (including shocks to output cycle).

5 Implications for macro modelling and policy

making

This section briefly discusses some of the most important implications derived from our

findings for policy making and macroeconomic modelling. First, our results suggest the

existence of statistically significant spillovers between permanent and transitory

components for GDP in both directions, negative spillovers from permanent to

transitory components for the unemployment rate, and negative spillovers from cycle to

trend components for the inflation rate. These findings indicate that each variable under

consideration exhibits its own relevant spillovers that are necessary to consider when

evaluating the trade-offs of different economic policies. For example, the positive

trend-to-cycle spillover for GDP indicates that a productivity shock that might

permanently increase the level or growth rate of GDP would also affect positively the

transitory movement of the GDP series, contradicting the strong negative correlation

between permanent and transitory shocks for output found by Morley et al. (2003) and

Sinclair (2009). Nevertheless, our analysis also shows that the observed negative

correlation between trend innovations and cycles for output is derived from the strong

negative spillover from cycle shocks to trend GDP. This highlights that the correlations

obtained from the correlated UC model are insufficient to provide a detailed analysis of

the structural interactions between permanent and transitory innovations.

Second, the finding that transitory structural shocks can influence negatively

permanent components is related to the current discussion of hysteresis effects (Gaĺı,

2015a; Blanchard et al., 2015). Broadly speaking, hysteresis refers to the possibility that

transitory shocks (derived from different aggregate demand fluctuations) can affect

permanent components (derived from different supply side fluctuations). Our results

show the existence of negative spillovers from cycle-to-trend for GDP and the inflation

rate. The presence of hysteresis effects in these variables has important implications for
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the design of optimal monetary policy because, as Gaĺı (2015a) and Gaĺı (2016) discuss,

hysteresis implies that real variables may experience permanent deviations from their

efficient levels, even in response to shocks that are transitory. Moreover, as Ascari and

Ropele (2009) discuss, much of the literature on monetary policy rules considers

theoretical New Keynesian models that assume zero-inflation steady rate. They also

show that, if a positive trend inflation is considered, then the structural equations and

the determinacy region of these models experience substantial changes. In other words,

a positive trend inflation drastically alters the Taylor principle. Our computations of the

trend inflation rate show that the latter has been positive during the whole period,

which indicates that the standard New Keynesian framework could be improved by

explicitly incorporating the spillovers between transitory and permanent shocks.

Finally, our empirical results corroborate the slow recovery in the labour market and

some of the discussions of the literautre on jobless recoveries (see, for example, Gaĺı

(2015a)). Figure 3 shows the posterior estimates of the trend and cycle components for

Okun’s law. The trend unemployment rate experiences a hump-shaped behaviour during

the 1980’s, while the trend growth rate fluctuates around a gradual decline. It is clear that

both trend unemployment and its cycle increased during the GFC. A similar phenomenon

can be observed by looking at Figure 4, which shows the estimates obtained from the

MSUC model considering the Phillips curve. Both trend inflation and its cycle were

affected by the GFC, and the latter seems to have affected the permanent component of

output more than its cycle, compared to the results obtained from Okun’s law. In order to

provide a comprehensive explanation of these differences, it may be necessary to consider

larger information sets with more macroeconomic variables instead of bivariate systems.

This is beyond the scope of this paper and is left for future research.

6 Concluding remarks

We proposed a multivariate simultaneous unobserved components (MSUC) model that

attributes the correlation in a correlated unobserved components model to the

contemporaneous spillover effects between components, each driven by a combination of

permanent and transitory structural shocks. Therefore, the direction of spillover has a

structural interpretation, whose identification is achieved via heteroskedasticity. In order
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Figure 3: Estimated components of the MSUC model of Okun’s law. The solid and dashed

lines indicate the posterior mean and 5/95-th percentile, respectively of (i): Annual trend growth rate of

output. (ii): Trend unemployment rate. (iii): Output cycle. (iv): Unemployment cycle.

to estimate the MSUC model, we developed an efficient Bayesian estimation procedure

that maintains functionality despite the fact that the number of free elements in the

contemporaneous structural matrix grows exponentially with dimensionality. In our

empirical study, we estimate the MSUC versions of Okun’s law and the Phillips curve,

considering both Markov regime switching volatility states and stochastic volatility. The

results show robust evidence of significant within-components and cross-components

spillovers, thus indicating that it is inappropriate to treat permanent and transitory

components as independent. Our findings shed new light regarding the policy debates

on the output-inflation and output-unemployment interactions, and also regarding the

trade-offs between short- and long-run. At the empirical level, future work may try to

incorporate time-variation in the structural matrix under stochastic volatility; while at

the theoretical level the development of general equilibrium models that allow for

spillover effects between trends and cycles seems to be a promising avenue to capture

relevant empirical dynamics.
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Figure 4: Estimated components of the MSUC model of the Phillips curve. The solid and

dashed lines indicate the posterior mean and 5/95-th percentile, respectively of (i): Annual trend growth

rate of output. (ii): Trend inflation. (iii): Output cycle. (iv): Inflation cycle.
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Appendix A Proof of Proposition 1

From the autocovariance function of the VARIMA(p, 1, d) representation, X only involves

the coefficient matrices of the VAR(p) cycles. Let CN2 denote the commutation matrix

such that for any N ×N matrix M the relation CN2vec(M) = vec(M ′) holds; then X is

given by

X =



D+
N (IN2 +

∑p
i=1Bc,i ⊗Bc,i)DN 2D+

N 2D+
N(IN2 + IN ⊗B1)(

−IN ⊗Bc,1 +
∑p−1

i=1 Bc,i ⊗Bc,i+1

)
DN −IN2 −CN2 − IN ⊗Bc,1 + IN ⊗Bc,2(

−IN ⊗Bc,2 +
∑p−2

i=1 Bc,i ⊗Bc,i+2

)
DN 0N2×N2 −IN ⊗Bc,2 + IN ⊗Bc,3

...
...

...

(−IN ⊗Bc,p−1 +Bc,1 ⊗Bc,p)DN 0N2×N2 −IN ⊗Bc,p−1 + IN ⊗Bc,p

(−IN ⊗Bc,p)DN 0N2×N2 −IN ⊗Bc,p


.

To show that the (N2p+ 1
2
N2 + 1

2
N)× 1

2
(5N2 +N) matrix B is of full rank, it suffices to

show that via elementary row operations the transformed matrix has 1
2
(5N2+N) non-zero

rows so that β is uniquely determined, and so is Ω. Notice that vec(Ωc)
′ has N(N − 1)/2

elements shown up twice; but since Y and X are implied by the correlated UC model, it

automatically guarantees such a structure.

Let X+
ij denote the ij-th block of matrix X detailed above, i = 1, ..., p+1 and j = 1, 2, 3;

let X ∗ denote its transformation via elementary row operations with block X ∗ij. If X+ has

rank 1
2
(5N2 + N), we should be able to construct X ∗ such that X ∗33 is of full rank N2.

According to Assumption 1, we can construct a coefficient sequence ρi for i = 3, ..., p+ 1

with

ρi =

−ci−1, for i = 3,

−
∑i−1

j=2 cj, for 4 ≤ i ≤ p+ 1.

This allows for X ∗33 to be constructed by

X ∗33 =

p+1∑
i=3

ρiX+
i3 = IN ⊗ B̄,

which is of full rank N2 under Assumption 1. So we align X ∗3j with
∑p+1

i=3 ρiX
+
ij for j = 1, 2.

Then we construct

X ∗2j = X+
2j +

p+1∑
i=3

(ρi + 1)X+
ij , j = 1, 2, 3.
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And the first row block of X ∗ is the same as that of X+.

According to Morley et al. (2003) and Trenker and Weber (2016), X ∗ has a rank deficit

only if there exists a 1
2
(N + 1)N × 1 vector f1 and a N2 × 1 vector f2 such that

(f ′1(X ∗13 + 2D+
NX

∗
23)− f ′2X ∗33)DN = 01× 1

2
N(N+1), (18)

f ′1(X ∗11 + 2D+
NX

∗
21)− f2X ∗31 = 01× 1

2
N(N+1). (19)

It can be easily verified that X ∗13 + 2D+
NX ∗23 = 2D+

NX ∗33; so (18) gives f ′2 = 2f ′1D
+
N . With

the constructed full rank X ∗33 = (IN ⊗ B̄), it follows from (19) that we need

f ′1
(
D+
N [(IN −

p∑
i=1

Bc,i)⊗ (IN −
p∑
i=1

Bc,i)]DN

)
= 01× 1

2
N(N+1)

to ensure rank deficit. But this is not possible under the condition that the VAR(p) cycles

are stable. This means the rank of X ∗ must be full, and so is X+.

Appendix B Proof of Proposition 2

It follows from Assumption 1 that the following decomposition holds

Ω−1
1 = C ′C, Ω2 = C ′diag(ω1,2, ..., ωK,2)C.

Lanne et al. (2010) shows that C, with diagonal elements c11, ..., cKK , is unique up to row

order and sign swap if and only if for all i, j ∈ {1, ..., K}, i 6= j we have ωi,2 6= ωj,2.

This result carries over to our setting by defining A = diag(c11, ..., cKK)−1C so that it

has unit diagonal. This means that A is a normalised version of C and its row ordering and

sign are determined since the normalisation is done via its diagonal elements. By replacing

C with diag(c11, ..., cKK)A we have Ω−1
i = A′Σ−1

i A for i = 1, 2, or Ωi = A−1ΣiA
−1′.

Appendix C Proof of Proposition 3

Similar to above, writing Ω−1
1 = C ′C yields

Ωt = C ′diag(σ2
1,t/σ

2
1,1, ..., σ

2
K,t/σ

2
K,1)C, t = 2, ..., T.
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Based on Bertsche et al. (2018), C with diagonal elements c11, ..., cKK is identified up

to row order and sign swap a.s. under the random walk specification. Defining A =

diag(c11, ..., cKK)−1C, so that it has unit diagonal, and replacing C by diag(c11, ..., cKK)A,

we have Ω−1
t = A′Σ−1

t A. Uniqueness is achieved by respecting that A is a normalised

version of C and its row ordering and sign are determined. The result also carries over to

the case where there exists one structural shock having constant volatility, as proven by

Bertsche et al. (2018).

Appendix D Details of the sampling procedure

Sampling δi,j.

Firstly, notice that if δi,j is N(0, γj)-distributed, a new draw

δ∗i1 = (δi,1, ..., δi,i−1, δi,i+1, ..., δi,N+i−1, δN+i+1, ..., δi,k)
′ can be generated from N(µδi1,Ψ

δ
i1),

where

Ψδ
i1 =

(
T∑
t=2

x̃tx̃
′
t

(δi,N+i − 1)2σ2
i,st−1

ωi,st−1

+ diag(γ1, ...γi−1, γi+1, ...γN+i−1, γN+i+1, ..., γK)

)−1

,

µδi1 = Ψδ
i1

T∑
t=2

x̃t(τ
∗
i,t − δi,N+iy

∗
i,t)

(δi,N+i − 1)2σ2
i,st−1

ωi,st−1

.

If the initialisation of unobserved components is omitted, the new draw is accepted with

probability of one, but not from the correct conditional posterior. Notice that in (10), B∗c

and Ωi, i = 1, 2 are functions of A, and thus of δ∗i1 conditional on other parameters, so

with initialisation considered, the draw is accepted with probability

min

{
|Vc,1(δ∗i1)|−1/2 exp(−1

2
x′c,1Vc,1(δ∗i1)−1xc,1)

|Vc,1(δi1)|−1/2 exp(−1
2
x′c,1Vc,1(δi1)−1xc,1)

, 1

}
,

where δi1 (without asterisk) is the previous draw in the Markov chain and xc,1 denotes

the cycle components in x1, i.e. xc,1 = (c1, ..., c2−p)
′.

Secondly, defining ỹi,t = τ ∗i,t − δi,1τ1,t − ... − δi,i−1τi−1,t − δi,i+1τi+1,t − ... − δi,N+1c1,t −

...− δi,KcN,t, (12) becomes

ỹi,t = δi,N+1y
∗
i,t + (δi,N+i − 1)ei,t−1.
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Ignoring initialisation, the conditional posterior follows

p(δi,N+1|.) ∝ (δi,N+1 − 1)−T+1 exp

(
−1

2

T∑
t=2

(ỹi,t − δi,N+iy
∗
i,t)

2

(δi,N+i − 1)2σ2
i,st−1

ωi,st−1

− 1

2

δ2
i,N+i

γN+i

)
. (20)

This non-standard univariate distribution can be well-approximated by a Student’s t-

proposal with mean µδi2 and scale parameter Ψδ
i2 equal to the mode and curvature around

the mode of the above density function.27 That is, we apply the Newton’s method

δ
(n+1)
i,N+i = δ

(n)
i,N+i −

p′(δ
(n)
i,N+i|.)

p′′(δ
(n)
i,N+i|.)

to find the mode iteratively, with δ
(1)
i,N+i = Cov(ỹi,t, y

∗
i,t)/Var(y∗i,t) and

p′(δi,N+i|.) = −(T − 1)
1

δi,N+i − 1
+ (δi,N+i − 1)−3

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)

2

σ2
i,st−1

ωi,st−1

+ (δi,N+i − 1)−2

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)y

∗
i,t

σ2
i,st−1

ωi,st−1

− 1

γN+i

δi,N+i,

p′′(δi,N+i|.) = (T − 1)(δi,N+i − 1)−2 − 3(δi,N+i − 1)−4

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)

2

σ2
i,st−1

ωi,st−1

− 4(δi,N+i − 1)−3

T∑
t=2

(ỹi,t − δi,N+1y
∗
i,t)y

∗
i,t

σ2
i,st−1

ωi,st−1

− 1

γN+i

,

until some convergence criterion is met. Let µδi2 denote the mode and define Ψδ
i2 =

−1/p′′(µδi2|.). A new draw δ∗i,N+i is generated from a Student’ t-distribution T (µδi2,Ψ
δ
i2, ν),

with the degrees of freedom ν arbitrarily chosen. The draw is accepted with probability

min

{
|Vc,1(δ∗i,N+i)|−1/2 exp

(
−1

2
x′c,1Vc,1(δ∗i,N+i)

−1xc,1
)
p(δ∗i,N+i|.)T (δi,N+i;µ

δ
i2,Ψ

δ
i2, ν)

|Vc,1(δi,N+i)|−1/2 exp
(
−1

2
x′c,1Vc,1(δi,N+i)−1xc,1

)
p(δi,N+i|.)T (δ∗i,N+i;µ

δ
i2,Ψ

δ
i2, ν)

, 1

}
,

where p(δi,N+i|.) is the density kernel in (20) and T (δi,N+i;µ
δ
i2,Ψ

δ
i2, ν) is the density of

constructed Student’s t-proposal evaluated at δi,N+i. Once δi,j and δi,N+i are generated,

Ai− is computed using (13).

27More efficient proposals such as a mixture of Student’s t-distributions can be easily constructed
(Basturk et al., 2017) due to the fact that we deal with a univariate distribution. We find that a simple
Student’s t-proposal suffices.
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Sampling Φ, σ2
i,1, ωi,2, P, γΦ and γi.

Φ is done independently equation-by-equation. Based on (4), we notice that only the

sampling of Φcc is needed (i.e. the autoregressive coefficient matrix for the VAR(p)

cycles). Using (14), standard Bayesian calculation shows that posterior draws of Φ′i− can

be generated from N(Ai−µ
Φ
i ,Ψ

Φ
i )1{||B∗

c ||<1}, where

ΨΦ
i =

(
T−1∑
t=1

x′tΣ
−1
st xt +

1

γΦ

L−1

)−1

,

µΦ
i = ΨΦ

i

(
T−1∑
t=1

x′tΣ
−1
st ẋt+1 +

1

γΦ

L−1W

)
,

and ||B∗c || denotes the largest eigenvalue in absolute value of B∗c so that the indicator

function 1{||B∗
c ||<1} guarantees that the VAR(p) cycles are stationary. Taking initialisation

into account, the draw is accepted with probability

min

{
|Vc,1(Φ∗i−)|−1/2 exp(−1

2
x′c,1Vc,1(Φ∗i−)−1xc,1)

|Vc,1(Φi−)|−1/2 exp(−1
2
x′c,1Vc,1(Φi−)−1xc,1)

, 1

}
.

For i = 1, ..., K, the volatility parameter σ2
i,1 can be sampled from

IG

(
αv +

T

2
, βv +

T−1∑
t=1

(Ai−ẋt+1 − Φi−xt)
2

2ωi,st

)

and the variance ratio ωi,2 can be sampled from

IG

(
αω +

T2

2
, βω +

∑
t∈T2

(Ai−ẋt+1 − Φi−xt)
2

2σ2
i,st

)
.

These draws are accepted with probability

min

{
|Vc,1(σ2∗

i,1ω
∗
i,j)|−1/2 exp(−1

2
x′c,1Vc,1(σ2∗

i,1ω
∗
i,j)
−1xc,1)

|Vc,1(σ2
i,1ωi,j)|−1/2 exp(−1

2
x′c,1Vc,1(σ2

i,1ωi,j)
−1xc,1)

, 1

}
, j = 1, 2.

The posterior draws of transition probability are sampled via a 2-dimensional Dirichlet

distribution. Specifically, we draw P′1− and P′2− from

Dir2(e1+
T∑
t=2

1st−1=1,st=1, e2+
T∑
t=2

1st−1=1,st=2), Dir2(e2+
T∑
t=2

1st−1=2,st=1, e1+
T∑
t=2

1st−1=2,st=2),
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respectively, where
∑T

t=2 1st−1=j,st=i counts the number of transitions from volatility

regime j to i. The new draw is accepted with probability

min

{
|Vc,1(P∗)|−1/2 exp(−1

2
x′c,1Vc,1(P∗)−1xc,1)

|Vc,1(P)|−1/2 exp(−1
2
x′c,1Vc,1(P)−1xc,1)

, 1

}
.

Based on the updated transition probability, the index process of two Markov regimes

ST is sampled using the forward filter and backward simulation smoother of Chib (1996)

with initialisation taken into account. Through et = Aẋt+1−Φxt and et ∼ N(0,Σst), the

algorithm utilises p(ST |e1, ..., eT ) =
∏T

t=1 p(st|YT , st+1, ..., sT , P) and

p(st|YT , st+1, ..., sT , P) ∝ p(st|et)p(st+1|st, P) by a forward recursion that determines

p(st|et) and a backward recursion that draws posterior samples of ST .

Finally, the posterior draws of shrinkage parameters are directly generated from an

inverse gamma distribution due to conjugacy. We draw γΦ from

IG(αγ + K2p
2
, βγ + 1

2

∑K
i=1(Φi− − Ai−W )(Φi− − Ai−W )′) and γi from

IG(αγ + K−1
2
, βγ + 1

2
A′−iA−i) for i = 1, ..., K.

Appendix E Complementary empirical results

E.1 Reduced-form correlations

In this section we investigate the reduced-form models for Okun’s law and the Phillips

curve. Assuming constant volatility, i.e. Σst = Σ for all t, the reduced-form dynamics for

the unobserved components is given byτt+1

ct+1

 =

Bτ 0

0 B1

τt
ct

+

0 0

0 B2

τt−1

ct−1

+

ετ,t
εc,t

 , εt ∼ N(0,Ω),

with 5×5 full covariance matrix Ω and Bτ as in Laubach and Williams (2003) and Holston

et al. (2017). For simplicity, we assume that B1 and B2 are 2× 2 diagonal matrices. The

identification condition 1 is satisfied as long as B2 6= −B1. Morley (2007), Oh et al.

(2008), Weber (2011) and Trenker and Weber (2016) call this a correlated UC model,

which is a linear and Gaussian state space model. We estimate this specification using

Kalman filter and maximum likelihood.

Table 5 shows the estimated correlation matrix Υ implied by the covariance matrix
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Table 5: Correlation matrix of UC innovations from reduced-form models

Okun’s law Phillips curve

ετ1,t ετg ,t ετ2,t εc1,t εc2,t ετ1,t ετg ,t ετ2,t εc1,t εc2,t
ετ1,t 1 -0.19 -0.65** 0.45** 0.87** 1 -0.15 0.19* -0.72** -0.42**
ετg ,t 1 -0.43** 0.60** 0.67** 1 0.12 -0.26* 0.24**
ετ2,t 1 -0.19* -0.63** 1 0.76** -0.16*
εc1,t 1 -0.88** 1 0.36**
εc2,t 1 1

1 We report the correlation matrix Υ estimated from a correlated unobserved components model for

Okun’s law and the Phillips curve. The covariance matrix Σ of the innovations is unconstrained, and we

compute Υ = (diagΣ)−1/2Σ(diagΣ)−1/2 where diagΣ is a diagonal matrix with the diagonal of Σ.
2 Estimation is done via Kalman filter and maximum likelihood. ∗∗ and ∗ indicate statistical significance

at the 5% and 10% levels, respectively.

Σ for both specifications. With respect to Okun’s law, Sinclair (2009) also estimates a

correlated UC model, but without considering the permanent shocks εg,t. She finds that

both within-series and cross-series trend-cycle correlations are high in absolute values, all

exceeding 0.85. Specifically, the cross-series correlation between permanent components

of output and unemployment rate is −0.96, and the one between transitory components is

−0.98; while the within-series correlations between permanent and transitory components

are −0.85 for the GDP series and −0.97 for the unemployment rate series, respectively.

Different from Sinclair (2009), our specification shows that the long-run Okun’s law

(that is, the cross-series correlation between permanent components of output and

unemployment) is attributed to how innovations of trend unemployment ετ2,t are

correlated to both the trend growth rate ετg ,t and trend output ετ1,t; while the short-run

Okun’s law is captured by the cross-series correlation between transitory components of

output and unemployment. The left panel of Table 5 shows that both long-run and

short-run Okun’s laws are smaller in magnitude than the results found by Sinclair

(2009). Two further results stand out: (i) in contrast to Sinclair (2009) and Morley

et al. (2003), we find positive within-series trend-cycle correlations for GDP; (ii) in line

with Sinclair (2009), we find a negative within-series trend-cycle correlation for the

unemployment rate, although the coefficient is also smaller in our results.

On the other hand, Harvey (2011) estimates a simplified version of our UC Phillips

curve by imposing zeros on all off-diagonal elements of Υ, except for Υ4,5 = Υ5,4.28

28His model can be considered as structural because innovations to trends and cycles are orthogonal.

46



From the right panel of Table 5, we observe evidence suggesting a long-run Phillips curve

between trend inflation and trend growth rate of output (trend output) of approximately

Υ2,3 = 0.12 (Υ1,3 = 0.19).29 We also find that there exists a significant short-run Phillips

curve coefficient between inflation cycle and output cycle with Υ4,5 = 0.36. Finally, the

within-series trend-cycle correlations both for GDP and the inflation rate are negative,

although only the former is statistically significant.

Figures 5 and 6 show the extracted components using the Kalman smoother under

the assumptions of unrestricted covariance matrix and restricted covariance matrix

—which only allows for a short-run Okun’s law or Phillips curve. The restricted models

deliver estimated components that are smoother than the unrestricted models, because

the latter omits the potential interactions between permanent and transitory shocks. As

Oh et al. (2008) and Sinclair (2009) show, it is possible that the estimated components

have larger volatility than the time series itself if the components are negatively

correlated. This is clear if we compare the estimated trend growth rate from both

models: unrestricted models yield more volatile trends that are expected to be affected

by other shocks than the restricted one.30 Likewise, the unrestricted model for Okun’s

law yields a very volatile trend unemployment rate (see also Sinclair 2009), following the

time series of unemployment rate closely. This could be counter-intuitive, because it

implies that unemployment is largely composed of a permanent component, leaving

little room for cyclical fluctuations.

E.2 Robustness checks

Figures 7 and 8 show the posterior estimates of the time evolution of the volatility of

structural shocks in our MSUC versions of Okun’s law and the Phillips curve, identified

via stochastic volatility. The stochastic volatility specification serves as a robustness check

Although the cycles are correlated via Υ4,5, the regression lemma between two Gaussian variables
indicates that the effect of output cycle on inflation cycle is determined by Υ4,5σc2/σc1 .

29Notice, however, that only Υ1,3 is statistically significant.
30It is worth mentioning that the τg,t obtained from the restricted model suggests very smooth

transitions around 2008. First, this may suggest that the trend growth rate of output has been pushed
down by the Great Financial Crisis. Second, the time path smoothness is likely due to the pathology
associated with underestimating the signal-to-noise ratio of the trend component in structural state space
time series models using maximum likelihood, as pointed out by Stock and Watson (1998). This, however,
is not a concern in correlated UC models with unrestricted covariance matrix, because other system’s
shocks spill over to the trend and affect its variation, which means that we can detect enough variation
in long-run components.
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Figure 5: Reduced-form UC model for Okun’s law with unrestricted and restricted
covariance matrix. (i): Annual trend growth rate of output. Triangles represent the annual growth

rate of output, i.e. 4∆yt. (ii): Trend unemployment rate. Triangles represent the actual unemployment

rate. (iii): Output cycle. (iv): Unemployment cycle. Straight lines show the estimates from the UC

model with restricted covariance matrix; dashed lines indicate the estimates from the correlated UC

model (i.e., UC model with unrestricted covariance matrix).

for the MSUC model identified via the two-volatility-state Markov switching regime.

Table 6 reports the posterior mean estimate of the structural matrix A in the MSUC

model using the data up until the GFC. This serves as a robustness check in order to

corroborate if the inclusion of GFC period introduces any changes in A. The results do

not suggest significant differences from Table 2, which comes from the fact that even if

the high volatility brought about by the GFC is ignored, the data still shows two distinct

volatility states, namely the high volatility state in the 1980s and the low volatility state

after the “Great Moderation”.
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Table 6: Estimated contemporaneous structural matrix prior to the Great
Financial Crisis

Okun’s law The Phillips curve
Two volatility states Markov regime switching

τ1,t τg,t τ2,t c1,t c2,t τ1,t τg,t τ2,t c1,t c2,t

τ1,t 1 0.02
−1.4

0.02
0.4

0.67
−17.8

0.27
−21.4

1 0.17
−3.6

−0.04
−8.4

0.46
−24.8

0.10
−4.2

τg,t 0.03
−1.1

1 −0.09
−16.6

0.02
1.3

0.21
−22.3

0.14
−11.2

1 −0.55
−30.4

0.26
−14.2

−0.22
−17.3

τ2,t 0.02
1.2

0.08
−2.7

1 0.35
−32.7

0.13
−8.6

0.09
−3.0

0.27
−18.3

1 −0.38
−12.7

0.22
−15.8

c1,t−0.25
−36.9

−0.20
−14.4

0.30
−27.3

1 0.24
−20.8

−0.37
−23.6

−0.22
−19.5

0.25
−31.4

1 −0.61
−28.1

c2,t 0.03
0.2

−0.04
−3.2

0.66
−17.7

0.58
−18.4

1 0.22
−25.6

−0.01
−0.1

0.09
−4.4

−0.23
−21.0

1

Stochastic volatility

τ1,t 1 0.02
−0.0

−0.05
0.3

0.61
−25.6

0.31
−12.8

1 0.10
−6.4

−0.06
3.4

0.37
−33.2

0.04
−2.3

τg,t 0.08
−4.9

1 −0.14
−16.1

0.05
2.3

0.30
−33.4

0.08
−9.2

1 −0.52
−18.2

0.34
−26.9

−0.30
−11.5

τ2,t 0.04
−2.0

0.05
0.8

1 0.28
−14.3

0.11
−4.5

0.11
−6.8

0.22
−32.7

1 −0.42
−24.1

0.31
−30.3

c1,t−0.17
−17.5

−0.14
−21.6

0.33
−11.5

1 0.18
−12.4

−0.23
−18.2

−0.21
−24.0

0.18
−22.9

1 −0.54
−33.8

c2,t−0.00
0.2

−0.02
0.3

0.47
−11.8

0.55
−19.8

1 0.20
−2.3

−0.04
1.1

0.14
−9.2

−0.18
−17.2

1

Reported is the posterior mean estimate of the structural matrix A obtained from the MSUC model for

Okun’s law and the Phillips curve, using data prior to the GFC. Below the posterior mean is the SDDR

for testing H0 : Ai,j = 0, with boldface number indicating strong evidence against H0. The upper panel

shows estimates identified considering the two-volatility-state Markov regime switching, while the bottom

panel shows estimates identified considering stochastic volatility.
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Figure 6: Reduced-form UC model for the Phillips curve with unrestricted and restricted
covariance matrix. (i): Annual trend growth rate of output. Triangles represent the annual growth

of output, i.e. 4∆yt. (ii): Trend inflation. Triangles represent the CPI headline inflation rate. (iii):

Output cycle. (iv): Inflation cycle. Straight lines show the estimates from the UC model with restricted

covariance matrix; dashed lines indicate the estimates from the correlated UC model (i.e., UC model

with unrestricted covariance matrix).
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Figure 7: Estimated stochastic volatility of the MSUC model. The solid and dashed lines

indicate the posterior median and the 5-th/95-th percentile, respectively, of stochastic volatility σi,t with

i being: (i) Trend output; (ii) Annual trend growth rate of output; (iii) Trend unemployment rate; (iv)

Output cycle; and (v) Unemployment cycle.
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Figure 8: Estimated stochastic volatility of the MSUC model. The solid and dashed lines

indicate the posterior median and the 5-th/95-th percentile, respectively of stochastic volatility σi,t with

i being: (i) Trend output; (ii) Annual trend growth rate of output; (iii) Trend inflation; (iv) Output

cycle; and (v) Inflation cycle.
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