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Abstract—This paper presents a multi-objective vibration-based 

particle-swarm-optimization (MO-VBPSO) algorithm with 

enhanced exploration ability and convergence performance, for 

training fuzzy-controller (FC) to achieve robot control. The 

MO-VBPSO applies a reference point-based leader selection 

schema that assigns leaders for MO-PSOs’ searching optimal 

parameters of the FC. Besides, the MO-VBPSO framework is 

integrated with a vibration factor to strengthen the exploration 

ability for resolving the local minima issue, which is inspired by 

the amplitude of the Firework Algorithm (FWA).  The 

evaluation of MO-VBPSO focuses on the effect of the vibration 

factor by applying it to training a mobile robot in a simulation 

environment. The evaluation results are discussed concerning 

exploration ability, convergence performance, and performance 

stability. Experimental results reveal that the proposed MO-

VBPSO lifts the performance of robot training significantly. 

Keywords—Multi-objective Optimization Particle Swarm 

Optimization, Firework Algorithm, Fuzzy System, Mobile Robot 

I.  INTRODUCTION  

Fuzzy Systems (FS) are widely applied in mechanical 
control and proved to be effective. Based on FS, Lin & Lee 
[1] proposed a Fuzzy Neural Network (FNN) that combines 
the concept of FS and Neural Network (NN). FNNs leverage 
membership functions to represent linguistic terms of input 
variables [7], while traditional NN adopts logistic regression-
based functions. One of the popular solutions for FNN 
optimization is applying Swarm intelligence (SI), which relies 
on a population of simple agents interacting locally with one 
another to search the optima in the solution space [2]. Genetic 
Algorithms (GAs) are a popular type of SI, which is first 
introduced by Holland [3]. Nowadays, the most popular GAs 
variations are NSGA-II [4], and NSGA-III [5]. In this paper, 
the leader selection algorithm is designed inspired by NSGA-
III's selection method. However, as stochastic algorithms, 
GAs is accused to be unstable. This issue is avoided by 

another optimization method called particle swarm 
optimization (PSO). PSO is generally used to search optimal 
solutions in an 𝑛 -dimensional solution space, which 
represents 𝑛 parameters of the fuzzy-controller (FC) in this 
study.  

Although PSO has many advantages, it is designed to 
solve single-objective problems. For multi-objective 
problems, PSO must be adjusted. One of the most popular 
implementations is MOPSO [6], which utilizes Pareto 
dominance for leader selection. However, the global best 
particle (gbest) in MOPSO is chosen from a repository with 
the roulette-wheel mechanism, which brings in instability for 
the algorithm. In this paper, we will utilize a reference point-
based selection method introduce by NSGA-III [5] to alleviate 
this problem.  

The MO-VBPSO model that this paper proposed is 
developed with 3 goals. First, the primary goal of this paper is 
to enhance the exploration ability of multi-objective particle 
swarm optimizations (MO-PSOs). Second, the 
implementation of MO-VBPSO should boost the convergence 
speed of the optimization process. Third, MO-VBPSO should 
have good performance as stable as possible.  

The rest of this paper is organized as follows. Section 2 
explains the key related works involved in this paper, section 
3 elaborate methodology applied by this research, section 4 
evaluates and discusses the research results and section 5 
concludes the main achievements of this paper. 

II. RELATED WORKS 

In this section, two major components that the MO-
VBPSO works with will be discussed, which are the fuzzy 
controller (FC) and Pareto-based multi-objective optimization 
methods. Fig. 1 illustrates their relationships. 

  
Fig. 1. Components of the robot training model, and their relationships. 
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Multi-objective optimization methods and PSO are the 
two key elements that make up the MO-VBPSO algorithm, 
while the FC is tuned by the MO-VBPSO to guide the robot 
by outputting steering angles. 

A.  Fuzzy Controller 

The design of the FNN-based fuzzy controller refers to 
Juang & Chang [7], in which the number of zero-order 
Takagi–Sugeno-type (TSK) fuzzy rules [8] are defined as 10. 
This setting is for balancing the interpretability and the 
complexity of the FC [7]. The following formula explains 
these rules: 

𝑅𝑖: 𝐼𝑓 𝑥1 (𝑘) 𝑖𝑠 𝜇𝑖1 𝐴𝑛𝑑 … 𝐴𝑛𝑑 𝑥𝑛(𝑘) 𝑖𝑠 𝜇𝑖𝑛 

𝑇ℎ𝑒𝑛 𝑢(𝑘) 𝑖𝑠 𝑎𝑖 , (1.)
 

where 𝑥1(𝑘) ,…. 𝑥𝑛(𝑘)  are inputs of the rule, 𝑢(𝑘)  is the 
output, 𝑘 refers to the timestamp, and 𝑎𝑖 is the weight of the 
rules. 𝜇𝑖1 , … , 𝜇𝑖𝑛  are membership functions that transform 
inputs into normalized values [7].  

B. Multi-Objective Optimization 

With the PSO definition, identifying gbest and pbest are 
tricky for multi-objective (MO) problems. Originally, PSO is 
introduced to solve only single-objective problems, in which 
gbest and pbest can be found by evaluating all particles on a 
single fitness function. Pareto optimization methods are one 
of the most popular types of solutions for MO problems. The 
proposed MO-VBPSO’s optimization method is based on 
[10]. 

III. METHODOLOGY 

In this section, the design of MO-VBPSO and its 
framework for robot boundary-following behaviour training 
will be discussed. The flow chart of the robot training pipeline 
is shown in Fig. 2. In the beginning, this algorithm will first 
initialize several hyper-parameters and the swarm of PSO. At 
this step, 𝑐1 and 𝑐2 that in charge of the learning rate of PSO 
velocity updating is set to 1.0 for simplicity, the number of 
divisions 𝑝 = 4. This number 𝑝 is used for the selection of 
reference points that introduce by NSGA-III [5]. Details of 
this selection mechanism will be discussed in section 3-B.  

For the swarm initialization, 50 particles will be randomly 
generated. Each of these particles is a 90-dimensional vector, 
which defines the 10 fuzzy rules of the FS. After the 
initialization step, the algorithm executes the MO-VBPSO for 
a fixed number of iterations. In this paper, the max number of 
iterations is set to be 100. After 100 iterations of optimization, 
the training is terminated with final results documented. 

 

  

Fig. 2. Flow Chart of the robot training pipeline. 

  
(a) (b) 

Fig. 3. Reference points' design, (a) shows 15 reference points and their 

corresponding reference lines, (b) is a 2-D illustration for the selection of 

leader candidates. 

A. MO-VBPSO 

MO-VBPSO in the training pipeline is responsible to 
resolve a multi-objective optimization problem. Since in 
multi-objective optimization problems, an n-dimensional 
solution is mapped onto a point in an m-dimensional objective 
space, MO-VBPSO utilized both the solution space and the 
objective space. Specifically, leader candidates’ selection 
method (step 3) concerns distances of particles in the objective 
space, while leader assignment method (step 4) concerns 
distances of particles in the solution space.  

There are 7 major steps of MO-VBPSO. 

1) Update External Archive 
At the beginning of each iteration, the external archive that 

stores all non-dominant solutions will be updated. To perform 
this, MO-VBPSO will combine the old external archive and 
the current swarm. Then, it will identify a new Pareto Front 
from this union by non-dominated sorting [4]. 

2) Define Reference Points 
The second step of MO-VBPSO is to identify reference 

points for further leader allocation. The selection strategy here 
is similar to that of NSGA-III [5]. First, a 3-dimensional 
coordinate system will be established, each axis of this 
coordinate system represents an objective. The position of a 
particle in this system is defined by the normalized values of 

 

Fig. 4. Comparison between MO-VBPSO (a) and MO-PSOs (b) 



 

its fitness functions. This normalization transformation will be 
conducted for every iteration, ensuring that all fitness values 
range from 0 to 1. After the establishment of the coordinate 
system and the normalization of fitness values of all particles, 
a triangle plane was created with the apex at (1, 0, 0), (0, 1, 0), 
and (0, 0, 1). Since the division 𝑝 is set to be 4, each side of 
the triangle is divided into 4 sections, and 15 reference points 
are assigned on the plane, as it is shown in Fig. 3 (a). Since 
these reference points are evenly distributed across the plane, 
the objective space can be evenly divided by reference points. 
Specifics of reference point selection strategy and 
normalization of fitness values are given by Algorithm 1. 

 

3) Select Leader Candidates From the External Archive 
After reference points are defined in the objective space, 

leader candidates can be chosen evenly from the external 
archive. The chosen strategy is illustrated in Fig. 3 (b), which 
is a 2-D example of the leader selection method. In order to 
find the sector of the objective space that a point belongs to, 
several straight lines, defined as "reference lines" are drawn 
from the origin point to all the reference points. This can be 
witnessed in Fig. 3. By calculating all the perpendicular 
distances from a point in the external archive to those 
reference lines (Fig. 3 (b)), the nearest line to that point is 
identified. This line represents the sector that the point belongs 
to. However, it is inevitable that there will be more than one 
point falling into the same sector. In this situation, the 
algorithm will choose the one with the longest distance 
between its projection on the corresponding reference line and 
the origin point. For example, in Fig. 3(b), If 𝐴 and 𝐵 are the 
two candidate leaders around reference line 𝑅 , 𝐴  will be 
chosen because its projection 𝐴’ has longer distance from the 
origin than 𝐵’. Note that there is no guarantee that all sectors 
in the objective space will be associated with leaders from the 
archive, since the distribution of points in the archive may not 
be even. 

4) Assign Leaders for All Particles in the Swarm 
After leader candidates have been selected from the external 

archive, each particle will be assigned a leader from the 
candidates. This leader assignment strategy is similar to the 
grouping method introduce by Lin, Chen & Lin [9], although 
the method is extended to 3-dimensional fitness space. The 
most similar candidate (has least L2 distance in the solution 
space) to the particle is chosen to be the leader of it. 

5) Update Personal Best for All Particles in the Swarm 
Although the previous step identified leaders for every 

particle, the personal best (pbest) of a particle is also required 
for PSO position updating. For each iteration, the algorithm 
will compare its current fitness values and the fitness values 
of its pbest through Pareto dominance. If its pbest is 
dominated by itself, the pbest will be overwritten, otherwise 
pbest will remain unchanged. 

6) Update Vibration Amplitude for all Particles in the 

Swarm 
To solve the inherent local minima problem of MO-PSOs, 

this paper introduces a vibration factor for enhancing the 
convergence performance and exploration ability of MO-
PSOs, this paper is inspired by the amplitude algorithm of the 
Firework Algorithm [11]. Taking advantage of the stability 
characteristics of the MO-PSO algorithm and the advantage 
of exploration ability of the Firework Algorithm, this article 
recommends an innovative algorithm which is designed as the 
schematic diagram (Fig. 4 (a)), which is the key step of MO-
VBPSO. This schematic diagram shows the MO-VBPSO is 
developed based on MO-PSOs' searching strategy (Fig. 4 (b)) 
with adding a vibration factor to improve the exploration and 
convergence performance. 

In traditional MO-PSOs, the position updating is narrow 
and predictable, because particles are only attracted by gbest 
and pbest [6]. This mechanism leads the hunting zone of 
particles limited because it can only search relatively 
rectilinear space. 

The features of the vibration factor are: 

• The amplitude of the vibration is in a restricted range. 

• The vibration has the same direction as the velocity to 
ensure the stability and efficiency of PSO searching. 

• The amplitude is negatively correlated with the 
distance between the particle and the leader as Fig. 6. 

• The vibration factor affects only the update of the 
positions of particles, but not the velocity. This is 
because velocity changing has an incremental impact 
on the instability of the algorithm. 

The vibration algorithm implemented in our design is 
inspired by the Firework Algorithm proposed by [11]. With 
the vibration algorithm, an Amplitude Vector for particles is 
given by:  

𝐴𝑗 = 𝐵𝑗
1 −  𝑑(𝑠) + 𝜉

∑ 𝑑𝑖
𝑛
𝑖 + 𝜉

, (2.) 

where 𝑑 is the distance between the current particle 𝑠 and its 

gbest in the objective space, 𝐴𝑗 is the 𝑗𝑡ℎ  component of the 
Amplitude Vector for the current particle 𝑠, which is bounded 



 

by the minimum distances of the 𝑗𝑡ℎ component of particle 𝑠 

to its boundary 𝐵𝑗 , giving by 

𝐵𝑗 = 𝑚𝑖𝑛 ((𝑠𝑚𝑎𝑥
𝑗

− 𝑠𝑗), (𝑠𝑗 − 𝑠𝑚𝑖𝑛
𝑗

)) , (3.) 

where 𝑠𝑚𝑎𝑥
𝑗

 and 𝑠𝑚𝑖𝑛
𝑗

 are the upper bound and lower bound of 

the 𝑗𝑡ℎ  component. Formula (3)  ensures that the vibrated 
component will not exceed the limitations of the 
corresponding parameter. In addition, 𝜉  is a small constant 
value to avoid zero-division-error.  

Formula (2) offer the particle higher possibility to escape 
from the local minima areas by vibrating it outside. The 

Amplitude Vector 𝐴𝑗  is negatively correlated with the 
distance between the particle and its leader. This is because 
the closer the distance the higher change it trapped into a local 
minimum. This amplitude design provides the particle with an 
increasing incentive to vibrate out of the potential local 
minima area as it moves towards the gbest. 

7) Velocity and Position Updating 
Tradition PSOs update a particle with a predictable path, 

which potentially leads the particle into a local minimum. In 
MO-VBPSO, vibration is chosen on random dimensions to 
enhance particles’ exploration ability. The vibrated 
dimensions are chosen with: 

𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝐷 ⋅ 𝑟𝑎𝑛𝑑(0,1)), (4.) 

where D is the total number of dimensions of particles. 
On one hand, for those vibrated dimensions, the position 

updating formula is designed as 

𝑠𝑖
𝑗(𝑡 + 1) = 𝑠𝑖

𝑗(𝑡) + 𝑣𝑖
𝑗(𝑡 + 1)

+𝑠𝑖𝑔𝑛 (𝑣𝑖
𝑗(𝑡 + 1)) 𝛾3

𝑗
⋅ 𝐴𝑗 , (5.)

 

where 𝑣𝑖
𝑗(𝑡 + 1)  is the updated velocity and 𝑠𝑖𝑔𝑛 (𝑣𝑖

𝑗(𝑡 +

1)) is the direction of velocity. Moreover, the amplitude 𝐴𝑗 is 

resized with a random factor 𝛾3
𝑗
 ranged (0,1) for diversity 

enhancement.  
On the other hand, for those non-vibrated dimensions, 

positions are updated by standard position updating equation 
as below, 

𝑠(𝑡 + 1) = 𝑠(𝑡) + 𝑣⃗(𝑡 + 1).                     (6.) 

For all dimensions, the velocity is updated by 

𝑣⃗(𝑡 + 1) = 𝑤 ∙ 𝑣⃗(𝑡) + 𝑐1𝛾1⃗⃗ ⃗⃗ ⋅ (𝑝(𝑡) − 𝑠(𝑡))

+𝑐2𝛾2⃗⃗ ⃗⃗ ⋅ (𝑔⃗(𝑡) − 𝑠(𝑡)). (7.)
 

where 𝑤  is a velocity constrain factor, set to be 0.8 as the 
convention [8], 𝑐1  is the personal learning coefficient, 𝑐2  is 
the global learning coefficient, 𝛾1⃗⃗ ⃗⃗  and 𝛾1⃗⃗ ⃗⃗  are two n-
dimensional vectors with each dimension ranged from 0 to 1, 
𝑝 is the pbest position and 𝑔⃗ is the gbest position. 

B. Features of MO-VBPSO 

To sum up, the two major features of MO-VBPSO are the 
vibration factor and the reference point-based leader selection 
method. In consideration of the first goal of this paper, both 
features are designed to lift the exploration ability. 
Specifically, the reference point-based leader selection 
method guarantees that particles in the swarm are guided by 
leaders from diverse areas in the objective space. The 
implementation of the vibration factor widens the searching 
area of the PSO, as it is shown in Fig. 4. In consideration of 
the second goal of this paper, convergence speed, both 
features have impacts on it. The diverse distribution of leaders 
helps particles escape from potential local minima so that the 
algorithm has less opportunity to be stuck in local minima. 
Besides, the vibration factor adds a moving speed to the 
velocity of particles, thus boosts the convergence speed. 
Considering the third goal, performance stability, it may 
potentially be sacrificed. This is because the dimension 
selection of vibration, formula (4) , increased the level of 
randomness. This will be discussed in section 4. 

C. Robot Controller Training and Fitness Functions Design 

1) Robot and Training Environmental Settings 
Experiments of this research are conducted on the robot 

simulation software “Webots-R2019b” 
(https://cyberbotics.com/). Pioneer 3DX-p1 is chosen to be the 
robot model, which sat up with two wheels. A planform vision 
of the robot model is shown in Fig. 5 (a). The coverage, 𝑆1 to 
𝑆8 , of lidar sensor refers to the setting of [7]. The training 
purpose is to achieve boundary-following behaviour by the 
robot. The robot is expected to successfully execute the 
boundary-following behaviour near the wall as smooth as it 
can. Fig. 7 illustrates the training environment, in which the 
robot will be initiated in the centre at the beginning of each 
trial, towards the right. A constant speed (0.524 m/s) will be 
assigned to the robot, and the steering angle of the robot will 
be adjusted by the fuzzy controller at each timestamp. A trial 
ends when it succeeds (robot has run more than 4000 
timestamps) or fails (robot has moved too far or too close to 
the obstacle). Fail of a trail is defined by breach of a distance 
limitation defined by: 

𝑚𝑖𝑛(𝑆1, 𝑆2, 𝑆3, 𝑆4) ≥ 𝐷𝑚𝑖𝑛 , 𝑎𝑛𝑑 𝑆1 ≤ 𝐷𝑚𝑎𝑥 , (8.) 

where  𝑆1, 𝑆2, 𝑆3 and 𝑆4 are the reads of the 4 sub-coverages 
of the lidar sensor, 𝐷𝑚𝑖𝑛 is set to 0.5m and 𝐷𝑚𝑎𝑥 is set to be 
5m. After a trial is stopped, 3 fitness values will be  

 
(a) 

 
(b) 

Fig. 5 (a) Lidar sensor of the Robot and its coverage, divided into 𝑆1 to 𝑆8 

[7]. (b) Auxiliary sensors added in the robot training process. 

https://cyberbotics.com/


 

documented for the training of the VBPSO model, then a new 
trial will begin with the updated VBPSO model.  

2) Fitness Functions Design 
To evaluate the performance of the wall-following 

behaviour, and guide the algorithm searching in the solution 
space, which is 90-dimensional vector space that represents 
tunable 90 parameters in the FNN, 3 fitness functions are 
designed by: 

𝑓1 = 𝑇𝑐 ,

𝑓2 = ∑
𝑇𝑐

|
1
2

(
𝑆𝑁1(𝑡)
𝑆𝑁3(𝑡)

+
𝑆𝑁2(𝑡)
𝑆𝑁4(𝑡)

) − 1|
,

𝑇𝑐

𝑡=1

𝑓3 = ∑
𝑇𝑐

|𝑆𝑁2(𝑡) − 0.2|
,

𝑇𝑐

𝑡=1
(9.)

 

where 𝑇𝑐 is the timestamp. Fitness1 is a simple measure of the 
number of timestamps the robot run until distance limitation 
is breached. Based on the set up that discussed previously, 
values of 𝑓1 range from 1 to 4000. For Fitness 2, 𝑆𝑁1, 𝑆𝑁2, 
𝑆𝑁3 and 𝑆𝑁4 are read of auxiliary sensors that are shown in 
Fig. 5 (b). This fitness design refers to Juang, Jeng & Chang 
[12] for evaluating the smoothness. Fitness 3 is a 
measurement of the average distance between the wall and the 
robot. In this paper, we set 0.2m to be the ideal distance. 

IV. RESULTS AND DISCUSSION 

Since the key implementation of this research is 
introducing the “Vibration Factor” into PSO updating, the 
comparison is between the result of MO-VBPSO with the 
“Vibration Factor” and the result of MO-VBPSO without the 
“Vibration Factor”. For both tests, we conducted 10 times of 
experiments with 100 learning iteration. At the end of each 
experiment, the external archive, which includes all Pareto 
optimal solutions, is documented. 

 
TABLE I.  EVALUATION RESULTS OF THE IMPROVEMENT 

PERCENTAGE BY THE IMPLEMENTATION OF VIBRATION FACTOR  

Evaluation Results 

Evaluation Criterion  Performance Improvement 

C-Metric Dominance  0.4 

S-Metric Dominance 0.44 

Average Dominance 0.42 

TABLE II.  STATISTICS COMPARISON FOR S-METRIC RESULTS  

TABLE III.  STATISTICS COMPARISON FOR NUMBER OF LEADERS 

Number of Leaders With vibration  Without Vibration 

Min 8 7 

Max 10 10 

Mean 9.1 8.5 

Std 0.831 1.024 

In this paper, the evaluation criteria are "C-Metric" 
dominance [13] and “S-Metric” dominance [13]. The 
comparison is between the algorithm with "Vibration Factor" 
and the algorithm without “Vibration Factor”.  

Table I shows the overall evaluation results of the two 
criteria. It shows that performance is lifted tremendously 
under both criteria, and 42% improvement is achieved on 
average. With C-metric dominance at 0.4, the implementation 
of the vibration factor lifts 40% algorithm performance 
concerning C-Metric. Another front comparison criterion is 
“S-Metric”, also known as hypervolume metrics. The 
approach for comparing S-Metric values for the 20 
experimental results is similar to that of C-Metric. From Table 
I, we can see that the algorithm with the vibration factor is 
44% better than the algorithm without the vibration factor. In 
a visualized way, Fig. 6 compares the S-Metric evolving 
curve. While the curve of the algorithm without Vibration 
stuck in a local minimum from iteration 60 to iteration 80 and 
eventually ends with 0.917, the algorithm with vibration 
evolve persistently and ended with 1.422. This graph proves 
that the introduction of Vibration lifts the convergence speed. 
Statistics of S-Metric evaluation are shown in Table II. The 
Implementation of Vibration Factor lifts about 10% 
performance concerned with S-Metric. 

A. Trajectory demonstration 

A more practical and intuitive demonstration of the impact 
of the vibration factor is shown in Fig. 7, which compares 
trajectories of the vibrational algorithm with the non- 
vibrational algorithm. In the figure, the robot moves smoother 
under the vibration-based algorithm than the non-vibration  

Fig. 6. Examples of S-Metric evolving cure, (a) for algorithm without 

vibration and (b) for the algorithm with vibration 

 

Fig. 7. Moving trajectory comparison    

S-Metric With vibration  Without Vibration 

Min 0.933 0.830 

Max 1.522 1.414 

Mean 1.195 1.050 

Std 0.204 0.184 



 

algorithm. This is typically witnessed when the robot observes 
a straight wall and a U-shaped wall. In other words, this 
phenomenon can be explained as the enhancement of fitness 
2 and 3.  

B. Discussion 

Since the goals of this research are improving exploration 
ability, convergence and stability of MO-PSOs through the 
implementation of vibration factor, results will be discussed 
concerning these 3 perspectives. 

1) Exploration Ability 
According to C-Metric evaluation results discussed in 

section 4-B, fronts found with vibration are 40% better than 
fronts found without vibration. From S-Metric evaluation, 
Table III, we can see that Min, Max, Mean of S-Metric of the 
front with vibration are all higher than fronts without 
vibration. In this sense, fronts with vibration cover larger 
space than front without vibration. Diversity is another major 
criterion of algorithm exploration ability, discussed in 
section 1. According to Table III, the number of leaders 
identified by the algorithm with vibration is, on average, 
larger than the algorithm without vibration. With more leaders 
guiding the swarm, diversity of exploration is enhanced. 

2) Convergence Speed  
Convergence can be witnessed in Fig. 6. It is obvious that 

the ascending speed of the S-Matric of the algorithm with 
vibration is much faster than the algorithm without vibration. 
This is because the implementation of the vibration factor 
enhances the algorithm's capacity for escaping from local 
minima so that plateaus on the curve are largely shortened 

3) Performance Stability 
From Table II, we can see that the standard deviation of 

the results for S-Matric with vibration is about 10% higher 
than the results without vibration. This is an indicator of the 
instability of MO-VBPSO. However, for the number of 
leaders, the standard deviation of results with vibration is 
about 15% lower than results without vibration (Table III). 
This indicates the stability of MO-VBPSO in finding leaders.  

V. CONCLUSION 

This paper proposes a MO-VBPSO to design an FC for a 
mobile robot to perform boundary-following behaviour. The 
MO-VBPSO is based on features from MOPSO [6], NSGA-
III [5] and FWA [11]. Specifically, while position updating, 
velocity updating and fitness comparison schemas are the 
same with MOPSO, the leader selection strategy is designed 
based on NSGA-III’s sorting approach. The most influential 
part of MO-VBPSO is its vibration factor implementation, 
which is inspired by FWA. To evaluate the effect of the 
implementation of the vibration factor, experiments are 
conducted on a robot simulation environment. Results show 
that exploration ability and convergence speed have been 
improved to a large extent. For stability, the vibration factor 
does bring in some variations for S-Metric values, while it still 
stabilizes the diversity of distribution for leaders. In the future, 
the test of MO-VBPSO should be compared with other 
popular algorithms and evaluated under more types of 
problems. The robot training environment can also be 

complex, with its training results tested in a real-world 
environment. In addition, the MO-VBPSO can be tested on a 
type-2 fuzzy neural controller [14] in the future. 
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