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Abstract 

Automated market markers (AMMs) are a new decentralised exchange model that has grown to a 

multi-billion-dollar market; yet, it is unclear whether they are an economically robust and 

sustainable market type. Accounting for microstructure noise, I find that AMMs are the first to 

reflect new information in prices 62% of the time compared to their centralised counterparts. I also 

conclude that the QuickSwap exchange is the price leader within AMMs 72% of the time. 

Moreover, I demonstrate that profitability of liquidity provision within AMMs is primarily 

dependent on the asset’s price dynamics and that trade fees and impermanent loss have a 

measurable impact on AMM informational efficiency. My findings provide evidence that AMMs 

are a sustainable model for facilitating digital-asset trading, which benefits liquidity providers and 

protocol developers. 

 

 

Keywords: crypto-assets, automated market making, price discovery, liquidity provision. 

JEL classifications: C33, G14, O30
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1. Introduction 

The emergence of Bitcoin in 2009 has seen the genesis of an entirely new asset class 

(Nakamoto (2008)). Naturally, with crypto-assets’ growth in popularity, exchanges that facilitate 

trading have developed simultaneously. Most cryptocurrency exchanges use the traditional 

centralised limit-order book model (CLOB); however, latency and computational constraints with 

blockchains make trading crypto-assets expensive and inefficient (Angeris, Evans and Chitra 

(2020)).2 Decentralised exchanges (DEXs) attempt to alleviate these issues by enabling 

cryptocurrency trade without a trusted third party to facilitate transactions.3 The most popular of 

these DEXs is a new model (protocol) called the automated market maker (AMM). This exchange 

model uses a supply-based algorithm to price assets rather than a registry of buy and sell orders 

(Wang (2020)). AMM’s simple pricing function and democratised manner of generating liquidity 

have seen them explode in size and value, averaging $67 billion monthly trading volume in 2021 

(DeFiPrime (2021)).4 However, the novelty and simplicity of AMM design warrants an 

examination into whether it can sustainably perform the functions of a market and handle the 

associated challenges.  

Facilitating efficient price discovery is one of these essential functions. An extensive body 

of literature describes how exchanges are vital to providing liquidity and determining the true value 

of an asset (De Jong (2002); Harris, McInish, Shoesmith and Wood (1995); Harris (2015); 

Madhavan, Richardson and Roomans (1997)). However, the difficulty in determining crypto-

assets’ fundamental value complicates how and where price discovery occurs (Dimpfl and Peter 

(2021)). Combining this with cryptocurrency’s high volatility and noise makes finding the price 

leader challenging (Conrad, Custovic and Ghysels (2018)). Considering AMMs newly-found 

market share, it is difficult to determine the significance of their role in the unwieldy price 

discovery of digital-assets. It is reasonable to suspect that the smaller and novel AMMs source 

their prices from CLOBs, which perform most of the price discovery. My study, however, provides 

 
2 Blockchain refers to the open, decentralised and immutable network which uses cryptography to facilitate 

transactions and information transfer. Centralised Limit Order Book refers to the dominant exchange model which 

keeps a record of outstanding buy and sell orders (see Appendix Table 3A).   
3 A Decentralised Exchange refers to an exchange which allows participants to trade peer-to-peer, without the need 

for an intermediary (see Appendix Table 3A). 
4 All dollar values within this study are priced in USD terms.  
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evidence to the contrary. Furthermore, it is ambiguous which AMM is the first to reflect new 

information in cryptocurrency prices. 

Managing the adverse selection costs/risks (ASC) of liquidity provision is another vital 

function that exchanges must facilitate.5 Exchanges need to adequately compensate liquidity 

providers with fees earned from uninformed trades to cover the costs of informed agents 

performing arbitrage. If the adverse selection proves too great for liquidity providers, they will 

withdraw from the market, thus reducing the efficiency of the exchange. CLOB exchanges have 

utilised many innovative approaches such as Bayesian inference from order flow to minimise this 

ASC and maintain competitiveness (Glosten and Milgrom (1985); Kyle (1985)). In contrast, 

AMM’s unique design amplifies this adverse selection. Since AMM liquidity providers must 

supply a pair of crypto-assets in a set proportion, arbitrage negatively affects both holdings.6 This 

ASC is known as impermanent loss (IL), which describes the risk for liquidity providers of seeing 

the value of their reserved assets decrease compared to holding them (Wang, Heimbach and 

Wattenhofer (2021)). Similar to traditional market makers, AMM liquidity providers receive fees 

as compensation. However, it is unclear whether these fees can sustainably offset the IL within 

AMMs. Considering that liquidity provision impacts price discovery (Riordan and Storkenmaier 

(2012)), it is important to understand whether AMMs can manage the IL. My study investigates 

this tension between ‘informed’ IL and ‘uninformed’ fees through the perspective of liquidity 

providers and whether it impacts AMM price discovery.  

I use high-frequency data to investigate eleven AMMs and eight asset pairs within two 

periods between November 2020 and October 2021. Using this dataset, I determine the price 

leader, explore the returns generated from liquidity provision and establish a connection between 

the two within AMMs. I calculate the Hasbrouck (1995) Information Share (IS), Gonzalo and 

Granger (1995) Component Share (CS), and Putniņš (2013) Information Leadership Share (ILS) 

to determine the informational efficiency of AMMs and the popular CLOB exchange Binance. 

Moreover, I examine the relation between IL, fees and returns through the perspective of a liquidity 

provider. Several fixed effects panel regressions are also performed to determine whether IL and 

fees are reasonable proxies for the level of trade informativeness within AMMs. Using time and 

 
5 Adverse Selection refer to the situation where one party has information the other does not have. In this case it refers 

to informed traders who perform arbitrage on mispriced assets against liquidity providers. 
6 This proportion is determined by the liquidity pool and can vary. The most common split, however, is 50:50. 
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entity effects, along with clustered standard errors, I explore whether these proxies have a 

measurable impact on the ILS price discovery measure.  

My study reveals that when accounting for noise, AMMs are on average the first to reflect 

new information in prices 62% of the time compared to the CLOB exchange Binance. Considering 

the IS and CS’ bias against noise, I also find that AMMs are substantially noisier markets than 

CLOBs. When examining different AMM frameworks, I determine that the popular constant-

function market maker (CFMM) is the most price-efficient model (ILS 70%, IS 70%, CS 62%).7 

Furthermore, the most actively traded AMM, QuickSwap, is the definitive price leader in the 

sample, with an average ILS of 72%.  

Additionally, I demonstrate that AMMs can consistently offset the IL through fees in large 

liquidity pools of stable asset pairs or small pools of volatile pairs. Moreover, Uniswap is the only 

AMM that nullifies the IL across all pairs and sample periods. I find that providing liquidity to 

AMMs can be a lucrative investment within pools with one (20% to 180%) and two (20%) low-

volatile cryptocurrencies (stablecoins).8 On the contrary, asset pairs without a stablecoin perform 

poorly overall, returning between 15% and -45%.9 I also determine that fee compensation and asset 

price movements are the main drivers of stablecoin returns and non-stablecoin pairs, respectively. 

These findings all provide evidence that the IL is primarily a function of the asset’s volatility. 

Lastly, I find that liquidity provider fees and the IL from adverse selection are reasonable proxies 

for the level of informativity within AMMs. Fee compensation and IL are found to have a 

significant negative and positive association with the ILS, respectively. These results suggest that 

liquidity provision has a measurable effect on AMM’s ability to perform efficient price discovery. 

My findings provide several implications for the sustainability of AMMs. With the current 

trajectory of DEX retail adoption, there is a real possibility that AMMs could compete with CLOBs 

for market dominance. With the creation of more cryptocurrencies that are strictly compatible with 

decentralised systems, AMMs could also be an exclusive market maker for these assets. However, 

there are concerns that AMMs are another poorly designed and flawed system in the crypto-asset 

ecosystem. My study, therefore, aims to reduce the uncertainty surrounding the efficiency and 

 
7 Constant Function Market Maker refers to a type of automated market maker which uses a deterministic pricing rule 

simplified as the product of the two asset’s reserve amounts (see Appendix Table 3A). 
8 Stablecoin refers to a crypto-asset pegged to a fiat currency, commodity or another crypto-asset (see Appendix Table 

3A).  
9 Returns are calculated daily and accumulatively over the sample period. 
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longevity of this new market type. Recognising the novelty and benefits a decentralised exchange 

can bring, I also hope my study contributes to the advancement of AMMs so that they can reach 

their potential.  

Secondly, my study provides further insights into the properties of crypto-assets. This has 

implications on the performance of these assets via an alternative investment strategy through 

liquidity provision. Thirdly, with AMM’s price leadership over Binance established, the paper 

contributes to the highly debated concept of whether markets with little to no human intervention 

are viable. My study suggests that automation can allow for efficient price discovery, but further 

research is needed to clarify what properties of AMMs cause this. 

My research project provides several contributions to the growing literature on AMMs. 

Firstly, my study advances the understanding of AMM by providing empirically-based 

conclusions. Many papers within the literature investigate AMMs on a conceptual basis and 

therefore lack rigour. My research instead explores the informational efficiency of crypto-asset 

markets and DEXs using high-frequency data. Secondly, by examining the relation between ASCs 

and liquidity provision profitability, my paper also helps clarify how asset volatility affects the 

sustainability of AMMs. Lastly, my study is the first to elucidate whether the tension between IL 

and fees impact the price discovery capabilities of AMMs. 

Quantifying these interesting concepts will be useful in ensuring the future health of AMMs 

and DEXs. Developers of AMM protocols will benefit substantially, allowing them to identify 

which AMM protocols can better perform price discovery. I also provide direction to what affects 

AMM price efficiency by investigating the tension between fees and IL. Moreover, this paper can 

help attract the attention of regulators by proposing that AMMs are more robust than initially 

assumed. This could potentially see regulators develop legal frameworks around this new market 

type and reduce its susceptibility to criminal activity. By contributing to the design of AMMs, my 

study acts as an anchor for further research, which can generate significant insights when data is 

more readily available. 

The layout of the paper is as follows. Section 2 describes the background of AMMs, price 

discovery and liquidity provision. Section 3 outlines the structure of the data and some preliminary 

analysis. Section 4 presents the research design, main results, robustness tests, limitations and 

implications for future research. Lastly, Section 5 concludes. 
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2. Literature Review 

My study relates to the body of work on automated market making, price discovery and 

liquidity provision. In this literature review, I discuss the unique traits of AMMs, why price 

discovery matters, how to measure it, and the ASCs of market-making. I achieve this by 

referencing both traditional and cryptocurrency-based literature. Additional institutional details on 

blockchain technology and decentralised finance (DeFi) are detailed in Appendix A.10 

2.1. Institutional Details of Automated Market Maker Function 

Automated market makers consist of a group of liquidity pools.11 Each liquidity pool is a 

reserve that comprises a pair of crypto-assets. These two cryptocurrencies are held in a fixed ratio, 

which the AMM determines. The ratio is based on the total value of each respective crypto-asset. 

For example, say the total value of the liquidity pool is $100, and the fixed ratio between the two 

assets is 50:50. If asset A is worth $5, asset B is worth $10; then the quantities within the pool 

would be ten and five, respectively (both worth $50 each). Since liquidity pools are freely 

accessible, anyone can deposit or ‘stake’ their crypto-assets within them. Moreover, liquidity 

providers receive fees generated from the amount of trading volume within the liquidity pool. 

Feng, Bhat and Las Marias (2019) claim this accessibility allows AMMs to generate almost instant 

liquidity to the market, which is highly beneficial for newly-created cryptocurrencies.  

With the liquidity pool established, participants can exchange one asset for the other. The 

AMM uses a pricing function algorithm that mathematically determines the asset's price based on 

its respective quantity within the liquidity pool (Wang (2020)). For example, a buyer submits an 

order to purchase one asset B ($10) with two of asset A ($5 each). A smart contract manages this 

order, which withdraws one asset B from the liquidity pool and adds two asset A’s.12 Assuming 

no additional liquidity has been deposited by liquidity providers, the pool’s total value remains at 

$100 after the transaction. However, the quantities have changed with only four of asset B and 

twelve of asset A. The pricing function therefore automatically updates the price of both 

 
10 Decentralised Finance refers to the blockchain-based financial system which operate using smart contracts instead 

of intermediaries (see Appendix Table 3A). 
11 Liquidity Pools refer to a crowdsourced reserve of crypto-assets locked in by a smart contract. It provides the funds 

to facilitate trades within a decentralised exchange. 
12 Smart Contract refer to the specialised coded-protocols that execute complicated transactions when the terms of 

agreement are met, without relying on a third party. 
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cryptocurrencies, with asset A and B now worth $4.17 and $12.50, respectively.13 As illustrated, 

the pricing function follows the negative relation between supply price, i.e., the fewer the quantity, 

the higher the price. 

Since crypto-assets within AMMs are priced relative to each other, the gain made from a 

price increase in one is offset by the price decrease in the other. Moreover, as buyers and sellers 

trade with the liquidity pool, the deterministic pricing function means the prices of these assets can 

deviate substantially from the broader market (e.g., CLOB exchanges). If a large order moves the 

price of a crypto-asset away from its fundamental value, informed traders will perform arbitrage 

which equalises the prices. Because liquidity providers passively supply liquidity to AMMs, there 

is a possibility of being adversely selected when the fundamental value of a cryptocurrency 

changes. What is unique to AMMs is that this adverse selection affects the value of both assets 

since their price is bound to each other. Therefore, no matter which asset is mispriced, the total 

value of the liquidity provider’s assets decreases. In comparison, if both assets are held outside of 

the AMM, then the fundamental price change of one asset would likely not influence the price of 

the other. This expense is the impermanent loss, which is incurred when the price of an asset 

changes within an AMM. The loss is considered ‘impermanent’ because it is only realised when 

the liquidity provider decides to withdraw their assets from the liquidity pool.  

2.2. Automated Market Making 

Automated market making is not a new concept, with Hakansson, Beja and Kale (1985) 

first performing a simulation using a “programmed specialist” market maker to smooth demand. 

Although limited in scope, they find automatic demand smoothing to be cost-efficient even in 

thinly traded markets. Robin Hanson’s seminal papers on logarithmic market scoring rules further 

explore an early AMM model within traditional markets (Hanson (2003); Hanson (2007)). They 

claim that automation brings substantial modularity and cost advantages. However, his logarithmic 

model could not maintain efficient price discovery between markets with low and high liquidity. 

Othman, Pennock, Reeves and Sandholm (2013) address this problem by designing a “liquidity 

sensitive” AMM, which runs at a profit in markets with fluctuating volume. Updating Glosten and 

Milgrom (1985) model, Gerig and Michayluk (2010) find that automated liquidity provision sets 

more efficient prices, improves informativeness but increases trader transaction costs. Although 

 
13 This is assuming the AMM uses a Constant Function Market Maker model. 
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some functions of exchanges are now commonly automated, traditional markets have still not seen 

a successful model which is fully automatic. In this paper, I hypothesise that automated market 

making is a viable exchange model in digital-asset trading. 

Of the limited literature on crypto-asset AMMs, most papers conceptually examine the 

feasibility of the standard CFMM model. Park (2021) says that CFMMs have substantial flaws 

that are absent from order book models, despite being easy to implement. He elucidates that an 

exogenous arbitrary pricing function creates undesirable characteristics that reduce token values 

with low liquidity through IL.14 How the IL changes between exchanges and assets is still not well 

understood. I expect that IL is primarily a function of the asset price dynamics such as volatility. 

Alternatively, Pourpouneh, Nielsen and Ross (2020) suggest that the AMM pricing 

mechanism works well for low-volatile assets by exploring conditions when the algorithm is at 

equilibrium. They, however, agree with Park (2021) that CFMMs inefficiently price more volatile 

assets. Angeris, Kao, Chiang, Noyes and Chitra (2019) provide a generalised overview of the most 

popular AMM, Uniswap, and find that the CFMM model appears to work well in practice, despite 

its simplicity under several common market conditions. Additionally, Wang (2020) investigates 

the feasibility of other pricing functions, suggesting circle/eclipse algorithms are a better 

alternative than CFMMs. Although the pricing function is less flexible, they find it more robust 

against front/backrunning (slippage) attacks since the attacker can only manipulate the token price 

within a fixed price amplitude. Despite these proposed limitations, I hypothesise that CFMMs are 

economically sustainable when they have large liquidity pools of stable asset pairs or small pools 

in volatile pairs.  

To help AMMs align their prices with the broader market, they use price oracles that 

connect off-chain and on-chain information.15 Angeris, Kao, Chiang, Noyes and Chitra (2019) use 

an agent-based simulation to demonstrate that Uniswap provides a “censorship-resistant price 

oracle for smart contracts”, which performs well when liquidity pools are liquid enough to 

facilitate arbitrage. Eskandari, Salehi, Gu and Clark (2021) explain that price oracles are almost 

essential for the operation of major AMMs. They, alongside Bartoletti, Chiang and Lluch-Lafuente 

(2021), describe the price oracle’s ability to automatically adjust prices with the broader market as 

 
14 A token is used to represent an asset of some kind, for example a share of ownership, voting rights or another crypto-

asset. 
15 Off-chain refers to anything that is not recorded on the blockchain. 
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necessary to limit IL. Krishnamachari, Feng and Grippo (2021) agree with this finding, saying it 

could significantly reduce IL’s magnitude. Furthermore, Lo and Medda (2020) empirically test the 

use of price oracles by cointegrating the ETH-USDT pair on Uniswap with an exchange rate 

benchmark, concluding that oracles reduced the impact of arbitrage. However, Lo & Medda (2020) 

only look at one stablecoin pair, which naturally experiences much lower volatility than other 

crypto-assets. Although price oracles have helped homogenise prices between AMMs and the 

broader market, I still expect that AMMs are significantly noisier than their CLOB counterparts. 

Comparing popular AMMs against each other, Xu, Vavryk, Paruch and Cousaert (2021) 

demonstrate how the biggest AMMs all utilise a CFMM-like protocol with some variation. 

Additionally, Jensen, Pourpouneh, Nielsen and Ross (2021) support the idea of homogeneity 

between CFMMs, and Engel and Herlihy (2021) create a mathematical model to allow 

compatibility between different AMMs. This model theoretically enables AMMs with varying 

asset classes to communicate, reducing the discrepancies between values and thus improving price 

stability. These findings are important for my study because they allow a generalised formula to 

be applied to different AMMs, while still providing valuable insights. 

Literature comparing DEXs with centralised exchanges has recently received attention 

from academics. Lehar, Parlour and Berkeley (2021) show minor pricing and trading volume 

differences between Uniswap and Binance. Moreover, they notice that the price impact for the 

popular USDC/ETH pair on Binance almost always exceeds Uniswap. This finding implies that 

AMMs can better handle price action within large and stable liquidity pools. Similar to my study, 

Barbon and Ranaldo (2021) compare DEX and CLOB exchanges, demonstrating that CLOBs 

provide better market quality overall. Regarding similarities between both market types, Young 

(2020) states that CLOBs and AMMs are mathematically equivalent. He claims that the 

characteristics of both models could be interchangeable in the future, giving rise to hybrid market 

systems which combine AMMs transparency with limit order book’s liquidity protection. 

 Looking at how traders interact with both, Aspris, Foley, Svec and Wang (2021) 

empirically show that AMMs serves as a “vehicle for on-ramping” to centralised exchanges. Not 

only do they show that DEX to centralised exchange cross-listings results in much higher overall 

trading volume, but they also show that DEX trading activity drops significantly. This conclusion 

is consistent with Domowitz, Glen and Madhavan (1998) study on order flow migration between 

traditional foreign and emerging markets, which demonstrates market segmentation. My paper 
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contributes to this discussion by forecasting that the lower trading activity in AMMs does not 

impede their ability to perform efficient price discovery against centralised exchanges. 

Concerning the sustainability of AMMs, most studies focus on their susceptibility to illegal 

trading activity. Xu, Vavryk, Paruch and Cousaert (2021) explain that AMMs are highly 

vulnerable to front/backrunning, wash trading, rug pulling and sandwich/vampire attacks. They, 

along with Angeris, Evans and Chitra (2021), express privacy concerns when using AMMs, as 

attackers can bridge between virtual account transactions and people’s identities with relative ease 

(Zhang, Xue and Liu (2019)). Moreover, Park (2021) finds that manipulative frontrunning 

opportunities within CFMMs are always profitable compared to limit order book models; however, 

this is only substantial for trading pairs with low liquidity. Although not strictly illegal, Mohan 

(2020) identifies the presence of generalised bots programmed to “snipe” arbitrage transactions 

entered by others. These bots disincentivise participants to engage in arbitrage, thus resulting in 

greater mispricings within AMMs than usual. Eskandari, Salehi, Gu and Clark (2021) also identify 

the threat of oracle-based attacks and discusses several mitigation strategies. I expect these threats 

to not significantly hinder AMM’s ability to perform price discovery. 

2.3. Price Discovery 

Price discovery is one of the central functions of financial markets and is extensively 

discussed within traditional literature (Baillie, Booth, Tse and Zabotina (2002); De Jong (2002); 

Hasbrouck (1995); Thomas and Karande (2001)). However, there are different definitions of price 

discovery which confuses the interpretation. Some refer to it as purely the speed of adjustment 

(Booth, Lin, Martikainen and Tse (2002)), whereas others refer to it as the first to reflect new 

information (Chakravarty, Gulen and Mayhew (2004); Rittler (2012)). Lehmann (2002) combines 

both concepts, defining price discovery as the “efficient and timely incorporation of investor 

trading information into asset prices”. To clarify Lehmann (2002) definition further, Putniņš 

(2013) describes efficiency as the relative absence of noise and timely as the speed at which new 

information reflects the fundamental value. I use Putniņš (2013) understanding of price discovery 

for my research project. 

Price discovery across market types is of particular interest to many published studies. For 

the fundamental value of the same asset to be accurately reflected, each market is responsible for 

quickly adjusting to new information (Easley and O'Hara (2004)). A seminal paper by Hasbrouck 

(1995) demonstrates that prices for the same asset over multiple markets converge long term, yet 
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they deviate in the short term due to trading frictions. This assumption is supported exhaustively 

within the literature that compare price discovery between spot and futures markets (Thomas and 

Karande (2001)), bond and foreign exchange markets (Andersen, Bollerslev, Diebold and Vega 

(2007)), as well as stock and options markets (Patel, Putniņš, Michayluk and Foley (2020)). I 

forecast these same relations are present when comparing CLOBs to AMMs. 

When measuring price discovery, there are two primary metrics that market microstructure 

literature use: the Gonzalo and Granger (1995) Component Share (CS) and the Hasbrouck (1995) 

Information Share (IS). Gonzalo and Granger (1995) propose that a cointegrated price series can 

be decomposed into temporary and permanent components using the error correction term’s 

coefficients. They postulate that contribution to price discovery is identified through the weight of 

each market’s permanent component, with the temporary component representing noise. 

Furthermore, Gonzalo and Granger (1995) also highlight that the permanent component is a linear 

combination of every variable in the cointegration system (Putniņš (2013)).  

Alternatively, Hasbrouck (1995) assesses how variance within efficient price innovation is 

decomposed and how that contributes between varying markets. He proposes that the relative 

informativeness of trades represent the proportion of efficient price variation within those trades 

(Hasbrouck (1991)). The CS and IS were initially thought to be competing measures; however, the 

works of Baillie, Booth, Tse and Zabotina (2002) prove them to be similar since both rely on the 

vector error correction model (VECM) coefficients. Baillie, Booth, Tse and Zabotina (2002) 

conclude that the IS is simply the CS adjusted for variance. I calculate both of these well-

established metrics to provide comparability with other price discovery papers. 

Previous to Yan and Zivot (2010), it was still unclear what the CS and IS were measuring. 

They revealed that the IS and CS measure which market is faster but also which market is less 

noisy. Therefore, these measures tend to attribute the less noisy market as the informational leader, 

which can be misleading. To remediate this issue, Yan and Zivot (2010) combined the IS and CS 

estimates to help account for microstructure noise, thus providing a metric that strictly measures 

which market is faster at impounding new information into prices. Putniņš (2013) builds upon Yan 

and Zivot (2010) metric, creating the Information Leadership Share (ILS). The ILS allows for 

easier comparability between the IS and CS as well as interpretation. The combination of the ILS’ 

simplicity and handling of microstructure noise; which is high in crypto-markets, is why I consider 
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it the primary measure of price discovery in my study. Additionally, I hypothesise that the ILS will 

often contradict the IS and CS due to the large noise variability between AMMs. 

Price discovery literature within crypto-assets is expanding as academics apply traditional 

assumptions and methods to this new market. The first study to observe the informational 

efficiency of crypto-asset exchanges was Brandvold, Molnár, Vagstad and Valstad (2015), who 

examined Bitcoin within early exchanges between 2013 and 2014. They conclude that Mt. Gox 

and BTC-e were the leaders in price discovery during the period. However, they both were shut 

down soon after due to hacking events. Next, Urquhart (2016) investigates Bitcoin’s market 

efficiency determining that the market was inefficient at impounding new information until the 

end of the study’s sample period. Using tick data for 34 exchanges and across 19 countries, 

Makarov & Schoar (2020) find that arbitrage deviations of Bitcoin prices are large, persistent and 

greater across countries. Another paper investigates the relationship between liquidity and price 

discovery within seven popular cryptocurrencies, finding that they become more efficient as 

liquidity increases (Brauneis and Mestel (2018)). My study extends this research, hypothesising 

that AMMs with the most trading activity will be the price leaders across all sampled assets.  

The discussion of price discovery between traditional and cryptocurrency markets is also 

growing. Giudici and Polinesi (2021) find that Bitcoin exchange prices are unaffected by 

conventional asset prices, although volatilities are interrelated with a negative and lagged 

relationship. They also determine that Bitcoin exchange prices are positively related to each other. 

Similarly, Pagnottoni and Dimpfl (2019) explore whether fiat currency exchange rates affect 

Bitcoin’s price discovery. They conclude that they had no discernible impact. Highly related to 

my study, Dimpfl and Peter (2021) extend the literature by observing the price discovery 

contributions of different exchanges accounting for noise. They determine that the cryptocurrency 

market includes much more microstructure noise than the NYSE or NASDAQ. Moreover, 

compared with CLOBs, Barbon and Ranaldo (2021) conclude that DEXs are not competitive 

regarding transaction costs and price efficiency. Alternatively, I hypothesise that AMM’s 

deterministic pricing function is favourable for informed traders as it allows DEXs to compete 

with CLOBs by being the first to impound new information into prices.  

2.4. Adverse Selection Costs & Liquidity Provision 

The literature is comprehensive surrounding adverse selection costs as they are present 

within all markets. (Collin‐Dufresne and Fos (2015); Easley and O'Hara (1992); Wilson (1980); 
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Wilson (1989)). The ASC describes the informational asymmetry that informed traders have to 

exploit the uninformed for financial gain. This risk is characterised by arbitrage which is necessary 

to equalise mispricings between markets (Nosal and Wang (2004)). Foucault, Kozhan and Tham 

(2017) explore the tension between market efficiency and adverse selection, showing that the price 

efficiency gain from high-frequency arbitrage comes at the cost of greater ASCs. The impact of 

this ASC is deemed considerable, with Muravyev (2016) showing that it has a “first-order effect” 

on option prices. Considering that Bitcoin markets are known to have substantial price spreads, 

arbitrage’s impact on market efficiency is likely more substantial than traditional markets (Kroeger 

and Sarkar (2017); Krückeberg and Scholz (2020)). In my study, I hypothesise that the ASC of IL 

can be a proxy for the level of informed trading within an AMM. 

CLOB market makers have developed several ways to mitigate ASCs. One such technique 

is Bayesian inference from order flow, as described by Kyle (1985) and Glosten and Milgrom 

(1985). Using Bayesian inference, liquidity providers can reliably charge the lowest possible “fee”, 

thus limiting their expenses. Brahma, Chakraborty, Das, Lavoie and Magdon-Ismail (2012) also 

show that the Bayesian market maker offers lower expected loss at the same liquidity. They also 

conclude a “rapid convergence when there is a jump in the underlying true value of the security”. 

With the development of high-frequency trading (HFT), market makers can also refresh quotes 

quickly with Jovanovic and Menkveld (2016) finding HFT reduces adverse selection by 23% and 

increases trade by 17%. 

There is limited literature examining how AMMs deal with ASCs (characterised through 

the IL). Aigner and Dhaliwal (2021) observe the risk profile of liquidity providers by accounting 

for IL within Uniswap. They provide a derivation of the IL function and find liquidity providers 

may not always receive less return than a buy and hold strategy under specific circumstances. 

Similarly, Wang, Heimbach and Wattenhofer (2021) cite the same IL formula and suggest that 

liquidity providers perform different trading strategies depending on the asset pair. They find that 

staking in stablecoin pools provide an almost risk-free profitable return, whereas staking in riskier 

pools generates substantial losses. Additionally, based on their equilibrium modelling, Barbon and 

Ranaldo (2021) theorise “an optimal level of stacked liquidity”. This theory assumes that IL is a 

function of the asset’s volatility, and fees are a function of liquidity pool size and volume. I agree 

with Barbon and Ranaldo (2021) and forecast that there is an optimal level of IL and fees within 

an AMM which has a measurable impact on the price efficiency of the exchange. 
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3. Data 

I collect price and other exchange-related data from a collection of eleven AMMs using 

two sample periods. Sample Period 1 is from 1st November 2020 to 1st October 2021, and Sample 

Period 2 is from 1st June 2021 to 1st October 2021. The second sample period includes newer 

exchanges established within 2021 that account for substantial market share (e.g., QuickSwap). 

These eleven exchanges make up around 60% of the total market share of DEXs, with almost $2 

billion in daily trading volume (CoinGecko (2021)). Uniswap is the largest AMM within the 

sample, with Uniswap 2.0 (v2) and Uniswap 3.0 (v3) accounting for over 30% market share 

(CoinGecko (2021)). The rationale for selecting these AMMs is based on a combination of data 

availability, commonly traded asset pairs and high trading volume. The primary reason to examine 

many AMMs was to include enough variation between protocols that trade the same asset pairs. 

From these eleven AMMs, I examine eight asset pairs segmented into categories based on 

their respective volatility. The assets are segmented into two main categories - stable denotes a 

stablecoin, and risky represents a non-stablecoin. This identification is useful when looking at an 

asset pair. For example, a pair with a stablecoin and a non-stablecoin is referred to as ‘stable/risky’. 

The chosen trading pairs represent a substantial share of DeFi ecosystem, with a total market 

capitalisation valuing around $591 billion (CoinMarketCap 2021). The stablecoins used in this 

study are all pegged to the US dollar. The most prominent digital asset in this study is Wrapped-

Ether (WETH), which is the cryptocurrency that runs the Ethereum blockchain. For this reason, it 

is considered the ‘base currency’ within pairs without a stablecoin (e.g., risky/risky). Additionally, 

since most AMMs are built on the Ethereum blockchain, each exchange and asset has its own 

unique 40-character address (see Tables 1A and 2A in the Appendix). I use these smart-contract 

addresses (see Table 3A for definition) to locate the relevant asset pairs and exchanges through 

blockchain explorers: Etherscan.io, BscScan, and Polygonscan. Not every AMM trades all eight 

asset pairs within this study. I summarise the organisation of AMMs and asset pairs in Table 1. 
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Table 1 

Asset Pair and AMM Configuration 

This table shows the asset pairs that trade on each AMM, represented by a tick mark. Pairs are in three categories: 

Stable/Stable, Stable/Risky and Risky/Risky. Stable refers to a stablecoin and Risky refers to a non-stablecoin. Shaded 

pairs denote pairs with lower trading frequency. Sample Period 1 is from November 2020 to October 2021. Sample 

Period 2 is from June 2021 to October 2021. The Binance sample period is from November 2020 to March 2021. No 

tick means that the asset pair is not traded on that particular AMM.  

 

 

 Stable/Stable Stable/Risky Risky/Risky 

AMM 
USDC/ 

USDT 

USDC/ 

DAI 

USDC/ 

WETH 

DAI/ 

WETH 

WBTC/ 

WETH 

LINK/ 

WETH 

AAVE/ 

WETH 

YFI/ 

WETH 

Decentralised Exchange (AMM) 

Panel A: Sample Period 1 

Uniswap v2 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

SushiSwap 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

Balancer  🗸 🗸 🗸 🗸 🗸 🗸 🗸 

Bancor  🗸 🗸 🗸 🗸 🗸 🗸 🗸 

0x 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

Dodo 🗸  🗸      

Curve 🗸 🗸 🗸      

Panel B: Sample Period 2 

QuickSwap 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

Uniswap v3 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

PancakeSwap 🗸  🗸  🗸    

1inch Liquidity 

Protocol 
  🗸 🗸 🗸 🗸  🗸 

DeFi Swap 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 

Panel C: Centralised Exchange 

Binance 🗸 🗸 🗸 🗸 🗸 🗸 🗸  
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Table 2 highlights the different asset properties of stablecoins and other cryptocurrencies. 

The stablecoins exhibit low volatility, as seen with the small average standard deviation in prices 

(0.003) and returns (0.355%). As for the non-stablecoins, we can see that they exhibit high 

volatility, with large fluctuations evident in both mid and large-cap assets.16 Volatility is 

highlighted through the daily minimum and maximum returns, with mid and large caps having an 

average spread of 71% and 42%, respectively. These large daily price movements are further 

supported the average standard deviation of 7% in non-stablecoins Although considered extreme 

within traditional markets, this volatility is typical within the crypto-asset industry. 

 

Table 2 

Descriptive Statistics of Daily Asset Prices and Returns 

This table displays the descriptive statistics of daily prices and returns for the eight assets. Data for this table is sourced 

from market aggregator CoinGecko at daily intervals. Prices are calculated based on US dollar terms. Data is 

winsorized at 1%. Stablecoin denotes a cryptocurrency pegged to the USD and a non-stablecoin refers to a 

cryptocurrency. Large-cap and mid-cap refers to a cryptocurrency with over $100 billion and $1 billion market 

capitalisation, respectively. 

 
16 I classify, crypto-assets with greater than $100 billion market capitalisation as large-cap and greater than $1 billion 

market capitalisation as mid-cap. 

 Prices Returns % 

Category Asset Obs. Mean Std. Min. Max. Mean Std. Min. Max. 

Stablecoin 

USDC 334 1.00 0.002 0.98 1.01 0.003 0.367 -1.572 1.944 

USDT 334 1.00 0.003 0.99 1.01 0.002 0.352 -1.394 1.746 

DAI 334 1.00 0.003 0.99 1.01 0.001 0.345 -1.325 1.258 

Non-

Stablecoin 

(Large-Cap) 

WETH 334 2,007 975 384 4,183 0.782 5.733 -26.302 24.534 

WBTC 334 39,921 12,919 13,558 63,577 0.439 4.300 -13.468 19.247 

Non-

Stablecoin 

(Mid-Cap) 

LINK 334 24 9 10 52 0.498 7.326 -35.647 30.377 

AAVE 334 294 138 28 631 0.995 8.102 -33.475 29.744 

YFI 334 34,817 10,396 8,521 82,071 0.622 8.086 -36.349 45.999 
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Table 3 provides an overview of the daily AMM trading frequency between the two sample 

periods. Firstly, trade activity appears highly varied between exchanges, more so than between 

asset pairs. QuickSwap is the most active exchange with an average of 3,815 daily trades. This 

result is surprising considering QuickSwap was released in May 2021. Looking at Uniswap, it 

appears v2 is more popular than the newer v3, with 164 more daily trades. Due to infrequent 

trading activity, several AMMs are merged and labelled as ‘non-CFMM’ (see Appendix Table 4A 

and Table 5A for the merge order). The low liquidity of these individual exchanges means I am 

unable to estimate the price discovery shares (Refer to Appendix Table 6A). Conversely, these 

AMMs still have enough liquidity for me to calculate the liquidity provider metrics (Section 4.2).  

Binance’s trading activity of the pairs described in Table 2 is far above its AMM 

counterparts at 20,519 daily transactions. This high liquidity is expected since Binance is one of 

the largest global CLOBs, processing more trades than the following four biggest exchanges 

combined (Kowsmann and Ostroff (2021)). Lastly, Table 3 shows that the stable/risky pairs 

USDC/WETH and DAI/WETH are the most popular, averaging 5,003 and 1,470 daily trades 

across AMMs. The YFI/WETH pair is the least popular, with a daily average of 146.  

 

Table 3 

Average Number of Daily Trades 

This table shows the average daily number of trades for each exchange across asset pairs. Stable refers to a stablecoin, 

and Risky refers to a non-stablecoin. Some exchanges are merged into non-CFMMs due to low trading activity. These 

include Bancor, Balancer, 0x, Curve and Dodo for Sample Period 1 (November 2020 to October 2021), and DeFi 

Swap, 1inch and PancakeSwap for Sample Period 2 (June 2021 to October 2021) (see Appendix Table 4A). Not all 

exchanges trade every asset pair; these are left blank. Binance’s sample period is from November 2020 to March 2021.  

 Sample Period 1 Sample Period 2 Centralised 

Asset Pair 
Uniswap 

v2 
SushiSwap 

Non-

CFMMs 
QuickSwap 

Uniswap 

v3 

Non-

CFMMS 
Binance 

Stable/Stable 

USDC/USDT 672  157 4,368 821 238 49,749 

USDC/DAI 290  102 3,445 501 1 8,150 

Stable/Risky 

USDC/WETH 6,562 1,329 495 14,997 6,259 374 19,177 

DAI/WETH 2,481 878 140 3,440 1,805 75 17,194 

Risky/Risky 

WBTC/WETH 874 420 243 2,037 1,038 81 31,604 

LINK/WETH 645 266 103 1,038 304 27 11,562 

AAVE/WETH 313 209 235 1,127 75 5 6,194 

YFI/WETH 325 376 53 71 47 4  

 Average 1,520 580 191 3,815 1,356 101 20,519 
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Table 4 represents the average trading volume per transaction. Transaction sizes are 

substantially larger than expected, with SushiSwap, non-CFMMs and Uniswap v3 ranging 

between $40,729 and $57,385. The high volume in non-CFMMs is attributed mainly to the Curve 

and Dodo exchanges, whose average transaction size in stablecoin pairs is $214,007. This volume 

suggests Curve and Dodo are popular AMMs for trading stablecoins. Surprisingly, Binance 

transaction sizes are much smaller than many AMMs, with an average volume of $10,541. The 

higher traded volume in AMMs is likely because there is no intention to split trades since the price 

is algorithmically determined. Additionally, by only performing one transaction, AMM agents 

reduce the amount of gas fees they are charged.17 QuickSwap has the smallest transaction sizes at 

$1,057, indicating that traders prefer to make smaller, more frequent trades on this AMM.  

 

Table 4 

Average Trading Volume Per Transaction 

This table displays the average trading size per transaction across AMMs and Binance. Stable refers to a stablecoin, 

and Risky refers to a non-stablecoin. Several exchanges are merged into non-CFMMs due to low trading activity. 

These include Bancor, Balancer, 0x, Curve and Dodo for Sample Period 1 (November 2020 to October 2021), and 

DeFi Swap, 1inch and PancakeSwap for Sample Period 2 (June 2021 to October 2021) (see Appendix Table 5A). All 

values are priced in USD terms. Note, not all exchanges trade every asset pair; these are left blank. The trading activity 

on Binance is also displayed from November 2020 to March 2021. 

 Sample Period 1 Sample Period 2 Centralised 

Asset Pair 
Uniswap 

v2 
SushiSwap 

Non-

CFMMs 
QuickSwap 

Uniswap 

v3 

Non-

CFMMS 
Binance 

Stable/Stable 

USDC/USDT 6,228  162,601 573 41,672 203 2,161 

USDC/DAI 4,519  65,211 371 43,334 9 1,463 

Stable/Risky 

USDC/WETH 11,956 39,706 32,742 1,784 83,315 1,552 1,698 

DAI/WETH 13,915 40,216 46,509 1,178 32,974 1,796 674 

Risky/Risky 

WBTC/WETH 22,283 63,822 58,267 1,663 68,833 2,801 39,616 

LINK/WETH 14,443 32,163 33,081 1,312 43,735 1,320 26,358 

AAVE/WETH 15,756 38,392 40,424 1,564 19,495 857 1,817 

YFI/WETH 10,107 30,075 20,247 10 11,052 369  

 Average 12,401 40,729 57,385 1,057 43,051 1,113 10,541 

 
17 Gas fees refer to the computational expense for validating a transaction on the blockchain (see Appendix Table 3A).  
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Shifting focus towards the frequency of my dataset, I use prices recorded at ten-second 

intervals to estimate the daily VECM variables and, by extension, the price discovery metrics.18 I 

choose this frequency for two reasons: (i) to allow comparison across AMMs on different 

blockchains, (ii) to limit contemporaneous correlation. Using 10-second intervals is granular 

enough for the VECM to capture which market is the first to change prices. Although using the 

blockchain’s unique time interval block time would be ideal, it is unsuitable for this study as some 

AMMs are incompatible (e.g. PancakeSwap and QuickSwap).19 Utilising an interval slightly 

shorter than block time, I can still capture its granularity without removing these unique AMMs. 

Moreover, the difference in price discovery shares when using block time and ten-second intervals 

is marginal (see Appendix Table 8A).  

In addition to high-frequency price data, I collect daily volume, trades and gas fees through 

the Bitquery Application Programming Interface (API). Bitquery provides access to the eleven 

AMM blockchains through the GraphQL programming language. Furthermore, I collect the daily 

total-value locked (TVL) amounts from IntoTheBlock, DeFi Prime, and DeBank, and daily market 

prices from coinGecko’s API.20 Prices from coinGecko are required since the price data from 

Bitquery are recorded in relation to the asset pair. I use CoinGecko prices as the representative 

market price to convert the assets values in the pair to US dollar terms. 

I winsorize my dataset to minimise the influence of outliers while still retaining a portion 

of their explanatory power. For price data, I determine the percentage level of winsorization by 

visually observing the price series. Since my price series has millions of observations, I set a low 

range between 1% and 0.00001% to avoid removing too much natural variation. For non-price 

data, I set the level of winsorization at 1%. 

Table 5 displays the average correlation matrix of the variables used in the fixed effects 

panel regression in Section 4.3. I also include the three price discovery metrics: the Information 

Leadership Share (ILS), Component Share (CS) and the Information Share (IS), which act as the 

study’s dependent variables. The IL variable represents the daily expense liquidity providers incur 

for investing in a liquidity pool, and the FeeYield variable denotes the daily compensation liquidity 

 
18 I use UTS’ Interactive High Performance Computing Cluster (iHPC) to estimate the VECM. 
19 Block time refers to the timestamp that the blockchain has verified a group of transactions, and can occur anywhere 

between 2-20 seconds, averaging at about 15 seconds. PancakeSwap is run on the Binance chain, and QuickSwap is 

run on the Polygon/Matic chain. 
20 Total Value Locked refers to the sum of all assets deposited or ‘staked’ within a liquidity pool (see Appendix Table 

3A). 
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providers receive. Both of these variables are explained in detail within Section 4.2. The variables 

in Table 6 are log-transformed to help normalise the data and account for the notable differences 

in values between asset pairs. Normalisation is particularly relevant for the IL and FeeYield 

variables as they have a skewed distribution with a narrow range of values.  

 Table 5 provides an initial observation of whether there is a positive or negative relation 

between variables. For the ILS, we see a negative coefficient with the CS (-0.40) and IS (-0.15), 

which is consistent with my hypothesis that these measures will contradict. Additionally, we see 

that IL has a positive association with the ILS at 0.11, which is expected. Interestingly, we see 

FeeYield with a positive coefficient with the ILS (0.24), indicating that higher fees lead to better 

price discovery. Lastly, daily trades and gas fees also display a positive coefficient.  

Table 6 represents the descriptive statistics of the independent variables used in the fixed 

effects panel regression (Section 4.3). Here we see the disparity in variables between pair 

categories at daily observations. On average, the stable/stable pairs exhibit notably lower IL than 

the other two pair categories. This is likely because of the stablecoin’s low volatility and is 

consistent with expectations. Additionally, the daily fee yield between categories is similar, 

indicating that each generates similar fees. Looking at the control variables, the risky/stable pairs 

appear to have the highest daily trades, and all categories accrue comparable gas fees.  

 

Table 5 

Pearson’s Correlation Matrix 

This table displays the correlation matrix between all daily price discovery, liquidity provider and control variables. 

This is averaged across the eight asset pairs between November 2020 and October 2021. The ILS is the Information 

Leadership Share, CS is the Component Share and IS is the Information Share. IL is the impermanent loss liquidity 

providers incur for investing in a liquidity pool. FeeYield is the compensation liquidity providers receive for investing 

in a liquidity pool. Trades is the daily number of trades, and GasValue is the expense of running on the blockchain. 

The logarithm of the IL, FeeYield, Trades and GasValue variables is used within this matrix and remains consistent 

throughout the rest of the paper. 

 ILS CS IS IL FeeYield Trades GasValue 

ILS 1.00       

CS -0.40 1.00      

IS -0.15 0.78 1.00     

IL 0.11 -0.15 -0.07 1.00    

FeeYield 0.24 -0.05 0.10 0.08 1.00   

Trades 0.47 -0.20 0.12 0.04 0.46 1.00  

GasValue 0.31 -0.11 0.11 0.06 0.42 0.82 1.00 
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Table 6 

Descriptive Statistics of Regression Variables 

This table displays the descriptive statistics of the daily liquidity provider and control variables. The eight pairs are averaged within their respective category 

between November 2020 and October 2021. Stable/Stable includes USDC/USDT and USDC/DAI. Risky/Stable includes USDC/WETH and DAI/WETH. 

Risky/Risky includes WBTC/WETH, LINK/WETH, AAVE/WETH and YFI/WETH. IL is the impermanent loss liquidity providers incur for investing in a liquidity 

pool. FeeYield is the compensation liquidity providers receive for investing in a liquidity pool. Trades is the daily number of trades, and GasValue is the expense 

of running on the blockchain. The logarithm of the IL, FeeYield, Trades and GasValue variables is used within this matrix and remains consistent throughout the 

rest of the paper 

 Stable/Stable Risky/Stable Risky/Risky 

Variable Obs. Mean Std. Min. Max. Obs. Mean Std. Min. Max. Obs. Mean Std. Min. Max. 

IL 366 -17.3 3.4 -32.2 -9.1 912 -9.6 2.3 -19.0 -5.5 727 -8.2 2.0 -16.6 -0.8 

Fee 

Yield 
366 -9.3 1.3 -12.5 -6.0 912 -7.4 1.0 -9.8 -4.6 727 -6.6 0.9 -9.7 -4.3 

Trades 366 6.5 1.3 4.2 9.7 912 7.7 0.9 5.2 10.1 727 4.4 0.9 0.8 6.5 

Gas 

Value 
366 1.8 1.5 -1.3 5.9 912 3.7 1.2 0.8 7.6 727 1.0 1.5 -5.1 5.0 
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4. Research Design & Main Results 

In this section, I describe the research design of my study and provide the main results. I 

then draw out and discuss several implications that relate to my hypotheses. I categorise my main 

results into three sections: AMM price discovery, liquidity provision dynamics, and the fixed 

effects panel regression model. 

4.1. AMM Price Discovery 

I utilise prices at ten-second intervals to estimate three daily price discovery shares. My 

objective is to determine which AMM is first to reflect a change in the fundamental value of an 

asset. I calculate the following metrics: the Hasbrouck (1995) Information Share, Gonzalo and 

Granger (1995) Component Share and Putniņš (2013) Information Leadership Share. They attempt 

to disentangle the price series by examining the market’s speed in impounding new information. 

The ILS will serve as the dependent variable for the main regression in Section 4.3. The CS and 

IS will be used as the dependent variable as a robustness test in Section 4.6.  

The three price discovery metrics rely on the assumption that both price series are 

cointegrated. This assumption is based on economic intuition, being that both series reflect the 

same asset and hence the same fundamental value (Hasbrouck (1995)). Although the prices will 

deviate in the short-term due to mainly noise and trading frictions, they will converge in the long-

term since arbitrage will enforce similarity between the two prices. 

The economic assumption of cointegration makes applying a vector error correction model 

(VECM) logical. Moreover, all three price discovery measures derive from estimates of a reduced 

form VECM. I estimate the VECM in a bi-variate setting, 

∆𝑝1,𝑡 =  𝛼1(𝑝1,𝑡−1 − 𝑝2,𝑡−1) +∑𝛾𝑖∆𝑝1,𝑡−𝑖

𝑛

𝑖=1

+  ∑𝛿𝑗∆𝑝2,𝑡−𝑗 +  𝜀1,𝑡,

𝑛

𝑗=1

 

∆𝑝2,𝑡 =  𝛼2(𝑝1,𝑡−1 − 𝑝2,𝑡−1) +∑𝜑𝑘∆𝑝1,𝑡−𝑘

𝑛

𝑘=1

+  ∑ 𝜙𝑚∆𝑝2,𝑡−𝑚 +  𝜀2,𝑡,

𝑛

𝑚=1

 

(1) 

where Δp1,t and Δp2,t are the changes in log prices of price series one and two respectively at time 

t. The error correction term (𝑝1,𝑡−1 − 𝑝2,𝑡−1) explains the actual difference between the two prices, 

with αi being its coefficient and n denoting the number of lags estimated within the VECM. 

Estimating two price series keeps the computational requirements for my study at a manageable 
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level. Since the study compares markets with varying liquidity levels, the number of lags is 

intuitively determined for each asset pair. I also use the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) to determine the optimal VECM lag length as a robustness 

check (Akaike (1973); Akaike (1974)).21 Although Lütkepohl (2005) claims the AIC is worse at 

estimating lag lengths for a VECM compared to a VAR, he still considers it a reasonable estimation 

compared to other criteria. Since there are only two price series within the VECM, the maximum 

number of cointegrating vectors is one; however, I prove this separately using the Johansen 

Cointegration test.  

My study uses the Putniņš (2013) Information Leadership Share as the primary metric for 

measuring the informational efficiency of AMMs. It uses the Component Share and Information 

Share as inputs to form the Yan and Zivot (2010) structural cointegration model, 22 

𝐼𝐿𝑆1 = 
|
𝐼𝑆1
𝐼𝑆2

𝐶𝑆2
𝐶𝑆1

|

|
𝐼𝑆1
𝐼𝑆2

𝐶𝑆2
𝐶𝑆1

| + |
𝐼𝑆2
𝐼𝑆1

𝐶𝑆1
𝐶𝑆2

|
, 𝐼𝐿𝑆2 = 

|
𝐼𝑆2
𝐼𝑆1

𝐶𝑆1
𝐶𝑆2

|

|
𝐼𝑆1
𝐼𝑆2

𝐶𝑆2
𝐶𝑆1

| + |
𝐼𝑆2
𝐼𝑆1

𝐶𝑆1
𝐶𝑆2

|
 , (2) 

where ILS2 is simplified to, 

𝐼𝐿𝑆2 = 1 − 𝐼𝐿𝑆1. (3) 

 

I only consider the ILS estimates when determining the price leader in my study. This is because 

the ILS accounts for the many microstructure features that would contribute to overall market noise 

between exchanges. Alternatively, the Component and Information Shares provide supplementary 

insights to my study as they only accurately estimate price discovery when markets exhibit a 

similar level of noise (see Appendix C for additional information on the CS and IS). Considering 

the open-source nature and lower technical sophistication of AMMs, many present vastly different 

levels of noise which therefore reduce the informativeness of the CS and IS. 

Additionally, to improve the validity of results, three diagnostics are used to control for 

contemporaneous correlation and accuracy. The first diagnostic is the correlation of the VECM 

reduced form errors, 

 
21 Refer to Table 12 for AIC and BIC lag estimations in Section 4.4. 
22 Refer to Eqs. (3A) and (7A) in Appendix C for the Component Share and Information Share calculations. 
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𝜌 =  
𝜎1,2

√𝜎1
2𝜎2

2
 , (4) 

where σ1 and σ2 are the standard deviations of price series one and two, respectively. The second 

diagnostic is the difference between the upper and lower bound of IS1, 

𝑈𝑚𝐿 =  |𝐼𝑆1,𝑥 − 𝐼𝑆1,𝑦|, (5) 

where x and y denote orders configuration one and two, respectively. These two diagnostics help 

identify whether the sampling frequency is high enough to capture which market moves first in 

reflecting new prices. An initial average upper bound of 𝑈𝑚𝐿 is set at 0.20 for the price series. 

Although this is still relatively high, I deem it necessary to account for the lower sophistication of 

AMM markets. If the average UmL variable is greater than 0.20, I deem the sampling frequency 

too low and rerun the VECM at a higher interval to reduce the impact of contemporaneous 

correlation. However, I find that using ten-second intervals is sufficient in maintaining the UmL 

below the 0.20 cut-off. The third diagnostic is the spread between upper and lower bounds of the 

95% confidence interval (CI). The tightness of the spread ensures that the price discovery shares 

accurately represent the results of the VECM estimation. 

I structure the results by first comparing the price discovery estimates between AMMs and 

the CLOB exchange Binance. I then break down AMMs into two model types: constant function 

market makers (CFMMs) and non-CFMMs. I continue to estimate the price shares between 

individual AMMs until a final price leader is determined. 

Table 7 reports the ILS, IS and CS estimates between Binance and AMMs, demonstrating 

which market is the first to reflect new information. The CS and IS metrics attribute most of the 

price discovery within Binance on average 94% of the time. Contrastingly, AMMs have a minimal 

effect on price discovery when considering the CS and IS measures, with an average of 6%. The 

story changes when looking at the ILS measure, as it attributes AMMs as the overall informational 

leader across the sampled pairs at 62%. However, Binance does appear to still lead the 

LINK/WETH and AAVE/WETH pairs at 56% and 70%, respectively. As highlighted within 

Putniņš (2013), the disparity between measures in Table 7 illustrates the strong bias CS and IS 

have towards the less noisy market. These results support their findings as stripping out 

microstructure noise clarifies which market is the leader. The average correlation estimate is 0.02, 

and the average spread of IS bounds is 0.01, implying there is very little contemporaneous 
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correlation when sampled at ten-second intervals. The CI bounds are moderately sized, averaging 

at 0.10. 

 

Table 7 

Estimates of Price Discovery Shares between Binance and AMMs 

This table shows the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) 

from the CLOB exchange Binance and a collection of sampled AMMs. Individual AMM price series are merged, 

giving preference to exchanges with more trade activity (see Table 4A for exact order). The respective market is 

denoted by the subscript. The shares are estimated between November 2020 and March 2021. The informational leader 

for a particular share is shaded. Three diagnostics are also computed: the correlation of reduced form errors (Correl), 

the spread of the IS between orderings (UmL) and the spread between the confidence intervals set at 95% (CIILS). 

Shares for YFI/WETH are not estimated since Binance does not trade that pair. 

Asset Pair 

Price Discovery Shares Diagnostics 

ILSBinance ILSAMM ISBinance ISAMM CSBinance CSAMM Correl UmL CIILS 

USDC/USDT 0.25 0.75 0.99 0.01 0.99 0.01 -0.01 0.01 0.11 

USDC/DAI 0.20 0.80 0.98 0.02 0.99 0.01 -0.01 0.01 0.10 

USDC/WETH 0.32 0.68 0.94 0.06 0.95 0.05 0.04 0.01 0.10 

DAI/WETH 0.30 0.70 0.90 0.10 0.94 0.06 0.04 0.02 0.10 

WBTC/WETH 0.34 0.66 0.97 0.03 0.98 0.02 0.02 0.01 0.10 

LINK/WETH 0.56 0.44 0.93 0.07 0.92 0.08 0.03 0.01 0.11 

AAVE/WETH 0.70 0.30 0.86 0.14 0.81 0.19 0.04 0.02 0.07 

Average 0.38 0.62 0.94 0.06 0.94 0.06 0.02 0.01 0.10 

 

These results are interesting in several ways. Firstly, the AMM market type tends to be the 

first to impound new information when accounting for noise, rather than the CLOB Binance. This 

result demonstrates that informed traders tend to use the new AMM model instead of the well-

established CLOB. One explanation for this finding is that AMM’s algorithmic pricing function is 

easier to predict. Therefore, this greater predictability can allow the more sophisticated traders to 

maximise their gains. Another potential explanation is that because of AMM’s novelty, traders in 

these markets often have a more sophisticated understanding of crypto-asset markets. As a result, 

there potentially could be fewer noise traders within AMMs compared to centralised exchanges. 

Considering that Binance is the largest cryptocurrency exchange in the world, this finding gains 

significance. Table 7 also highlights how AMM prices are substantially noisier than centralised 

exchange prices through the IS and CS estimates. This difference in noise is likely a result of two 

things. The first reason is that AMMs have a much lower trading frequency, as evident in Table 3. 
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The second explanation is that AMM’s relatively inflexible pricing algorithm can cause significant 

deviations in price when large trades occur within a short period. These findings are novel and 

informative, supporting the idea that AMMs can sustainably perform price discovery.  

With AMMs being established as the overall market leader when accounting for noise, the 

next logical step is to drill down into which AMM model leads price discovery. I estimate the price 

discovery shares between CFMMs and non-CFMMs in Table 8. The results in Table 8 show 

CFMMs as the leading exchange type. All three estimates are consistent, with CFMMs leading 

price changes 62% (CS) and 70% (IS and ILS) of the time. However, the estimates are more varied 

between pairs than in Table 7, with the differences in ILS ranging between 16% and 52%.  

Interestingly, the CS and IS attribute non-CFMMs as the informational leader within the 

USDC/USDT stablecoin pairs at 82% and 76%, respectively. Similar to Table 7, this likely implies 

that there is significantly more noise within the CFMMs than the non-CFMMs within this asset 

pair. Low correlations and IS bounds indicate that estimates are unaffected by contemporaneous 

correlation. The average CI is also smaller than Table 7 at 0.07, implying higher accuracy. 

 

Table 8 

Estimates of Price Discovery Shares between CFMMs and non-CFMMs 

This table displays the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) 

from the constant-function market maker type (CFMM) and non-CFMM AMMs. Individual AMM price series are 

merged, giving preference to larger exchanges (see Appendix Table 4A for exact order). The respective market is 

denoted by the subscript. Non-CFMM is denoted by the ‘Other’ subscript. The shares are estimated between June 

2021 and October 2021. The informational leader for a particular share is shaded. Three diagnostics are also computed: 

the correlation of reduced form errors (Correl), the spread of the IS between orderings (UmL) and the spread between 

the confidence intervals set at 95% (CIILS).  

Asset Pair 

Price Discovery Shares Diagnostics 

ILSCFMM ILSOther ISCFMM ISOther CSCFMM CSOther Correl UmL CIILS 

USDC/USDT 0.69 0.31 0.24 0.76 0.18 0.82 0.01 0.01 0.08 

USDC/DAI 0.58 0.42 0.56 0.44 0.51 0.49 0.01 0.01 0.09 

USDC/WETH 0.66 0.34 0.97 0.03 0.91 0.09 0.01 0.01 0.09 

DAI/WETH 0.69 0.31 0.94 0.06 0.87 0.13 0.02 0.01 0.08 

WBTC/WETH 0.76 0.24 0.66 0.34 0.57 0.43 0.01 0.01 0.06 

LINK/WETH 0.75 0.25 0.90 0.10 0.77 0.23 0.02 0.01 0.07 

AAVE/WETH 0.73 0.27 0.72 0.28 0.62 0.38 0.07 0.05 0.05 

YFI/WETH 0.70 0.30 0.64 0.36 0.55 0.45 0.04 0.03 0.07 

Average 0.70 0.30 0.70 0.30 0.62 0.38 0.02 0.02 0.07 
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With the CFMM market type established as the clear informational leader, I split CFMMs 

into individual exchanges and their respective sample periods.23 Table 9 displays the price 

discovery metrics between Uniswap v2 and SushiSwap, and between Uniswap v3 and QuickSwap, 

respectively. I compute the price shares for these exchanges as they are the only CFMMs within 

their respective sample periods. The price shares for non-CFMMs are not estimated for two 

reasons. The first is that the ILS in Table 8 does not consider non-CFMMs to lead price discovery. 

The second reason is that individually, they have too little liquidity to run the VECM accurately. 

Similar to Table 8 results, the IS and CS in Table 9 attribute SushiSwap as the price 

discovery leader at 57% and 64%. The ILS again contradicts this finding, attributing Uniswap v2 

as the first to impound new information on average 63% of the time. However, unlike the past 

estimates, the difference between SushiSwap and Uniswap v2 is smaller, with an overall spread of 

22%. The tighter range suggests that both markets exhibit similar levels of microstructure noise. 

The correlations and IS bounds are the largest of the study, averaging at 0.12 and 0.11, 

respectively. These diagnostics indicate that both prices are more closely aligned than other 

AMMs. This finding is understandable, considering SushiSwap is a direct copy of the Uniswap v2 

exchange.24 Uniswap v2 being the price leader is consistent with my hypothesis that the most 

actively traded exchanges tend to be more price efficient.  

Alternatively, Panel B exhibits that QuickSwap is the informational leader when compared 

to Uniswap v3. Table 9 again demonstrates the CS and IS’ preference for lower noise levels, with 

Uniswap v3 being considered the price leader at 77% and 64% on average. Conversely, the ILS 

concludes that QuickSwap is the first to change the fundamental value of prices 75% of the time 

when accounting for noise. Looking at pair categories, QuickSwap dominates the price discovery 

of stablecoin and risky pairs more than the stable/risky pairs. This finding is likely because these 

pairs are the largest and most popular within Uniswap. Initially, QuickSwap’s price leadership was 

unexpected. However, considering that the AMM has more than double the average daily trades 

of Uniswap v3 (see Table 3), this supports my trade activity hypothesis.  

 

 

 
23 SushiSwap and Uniswap v2 are in Sample Period 1, and QuickSwap and Uniswap v3 are in Sample Period 2. 
24 In 2020, the SushiSwap exchange was created by performing a ‘vampire attack’ on Uniswap v2. It achieved this by 

offering Uniswap users incentives to bridge their assets onto the SushiSwap exchange resulting a large amount of 

liquidity being “sucked out” and transferred to SushiSwap (Stone (2021)).  
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Table 9 

Estimates of Price Discovery Shares of Uniswap v2/v3, SushiSwap, and QuickSwap 

This table shows the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) of 

Uniswap v2/v3, SushiSwap and QuickSwap AMMs. The shares between Uniswap v2 and SushiSwap are estimated 

between November 2020 and October 2021. The shares between Uniswap v3 and QuickSwap are estimated between 

June 2021-October 2021. Uniswap v2 and v3 are denoted by the subscript 1, SushiSwap and QuickSwap are denoted 

by the subscript 2. The informational leader for a particular share is shaded. Three diagnostics are also computed: the 

correlation of reduced form errors (Correl), the spread of the IS between orderings (UmL) and the spread between the 

confidence intervals set at 95% (CIILS). The stablecoin pairs for Table 9 are unable to be estimated as SushiSwap does 

not trade those pairs 

Asset Pair 

Price Discovery Shares Diagnostics 

ILS1 ILS2 IS1 IS2 CS1 CS2 Correl UmL CIILS 

Panel A: Uniswap v2 - SushiSwap 

USDC/WETH 0.78 0.22 0.59 0.41 0.42 0.58 0.08 0.08 0.03 

DAI/WETH 0.66 0.34 0.45 0.55 0.37 0.63 0.09 0.09 0.04 

WBTC/WETH 0.66 0.34 0.48 0.52 0.38 0.62 0.07 0.06 0.04 

LINK/WETH 0.65 0.35 0.41 0.59 0.33 0.67 0.13 0.12 0.03 

AAVE/WETH 0.53 0.47 0.35 0.65 0.33 0.67 0.18 0.16 0.03 

YFI/WETH 0.49 0.51 0.31 0.69 0.31 0.69 0.14 0.13 0.05 

Average 0.63 0.37 0.43 0.57 0.36 0.64 0.12 0.11 0.04 

Panel B: Uniswap v3 - QuickSwap 

USDC/USDT 0.11 0.89 0.60 0.40 0.87 0.13 -0.01 0.01 0.10 

USDC/DAI 0.05 0.95 0.54 0.46 0.90 0.10 0.01 0.01 0.06 

USDC/WETH 0.35 0.65 0.92 0.08 0.95 0.05 0.04 0.02 0.10 

DAI/WETH 0.43 0.57 0.69 0.31 0.73 0.27 0.03 0.02 0.10 

WBTC/WETH 0.13 0.87 0.94 0.06 0.98 0.02 0.01 0.01 0.09 

LINK/WETH 0.34 0.66 0.45 0.55 0.53 0.47 0.01 0.01 0.08 

AAVE/WETH 0.13 0.87 0.24 0.76 0.48 0.52 0.01 0.01 0.08 

YFI/WETH 0.47 0.53 0.71 0.29 0.75 0.25 0.01 0.01 0.13 

Average 0.25 0.75 0.64 0.36 0.77 0.23 0.01 0.01 0.09 

 

To clarify which two exchanges should be considered in the final estimation, I compute the 

price discovery shares for all additional orderings between CFMMs (see Appendix Table 7A). 

From those results, I find Uniswap v2 and QuickSwap to be the most price-efficient AMMs within 

Sample Periods 1 and 2, respectively. To determine the price leader of the study, Table 10 exhibits 

the price discovery shares between Uniswap v2 and QuickSwap. Looking at the ILS, Table 10 
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declares QuickSwap as the definitive price leader of my study, with a value of 72%. YFI/WETH 

is the only pair that attributes Uniswap v3 as the slightly more price efficient exchange at 51%. 

Contemporaneous correlation is minimal, with the correlation and IS bounds averaging at 0.01. 

The bounds of confidence intervals are similar to past estimations at 0.10, implying the estimates 

are relatively robust. The CS results are consistent, attributing Uniswap v2 as the less noisy and, 

therefore, the first to react to information. Alternatively, the IS estimates are mixed, finding that 

QuickSwap is more price efficient within the USDC/DAI, USDC/WETH, DAI/WETH and 

AAVE/WETH pairs.  

 

Table 10 

Estimates of Price Discovery Shares between Uniswap v2 and QuickSwap 

This table shows the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) 

from the Uniswap v2 and QuickSwap AMMs. The shares are estimated between June 2021 and October 2021. The 

respective market is denoted by the subscript. The informational leader for a particular share is shaded. Three 

diagnostics are also computed: the correlation of reduced form errors (Correl), the spread of the IS between orderings 

(UmL) and the spread between the confidence intervals set at 95% (CIILS). 

Asset Pair 

Price Discovery Shares Diagnostics 

ILSUni ILSQuick ISUni ISQuick CSUni CSQuick Correl UmL CIILS 

USDC/USDT 0.23 0.77 0.53 0.47 0.68 0.32 -0.01 0.01 0.13 

USDC/DAI 0.24 0.76 0.19 0.81 0.43 0.57 0.01 0.01 0.14 

USDC/WETH 0.35 0.65 0.49 0.51 0.57 0.43 0.03 0.03 0.08 

DAI/WETH 0.31 0.69 0.39 0.61 0.51 0.49 0.02 0.02 0.09 

WBTC/WETH 0.12 0.88 0.92 0.08 0.96 0.04 0.01 0.01 0.09 

LINK/WETH 0.38 0.62 0.51 0.49 0.59 0.41 0.01 0.01 0.10 

AAVE/WETH 0.11 0.89 0.33 0.67 0.60 0.40 0.01 0.01 0.05 

YFI/WETH 0.51 0.49 0.69 0.31 0.71 0.29 0.02 0.02 0.13 

Average 0.28 0.72 0.51 0.49 0.63 0.37 0.01 0.01 0.10 

 

Table 10’s conclusion that QuickSwap is the most price-efficient AMM out of the study 

provides several novel insights. This result further supports my hypothesis that the most actively 

traded AMM is likely the most price-efficient exchange. The explanation for QuickSwap’s price 

leadership likely stems from it being run on the Polygon chain. The Polygon blockchain has 

significantly lower gas fees and faster transaction times compared to the Ethereum blockchain, 

making it highly attractive for traders. Despite being released in May 2021, it shows informed 

traders have quickly switched markets to take advantage of the lower costs and faster transaction 
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speeds. Considering that Uniswap has the biggest liquidity pools, the most active users and has 

undergone three major protocol updates to improve its pricing function, my results imply that these 

qualities are not as attractive to informed participants. 

Additionally, my findings also suggest that price leadership is mostly consistent across 

asset pairs. This conclusion implies that informed traders either trade across multiple asset pairs 

or tend to gravitate towards the same exchanges. Moreover, these results further prove that the IS 

and CS estimates are inaccurate when comparing markets with different noise levels. Their 

contradiction with the ILS supports my hypothesis, indicating that they are biased towards less 

noisy markets. Since the ILS accounts for different market microstructure noise, it provides a more 

precise conclusion. I also find that using ten-second intervals is a reasonable frequency to examine 

AMMs from a price discovery perspective. Across all estimations, contemporaneous correlation 

had a minimal impact on results, and the tight IS, and confidence interval bounds further support 

that the interval chosen is appropriate.  

4.2. Liquidity Provision Dynamics 

In this sub-section, I compute several liquidity provider metrics over Sample Periods 1 and 

2. The objective is to demonstrate the differences in price movements, fee generation and handling 

of IL. My study computes these components with a formula designed for CFMMs described in 

Putniņš (2021). Although calculated differently, these equations are empirically equivalent to other 

studies (Barbon and Ranaldo (2021); Jensen, Pourpouneh, Nielsen and Ross (2021); Wang, 

Heimbach and Wattenhofer (2021)), which I prove as a robustness check (see Figure 9). Although 

AMMs have different pricing algorithms, Xu, Vavryk, Paruch and Cousaert (2021) demonstrate 

that most are slight variations of the CFMM pricing function. Therefore, using this generalised 

formula to calculate the IL is considered appropriate since it still captures meaningful variation 

through each AMM’s price action. 
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Impermanent Loss 

I first calculate the IL, which represents the adverse selection cost of providing liquidity in 

an AMM liquidity pool, 

𝐼𝑚𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝐿𝑜𝑠𝑠 = √
𝑃𝑇
𝑃0
− 
1

2
 (
𝑃𝑇
𝑃0
+ 1), (6) 

where P0  and PT  are the price of the risky asset upon entering and exiting the pool, respectively. 

Naturally, the IL will always be negative because of the order imbalance between both assets. In 

risky/risky pairs, WETH is considered the stable asset.  

Figures 1 and 2 show the daily accumulative IL that liquidity providers experience over 

Sample Periods 1 and 2, respectively. Overall, we see that the magnitude of IL is considerably 

different amongst asset pairs. The most significant discrepancies are between assets of differing 

volatilities, exemplified between the stablecoin pairs (USDC/USDT and USDC/DAI) and the rest 

of the sample. Contrastingly, many AMMs appear to exhibit very similar IL within each pair. The 

values of USDC/USDT range between -0.001% and -0.040%, with Uniswap v2 and PancakeSwap 

having the highest IL in their sample periods. These losses are similar to USDC/DAI in Figure 1, 

except for Balancer, which saw an IL of -5%. Within Figure 2, Uniswap v3 in USDC/DAI appears 

to exhibit almost zero IL. 

 Looking at the stable/risky pairs (USDC/WETH and DAI/WETH), the IL averages at -

10% and -2.5% in Figures 1 and 2, respectively. What is visually apparent in Figure 1’s stable/risky 

pairs are that Bancor experiences significantly more IL than its peers at -42% in USDC/WETH 

and -57% in DAI/WETH. Similarly, Figure 2 shows that DeFi Swap has far higher IL than its 

peers, highlighted with a return of -7.6% in DAI/WETH. Excluding these two exchanges, most 

AMMs experience similar IL across the stable/risky pairs. 

Shifting focus towards the risky/risky pairs, we see that WBTC/WETH sustains the least 

amount of IL over both sample periods averaging at -4.8% and -0.62%. Figure 1’s average 

excludes Bancor, which had a remarkable accumulative IL value of -56%. Next, the LINK/WETH 

asset pair also experiences moderate IL averaging at -4.5% in Figure 1 and -0.9% in Figure 2. 

Lastly, AAVE/WETH and YFI/WETH suffer the greatest average IL in Figure 1 at -11% and -

11.5%, respectively. This IL decreases substantially in Figure 2, where AAVE/WETH averages -
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2.2%, and YFI/WETH averages -0.85%. DeFi Swap again sees large IL in AAVE/WETH, and 

QuickSwap surprisingly experiences much higher IL than its peers within YFI/WETH.  

The results in Figures 1 and 2 support my second hypothesis that IL is primarily a function 

of the asset price dynamics. This is evident through the substantial differences in IL returns 

between asset pairs. As expected, pairs with stablecoins experience much less IL due to their 

minimal price volatility. The understanding that IL is highly dependent on the volatility of the 

asset is also consistent with the current literature (Angeris and Chitra (2020); Angeris, Kao, 

Chiang, Noyes and Chitra (2019); Evans (2020); Wang, Heimbach and Wattenhofer (2021)).  

When observing each pair in isolation, my results also demonstrate that AMMs mostly 

exhibit very similar levels of IL. This finding implies that most AMMs are closely priced with 

each other and further reinforces my hypothesis that individual AMM models impact the IL less 

than the asset price dynamics. Additionally, the lower overall IL within Sample Period 2 is 

expected as the IL was estimated over less time. Interestingly, the Bancor and DeFi Swap AMMs 

consistently exhibit the largest IL, implying that these exchanges are priced less accurately with 

respect to the market, resulting in higher price deviations and IL. 
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Figure 1. Total Accumulative Impermanent Loss, Sample Period 1. 

This figure displays the total accumulative impermanent loss liquidity providers suffer for each asset pair between November 2020 to October 2021. Returns are 

calculated as percentages. The legend at the bottom of Figure 1 displays the AMMs and its respective colour code. The x-axis is shared. 
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Figure 2. Total Accumulative Impermanent Loss, Sample Period 2. 

This figure displays the total accumulative impermanent loss liquidity providers suffer for each asset pair between June 2021 to October 2021. Returns are calculated 

as percentages. The legend at the bottom of Figure 2 displays the AMMs and its respective colour code. The x-axis is shared. 
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Fee Yield 

Similar to how market makers in traditional finance receive a maker-taker fee for acting on 

both sides of the market, liquidity providers also receive similar compensation. The fees are 

rewarded to liquidity providers to offset the IL incurred and therefore provide an incentive for 

supplying assets to liquidity pools. I calculate these fees by the following equation, 

𝐹𝑒𝑒 𝑌𝑖𝑒𝑙𝑑 = 𝐹𝑒𝑒
𝑄𝑇
𝑉0
,  (7) 

where QT denotes the total trade volume between pool entry and exit and V0 represents the total 

value locked (TVL). Fee represents the percentage of trade volume that liquidity providers receive 

as fees and varies between AMMs and liquidity pools. The percentages for each exchange/pair are 

found in Table10A within the Appendix.  

Figures 3 and 4 display the daily accumulative fee yield liquidity providers receive over 

both sample periods. Overall fee yields appear to vary more between exchanges compared to the 

IL results. Uniswap v2 and v3 generate the highest fee yields, often well above its peers, averaging 

16.3% and 20.9%, respectively. Surprisingly Uniswap v3 in Figure 4 produces significantly higher 

returns than v2 within the stable/risky pairs. Other AMMs also achieve high yields in Figure 3, 

with Curve in USDC/USDT, Balancer in AAVE/WETH and DeFi Swap in DAI/WETH and 

WBTC/WETH. Looking at the magnitude of returns, we see the stable/risky pairs are best 

performing across Figures 3 and 4, ranging between 2.5% and 50% as well as 4% and 70%, 

respectively. Yields across risky/risky pairs are similar, averaging around 9% in Sample Period 1 

and 4.5% in Sample Period 2. In contrast to the IL results, Bancor and DeFi Swap have the lowest 

accumulative average fee yield, averaging 1.7% and 3.6%.  

Ultimately, the results in Figures 3 and 4 are consistent with expectations, showing that 

substantial fee yields can be generated through high trading volume. Examples supporting this 

conclusion include Uniswap v2/v3, Curve and QuickSwap, which consistently outperform many 

of their peers. Moreover, the 0x Exchange and Balancer also demonstrate that small liquidity pools 

can generate reasonable returns, as seen in the DAI/WETH and WBTC/WETH pairs. Uniswap v3 

returning higher yields than v2 within less time implies that the AMM has very high trade activity 

and volume, which is reinforced in Table 3. Alternatively, Bancor consistently ranks at the bottom 

of fee yield generation, suggesting very low trade volume (see Table 4A). 
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Figure 3. Total Accumulative Fee Yield, Sample Period 1. 

This figure displays the accumulative daily fee yield liquidity providers receive for each asset pair between November 2020 to October 2021. Returns are calculated as 

percentages. The legend at the bottom of Figure 3 displays the AMMs and its respective colour code. The x-axis is shared. 
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Figure 4. Total Accumulative Fee Yield, Sample Period 2. 

This figure displays the accumulative daily fee yield liquidity providers receive for each asset pair between June 2021 to October 2021. Returns are calculated as 

percentages. The legend at the bottom of Figure 4 displays the AMMs and its respective colour code. The x-axis is shared. 
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Fee Yield & Impermanent Loss 

I combine both metrics to determine which drives liquidity provider returns. The objective 

is to understand the relative informativeness of each AMM. Since IL is a result of arbitrage, I 

consider it a proxy for the level of informed trades within an exchange. On the contrary, since fee 

yield is primarily based on trade volume, I consider it a proxy for un-informativeness. 

Figures 5 and 6 show the accumulative net return of IL and fee yield for Samples 1 and 2, 

respectively. Looking at Figure 5, we see substantial variation between AMMs, with Uniswap v2 

being the only exchange to achieve positive returns (5% to 20%) over all asset pairs. The other 

AMMs have mixed performance, with Bancor consistently seeing substantial negative returns (-

6% to -55%), SushiSwap breaking even or experiencing slightly negative returns (1% to -3%) and 

Balancer with minor negative returns (-6% to -55%). Interestingly, 0x sees a surge of strong 

performance after May 2021 within LINK/WETH and YFI/WETH and similarly with Balancer in 

AAVE/WETH. The USDT/USDC returns also look identical to Figure 3, highlighting the minimal 

IL sustained within stablecoin pairs.  

Continuing onto Figure 6, we see less variation amongst asset pairs. It appears most 

exchanges either deliver flat or positive performance on every pair except for YFI/WETH. 

Uniswap v3 is the clear outperformer ranging from 1% to 70% return. On average, QuickSwap 

achieves mostly low returns except for the YFI/WETH pair (-2.5%). Similar to Bancor in Figure 

5, DeFi Swap consistently sees significant negative returns highlighted in AAVE/WETH. The pair 

experiences a sharp drop to -40% by the end of the period. PancakeSwap and 1inch mostly deliver 

flat performance (+/- 1%), implying there is just enough volume to cover the IL. 

Both Figures 5 and 6 provide some noteworthy findings. Firstly, the results imply that 

offsetting IL is beneficial from a price discovery perspective as Uniswap and QuickSwap are the 

only AMMs that achieve a positive return across pairs. This conclusion is reasonable as liquidity 

providers, on average, would only supply their assets if they expect to make a profit. If the IL 

proves too great, they will withdraw their assets, reducing the AMMs liquidity and price efficiency. 

This situation can be explained with Bancor and DeFi Swap’s returns, which are consistently the 

lowest out of all AMMs. Additionally, these results show that IL is less adequately compensated 

within riskier asset pairs. This is likely a result of two things: the higher IL experienced due to 

higher volatility and their lower popularity (namely YFI and AAVE). Lastly, the results suggest 

that trading volume is the main factor when offsetting the IL. 
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Figure 5. Accumulative Fee Yield and Impermanent Loss Return, Sample Period 1. 

This figure displays the accumulative daily fee yield and impermanent loss liquidity providers receive for each asset pair between November 2020 to October 2021. 

Returns are calculated as percentages. The legend at the bottom of Figure 5 displays the AMMs and its respective colour code. The x-axis is shared. 
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Figure 6. Accumulative Fee Yield and Impermanent Loss Return, Sample Period 2. 

This figure displays the accumulative daily fee yield and impermanent loss liquidity providers receive for each asset pair between June 2021 to October 2021. Returns are 

calculated as percentages. The legend at the bottom of Figure 6 displays the AMMs and its respective colour code. The x-axis is shared. 
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Liquidity Provider Total Return 

To complete our understanding of AMM liquidity provision, I add the holding return to the 

fee and IL equations to calculate the overall profitability.25 The inventory holding return is simply 

the return on the risky asset between entering and exiting the liquidity pool. Equation (8) shows 

the total return for liquidity providers within the sample period, 

𝑅𝑇𝑂𝑇𝐴𝐿 =       
1

2
(
𝑃𝑇
𝑃0
− 1)   

⏟          
    

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑅𝑒𝑡𝑢𝑟𝑛

+√
𝑃𝑇
𝑃0
−
1

2
(
𝑃𝑇
𝑃0
+ 1)

⏟            
𝐼𝑚𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝐿𝑜𝑠𝑠

+     𝐹𝑒𝑒 
𝑄𝑇
𝑉0
     .

⏟        
𝐹𝑒𝑒 𝑌𝑖𝑒𝑙𝑑

 
(8) 

Figures 7 and 8 show the total accumulative returns for the eight asset pairs in Samples 1 

and 2, respectively. Observing the stable/stable pairs, USDC/USDT averages at 10% and 0.76% 

and DAI/WETH averages at 4% (excluding Bancor) and 5.1%. The similarity in returns between 

these results and Figures 5 and 6 highlights the minimal holding returns stablecoins experience. In 

contrast, both stable/risky pairs generate high returns, ranging between 100% and 170% in Figure 

7 and 17% to 79% in Figure 8. Moving onto the risky pairs, WBTC/WETH, LINK/WETH and 

YFI/WETH in Figure 7 exhibit an overall negative return of -32%, -53% and -26%, respectively. 

These negative returns are consistent within Figure 8, except for WBTC/WETH, which ended with 

a slightly accumulative positive return of 4%. Surprisingly, AAVE/WETH is the only risky pair 

with a positive average return of 39% in Figure 7. Regarding AMMs, most experience similar 

returns within asset pairs. Examples of the contrary include Bancor in USDC/DAI, Uniswap v3 in 

USDC/WETH, and DeFi Swap in AAVE/WETH. 

Overall, the total liquidity provider returns provide a couple of insights. Firstly, pairs with 

a stablecoin prove to be a lucrative investment for liquidity providers, with stable/stable pairs 

producing modest positive returns. The profitability of liquidity provision significantly increases 

when investing in either USDC/WETH or DAI/WETH. However, most risky/risky pairs generate 

moderate negative returns over both periods. These results imply that stablecoins are required for 

sustainable liquidity provision as it creates a positive feedback loop between attracting more 

liquidity providers and increasing fee yields which further offsets the IL. Additionally, my results 

demonstrate that fee yields and holding return are the primary drivers of profitability within 

stable/stable and risky pairs, respectively. Lastly, the higher severity in losses within risky pairs 

implies that IL has a measurable impact on the overall profitability of liquidity provision. 

 
25 Refer to Figures 1A and 2A in the Appendix to see holding returns generated over both sample periods. 
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Figure 7. Total Accumulative Daily Return, Sample Period 1. 

This figure displays the total accumulative daily return liquidity providers receive for each asset pair between November 2020 to October 2021. Returns are calculated 

as percentages. The legend at the bottom of Figure 7 displays the AMMs and its respective colour code. The x and y axes are shared. 
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Figure 8. Total Accumulative Daily Return, Sample Period 2. 

This figure displays the total accumulative daily return liquidity providers receive for each asset pair between June 2021 to October 2021. Returns are calculated as 

percentages. The legend at the bottom of Figure 8 displays the AMMs and its respective colour code. The x and y axes are shared. 
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4.3. Fixed Effects Panel Regression Model 

I perform a standard fixed effects panel regression combining the price discovery and 

liquidity provider metrics over a daily time horizon. The regression’s objective is to establish if IL 

and fees have a measurable impact on the informational efficiency of AMMs. Equation (9) 

specifies the dependent variable ILSi,t  as the information leadership share. This price discovery 

metric is regressed on the logarithm of the absolute value of impermanent loss ILi,t, and the 

logarithm of FeeYieldi,j, which are calculated in Section 4.2. Two control variables are included: 

the daily number of trades, Tradesi,t, and the daily gas fees, gasValuei,t. The Tradesi,t variable 

captures the liquidity of the asset pair, and the gasValuei,t variable is used as a proxy for AMM 

efficiency. I also include four dummies that represent each of the CFMMs and CLOB ILS scores.26 

Since I only calculate the price discovery estimates in a bi-variate setting, I take the average ILS 

value from all possible combinations. Moreover, I use the previously determined price leader 

QuickSwap as the reference category for the dummy variables. The ut and ni coefficients represent 

time and asset-specific effects, which help control for the large market-wide trends and differences 

between asset properties. The model is also estimated using clustered standard errors, which is 

common practice when performing fixed effects regressions. 

𝐼𝐿𝑆𝑖,𝑡 = 𝑢𝑡 + 𝑛𝑖 + 𝐵1 ∙ 𝐼𝐿𝑖,𝑡 +𝐵2 ∙ 𝐹𝑒𝑒𝑌𝑖𝑒𝑙𝑑𝑖,𝑡 + 𝐵3 ∙ 𝑇𝑟𝑎𝑑𝑒𝑠𝑖,𝑡 + 𝐵4 ∙

𝑔𝑎𝑠𝑉𝑎𝑙𝑢𝑒𝑖,𝑡 + 𝐵5 ∙ 𝐵𝑖𝑛𝑎𝑛𝑐𝑒 + 𝐵6 ∙ 𝑈𝑛𝑖𝑠𝑤𝑎𝑝𝑉2 + 𝐵7 ∙ 𝑈𝑛𝑖𝑠𝑤𝑎𝑝𝑉3 + 𝐵8 ∙

𝑆𝑢𝑠ℎ𝑖𝑆𝑤𝑎𝑝 + 𝜀𝑖,𝑡.  

(9) 

 

The output of the regression is presented in Table 11. The fixed effects regression is 

implemented with clustered standard errors and robust to entity and time effects to help control for 

endogeneity. I perform the same regression on all eight asset pairs to isolate the impact of the fees 

and IL on each pair. 

 

 
26 Other AMMs (namely non-CFMMs) were not included within the regression since they did not have enough 

liquidity to estimate the VECM. 
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Table 11 

Fixed Effects Panel Regression Results 

This table reports the estimates from the fixed effects panel regression. The dependent variable, ILSi,t, is the Information Leadership Share. Impermanent loss (ILi,t) 

is the expense liquidity providers incur for investing in a liquidity pool. FeeYieldi,t is the compensation liquidity providers receive for investing in a liquidity pool. 

Tradesi,t is the daily number of trades and GasValuei,t is the expense of running on the blockchain. The logarithm of the ILi,t, FeeYieldi,t, Tradesi,t and GasValuei,t 

variables is used within this matrix and remains consistent throughout the rest of the paper. Binance, Uniswap v2, Uniswap v3 and SushiSwap are categorical 

variables representing the respective CFMMs. The QuickSwap exchange is the reference category. p < 0.1 *, p <0.05 **, p < 0.001 ***, t-statistics are in parenthesis.  

Dependent Variable Putniņš Information Leadership Share 

 USDC/USDT USDC/DAI USDC/WETH DAI/WETH WBTC/WETH LINK/WETH AAVE/WETH YFI/WETH 

 1 2 3 4 5 6 7 8 

Impermanent Loss 
0.002 

(0.010) 

0.005 

(0.778) 

0.004*** 

(3.372) 

-0.004 

(0.006) 

0.004** 

(2.172) 

0.007* 

(1.974) 

0.005 

(0.988) 

0.022** 

(2.256) 

Fee Yield 
0.012 

(0.035) 

-0.131** 

(-2.852) 

-0.039* 

(-1.804) 

-0.008** 

(2.283) 

0.034 

(1.107) 

-0.221*** 

(-7.344) 

0.011 

(0.542) 

-0.066*** 

(-2.758) 

No. of Trades 
0.094 

(1.572) 

0.367*** 

(4.131) 

0.249*** 

(7.260) 

0.383*** 

(16.376) 

0.175*** 

(6.375) 

0.185*** 

(4.860) 

0.192*** 

(6.626) 

0.154*** 

(3.158) 

Gas Value 
-0.116** 

(-2.216) 

0.054 

(0.039) 

0.006 

(0.181) 

-0.059 

(0.031) 

0.105*** 

(3.869) 

-0.110*** 

(-5.072) 

-0.073*** 

(-3.652) 

-0.041 

(-0.787) 

Binance 
-0.246*** 

(-9.028) 

-0.197*** 

(-7.708) 

-0.323*** 

(-13.135) 

-0.306*** 

(-12.459) 

-0.357*** 

(-2.750) 

-0.560** 

(-2.572) 

0.697*** 

(9.951) 
 

Uniswap v3 
-0.677*** 

(-6.048) 

0.088 

(0.634) 

-0.002 

(-0.058) 

0.136*** 

(5.885) 

-0.283*** 

(-12.367) 

-0.267*** 

(-7.016) 

-0.408*** 

(-11.779) 

-0.559*** 

(-2.497) 

Uniswap v2 
-0.340*** 

(-3.515) 

0.225 

(1.285) 

0.142*** 

(8.654) 

-0.044** 

(-2.219) 

-0.186*** 

(-6.871) 

-0.001 

(-0.012) 

-0.375*** 

(-20.335) 

-0.031 

(-0.308) 

SushiSwap    
-0.003 

(-0.093) 

-0.065*** 

(-2.675) 

-0.412*** 

(-12.965) 

-0.231*** 

(-4.153) 

-0.456*** 

(-25.897) 

-0.016 

(-0.144) 

Observations 366 366 912 912 912 912 912 790 

AMM Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Cov. Estimator Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered 

R - squared 0.524 0.569 0.791 0.800 0.755 0.613 0.644 0.447 
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Examining Table 11, we see that IL and fee yield can significantly affect the ILS between 

November 2020 and October 2021. Seven asset pairs exhibit a positive IL between 0.002 and 

0.022, with columns (3), (5), (6) and (8) being significant at various levels. The positive 

coefficients are consistent with expectations, suggesting a 1% increase in IL leads to a 0.007 rise 

in the ILS. Alternatively, column (4) contradicts this with a negative IL coefficient of -0.004, 

indicating that IL decreases the ILS within DAI/WETH. Shifting focus towards the fee yield 

variable, five pairs show a negative coefficient ranging between -0.008 to -0.221. Additionally, all 

columns except for (1), (5) and (7) are significant at several levels. The negative association 

between fee yields and the ILS is consistent with expectations, where a 1% increase in fee yield 

leads to an average 0.093 decrease in the ILS coefficient. Columns (1), (5) and (7) show a positive 

coefficient between 0.011 and 0.034, implying the alternative. However, these positive coefficients 

are deemed statistically insignificant. 

Continuing onto the control variables, Table 11 shows positive coefficients for daily trades 

in all pairs significant at the 1% level. These coefficients range from 0.094 to 0.383, averaging at 

0.225. This result implies, on average, that a 1% increase in the number of trades changes the ILS 

coefficient by 0.225. The trades variable having a positive association with the ILS supports my 

hypothesis that more liquid exchanges have higher price discovery estimates. Alternatively, the 

gas expense variable appears to primarily have a negative relation with the ILS, with five pairs 

exhibiting negative coefficients between -0.041 to -0.116. However, columns (2), (3) and (5) 

display a positive association with (5) being significant at the 1% level. Since the other significant 

pairs (1, 6 and 7) are negative, it suggests gas expenses lower the ILS. This negative relation is 

expected as higher gas fees means it is more expensive for the AMM to verify transactions, thus 

decreasing their efficiency.  

Observing the exchange dummies, we see that Table 11 supports the findings in the price 

discovery section. Firstly, all Binance dummies are significant at 1%, with six out of seven pairs 

displaying negative coefficients. On average, this demonstrates that the Binance ILS is 0.332 lower 

than the QuickSwap ILS. Interestingly, column (7) shows that the ILS in Binance is higher than 

QuickSwap, with a positive coefficient of 0.697. Table 5 in Section 4.1 reaches the same 

conclusion with Binance leading the AAVE/WETH pair 70% of the time. Looking at Uniswap v3, 

we see negative coefficients within all columns except for (2) and (4), ranging between -0.002 to 

-0.677. Additionally, only (2) and (3) are not significant at the 1%. Column (4) shows a strong 
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positive coefficient suggesting Uniswap v3 has a higher average ILS than QuickSwap. However, 

overall, the results imply that Uniswap v3 has a lower ILS across asset pairs when compared to 

QuickSwap. The Uniswap v2 dummy shows similar results with an average coefficient of -0.076, 

concluding that QuickSwap is the price leader. On the contrary, the USDC/DAI and USDC/WETH 

pairs in columns (2) and (3) have a positive association. Consistent with the other dummies, all 

pairs that were deemed significant were at the 1% level. Lastly, all SushiSwap coefficients are 

negative, with columns (4) to (7) significant at the 1% level. These results are consistent across 

the rest of the dummies. Lastly, all regressions have large adjusted R-squared values ranging 

between 0.45 and 0.80, suggesting the variables have a high explanatory power on the ILS.  

Overall, the regression supports several of my hypotheses as well as my price discovery 

results. Firstly, IL’s positive association with the ILS demonstrates that IL improves the ability of 

AMMs to impound new information into prices. This is consistent with my hypothesis, indicating 

that IL can be considered a reasonable proxy for the level of informed trades occurring within an 

AMM. The significant p-values and larger coefficients within USDC/WETH, WBTC/WETH, 

LINK/WETH and YFI/WETH further imply that IL has more impact within riskier asset pairs. 

This makes intuitive sense when considering the results in Section 4.2, where IL was found to be 

substantially higher in more volatile pairs. Furthermore, we also see a negative association between 

ILS and fee yields, supporting my hypothesis that fees are an adequate proxy for the level of 

uninformed trades occurring within the AMM. Table 11 also highlights that fees impact the 

stable/risky pairs more, which is expected because they are the biggest and most popular assets.27  

Additionally, the negative IL coefficient within DAI/WETH hints that IL improves price 

discovery up to a point supporting my optimal balance hypothesis. Looking at DAI/WETH in 

Figures 1 and 2, the substantial IL displayed within both sample periods further supports the 

existence of an optimal level. The positive association found between FeeYield and ILS within 

USDC/USDT, WBTC/WETH and AAVE/WETH reinforces this concept, implying that an 

increase in round-trip trades can improve price efficiency likely due to the increased liquidity. 

Table 11 also demonstrates that trade activity improves an AMM’s ability to perform price 

discovery substantially. This finding is consistent with my price discovery results as the more 

liquid markets tend to be more price efficient. This claim is augmented through Uniswap’s and 

QuickSwap’s price leadership in Section 4.1. This conclusion is also supported by traditional 

 
27 See the USDC/WETH and DAI/WETH asset pairs in Tables 3 and 4. 
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literature examining the impact of liquidity on price efficiency in traditional markets (O'Hara 

(2003); Riordan and Storkenmaier (2012)). Gas expenses appear to be a decent proxy for AMM 

efficiency, conveying that AMMs with higher gas fees are perhaps slower and less efficient at 

reacting to new information. Lastly, the exchange dummies improved the validity of my price 

discovery estimates, demonstrating their ILS values were on average lower than QuickSwap across 

most asset pairs. Since I average the AMM’s ILS over all possible combinations, Table 11’s results 

reinforce my conclusion that QuickSwap is the definitive price leader within my sample. 

4.4. Optimal Lag Order Selection 

I perform a number of robustness checks to further validate my conclusions regarding price 

discovery and liquidity provision within AMMs. To ensure that the price discovery estimates are 

accurate, I re-run the VECM using the lags determined by Akaike Information Criterion (AIC) and 

Schwarz (1978) Bayesian Information Criterion (BIC). These two criteria are well-established in 

econometric literature when determining the number of lags in a model. In the main results, I 

intuitively choose the lag number based on the difference in liquidity between the two markets 

(see Appendix Table 9A).  

Table 12 presents the estimates between Binance and AMMs when using the AIC and BIC 

to determine the number of lags. Observing the AIC, we see that it has a minimal effect on the 

price shares compared to the main results. Most estimates within the CS and IS measures are 

almost identical, the USDC/WETH and WBTC/WETH pairs having a deviation between 1 and 

2%. The more considerable variations occur solely within the ILS, where USDC/WETH and 

LINK/WETH have sizeable deviations of 10% and 9%, respectively. Although rather substantial, 

these results claim that AMM’s price leadership is greater than what is found in the main results, 

thus enhancing my original conclusions. Overall, most pairs have a marginal difference of 2%. 

Conversely, the ILS estimates when using the BIC show more substantial deviations, with 

all pairs exhibiting greater than 3% variation. The most considerable deviations again occur within 

the USDC/WETH and WETH/LINK pairs with a difference of 16% and 15%, respectively. Using 

the BIC appears to attribute more price leadership to Binance, which conflicts with my main 

results. However, we can safely assume my original conclusion since the average still favours 

AMMs as the overall price leader at 53%. Additionally, Table 12 shows more variation within the 

IS estimates than the AIC, with most pairs differing by 3%. The magnitude of deviations between 

CS and IS and the ILS metrics suggest that the AIC and BIC measures are affected by noise. 
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Additionally, the BIC consistently estimates substantially lower lags than the AIC (see 

Table 9A in the Appendix), which is the likely reason for this discrepancy. Considering that the 

AIC is better for determining the minimum prediction error and the substantial liquidity difference 

between markets, it is reasonable to assume a larger lag length is more appropriate. For these two 

reasons, I conclude that the AIC is the better lag estimator than the BIC, which provide similar 

findings to my main results. Lastly, all diagnostic measures in Table 12 exhibit little to no 

difference, implying the lag length has a negligible effect on contemporaneous correlation. 

 

Table 12 

Price Discovery Estimation with Optimal AIC and BIC Lags 

This table shows the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) 

between Binance and AMMs with the lag number determined by the AIC and BIC. The respective market is denoted 

by the subscript. Deviation of 1% *, deviation of 3% **, deviation of 5% ***. Price leader is shaded. Three diagnostics 

are also computed: the correlation of reduced form errors (Correl), the spread of the IS between orderings (UmL) and 

the spread between the confidence intervals set at 95% (CIILS). 

 Price Discovery Shares Diagnostics 

Asset Pair ILSBinance ILSAMMs ISBinance ISAMMs CSBinance CSAMMs Correl UmL CIILS 

Panel A: AIC 

USDC/USDT 0.25 0.75 0.99 0.01 0.99 0.01 -0.01 0.01 0.11 

USDC/DAI 0.20 0.80 0.98 0.02 0.99 0.01 -0.01 0.01 0.10 

USDC/WETH 0.42 0.58*** 0.95* 0.05 0.95 0.05 0.04 0.01 0.09* 

DAI/WETH 0.35 0.65*** 0.90 0.10 0.94 0.06 0.04 0.02 0.10 

WBTC/WETH 0.36 0.64** 0.98* 0.02 0.98 0.02 0.02 0.01 0.10 

LINK/WETH 0.56 0.44 0.93 0.07 0.92 0.08 0.03 0.01 0.09* 

AAVE/WETH 0.65*** 0.35 0.86 0.14 0.81 0.19 0.04 0.02 0.07 

Average 0.40 0.60** 0.94 0.06 0.94 0.06 0.02 0.01 0.10 

Panel B: BIC 

USDC/USDT 0.22 0.78** 0.99 0.01 0.99 0.01 -0.01 0.01 0.10 

USDC/DAI 0.25 0.75*** 0.99 0.01 0.99 0.01 -0.01 0.01 0.11 

USDC/WETH 0.48 0.52*** 0.96** 0.04 0.96* 0.04 0.04 0.02 0.09 

DAI/WETH 0.42 0.58*** 0.92** 0.08 0.95* 0.05 0.04 0.02 0.09 

WBTC/WETH 0.45 0.55*** 0.99** 0.01 0.98 0.02 0.02 0.01 0.11 

LINK/WETH 0.71*** 0.29 0.94* 0.06 0.91 0.09 0.03 0.01 0.06* 

AAVE/WETH 0.75*** 0.25 0.88** 0.12 0.82 0.18 0.04 0.02 0.04 

Average 0.46 0.53*** 0.95* 0.05 0.94 0.06 0.02 0.01 0.09 
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4.5. Alternative Impermanent Loss  

Next, to help prove the validity of my IL results, I compute a variation of the IL formula, 

which is widely used amongst practitioners and academics alike,  

𝐼𝑚𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝐿𝑜𝑠𝑠 =  

2 ∙ √
𝑝𝑡2
𝑝𝑡1

1 +
𝑝𝑡2
𝑝𝑡1

− 1, (10) 

where p1 and p2 are the risky asset's price when entering and exiting the liquidity pool, respectively. 

I visually demonstrate that these two formulas are mathematically equivalent in Figure 9 by 

looking at the USDC/USDT, USDC/WETH and WBTC/WETH pairs in Uniswap v2. Figure 9 

elucidates that for all three pairs, the accumulative IL is almost equivalent between formulas. 

Although Equation (10) computes slightly less IL than Equation (6), this difference is minuscule 

and, therefore, likely a cause of rounding error.  

Figure 9 confirms the legitimacy of the Putniņš (2021) equation, which can accurately 

calculate the IL. Many previous studies estimate the IL based on the amounts of both assets within 

the liquidity pool. This method is exemplified within Wang, Heimbach and Wattenhofer (2021), 

who similarly calculate the return, fees and IL using asset amounts. What Figure 9 shows that is 

computing the IL can be achieved by simply using the prices of the risky asset within the pair. This 

extends towards calculating the fee yield and total return, supporting the accuracy of my 

estimations.
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Figure 9. Accumulative Impermanent Loss Comparison. 

This figure shows the accumulative impermanent loss (IL) for USDT/USDC, USDC/WETH and WBTC/WETH in the Uniswap v2 exchange using two different 

formulas. The sample period is from November 2020 to October 2021. Returns are in % and calculated in USD terms. The dotted line (Other) denotes the alternative 

IL calculation. 
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4.6. Alternative Regression Model 

 I perform the same fixed effect regressions with the CS and IS metrics replacing the ILS 

as the dependent variable. This robustness test aims to understand whether fees and IL impact price 

discovery when not accounting for different market microstructure noise between AMMs. Table 

13 shows the regression results of the eight pairs with CS as the dependent variable. Firstly, I find 

that IL and fees are still reasonable proxies to explain the informativeness of the AMM. Moreover, 

I find that the adjusted R-squared ranges between 0.51 and 0.84, indicating the variables have 

slightly more explanatory power than in Table 11. Five pairs display a positive coefficient in the 

IL variable, with columns (4), (5) and (7) being significant at the 10% and 1% levels. Additionally, 

columns (3), (6) and (8) lose their significance within Table 13. The fee yield variable shows five 

pairs with a negative coefficient ranging between -0.018 to -0.218. Although column (1) is 

significant at the 10% level with a positive coefficient, the remaining four significant results imply 

that fees still reduce the price discovery metrics.  

 Interestingly, the trade activity variable is negative with a value of -0.066 on average which 

is different from the main results. This result persists within columns (3), (4), (6) and (7), which 

are significant at 1%. Regarding gas value, coefficients are mostly positive, with columns (1), (6) 

and (7) significant at the 5% level. AMM dummies are consistent with expectations, with nearly 

all coefficients being positive, averaging at 0.443 and significant at the 1% level. The Uniswap v2 

dummy variable in column (2) is the only negative coefficient at -0.187; however, this result was 

considered statistically insignificant.  

A couple of conclusions can be drawn from Table 13, which contribute to the study. Firstly, 

it appears IL’s impact on price discovery slightly loses significance when not accounting for noise. 

In contrast, fee yield retains its effectiveness at describing the level of uninformed trading within 

the exchange, which inhibits AMM price discovery. Furthermore, trade activity appears to have 

an overall negative association with the CS. This is consistent with expectations as the CS also 

measures the relative avoidance of noise, meaning more trades would increase noise and hence 

reduce the CS. Similarly, the AMM dummy variables are in accordance with the main results 

highlighting that all other exchanges exhibit higher CS than QuickSwap. This result is consistent 

with my previous findings as QuickSwap is one of the noisiest AMMs, therefore, would have a 

lower CS. Ultimately, Table 13 supports the conclusions made from the project’s main results.
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Table 13 

Alternative Measure (CS) Regression Results 

This table reports the estimates from the fixed effects panel regression. The dependent variable, CSi,t, is the Component Share. Impermanent loss (ILi,t) is the expense 

liquidity providers incur for investing in a liquidity pool. FeeYieldi,t is the compensation liquidity providers receive for investing in a liquidity pool. Tradesi,t is the 

daily number of trades and GasValuei,t is the expense of running on the blockchain. The logarithm of the ILi,t, FeeYieldi,t, Tradesi,t and GasValuei,t variables is used 

within this matrix and remains consistent throughout the rest of the paper. Binance, Uniswap v2, Uniswap v3 and SushiSwap are categorical variables representing 

the respective CFMMs. The QuickSwap exchange is the reference category. p < 0.1 *, p <0.05 **, p < 0.001 ***, t-statistics are in parenthesis.  

Dependent Variable Gonzalo & Granger Component Share 

 USDC/USDT USDC/DAI USDC/WETH DAI/WETH WBTC/WETH LINK/WETH AAVE/WETH YFI/WETH 

 1 2 3 4 5 6 7 8 

Impermanent Loss 
0.007 

(0.886) 

-0.006 

(-1.164) 

0.004 

(0.641) 

0.027*** 

(3.154) 

0.002*** 

(2.490) 

-0.002 

(-0.608) 

0.009* 

(1.838) 

-0.001 

(-0.157) 

Fee Yield 
0.073* 

(2.127) 

-0.057** 

(-2.311) 

0.023 

(1.379) 

-0.218*** 

(-6.878) 

0.005 

(0.214) 

-0.018 

(-0.896) 

-0.058*** 

(-2.744) 

-0.051** 

(-2.213) 

No. of Trades 
0.018 

(0.313) 

-0.060 

(-0.905) 

-0.080*** 

(-4.206) 

-0.107*** 

(-3.419) 

-0.029 

(-1.379) 

-0.129*** 

(-5.551) 

-0.091*** 

(-3.264) 

-0.050 

(-1.265) 

Gas Value 
0.126** 

(2.526) 

0.017 

(0.502) 

0.017 

(0.780) 

-0.047 

(-1.304) 

-0.071 

(-4.089) 

0.037** 

(2.377) 

0.053** 

(2.552) 

0.003 

(0.056) 

Binance 
0.100*** 

(3.128) 

0.995*** 

(9.410) 

0.956*** 

(10.550) 

0.946*** 

(8.050) 

0.985*** 

(3.040) 

0.916*** 

(4.590) 

0.809*** 

(8.975) 
 

Uniswap v3 
0.650*** 

(6.621) 

0.540*** 

(5.412) 

0.661*** 

(2.583) 

0.177*** 

(4.730) 

0.801*** 

(6.102) 

0.175*** 

(7.199) 

0.022 

(0.633) 

0.443*** 

(4.234) 

Uniswap v2 
0.423*** 

(4.515) 

-0.187 

(-1.490) 

0.118*** 

(9.090) 

0.004 

(0.202) 

0.367*** 

(8.314) 

0.157*** 

(4.444) 

0.051*** 

(2.550) 

0.313*** 

(6.525) 

SushiSwap    
0.217*** 

(7.563) 

0.232*** 

(8.664) 

0.555*** 

(7.119) 

0.423*** 

(2.522) 

0.342*** 

(7.664) 

0.648*** 

(10.206) 

Observations 366 366 912 912 912 912 912 790 

AMM Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Cov. Estimator Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered 

R - squared 0.518 0.767 0.844 0.514 0.869 0.674 0.629 0.561 
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A final regression is performed using the IS metric as the dependent variable, and its output 

is displayed in Table 14. Similar to the main results, we see that IL has a positive coefficient within 

seven asset pairs averaging at 0.009. Moreover, the same columns (4), (5) and (7) that are 

significant in Table 12 are also significant in Table 13 at the 10%, 5% and 1% level, respectively. 

Alternatively, five pairs show a positive association with the IS metric, which differs from Table 

11 and Table 13. Moreover, these unexpected coefficients are significant within columns (2) to (4) 

and (6) at the 1%, suggesting fees increase the IS measure between 0.036 to 0.193. 

Shifting the focus to the trade variable, we see positive coefficients across six pairs 

averaging at 0.108. Unlike the main results, only four columns are deemed significant at the 5% 

and 1% levels (3, 4, 6 and 7). This conflicts with Table 13’s coefficients which mainly exhibited 

a negative association. Moving onto the gas value, we see five negative coefficients between -

0.002 to -0.068. However, the impact of the gas variable appears to decrease when regressing on 

the IS, as column (5) is the only significant coefficient at -0.068. Lastly, the dummy variables are 

consistent with my main results, with significant positive coefficients across all three AMMs and 

Binance. Interestingly, the AAVE/WETH pair has negative values for both Uniswap AMMs 

significant at the 1% level. This is consistent with Tables 9 and 10 in Section 4.1, with IS 

attributing QuickSwap as the leader 76% and 67% of the time, respectively. The adjusted R-

squared values are high, ranging between 0.46 to 0.77 making them slightly lower than the past 

two regression models. 

In terms of insights, Table 14 generally reinforces the findings found in Tables 11 and 13. 

The IL and trade activity variables are still considered a reasonable explanation for informed 

trading and are consistent with the main results. In contrast Table 14, implies that fee yields 

improve the ability for AMMs to perform price discovery. This finding is likely due to the IS being 

influenced by the market's noise, with higher noise resulting in higher IS estimates. Lastly, the 

exchange dummies reiterate that QuickSwap is a very noisy exchange, seen with the large positive 

coefficients within all exchange dummies. With the overall findings of Tables 13 and 14 providing 

similar conclusions to the main results, it is suitable to conclude that IL, fee yields and trade 

activity substantially impact AMM price discovery.  
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Table 14 

Alternative Measure (IS) Regression Results 

This table reports the estimates from the fixed effects panel regression. The dependent variable, ISi,t, is the Information Leadership Share. Impermanent loss (ILi,t) 

is the expense liquidity providers incur for investing in a liquidity pool. FeeYieldi,t is the compensation liquidity providers receive for investing in a liquidity pool. 

Tradesi,t is the daily number of trades and GasValuei,t is the expense of running on the blockchain. The logarithm of the ILi,t, FeeYieldi,t, Tradesi,t and GasValuei,t 

variables is used within this matrix and remains consistent throughout the rest of the paper. Binance, Uniswap v2, Uniswap v3 and SushiSwap are categorical 

variables representing the respective CFMMs. The QuickSwap exchange is the reference category. p < 0.1 *, p <0.05 **, p < 0.001 ***, t-statistics are in parenthesis.  

Dependent Variable Hasbrouck Information Share 

 USDC/USDT USDC/DAI USDC/WETH DAI/WETH WBTC/WETH LINK/WETH AAVE/WETH YFI/WETH 

 1 2 3 4 5 6 7 8 

Impermanent Loss 
0.013 

(1.367) 

-0.002 

(-0.433) 

0.010 

(1.221) 

0.031*** 

(2.967) 

0.001** 

(2.037) 

0.001 

(0.113) 

0.012* 

(1.950) 

0.002 

(0.314) 

Fee Yield 
0.060 

(1.482) 

0.121*** 

(4.091) 

0.036** 

(1.872) 

0.193*** 

(6.461) 

-0.006 

(-0.236) 

0.104*** 

(3.806) 

-0.022 

(-0.951) 

-0.024 

(-0.999) 

No. of Trades 
0.181** 

(2.147) 

0.055 

(0.755) 

0.098*** 

(4.551) 

0.117*** 

(3.336) 

0.156*** 

(4.967) 

-0.030 

(-0.911) 

-0.023 

(0.730) 

0.041 

(0.965) 

Gas Value 
0.089 

(1.514) 

0.029 

(0.678) 

0.034 

(1.645) 

-0.066 

(-1.585) 

-0.068** 

(-2.572) 

-0.022 

(-1.102) 

-0.002 

(-0.086) 

-0.034 

(-0.724) 

Binance 
0.990*** 

(5.472) 

0.982*** 

(9.84) 

0.938*** 

(10.07) 

0.905*** 

(8.656) 

0.979*** 

(7.060) 

0.928*** 

(3.510) 

0.856*** 

(6.609) 
 

Uniswap v3 
0.415*** 

(3.256) 

0.255** 

(2.220) 

0.472*** 

(6.004) 

0.259*** 

(6.741) 

0.826*** 

(6.892) 

0.014 

(0.426) 

-0.283*** 

(-6.984) 

0.341*** 

(3.003) 

Uniswap v2 
0.396*** 

(3.077) 

-0.403 

(-2.704) 

-0.041*** 

(-3.178) 

0.031 

(1.234) 

0.434*** 

(2.801) 

0.133*** 

(2.792) 

-0.223*** 

(-9.908) 

0.262*** 

(5.152) 

SushiSwap    
0.025 

(0.740) 

0.200*** 

(6.703) 

0.481*** 

(2.748) 

0.279*** 

(6.087) 

0.032 

(1.491) 

0.582*** 

(9.300) 

Observations 366 366 912 912 912 912 912 790 

AMM Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 

Cov. Estimator Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered 

R - squared 0.458 0.643 0.766 0.390 0.735 0.593 0.502 0.498 
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4.7.  Limitations 

The availability of a structured high-frequency dataset for AMMs has been the primary 

challenge for my study. Given the novelty and open-source nature of DeFi, many proprietary and 

open-source data providers offer incomplete datasets. Although all data is available within 

blockchains, accessing it is technically challenging and would be too time-consuming given the 

constraints of this study. I strike a balance by leveraging the Bitquery API to access the 

blockchains; however, the functionality is limited. This issue extends towards my CLOB dataset, 

which only includes data for Binance between November 2020 and March 2021. Furthermore, the 

novelty of the DEX industry means that many AMMs do not have enough liquidity to estimate the 

price discovery shares accurately. This limitation reduces the scope of the study. These data 

constraints are coupled with the lack of cohesiveness seen within the asset pairs. It is challenging 

to find pairs commonly traded across multiple AMMs. These data issues will likely resolve if 

AMMs continue to grow and develop in sophistication and popularity. Moreover, my use of a 

generalised CFMM formula also inhibits the accuracy of my results, as AMMs incorporate several 

pricing functions which calculate the IL differently. Lastly, relying on univariate estimations in 

the regression limits the amount of insight gained when comparing between asset pairs. 

4.8.  Implications for Future Research 

Future avenues of research that could prove interesting include a deeper examination of the 

relation between CLOB exchanges and AMMs. Valuable insights can be found by investigating 

the similarities and differences and how market participants interact with both market types. 

Moreover, understanding why informed agents prefer to use AMMs (and CFMMs) could generate 

exciting findings. Analysing trade activity within AMMs would also yield novel outcomes. 

Additionally, studies could extend my research by incorporating the different pricing functions 

within AMMs and re-calculating the liquidity provider metrics. This would clarify how AMMs 

manage the dynamics between IL, holding return and fees. With AMMs constantly being updated, 

research into the impact of new versions would likely yield interesting results and help indicate 

the future direction of the ecosystem. Furthermore, the use of a difference-in-differences model 

could help capture the systematic changes between protocol updates. Lastly, an investigation into 

the merits of automation and algorithmic pricing functions would also be exciting. These future 

works would all highly benefit from the increasing availability of AMM data. 
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5. Conclusion 

Automated market making is a fascinating blend of market microstructure and technology. 

Although this new exchange model has seen rapid adoption due to its simplicity and accessibility, 

there are concerns about whether it is economically sustainable. A limited body of literature 

examines how AMMs perform price discovery and handle the ASCs of liquidity provision 

(Angeris, Kao, Chiang, Noyes and Chitra (2019); Barbon and Ranaldo (2021); Dimpfl and Peter 

(2021); Pagnottoni and Dimpfl (2019); Wang, Heimbach and Wattenhofer (2021)).   

Considering the growing prominence of AMMs, I fill a necessary gap in the literature by 

assessing their informational efficiency between themselves and with CLOB exchanges. 

Furthermore, I investigate whether AMMs can manage the ASCs associated with IL and if it 

impacts the informativeness of the market. I achieve this by estimating three well-known price 

discovery measures (CS, IS, ILS) for eleven AMMs and the CLOB exchange Binance. Moreover, 

I calculate the IL, fees and holding return to understand if AMM liquidity provision is sustainable. 

I regress the IL and fee variables, along with trade activity and gas fees on the ILS, to establish a 

connection between managing ASCs and price discovery. I perform this study across two sample 

periods between November 2020 to October 2021, examining eight asset pairs with different levels 

of volatility. 

 When compared to Binance, I find that AMMs are on average the first to impound new 

information into prices 62% of the time. Additionally, I demonstrate that the CFMM model leads 

price discovery 70% of the time and that QuickSwap is the definitive price leader for the sample 

period. Furthermore, I demonstrate that AMMs can consistently offset the IL through fees in large 

liquidity pools of stable asset pairs or small pools of volatile pairs. I also prove that being a liquidity 

provider with a stablecoin is a profitable endeavour, achieving average returns upwards of 50% 

over the sample period. However, this profitability does not apply to riskier asset pairs, which saw 

average negative returns of -20%. When regressing these variables, I demonstrate that IL and fee 

yields are reasonable proxies for measuring the level of informed/uninformed trades within 

AMMs. Lastly, my regression supports QuickSwap as the price leader through exchange dummies 

and shows a strong positive association between trade activity and informational efficiency.  

The findings from my study provide exciting implications for the sustainability of AMMs. 

Firstly, I demonstrate that AMMs are more sophisticated at performing price discovery than 

initially assumed, even outperforming the largest CLOB exchange Binance. Considering that 
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AMMs were created in 2018, this result supports that AMMs are price efficient despite being new 

and automated. More broadly, my study contributes to the discussion around the applicability of 

pure automation within finance by providing evidence of its success. Furthermore, this result 

indicates a shift within cryptocurrency markets, where people are increasingly using AMMs to 

trade crypto-assets rather than CLOBs. This conclusion introduces more avenues of research in 

determining what characteristics of the AMM model appeal to market participants.  

Secondly, my study highlights that AMM liquidity provision can be a lucrative alternative 

investment opportunity. I find that AMMs with either high trading volume or small liquidity pools 

can consistently compensate liquidity providers for the IL suffered. Moreover, I provide strong 

evidence that IL is primarily a function of volatility, with riskier pairs experiencing greater IL. 

These findings benefit developers looking to improve AMM design as they can better identify the 

primary drivers of price efficiency and liquidity provision.  

Thirdly, establishing a link between price discovery, IL, and fees lays the foundation for 

future research into how these unique dynamics drive each other. With IL and fees being effective 

representations of trade informativity, this deepens our understanding of how adverse selection 

impacts price efficiency. By providing evidence that AMMs are a sustainable exchange model, my 

research is also beneficial for institutional investors and regulators concerned with the safety and 

longevity of this market marker. My study aids regulators in better understanding how AMMs 

perform the roles of a market, allowing them to make more informed decisions and thus improve 

the safety of the ecosystem. 

Ultimately, an understanding of how AMMs perform the functions of exchange is still in 

its infancy. My study aims to prove that automated market making is not a passing trend, but a 

robust market type that is economically sustainable. By providing evidence of their sustainability, 

I suggest that AMMs have the potential to compete with CLOBs for market dominance in both 

DeFi and traditional finance.  
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Appendix A: Institutional Details on Blockchain & DeFi 

1.1A. Intermediation & Blockchain Technology 

Financial intermediation has long been a staple of the modern financial system (Allen and 

Santomero (1997); Beck, Degryse and Kneer (2014); Hellwig (1991)). Intermediaries expand 

transaction possibilities, increase security and reduce transaction costs by creating trust between 

buyers and sellers (Chen and Bellavitis (2020); Roth (2015)). However, there is extensive literature 

and countless publicised scandals of large intermediaries abusing their power for personal gain 

(Cohen (2019); Srnicek (2017); Zuboff (2019)). Furthermore, the oligopolistic landscape of global 

financial intermediaries results in a central point of failure. The Global Financial Crisis highlighted 

how their interdependency cascaded into a worldwide downturn.  

In contrast, the blockchain’s immutable open ledger network design, which uses 

cryptography to facilitate transactions and information transfer (Anderson (2019)), has enabled a 

paradigm shift in how markets build trust (Werbach (2018)). Blockchains removes the need for 

any intermediation, with its direct peer-to-peer network allowing faster and cheaper transactions 

with greater security. Seidel (2018) claims that blockchain technology replaces the traditional 

financial system’s reliance on opportunism for distributed trust. Additionally, Ammous (2018) 

suggests that the decentralised nature of blockchains makes them incredibly resistant since there 

is no central point of failure. Moreover, Ammous (2018) emphasises that the complete 

transparency of the network creates public verifiability, thus resulting in a “trustless” system. 

These qualities of disintermediation, transparency and potential have greatly appealed to retail 

investors and academics alike. 

1.2A. Decentralised Finance (DeFi) 

DeFi refers to the crypto-asset sub-industry that converts traditional financial instruments 

such as loans and derivatives onto the blockchain (Werner, Perez, Gudgeon, Klages-Mundt, Harz 

and Knottenbelt (2021)). It replaces the need for intermediaries with smart contracts – specialised 

coded protocols that execute a function when the agreement terms are met (Hertig (2020)). These 

smart contracts are highly adjustable, allowing them to perform countless functions such as 

representing an asset, a share of ownership or even voting rights (Blémus and Guégan (2019)). 

Kuhn (2021) states that DeFi is an antithesis to the current financial system by replacing custodians 

with code. 
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Despite mainly being practitioner-led, the academic literature surrounding DeFi is growing. 

A systematisation of knowledge (SoK) performed by Werner, Perez, Gudgeon, Klages-Mundt, 

Harz and Knottenbelt (2021) summarises the DeFi industry as a blend between promise and 

challenge. They believe that the DeFi system is non-custodial, permissionless, openly auditable 

and composable in an ideal world, posing substantial benefits for loans, derivatives and exchanges. 

Although Werner, Perez, Gudgeon, Klages-Mundt, Harz and Knottenbelt (2021), along with Schär 

(2021), heed caution about DeFi’s future, mentioning concerns surrounding technical, security and 

economic challenges. These concerns conflict with Narayanan, Bonneau, Felten, Miller and 

Goldfeder (2016) and Lo and Medda (2020), who suggest that the open-source nature of DeFi 

allows external parties to freely audit protocols for risks and fix bugs and glitches. Brynjolfsson 

and McAfee (2014) comment on the benefits of open-source networks, saying that it accelerates 

innovation as technologies build upon one another at incredible speeds. 

One looming concern that followed crypto-assets and DeFi’s development is its 

vulnerabilities towards criminal activity. Hammond and Ehret (2021) believe it is due to 

cryptocurrency’s unregulated and pseudo-anonymous nature. Unlawful activities such as drug 

dealing, tax evasion and money laundering have been recorded in abundance within 

cryptocurrencies as these events can occur far away from traditionally regulated markets (Barratt, 

Ferris and Winstock (2016); Foley, Karlsen and Putniņš (2019); Kethineni and Cao (2020)). 

Furthermore, cryptocurrencies have catalysed a paradigm shift in cyber-attacks (Zimba, Wang, 

Mulenga and Odongo (2020)), with Connolly and Wall (2019) saying mining hacks and 

ransomware pose a challenging problem for cyber-security. Alternatively, two reports state that 

criminal activity in the space has drastically reduced, with around 1% of all cryptocurrency 

transactions considered illegal payments (CipherTrace (2021)) and 54% of those being scams, not 

terrorism or other severe crimes (Chainalysis (2021)).  

 However, the lack of empirical research in much of the DeFi literature makes it difficult 

to substantiate any claims made. Unlike these studies, my paper is empirically driven, providing 

data-based insights on the largest market type within DeFi. 
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Appendix B: Additional Descriptive Statistics 

Table 1A 

Asset Smart Contract Addresses 

This table shows the smart contract addresses of assets used within my study. These addresses are used to locate the relevant cryptocurrency on the blockchain. 

The study examines AMMs over three different Ethereum chains which require a unique address. Assets not provided on a particular chain are left as blank. 

 

Ticker Name Ethereum Address Polygon Address Binance Address 

USDC USD-Coin 
0xa0b86991c6218b36c1d19d

4a2e9eb0ce3606eb48 

0x2791bca1f2de4661ed88a30c99a7

a9449aa84174 

0x8ac76a51cc950d9822d68b83fe1a

d97b32cd580d 

0xe9e7cea3dedca5984780bafc599b

d69add087d56 * 

USDT 
USD-

Tether 

0xdac17f958d2ee523a220620

6994597c13d831ec7 

0xc2132d05d31c914a87c6611c1074

8aeb04b58e8f 

0x55d398326f99059ff77548524699

9027b3197955 

DAI Dai 
0x6b175474e89094c44da98b

954eedeac495271d0f 

0x8f3cf7ad23cd3cadbd9735aff9580

23239c6a063 

0x1af3f329e8be154074d8769d1ffa4

ee058b1dbc3 

WETH 
Wrapped 

Ether 

0xc02aaa39b223fe8d0a0e5c4f

27ead9083c756cc2 

0x7ceb23fd6bc0add59e62ac255782

70cff1b9f619 

0x2170ed0880ac9a755fd29b268895

6bd959f933f8 

WBTC 
Wrapped 

Bitcoin 

0x2260fac5e5542a773aa44fb

cfedf7c193bc2c599 

0x1bfd67037b42cf73acf2047067bd

4f2c47d9bfd6 

0x7130d2a12b9bcbfae4f2634d864a

1ee1ce3ead9c 

LINK Chainlink 
0x514910771af9ca656af840d

ff83e8264ecf986ca 

0x53e0bca35ec356bd5dddfebbd1fc

0fd03fabad39 
 

AAVE Aave 
0x7fc66500c84a76ad7e9c934

37bfc5ac33e2ddae9 

0xd6df932a45c0f255f85145f286ea0

b292b21c90b 
 

YFI 
yearn-

finance 

0x0bc529c00C6401aEF6D22

0BE8C6Ea1667F6Ad93e 

0xda537104d6a5edd53c6fbba9a898

708e465260b6 
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Table 2A 

AMM Smart Contract Addresses 

This table shows the smart contract addresses of the sampled AMMs. These addresses are used to locate the relevant AMM on the blockchain. Note some exchanges 

use a number of proxy addresses rather than a single address. These particular AMMs were accessed by using Bitquery’s AMM nam ing conventions which are 

provided. PancakeSwap’s address is on the Binance blockchain. QuickSwap’s address is on the Polygon blockchain. The other addresses are on the Ethereum 

blockchain. 

Exchange Name Address 

0x Exchange “Zerox Exchange” 

1inch Liquidity Protocol “1inch Liquidity Protocol” 

Balancer  0x9424B1412450D0f8Fc2255FAf6046b98213B76Bd 

Bancor 0x2f9ec37d6ccfff1cab21733bdadede11c823ccb0 

Curve “Curve” 

DeFi Swap “CRO DeFi Swap” 

Dodo “Dodo” 

PancakeSwap 0xcA143Ce32Fe78f1f7019d7d551a6402fC5350c73 

QuickSwap 0x5757371414417b8c6caad45baef941abc7d3ab32 

SushiSwap 0xc0aee478e3658e2610c5f7a4a2e1777ce9e4f2ac 

Uniswap v2 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f 

Uniswap v3 0x1F98431c8aD98523631AE4a59f267346ea31F984 
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Table 3A 

Glossary 

Term Definition 

Adverse Selection Cost/Risk (ASC) 
Situation where one party has information the other does not have. In this case it refers to 

informed traders who perform arbitrage on mispriced assets against liquidity providers. 

Automated Market Maker (AMM) A type of decentralised exchange that uses a mathematical algorithm to price assets. 

Blockchain 
An open, decentralised and immutable network which uses cryptography to facilitate 

transactions and information transfer (Anderson (2019)). 

Limit Order Book (CLOB) The dominant exchange model which keeps a record of outstanding buy and sell orders. 

Constant Function Market Maker 

(CFMM) 

A type of automated market maker which uses a deterministic pricing rule simplified as the 

product of the two asset’s reserve amounts. 

Crypto Short-hand term often referring to digital assets secured by cryptography. 

Decentralised Exchange (DEX) 
An exchange which allows participants to trade peer-to-peer, without the need for an 

intermediary. 

Decentralised Finance (DeFi) 
A blockchain-based financial system which operate financial instruments using smart 

contracts instead of intermediaries.  

Gas Fees The computational expense for validating a transaction on the Ethereum blockchain. 

Impermanent Loss (IL) 
The risk for liquidity providers of seeing the value of their reserved tokens decrease in 

comparison to holding the assets (Wang, Heimbach and Wattenhofer (2021)).  

Liquidity Pool 
A crowdsourced reserve of crypto-assets locked in by a smart contract. It provides the funds 

to facilitate trades within a decentralised exchange.  

Liquidity Provider 
A participant who supplies their own digital-assets to the liquidity pool. They are 

compensated with the fees generated from trade volume. 

Price Discovery 
The efficient and timely incorporation of the information implicit in investor trading into 

market prices (Lehmann 2002). 

Total Value Locked (TVL) Represents the sum of all assets deposited or ‘staked’ within a DeFi protocol.  

Smart Contract 
Specialised protocols that execute complicated transactions when the terms of agreement are 

met, without relying on a third party (Hertig (2020)).  

Stablecoin A crypto-asset pegged to a fiat currency, commodity or another crypto-asset. 
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Table 4A 

Average Daily Trades of Merged AMMs 

This table displays the daily average number of trades for the merged AMMs across asset pairs. AMMs are marked 1 

to 6 demonstrating the order they were merged in. Stable refers to a stablecoin, and Risky refers to a non-stablecoin. 

Sample Period 1 is between November 2020 and October 2021, and Sample Period 2 is between June 2021 and 

October 2021. The * in PancakeSwap and Curve explains that they are the first and second to be merged if trading 

that pair. The other AMMs are shifted down if this is the case. Not all exchanges trade every asset pair; these are left 

as blank.  

  Sample Period 1 Sample Period 2 

Category Asset Pair 
Balancer 

(1) 

Bancor 

(5) 

0x 

(2) 

Curve 

(2*) 

Dodo 

(6) 

DeFi 

Swap 

(3) 

1inch 

(4)  

Pancake 

Swap 

(1*) 

Stable/Stable 
USDC/USDT  3  70 84 2  236 

USDC/DAI 18 3  81  1   

Stable/Risky 
USDC/WETH 245 45 165  40 168 12 194 

DAI/WETH  32 108   69 6  

Risky/Risky 

WBTC/WETH 187 18 38   24 5 52 

LINK/WETH 57 26 20   25 2  

AAVE/WETH 214 9 12   5   

YFI/WETH 29 10 14   3 1  

 Average 125 18 60 76 62 37 5 161 

 

Table 5A 

Average Trading Volume Per Transaction of Merged AMMs 

This table displays the mean trade amount for the merged AMMs across asset pairs. Stable refers to a stablecoin, and 

Risky refers to a non-stablecoin. Sample Period 1 is between November 2020 and October 2021, and Sample Period 

2 is between June 2021 and October 2021. Not all exchanges trade every asset pair; these are left as blank. The * in 

PancakeSwap and Curve explains that they are the first and second to be merged if trading that pair. The other AMMs 

are shifted down if this is the case. Values are in USD terms. 

  Sample Period 1 Sample Period 2 

Category Asset Pair 
Balancer 

(1) 

Bancor 

(5) 

0x 

(2) 

Curve 

(2*) 

Dodo 

(6) 

DeFi 

Swap 

(3) 

1inch 

(4)  

Pancake 

Swap 

(1*) 

Stable/Stable 
USDC/USDT  18,473  150,169 319,161 25  380 

USDC/DAI 1,480 21,463  172,691  9   

Stable/Risky 
USDC/WETH 4,782 30,966 70,156  25,063 2,855 1,761 40 

DAI/WETH  30,802 62,216   2,801 790  

Risky/Risky 

WBTC/WETH 29,555 65,959 79,287   5,990 2,192 221 

LINK/WETH 3,761 62,443 33,038   2,594 45  

AAVE/WETH 59,992 33,744 27,537   857   

YFI/WETH 5,843 26,727 28,171   676 61  

 Average 17,569 36,322 50,067 161,430 172,112 214 1,975 970 
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Appendix C: Price Discovery Interpretation & Additional Estimates 

The model assumes that the unobservable true value of the asset follows a random walk: 

𝑚𝑡 = 𝑚𝑡−1 + 𝑢𝑡, 𝑢𝑡~𝑁(0, 𝜎𝑢), (1A) 

with mt denoting the natural log of the fundamental value and ut representing the i.d.d white noise 

processes at time t. Building on (1A) to apply to asset price series,  

𝑝𝑖,𝑡 = 𝑚𝑡−𝛿𝑖
+ 𝑠𝑖,𝑡, 𝑠𝑖,𝑡~𝑁(0, 𝜎𝑠𝑖), (2A) 

pi,t denotes the natural log of price series i at the time t, and similarly, si,t represents the i.d.d noise 

processes that are uncorrelated with other price series. The δi and 𝜎𝑠𝑖 variables characterise the 

speed of impounding new information and its noise of price series i.  

Following Baillie, Booth, Tse and Zabotina (2002), I calculate the Component Share as 

the normalised orthogonal to the error correction term coefficients α1 and α2, 

𝐶𝑆1 = 
𝛼2

𝛼2 − 𝛼1
,    𝐶𝑆2 =

𝛼1
𝛼1 − 𝛼2

 . (3A) 

Since there are only two price series, and CS is normalised, CS2 can be simplified to: 

𝐶𝑆2 = 1 − 𝐶𝑆1, (4A) 

The second price discovery measure is the Hasbrouck (1995) Information Share. The IS 

incorporates the CS along with variables from the Cholesky factorisation matrix. 

The covariance matrix of the VECM error terms, 

Ω =  (
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ) , (5A) 

is used to formulate the Cholesky factorisation matrix Ω = MM’, 

𝑀 = (
𝑚11 0
𝑚12 𝑚22

) =  (
𝜎1 0

𝜌𝜎2 𝜎2(1 − 𝜌
2)
1
2
) , (6A) 

and when combined provides,  
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𝐼𝑆1 = 
(𝐶𝑆1𝑚11 + 𝐶𝑆2𝑚12)

2

(𝐶𝑆1𝑚11 + 𝐶𝑆2𝑚12)2 + (𝐶𝑆2𝑚22)2
 , 

𝐼𝑆2 = 
(𝐶𝑆2𝑚22)

2

(𝐶𝑆1𝑚11 + 𝐶𝑆2𝑚12)2 + (𝐶𝑆2𝑚22)2
 . 

(7A) 

 

Due to the normalisation factor, IS2 can be simplified to: 

𝐼𝑆2 = 1 − 𝐼𝑆1, (8A) 

Since the IS estimates are dependent on the price series ordering within the VECM, I compute 

the IS under both orderings then take the average following past literature (Baillie, Booth, Tse 

and Zabotina (2002); Booth, Lin, Martikainen and Tse (2002); Cao, Hansch and Wang (2009); 

Chen and Gau (2010); Korczak and Phylaktis (2010); Putniņš (2013)). 

 

Table 6A 

Supplementary Estimates of Price Discovery Shares 

This table displays the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) 

of Uniswap v2, Curve and PancakeSwap and QuickSwap AMMs. The shares between Uniswap v2 and Curve are 

estimated between November 2020 and October 2021. The shares between PancakeSwap and QuickSwap are 

estimated between June 2021 and October 2021. Uniswap v2 and PancakeSwap are denoted by the subscript 1, Curve 

and QuickSwap are denoted by the subscript 2. Many of the pairs in my sample are not traded on Curve or 

PancakeSwap. The informational leader for a particular share is shaded. Three diagnostics are also computed: the 

correlation of reduced form errors (Correl), the spread of the IS between orderings (UmL) and the spread between the 

confidence intervals set at 95% (CIILS). 

 Price Discovery Shares Diagnostics 

Asset Pair ILS1 ILS2 IS1 IS2 CS1 CS2 Correl UmL CIILS 

Panel A: Uniswap v2 – Curve 

USDC/USDT 0.87 0.13 0.05 0.95 0.01 0.99 0.01 0.01 0.06 

USDC/DAI 0.75 0.25 0.05 0.95 0.01 0.99 0.01 0.01 0.09 

Average 0.81 0.19 0.05 0.95 0.01 0.99 0.01 0.01 0.08 

Panel B: PancakeSwap – QuickSwap 

USDC/USDT 0.43 0.57 0.79 0.21 0.82 0.18 -0.01 0.01 0.09 

USDC/WETH 0.07 0.93 0.37 0.63 0.67 0.33 0.03 0.03 0.10 

WBTC/WETH 0.10 0.90 0.93 0.07 0.99 0.01 0.01 0.01 0.09 

Average 0.20 0.80 0.70 0.30 0.82 0.18 0.01 0.02 0.09 
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Table 7A 

Supplementary Estimates of CFMM Price Discovery Shares 

This table displays the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) 

of Uniswap v2/v3, SushiSwap and QuickSwap CFMMs. All the price discovery shares are estimated between June 

2021 and October 2021. Uniswap v2 and SushiSwap are denoted by the subscript 1, Uniswap v3 and QuickSwap are 

denoted by the subscript 2. The informational leader for a particular share is shaded. Three diagnostics are computed: 

the correlation of reduced form errors (Correl), the spread of the IS between orderings (UmL) and the spread between 

the confidence intervals set at 95% (CIILS). 

 Price Discovery Shares Diagnostics 

Asset Pair ILS1 ILS2 IS1 IS2 CS1 CS2 Correl UmL CIILS 

Panel A: Uniswap v2 – Uniswap v3 

USDC/USDT 0.76 0.24 0.38 0.62 0.25 0.75 -0.01 0.01 0.06 

USDC/DAI 0.41 0.59 0.07 0.93 0.07 0.93 0.01 0.01 0.08 

USDC/WETH 0.61 0.39 0.07 0.93 0.06 0.94 0.08 0.03 0.10 

DAI/WETH 0.38 0.62 0.25 0.75 0.28 0.72 0.06 0.04 0.07 

WBTC/WETH 0.38 0.62 0.13 0.87 0.16 0.86 0.05 0.03 0.09 

LINK/WETH 0.53 0.47 0.56 0.44 0.54 0.46 0.08 0.07 0.09 

AAVE/WETH 0.52 0.48 0.64 0.36 0.64 0.36 0.07 0.06 0.08 

YFI/WETH 0.52 0.48 0.47 0.53 0.46 0.54 0.06 0.06 0.07 

Average 0.52 0.48 0.32 0.68 0.37 0.63 0.05 0.04 0.08 

Panel B: SushiSwap – Uniswap v3 

USDC/WETH 0.43 0.57 0.07 0.93 0.08 0.92 0.10 0.04 0.09 

DAI/WETH 0.45 0.55 0.30 0.70 0.31 0.69 0.08 0.05 0.08 

WBTC/WETH 0.36 0.64 0.18 0.82 0.21 0.79 0.07 0.04 0.08 

LINK/WETH 0.53 0.47 0.66 0.34 0.65 0.35 0.10 0.09 0.05 

AAVE/WETH 0.54 0.46 0.75 0.25 0.74 0.26 0.08 0.06 0.08 

YFI/WETH 0.63 0.37 0.69 0.31 0.64 0.36 0.07 0.06 0.09 

Average 0.49 0.51 0.44 0.56 0.44 0.56 0.08 0.06 0.08 

Panel C: SushiSwap – QuickSwap 

USDC/WETH 0.22 0.78 0.47 0.53 0.63 0.36 0.03 0.03 0.06 

DAI/WETH 0.30 0.70 0.45 0.55 0.55 0.45 0.03 0.02 0.08 

WBTC/WETH 0.12 0.88 0.93 0.07 0.97 0.03 0.01 0.01 0.08 

LINK/WETH 0.35 0.65 0.58 0.42 0.68 0.32 0.01 0.01 0.08 

AAVE/WETH 0.14 0.86 0.49 0.51 0.73 0.27 0.01 0.01 0.05 

YFI/WETH 0.49 0.51 0.75 0.25 0.78 0.22 0.02 0.01 0.13 

Average 0.27 0.73 0.61 0.39 0.72 0.28 0.02 0.01 0.08 
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Table 8A 

Supplementary Estimates of Price Discovery Shares using Block-Time Interval 

This table shows the Informational Leadership Shares (ILS), Information Shares (IS), and Component Shares (CS) 

estimates between Uniswap v2 and SushiSwap using block time intervals instead of ten-second intervals. The price 

discovery shares are estimated between November 2020 and October 2021. Deviation of 1% *, deviation of 3% **, 

deviation of 5% ***. Price leader is shaded. Three diagnostics are also computed: the correlation of reduced form 

errors (Correl), the spread of the IS between orderings (UmL) and the spread between the confidence intervals set at 

95% (CIILS). 

Asset Pair 

Price Discovery Shares Diagnostics 

ILSUni ILSSushi ISUni ISSushi CSUni CSSushi Correl UmL CIILS 

USDC/WETH 0.85*** 0.15 0.71*** 0.29 0.53*** 0.47 0.09* 0.07* 0.02* 

DAI/WETH 0.65* 0.35 0.46 0.54* 0.37 0.63 0.09 0.09 0.05* 

WBTC/WETH 0.67* 0.33 0.49 0.51* 0.39* 0.61* 0.07 0.06 0.04 

LINK/WETH 0.65 0.35 0.42 0.58* 0.33 0.67 0.13 0.12 0.03 

AAVE/WETH 0.54 0.46* 0.34 0.66* 0.31* 0.69* 0.17* 0.16 0.04* 

YFI/WETH 0.49 0.51 0.31 0.69 0.31 0.69 0.14 0.12* 0.05 

Average 0.64* 0.36 0.46 0.54** 0.37* 0.63* 0.11* 0.10* 0.04 

 

  

 

Table 9A 

Lag Lengths for Estimation of VECM 

This table details the lag lengths used when estimating the VECM. Main denotes the lag length used in the main results 

and are intuitively determined. AIC and BIC lags are used as a robustness check for the Binance-AMM sample. The 

shares are estimated between November 2020 and March 2021. Any additional exchange pairings not listed here had 

a lag length of 200. Binance does not trade YFI/WETH and is therefore left as blank.

 
Binance 

- 

AMM 

CFMMs -

Non 

CFMMs 

Uniswap v2 

– 

SushiSwap 

Uniswap v3 

– 

QuickSwap 

Uniswap v2 

- 

QuickSwap 

Asset Pair Main AIC BIC Main Main Main Main AIC 

USDC/USDT 200 75 42 100 100 200 200 241 

USDC/DAI 200 244 38 100 100 200 200 246 

USDC/WETH 200 197 52 100 100 200 200 222 

DAI/WETH 200 199 34 100 100 200 200 76 

WBTC/WETH 200 195 48 100 100 200 200 241 

LINK/WETH 200 195 36 100 100 200 200 203 

AAVE/WETH 200 99 47 100 100 200 200 149 

YFI/WETH    100 100 200 200 220 
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Appendix D: Liquidity Provision Holding Returns & Fee Rate 

 

Figure 1A. Total Accumulative Inventory Holding Return, Sample Period. 

This figure displays the total accumulative inventory holding return liquidity providers suffer for each asset pair between November 2020 to October 2021. Returns 

are calculated as percentages. The legend at the bottom of Figure 1A displays the AMMs and its respective colour code.  
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Figure 2A. Total Accumulative Inventory Holding Return, Sample Period. 

This figure displays the total accumulative inventory holding return liquidity providers suffer for each asset pair between June 2021 to October 2021. Returns are 

calculated as percentages. The legend at the bottom of Figure 2A displays the AMMs and its respective colour code.  
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Table 10A 

Percentage Fee Rate for Asset Pairs 

This table shows the fee percentage set by the AMM/liquidity pool for the eight sampled asset pairs. Sample Period 

one is between November 2020 and October 2021, and Sample Period 2 is between June 2021 to October 2021. Note 

that not all AMMs trade every pair; these are left as blank. 

 
Sample Period 1 Sample Period 2 

Asset 

Pair 

Uniswap 

v2 

Sushi 

Swap 
Balancer Bancor 0x Curve Dodo 

Quick 

Swap 

Uniswap 

v3 

DeFi 

Swap 

1inch 

Liquidity 

Protocol 

Pancake 

Swap 

USDC/ 

USDT 
0.30 0.25  0.20 0.10 0.3 0.008 0.30 0.30 0.30  0.17 

USDC/ 

DAI 
0.30 0.25 0.32 0.20  0.03  0.30 0.30 0.30   

USDC/ 

WETH 
0.30 0.25 0.35 0.20 0.10  0.008 0.30 0.30 0.30 0.80 0.17 

DAI/ 

WETH 
0.30 0.25 0.25 0.20 0.10   0.30 0.30 0.30 0.56  

WBTC/ 

WETH 
0.30 0.25 0.22 0.17 0.10   0.30 0.30 0.30 0.80 0.17 

LINK/ 

WETH 
0.30 0.25 0.25 0.20 0.10   0.30 0.30 0.30   

AAVE/ 

WETH 
0.30 0.25 0.30 0.20 0.10   0.30 0.30 0.30   

YFI/ 

WETH 
0.30 0.25 0.25 0.20 0.10   0.30 0.30 0.30   
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