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EDUCATIONAL & PROFESSIONAL 
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2014 - 2018
University of Chinese Academy of Science, Beijing
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Location

*A home to the first factory in the world

*Birthplace of the Industrial Revolution (in
early 1717)

*Rail, Aerospace, & Automotive industries.
E.g.: Rolls-Royce , Alstom, Toyota.

* Beautiful tourist attraction sites.Talk@ Robotic Institute, 
University of Technology Sydney 
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RESEARCH VISION

To constantly innovate AI-based technologies

through cutting-edge research that addresses critical

problems in the field of Cyber-physical Systems:

 Intelligent Rehabilitation Robotic Systems

 Intelligent Decision Support Systems

Signal 
Processing and 
MI Decoding

Signal Preprocessing  

MI tasks Decoding

MI Task: 
Hand Open        

Signal 
Acquisition

Control 
Command

IRRS: Muscle-computer Interface

IRRS: Brain-computer Interface

*Intelligent Rehabilitation Robotic Systems: IRRS

*Intelligent Decision Support Systems: IDSS

Talk@ Robotic Institute, 
University of Technology Sydney 
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Impacts on Limb Function:

 Loss of grasping function

 Loss of sensation (a feel of touch)

 Inability to cope with daily activities

 A sense of incomplete body part

INTRODUCTION

Limb Dysfunction:

 Stroke is identified as the second cause of
disability and death (Giada Milani et al., 2022).

 It significantly influences the quality of life of
patients and relatives (Guzik and Bushnell 2017).

Rehabilitation Approaches:

 Restoration of lost limb function (s)

 Re-integrate survivors into the society

An Enhanced Deep Transfer Learning Model based on Spatial-Temporal driven Scalograms for 
Precise Decoding of Motor Intent in Stroke Survivors

Talk@ Robotic Institute, 
University of Technology Sydney 
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Limb Rehab Strategies:

 Physiotherapy based approach

Driven by physical exercise

 Robot-assisted therapy

Regulation of neural circuit

 Virtual reality based approach

Improve neuroplasticity

 Mirror therapy

Minimize asymmetrical activation
btw cortical hemisphere

 Motor imagery training

Remodel of brain neural network

Intelligent Rehab Robots: Decode motor intention of patient (s), Initiate intuitive/ active motor training, and Foster neural

plasticity, leading to motor function restoration. Such Robots require a Robust Pattern Recognition Scheme.

BACKGROUND AND MOTIVATION

Talk@ Robotic Institute, 
University of Technology Sydney 

*Myo-signals are captured 20-200milliseconds before initiation of limb motion
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* Pattern Recognition-based Control Scheme for Intelligent Rehabilitation Robot

Surface EMG 
Recording

Signal Filtering

Normalization

Motor Intention DecodingMotor Intention Decoding

Traditional  
Machine 
Learning

Deep Transfer 
Learning 
Network 

Control 
Command

Electrode 
Placement

Signal 
Preprocessing

Pattern 
Recognition

Pattern Recognition Scheme
 Deep Transfer Learning Network:

• Incremental learning

• Lesser amount of efforts and data

• Extraction of high/low level features

• Weights are not learned from scratch

• Easy adaptation

 Input Representation

• Scalograms-based on CWT have been widely
recommended

• Have high time-frequency characteristics, yielding
inputs with high-resolution

• However, they lack the integration of spatial-
temporal information, necessary for constructing
rich set of motor information via EMG signals.

BACKGROUND AND MOTIVATION

Scalogram
(CWT)

Deep Transfer 
Learning
Network

Spectrogram
(STFT)

Raw Signal
Surface EMG 

Signal

Input Representation

Output

Talk@ Robotic Institute, 
University of Technology Sydney 
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RESEARCH OBJECTIVE

To optimally characterize the motor intent of especially severely impaired stroke patients
from multi-channel sEMG signals for intuitive robotic training, this study is aimed at:

 Developing a spatial-temporal based Scalograms as inputs to a deep Transfer Learning
Convolutional Neural Network (TL-CNN).

 The approach is implemented across three variants of wavelet functions (including
Morse, Amor, and Bump), employed by the CWT algorithm

 Each variant is used to decode the limb motion intentions of the severely impaired
stroke patients from multi-channel sEMG and compared to conventional methods under
various experimental settings.

Talk@ Robotic Institute, 
University of Technology Sydney 
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METHODOLOGY

Data Collection

Data Segmentation

Segmentation of EMG recordings of active limb motions

 HD-sEMG recording system

 56 Monopolar electrodes

 Sampling frequency: 1024Hz

 5 Subs/Up to 22 limb motions

 6 sec. per motion & 6 trials

 Signal filtering (Notch/Bandpass)

Window length = 150 ms, Increment  = 100 ms, Overlap  (T) = 50 ms

W1

T

T

T

T

W 2

W3

W 4

W n

Time (ms)

Data Windowing

Active segment (ASg)Inactive segment (ISg)

Channel 2

Channel 5

Channel 3

Averaged

ASg.2ASg.1 ASg.3 ASg.4 ASg.5

150 mv 5 s

Electrode configuration for sEMG recordings

Sliding window scheme for data preprocessing

Fugl-Meyer scale: 35-61; Brunnstrom scale: 4-5Talk@ Robotic Institute, 
University of Technology Sydney 

STD Construction & Performance Analysis

 The STD was obtained based on the framework in
the next slide.

 ACC =
 ୭.୭ ୡ୭୰୰ୣୡ୲୪୷ ୡ୪ୟୱୱ୧୧ୣୢ ୱୟ୫୮୪ୣୱ

୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୱୟ୫୮୪ୣୱ
∗ 100%

 Analysis of variance with a confidence level set to p<0.05
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METHODOLOGY
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𝟓𝟎𝑯𝒛:  𝑵𝒐𝒕𝒄𝒉 𝑭𝒊𝒍𝒕𝒆𝒓𝒊𝒏𝒈
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Window Length: 150ms, Increment: 100ms

STD
{𝛾ଵ, 𝛾ଶ,  𝛾ଷ,  𝛾ସ , 𝛾ହ}

sEMG Energy Content Computation via 
Weighted Simple Integral Square

Spectral Information Computation via 
Root Squared Descriptors

Muscle Force Estimation via the 
Nonlinear Log Detector 

Estimate of the Total Muscular 
Activities Per Analysis Window

sEMG Signal Preprocessing

Spatial-Temporal Descriptor Construction

Talk@ Robotic Institute, 
University of Technology Sydney 
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METHODOLOGY

Variants of Scalograms Generated

 STD_CWTmorse

 STD_CWTamor

 STD_CWTbump

TL-CNN Model (GoogleNet)

 144 layers in all

 Requires RGB images as input

 Input dimension: 224x224x3

Training Parameters

 Train/Test data ratio: 80%/20%

 MiniBatchSize/MaxEpoch: 20/10

 LearningRate: 0.0001

 Loss Function: SGD

Talk@ Robotic Institute, 
University of Technology Sydney 
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Individual Subject Analysis

 The three variants of the proposed method (STD_CWTmorse, STD_CWTamor, and STD_CWTbumb) enabled the TL-CNN model to
achieve significantly higher decoding across subjects compared to existing methods (CWTmorse, CWTamor, and CWTbumb ).

 During the TL-CNN model training, the STD_CWTmorse variant recorded the least decoding accuracies across subjects compared to
the STD_CWTamor and STD_CWTbumb while there is no significant different amongst the three variants for the tested models.

 Overall, the proposed approach’s decoding outcomes are consistent and higher for both Training and Testing
sessions across motion classes and subjects.

The TL-CNN model training results for the proposed and existing methods with the 
three distinct wavelets (Morse, Amor, and Bulp)

Analysis on Subject-wise basis
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The TL-CNN model testing results for the proposed and existing methods with the 
three distinct wavelets (Morse, Amor, and Bulp).

RESULT & DISCUSSION

Talk@ Robotic Institute, 
University of Technology Sydney 
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RESULT & DISCUSSION

Across Subjects: Average MI decoding performance of the TL-CNN model across subjects 
for the proposed and the existing methods.

Summary of Findings:

 STD_CWTAmor achieved the best
performance (ACC/STD) across subjects.

 On the other hand, STD_CWTMorse

recorded the least performance

Findings:

 The STD_CWTAmor achieved consistently
higher performance for individual limb
gesture decoding

 This trend can be observed in the
diagonal entries of both confusion
matrices.

Analyzing TL-CNN model for individual motion decoding

(A): Proposed method with STD_CWT_Amor (B): Conventional method with CWT_Amor 

Talk@ Robotic Institute, 
University of Technology Sydney Individual Limb Movement Analysis
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Conclusion & Future Work

Conclusion

 The use of spatial-temporal based Scalograms as inputs to deep transfer learning networks is proposed to efficiently

characterize limb motor intention, that could aid intuitive and adaptive robotic training for stroke patients.

 Compared to existing methods, the proposed approach achieved significant improvement in decoding accuracy

(14.39% ~ 17.45%), and has the capability to adequately characterize individual motor task.

 This suggest that the proposed method may facilitate the practical deployment of accurate and robust clinically

relevant control scheme for rehabilitation robots.

Future Work

 Future work will focus on further investigating the proposed method with experimental design that involve:

 Additional datasets with various characteristics (TBI patients and Amputees as well)

 Other deep transfer learning models (NASNetLarge, AlexNet, ResNet, VGG-16, and VGG-19, etc.)

 Spatial-temporal Scalograms based on the combination of two or more wavelet functions

 Real time evaluation metrics

Talk@ Robotic Institute, 
University of Technology Sydney 
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Myoelectric Prostheses

 Upper Limb Amputation:

• Limb amputation imposes severe burden on affected
individuals.

• More than five million individuals leave with upper
limb amputation globally.

• Prostheses have been built to restore their lost limb
functions.

 Myo-prostheses’ Limitations:

• Lack intuitive control scheme

• Lack sensory feedback mechanism

• Can’t be worn for long time

• Latency issue
Success?

Limiting Factor

INTRODUCTIONThe Impact of Co-existing Dynamic Factors on the Performance of Myo-Prostheses

Talk@ Robotic Institute, 
University of Technology Sydney 
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 Key Confounding Factors:

• Electrode Shift

• Cross-user model (Adaptation)

• Muscle Contraction Force Variation (MCFV)

• Arm Posture Changes 

• Mobility of Subject (MoS)

• Electrode-skin Contact Impedance
Research Question

MoSMCFV

Impact of MCFV and 
MoS on EMG-PR System 

?

Schematic diagram of EMG-PR based prosthesis control system

Signal 
Preprocessing

Signal 
Preprocessing

Electrode 
Placement
Electrode 
Placement

Feature 
Extraction

Motion 
Classification

Control Command

Raw EMG Signal

Classifier Training/Testing

Raw EMG Signal

Classifier Training/Testing

...

Focus

Pattern Recognition

*EMG: Electromyogram ;  *PR: Pattern Recognition

MOTIVATION

Effect of Co-existing Dynamic Factors on the 
Performance of Myoelectric Prostheses

Related Literature

.

Goal

• Investigate confounding factors that
degrade the prostheses performance.

• Develop a simple yet efficient AI-
based solutions to resolve identified
issues.

• Conduct extensive experimentation to
proof the potential of the solutions.

“Improving the performance against force variation of
EMG controlled multifunctional upper-limb
prostheses for transradial amputees,” IEEE TNSRE,
24(6) (2016) 650–661.

“Resolving the adverse impact of mobility on
myoelectric pattern recognition in upper-limb
multifunctional prostheses,” CMB, Elsevier. 90 (2017)
76–87.

Talk@ Robotic Institute, 
University of Technology Sydney 
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 Experimental Procedure for EMG Data Acquisition

A representation of the experimental settings for surface EMG recordings

* 8 Subjects and 7 Classes of Limb Motions

* 4-6 Trigno Wireless EMG Sensors for the Data Collection

 Hypothesis:

Alterations in EMG signal patterns from the dual
impact of MCFV and MoS may influence the
decoding rate of individual targeted limb movement.

 Solution:

Systematically investigated the co-existing impact of both

factors on EMG-PR control system’s performance.

Time/s

51 11 15 21 25 30 35 41 45

…… Tr.1 Tr.2 Tr.3 Tr.4 Tr.5

 Sequence and Duration of Limb Motion Tasks

A representation of number of trials and duration per limb motion

MoSMoS

MCFVMCFV

METHODOLOGY

Talk@ Robotic Institute, 
University of Technology Sydney 
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 Preprocessing of the Raw EMG Data:

• Applied 5th Order Butterworth filter with
frequency band of 20 – 500 Hz (Fs:1024 Hz).

• Applied 50 Hz notch filter to attenuate the
power-line interference.

 Feature Extraction & Pattern Classifier

• Proposed an invariant time domain descriptor (invTDD,
that extracts spatial & temporal muscle characteristics)

• Validation: The invTDD was compared with 4 methods
(TD-PSD, TD4, NOV, TDAR, RMS) with LDA classifier.

 Data Analyses

• Intra- scenario analysis

• Inter- scenario analysis

• PCA analysis

 Performance Evaluation & Statistical Test

• Classification error (CE) =
 ୭.୭ ୧୬ୡ୭୰୰ୣୡ୲୪୷ ୡ୪ୟୱୱ୧୧ୣୢ ୱୟ୫୮୪ୣୱ

୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୲ୣୱ୲୧୬ ୱୟ୫୮୪ୣୱ
∗ 100%

• Matthew Coefficient Correlation (MCC) =
(∗)ି(∗)

(ା)(ା)(ା )(ା)
 

• F1_Score =
ଶ∗ୖୣୡୟ୪୪∗୰ୣୡ୧ୱ୧୭୬

ୖୣୡୟ୪୪ା୰ୣୡ୧ୱ୧୭୬
 

• Analysis of variance (ANOVA) with a  confidence level set to  p<0.05

Active segment (ASg)Inactive segment (ISg)

Channel 1

Channel 2

Channel n

Averaged

. . .

ASg.2ASg.1 ASg.3 ASg.4 ASg.5

150 mv 5 s

 EMG Signal Segmentation

Segmentation of EMG recordings of active limb movements

METHODOLOGY

Talk@ Robotic Institute, 
University of Technology Sydney 
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Results: Intra-Scenario Analysis
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(d)

Intra-scenarios generalization results averaged across subjects/motions when the data used
for training is pulled from a specific force level while the test data is from all force levels
in scenario S1 (a), S2 (b), S3 (c), and S4 (d).

 Motor Intent Decoding based on CE

The proposed method recorded significantly lower CE for all the THREE
SCHEME (Trail-L, Train-M, and Train-H) across SCENARIOS (S1-S4).

𝐓𝐫𝐋

𝐓𝐬 (𝐋 + 𝐌 + 𝐇)

𝐓𝐫𝐋

𝐓𝐬 (𝐋 + 𝐌 + 𝐇)

𝐓𝐫𝐋

𝐓𝐬 (𝐋 + 𝐌 + 𝐇)

𝐓𝐫𝐋

𝐓𝐬 (𝐋 + 𝐌 + 𝐇)

EXPERIMENTAL RESULTS

c)

invTDD

TDARRMS

NOV

TD4 TD-PSD

0.0 0.2 0.4 0.6 0.8 1.0
invTDD

TDARRMS

NOV

TD4 TD-PSD

0.0 0.2 0.4 0.6 0.8 1.0

invTDD

TDARRMS

NOV

TD4 TD-PSD

0.0 0.2 0.4 0.6 0.8 1.0

invTDD

TDARRMS

NOV

TD4 TD-PSD

0.0 0.2 0.4 0.6 0.8 1.0

(a)

(d)(c)

(b)

Intra-scenario generalization results averaged across all subjects and movement classes
based on MCC metric for S1(a), S2(b), S3(c) and S4(d).

 Analysis based on MCC

The proposed method recorded significantly better MCC values across all the
SCENARIOS (S1-S4).

Talk@ Robotic Institute, 
University of Technology Sydney 
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Inter-scenarios results averaged across subjects/motions. The training data were obtained from a particular
contraction force level across scenarios and test data from the other two contraction levels across scenario.

 Motor Intent Decoding (CE)

 Individual Limb Motion Decoding

HC HO WE WF WP WS

 PCA - Class Separability

PCA feature space analysis for targeted limb
movement across subjects for the invTDD

• The method achieved significantly
lower CE on all schemes.

• Also, substantially higher decoding
results were obtained for individual
motion class.

• High class seperatability was
recorded via the PCA plot.

Confusion matrix of CE for individual
limb movement across subjects.

Results: Inter-Scenario Analysis

𝐓𝐫𝐋

𝐓𝐬_(𝐌 + 𝐇)

EXPERIMENTAL RESULTS

Conclusion

 It was established that the co-existence of MCFV
and MoS will significantly affect the performance
of EMG-PR control schème.

 A solution that effectively mitigated the dual impact
of both factors on EMG-PR control schemes was
proposed.

Real-Time Experiment

Talk@ Robotic Institute, 
University of Technology Sydney 
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Real-Time Experiment

 Ongoing Investigation

• User adaptation (Cross-user model)

• Dual-stage deep learning model for electrode shift resolution

Talk@ Robotic Institute, 
University of Technology Sydney 
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PUBLICATIONS STATISTICS

• Track Record of Publications: 100+

• Peer-reviewed Journal Articles: 55+

• Articles in IEEE Conf. Proceedings: 45+

• Book Chapters: 3 

• Citation on Google Scholar: 3200+

• h-index: 30 and i10-index: 64

RELATED AWARDS AND HONORS 

• 2022 STEM for Britain Award, Nominee

• 2021 IPEM-SCOPE, UK, Article Featured

• 2019 IEEE-ICCC Best Presentation

• 2015 IEEE-ICBHI Best Paper

• 2015 IEEE-GHI’ Best Presentation

ARTICLES IN TOP RANKED JOURNALS

• IEEE TNSRE: ranked #1 in Rehabilitation 
Therapy

• Future Generation Computer Systems: ranked #2
in Computing Systems

• IEEE Robotics and Automation Letters: ranked 
#2 in Robotics

• Expert Systems with Applications: ranked #8 in 
Artificial Intelligence

• JNER: ranked #3 in Rehabilitation Therapy

• Journal of Neural Engineering: ranked #7 in 
Biomedical Technology

HIGHLY CITATION RECORD

My articles got list among:

• “Top 2 Most Influential Papers”,

• “Top 10 Most Cited Papers,” and

• “Top Cited Papers”

by Web of Science, ESI-Index,

and IOP Science.

SCHOLARLY ACHIEVMENTS

Talk@ Robotic Institute, 
University of Technology Sydney 



Sensitivity: Internal

Contact Information:
Oluwarotimi .W. Samuel (PhD, M.Tech., B.Sc., SM- IEEE)

School of Computing & Engineering, University of Derby,

Markeaton Street, DE22 3AW, United Kingdom.

Email: O.Samuel@derby.ac.uk or timitex92@gmail.com

Phone: +44 (0)7424268742

Talk@ Robotic Institute, 
University of Technology Sydney 


