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Abstract

Under treatment effect heterogeneity, an instrument identifies the instrument-

specific local average treatment effect (LATE). With multiple instruments, two-

stage least squares (2SLS) estimand is a weighted average of different LATEs.

In practice, a rejection of the over-identifying restrictions test can indicate that

there are more than one LATE. What is often overlooked in the literature is that

the postulated moment condition evaluated at the 2SLS estimand does not hold

unless those LATEs are the same. If so, the conventional heteroskedasticity-

robust variance estimator would be inconsistent, and 2SLS standard errors

based on such estimators would be incorrect. I derive the correct asymptotic

distribution, and propose a consistent asymptotic variance estimator by using

the result of Hall and Inoue (2003, Journal of Econometrics) on misspecified

moment condition models. This can be used to correctly calculate the standard

errors regardless of whether there are more than one LATE or not.
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1 Introduction

Since the series of seminal papers by Imbens and Angrist (1994), Angrist and Imbens

(1995), and Angrist, Imbens, and Rubin (1996), the local average treatment effect

(LATE) has played an important role in providing useful guidance to many policy

questions. The key underlying assumption is treatment effect heterogeneity, i.e. each

individual has a different causal effect of treatment on outcome. Assume a binary

treatment, Di, and an outcome variable Yi. Let Y1i and Y0i denote the potential

outcomes of individual i with and without the treatment, respectively. The heteroge-

neous individual treatment effect is Y1i−Y0i, but this cannot be identified because Y1i

and Y0i are never observed at the same time. Instead, the average treatment effect

(ATE), E[Y1i − Y0i], may be policy-relevant. However, unless the treatment status is

randomly assigned, a naive estimate of ATE is likely to be biased because of selection

into treatment.

Instrumental variables are used to overcome this endogeneity problem. If an

instrument Zi which is independent of Y1i and Y0i, and correlated with the treatment

Di is available, then ATE of those whose treatment status can be changed by the

instrument, thus the local ATE, is identified. Assume Zi is binary and define D1i

and D0i be i’s treatment status when Zi = 1 and Zi = 0, respectively. The LATE

theorem of Imbens and Angrist (1994) shows that

Cov(Yi, Zi)

Cov(Di, Zi)
=

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
= E[Y1i − Y0i|D1i > D0i]. (1.1)

That is, the instrumental vaiables (IV) estimand (or the Wald estimand) is equal to

the ATE for a subpopulation such that D1i > D0i, which is called compliers. Those

who take the treatment regardless of the instrument status, D1i = D0i = 1, are

always-takers, and those who do not take the treatment anyway, D1i = D0i = 0, are

never-takers. We cannot identify ATE for always-takers and never-takers in general.

By the monotonicity assumption of Imbens and Angrist (1994), we exclude defiers

who behave in the opposite way with compliers, D1i = 0 and D0i = 1. Since the

compliers are specific to the instrument Zi, LATE is instrument-specific.

The above setting can be generalized to cases where the number of (excluded)

instruments is greater than the number of endogenous variables. The two-stage least

squares (2SLS) estimator is widely used to estimate the causal effect in such cases.
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Without loss of generality, consider mutually exclusive binary instruments, Zj
i for

j = 1, ..., q. Let Dj
zi be i’s potential treatment status when Zj

i = z where z = 0, 1,

and j = 1, ..., q. Each instrument identifies a version of LATE because compliers

may differ for each Zj
i . Angrist and Imbens (1995) show that the 2SLS estimator

using multiple instruments is consistent for a weighted average of treatment effects

for instrument-specific compliers:

ρa =

q∑
j=1

ξj · E[Y1i − Y0i|Dj
1i > Dj

0i], (1.2)

where 0 ≤ ξj ≤ 1 and
∑

j ξj = 1. Heckman and Vytlacil (2005) extend this result by

allowing continuous instruments with covariates. These works provided theoretical

foundations to interpret 2SLS point estimates as a weighted average of LATEs, and

empirical researchers have done so, either explicitly or implicitly. Examples include

Angrist and Chen (2011), Angrist and Evans (1998), Angrist and Krueger (1991),

Angrist, Lavy, and Schlosser (2010), Clark and Royer (2013), Dinkelman (2011),

Doyle Jr. (2008), Evans and Garthwaite (2012), Evans and Lien (2005), Lochner and

Moretti (2004), Thornton (2008), Siminski and Ville (2011), Stephens Jr. and Yang

(2014), among many others.

If the 2SLS estimand is a weighted average of more than one LATE, then the

commonly conducted over-identifying restrictions test (the J test, hereinafter) would

be rejected. A rejection of the J test implies that the postulated moment condition is

likely to be misspecified. What is less well known and often overlooked in the literature

is that the conventional standard errors are no longer correct under misspecification

of the moment condition.1 This fact has been neglected and the standard errors

have been routinely calculated even with small p values of the J test. I derive the

asymptotic distribution of 2SLS when the estimand is a weighted average of LATEs,

and propose a consistent estimator for the asymptotic variance robust to multiple

LATEs. The correct standard error based on the proposed variance estimator can be

substantially different from the conventional heteroskedasticity-robust one even for a

large sample size, or even for p-values above any usual significance level.

Two recent papers cover similar topics with this one. Kolesár (2013) shows that

under treatment effect heterogeneity the 2SLS estimand is a convex combination of

1The J test can also be rejected due to invalid instruments. Kitagawa (forthcoming) proposed a
specification test for instrument validity in this framework.
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LATEs while the limited information maximum likelihood (LIML) estimand may not.

Angrist and Fernandez-Val (2013) propose an estimand for new subpopulations by

reweighting covariate-specific LATEs. However, neither of the two papers considers

correct variance estimation of 2SLS.

In the next section, well-known examples of weighted averages of LATEs are repli-

cated, and correct standard errors for 2SLS in those examples are calculated. In Sec-

tion 3, I show that the postulated moment condition is misspecified when there are

more than one LATE. The asymptotic distribution of 2SLS estimators in such a case

is derived, and a consistent variance estimator is proposed. Section 4 concludes. The

proofs of propositions are collected in the appendix.

2 Weighted Averages of LATEs

How often are researchers interested in a weighted average of LATEs? More com-

mon than one might think. In this section, I replicate well-known studies with such

interpretations, and show the correct multiple-LATEs-robust standard errors can be

substantially different from the reported ones.

First example is Angrist and Krueger (1991), who study the returns to education.

Since individuals with higher ability would earn more as well as take more schooling,

the relationship between education and earnings cannot be correctly estimated by

OLS. The authors avoid endogeneity of education by instrumenting it using quarter

of birth (QOB). Individuals who were born in the end of the year enter school at

a younger age compared with their classmates. As a result, they are required to

take more compulsory schooling before they reach a legal dropout age. Angrist and

Krueger estimate the following 2SLS model:

lnWi = X ′iβ +
9∑
c=1

Yicψc + Eiρ+ εi, (2.1)

Ei = X ′iπ +
9∑
c=1

Yicδc +
10∑
c=1

3∑
j=1

YicQijθjc + ui, (2.2)

where Ei is education, Xi is a vector of covariates including a constant, Yic is year of

birth (YOB), Qij is QOB, and Wi is weekly wage. If we assume that Xi only contains

a constant, then the first stage equation (2.2) is saturated. In this case, the 2SLS

4



estimand is a weighted average of returns to education where averaging takes place

on three different levels. First, for each level of education, it is LATE for those who

would have additional schooling because of their QOB. Second, it is averaged over

different levels of education because it takes values from 0 to 20. This parameter

is also referred to as the average causal response (ACR; Angrist and Imbens, 1995).

Lastly, it is averaged over different years of birth because YOB dummies are included

in both the first and second stage equations. Since interactions terms between YOB

dummies and education are not included in the second stage, it is assumed that the

returns to education does not vary over birth years although intercepts may differ.

Even if the returns vary, its average is still an interesting and useful estimand because

there is no reason that a particular year, e.g. men born in 1930, is more interesting

than the cohort of those born in 1930-1939. Therefore it is important to correctly

calculate the standard error of the point estimates in this example.

Table 1 shows replication results of Tables IV-VI in Angrist and Krueger along

with the multiple-LATEs-robust standard errors (Column MR, in bold). The re-

sults for covariates are suppressed. There are a few interesting findings. First, even

with large sample sizes, the two standard errors are substantially different. The con-

ventional ones (Column C) are underestimated in all specifications. Second, large

p-values do not necessarily mean that the two standard errors are similar. Finally,

point estimates averaged over a large set of instruments are more robust. This case

is illustrated by Table 3 Column (0), when three QOB dummies are used as only

instruments with YOB dummies as covariates. Surprisingly, the returns to education

is estimated to be negative. Further inspection reveals that it is a linear combination

of three IV estimates, -0.0191 (0.0272) using only the first quarter as an instrument,

-1.3167 (5.2517) using the second quarter, 0.2858 (0.1932) using the third quarter,

where the numbers in parentheses are conventional IV standard errors. Apparently,

imprecisely estimated point estimate with the second QOB is the main reason for the

negative point estimate in Column (0). Since the F statistic is much larger than the

rule of thumb, 10, it appears that weak instruments are not an issue. The researcher

might get around the problem by using a different instrument, but a better alternative

is to get a 2SLS estimate based on a larger set of instruments.

Second example is Angrist and Evans (1998) who use the sex of mother’s first

two children as instruments to estimate the effect of family size on mother’s labor

supply. The instruments two-boys and two-girls are based on the fact that American

5



Column ρ C MR p-value of J test dof

Table IV: (0) .0634 .0166 .0167 .3136 2

Men Born (2) .0769 .0151 .0170 .1661 29

1920-1929, (4) .1310 .0336 .0454 .5359 27

n = 247, 199 (6) .0669 .0152 .0169 .2196 29

(8) .1007 .0336 .0474 .3578 27

Table V: (0) .1053 .0201 .0204 .1917 2

Men Born (2) .0891 .0162 .0176 .6935 29

1930-1939, (4) .0760 .0292 .0359 .7110 27

n = 329, 509 (6) .0806 .0165 .0178 .8184 29

(8) .0600 .0292 .0349 .8614 27

Table VI (0) -.0612 .0259 .0275 .0042 2

Men Born (2) .0553 .0138 .0166 .0000 29

1940-1949, (4) .0948 .0221 .0277 .0049 27

n = 486, 926 (6) .0393 .0146 .0175 .0000 29

(8) .0779 .0238 .0308 .0033 27

Table 1: Comparison of the proposed multiple-LATEs-robust (MR) and the con-
ventional (C) standard errors—Replication of Table IV, V, and VI in Angrist and
Krueger (1991). Each column corresponds to different sets of covariates and instru-
ments. Column (0) refers to the case that only the three quarter-of-birth dummies
are used as instruments, calculated by the author.

parents tended to go for a third child when their first two children were the same sex.

Each of the instruments identifies LATE of those whose fertility was affected by their

children’s sex mix, and the two LATEs are not necessarily the same. A specification

used by Angrist and Evans is

Yi = X ′iπ +Miρ+ εi, (2.3)

Mi = X ′iπ + TBi · θ1 + TGi · θ2 + ui, (2.4)

where Mi is an indicator for more than 2 children, TBi and TGi are indicators for two-

boys and two-girls, Xi is a vector of covariates including a constant and an indicator

for first boy, and Yi is an indicator for whether the respondent worked for pay in

the Census year. The OLS estimate of ρ is -.167, but it is argued to exaggerate

the causal effect of fertility on female labor supply due to selection bias. Using the
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instruments one at a time, we get the IV estimates -.201 for two-boys and -.059 for

two-girls instrument. The large (small) reduction in labor supply using the two-boys

(two-girls) instrument looks reasonable, but it is difficult to compare it with the OLS

estimate because the latter is based on the whole population, while the IV estimates

are for some subpopulations. Since the ultimate goal is to estimate the overall effect of

having more than two children on mother’s labor supply, one strategy is to calculate

an average of the two IV estimates. 2SLS estimand is a particular weighted average

where the weights are implicitly calculated based on the relative strength of each

instrument.2

Table 2 shows replication results of Table 7 in Angrist and Evans (1998). First

of all, individual IV estimates do not give a satisfactory answer whether the OLS

estimate is biased or not, while 2SLS estimates do across different specifications. Sec-

ond, unlike the replication of Angrist and Krueger (1991), the two standard errors

are almost the same, even the p values are quite small. Thus, it is not always the

case that the correct standard error is much larger than the conventional one. Since

they are similar, there is a sizable gain in precision by combining the two instru-

ments, compared with using a single instrument. Lastly, the 2SLS point estimates

are weighted averages of the two IV estimates, where the weight for the two-boys

instrument is .38. Since the weight is completely determined by the first stage, the

same weight is used across different dependent variable in the second stage. In this

example, the two-boys instrument receives less weight because the first-stage coeffi-

cient is smaller, which implies that the absolute size of the compliers is smaller than

that of the two-girls instrument. The proposed multiple-LATES-robust standard er-

ror can be computed for other weighted averages of LATEs, as long as they can be

written as a GMM estimator.

3 Moment condition for 2SLS

In this section, I link the identification of LATEs and estimation of such parameters

by moment condition models. I maintain the assumption that the treatment variable

2In this example, 2SLS estimand is not exactly equal to a weighted average of covariate-specific
LATEs, because the first stage is not fully saturated. However, Angrist (2001) shows that 2SLS
estimates using the twins instruments are almost the same with the one using a fully saturated first
stage based on the procedure of Abadie (2003), and Angrist and Pischke (2009) argue that this is
likely to hold in practice.
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Yi Estimator ρ C MR p-value of J test

Worked for pay 2SLS (both) -.1128 .0277 .0277 .0129

IV (two-boys) -.2011 .0450 –

IV (two-girls) -.0591 .0352 –

OLS -.1666 .0020 –

Weeks worked 2SLS (both) -5.164 1.201 1.203 .0711

IV (two-boys) -7.944 1.950 –

IV (two-girls) -3.473 1.527 –

OLS -8.044 .087 –

Hours/week 2SLS (both) -4.613 1.008 1.010 .0492

IV (two-boys) -7.159 1.644 –

IV (two-girls) -3.065 1.279 –

OLS -6.021 .074 –

Labor income 2SLS (both) -1321.2 566.4 566.4 .7025

IV (two-boys) -1597.8 914.7 –

IV (two-girls) -1153.0 721.3 –

OLS -3165.4 40.6 –

Table 2: Comparison of the proposed multiple-LATEs-robust (MR) and the conven-
tional (C) standard errors—Replication of Table 7 Columns (4) and (6) in Angrist and
Evans (1998). The IV estimators using either the two-boys or two-girls instrument
are calculated by the author.

and instruments are binary for simplicity of exposition, but this will be relaxed later

in this section. The observed outcome can be written as

Yi = Y1iDi + Y0i(1−Di) = E[Y0i] +Diρi + ηi, (3.1)

where ρi = Y1i − Y0i and ηi = Y0i − E[Y0i]. Since the individual treatment effect

ρi cannot be identified, a version of average treatment effect (ATE) becomes the

parameter of interest. Let ρ be the parameter, and α be a nuisance parameter for the

intercept. Rewriting (3.1) in a familiar regression notation using α and ρ, we get

Yi = α +Diρ+ ei ≡ X′iβ + ei, (3.2)

ei ≡ ei(α, ρ) = E[Y0i]− α +Di(ρi − ρ) + ηi, (3.3)
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where Xi = (1, Di)
′, β = (α, ρ)′, and ei is the population residual. This formulation

directly connects identification results under treatment effect heterogeneity and esti-

mation using conventional estimators based on moment conditions. For example, the

OLS estimand solves the moment condition

0 = E[ei(αols, ρols)] = E[Diei(αols, ρols)], (3.4)

and this gives αols = E[Yi]−E[Di]ρols and ρols = E[ρi|Di = 1] + selection bias, where

the selection bias term is defined as E[Y0i|Di = 1]−E[Y0i|Di = 0]. Note that the con-

ventional endogeneity condition of OLS is E[Diηi] 6= 0, because E[Diei(αols, ρols)] = 0

always holds. Now suppose that there is a binary instrument Z1
i which satisfies Con-

ditions 1-3 of Imbens and Angrist (1994). Since it is a valid instrument, it satisfies

E[Z1
i ηi] = 0. The moment condition for the IV estimator is

0 = E[ei(α
1
IV , ρ

1
IV )] = E[Z1

i ei(α
1
IV , ρ

1
IV )], (3.5)

and the solution is given by

α1
IV = E[Yi]− E[Di] · ρ1IV , (3.6)

ρ1IV =
Cov(Yi, Z

1
i )

Cov(Di, Z1
i )

= E[ρi|D1
1i > D1

0i]. (3.7)

The last equality holds by the LATE theorem of Imbens and Angrist (1994).

In general, the moment conditions such as (3.4) or (3.5) are called just-identified

because the number of parameters is equal to the dimension of the moment condition.

Just-identified moment conditions always have a solution under regularity conditions,

regardless of whether the structural assumptions hold or not. For example, (3.4)

always holds, even if E[Diηi] 6= 0. Also, (3.5) always holds, regardless of whether

E[Z1
i ηi] = 0 is true or not. If the structural assumptions are violated, then the

estimand may not be the parameter of interest, but it does not affect the asymptotic

variance of the estimator because the asymptotic distribution is derived under (3.4)

or (3.5).

This conclusion does not hold if there are more instruments than the endogenous

parameters. In this case, the moment condition is over-identified and the assumption

that there exists a solution to the moment condition may be violated. Suppose that
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there are two valid instruments, Z1
i and Z2

i , such that E[Z1
i ηi] = E[Z2

i ηi] = 0. If we

use each instrument one at a time, we would get ρ1IV and ρ2IV , where each corresponds

to a different LATE. To use both instruments at the same time, the 2SLS procedure

involves two stages, where the first stage Di = δ + Z1
i π1 + Z2

i π2 + ui is estimated

by OLS to produce the fitted value D̂i, and the second stage Yi = α + D̂iρ + ei is

estimated by OLS. Angrist and Imbens (1995) show that the 2SLS estimand is

α0 = E[Yi]− E[Di] · ρ0, (3.8)

ρ0 = ξ · ρ1IV + (1− ξ) · ρ2IV , 0 ≤ ξ ≤ 1. (3.9)

The 2SLS estimator is equivalent to a GMM estimator based on the postulated mo-

ment condition

0 = E[ei(α0, ρ0)] = E[Z1
i ei(α0, ρ0)] = E[Z2

i ei(α0, ρ0)], (3.10)

for a unique parameter (α0, ρ0). By using the fact that ei(α0, ρ0) = Yi−α0−Diρ0, it is

straightforward to show that (3.10) does not hold unless ρ0 = ρ1IV = ρ2IV which implies

that the two LATEs are the same. This need not be true under treatment effect

heterogeneity. Thus, we conclude that E[Z1
i ei(α0, ρ0)] 6= 0 and E[Z2

i ei(α0, ρ0)] 6=
0. This holds if there are more than two instruments with covariates. Thus, the

postulated moment condition of 2SLS is misspecified.

Misspecified moment conditions under treatment effect heterogeneity have impor-

tant implications. First, the J test will reject the null hypothesis of (3.10) asymptoti-

cally. It is not surprising that researchers often face a significant J test statistic when

multiple instruments are used. If we can rule out the possibility of invalid instruments,

E[Zj
i ηi] 6= 0 for some j, either by a statistical test such as Kitagawa (forthcoming),

or by an economic reasoning, the rejection is due to treatment effect heterogeneity.

Thus, conducting the J test has little relevance if heterogeneity is already assumed.

Second, the asymptotic variance of 2SLS will be different from the standard one,

and the conventional heteroskedasticity-robust variance estimator would be inconsis-

tent. It is surprising that this has been overlooked in the literature. In the following

propositions, I derive the asymptotic distribution of 2SLS and propose a consistent

variance estimator. The implications suggest that the proposed variance estimator

should always be used to calculate the standard error of 2SLS, regardless of the J test
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results.

The above result can be generalized to models with covariates, and situations

where instruments or a treatment variable can take multiple values. Angrist and Im-

bens (1995) define 2SLS estimand with covariates, a discrete treatment variable, and

multiple instruments when the first stage is fully saturated. Kolesár (2013) extends

this by allowing different instruments sets in the first stage. Heckman and Vytlacil

(2005) show that IV estimand (including 2SLS) is a function of the marginal treat-

ment effect for continuous instruments. These works characterize the 2SLS estimand

in a general setting, but neither the asymptotic distribution nor a consistent variance

estimator is provided.

To formally derive the asymptotic distribution, I consider the model (3.2) with

covariates. Assume that there are valid instruments Z1
i , Z

2
i , ..., Z

q
i such that E[Zj

i ηi] =

0 for j = 1, ..., q. Let (Yi,Xi,Zi)
n
i=1 be an iid sample, where Xi = (W′

i, Di)
′, Zi =

(W′
i, Z

1
i , · · · , Z

q
i )
′, and Wi be an l× 1 vector of covariates including a constant. The

first and second stages are

Yi = W′
iγ +Diρ+ ei ≡ Xiβ + ei, (3.11)

Di = W′
iδ + Z′iπ + ui. (3.12)

I emphasize that ei should be interpreted as the population residual, similar to (3.3),

not as the structural error ηi. In addition, ui is the projection error. The 2SLS

estimator is

β̂ = (X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1Z′Y, (3.13)

where X ≡ (X′1, · · · ,X′n)′ is an n× (l+ 1) matrix, Z ≡ (Z′1, · · · ,Z′n)′ is an n× (l+ q)

matrix, and Y ≡ (Y1, ..., Yn)′ is an n×1 vector. The following proposition establishes

the asymptotic distribution of 2SLS estimators when there are more than one LATE

in a general setting.

Proposition 1. Let β0 = (γ0
′, ρ0)

′ be the 2SLS estimand where γ0 satisfies E[Yi] =

E[Wi]
′γ0 + E[Di]ρ0 and ρ0 is a linear combination of different LATEs. Let ei ≡

Yi −X′iβ0. The asymptotic distribution of 2SLS is

√
n(β̂ − β0)

d→ N(0, H−1ΩH−1),
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where H = E[XiZ
′
i] (E[ZiZ

′
i])
−1E[ZiX

′
i], Ω = E[ψiψ

′
i], and

ψi = E[XiZ
′
i](E[ZiZ

′
i])
−1 (Ziei − E[Ziei]) + (XiZ

′
i − E[XiZ

′
i])(E[ZiZ

′
i])
−1E[Ziei]

+E[XiZ
′
i](E[ZiZ

′
i])
−1 (E[ZiZ

′
i]− ZiZ

′
i) (E[ZiZ

′
i])
−1
E[Ziei].

The next proposition proposes a consistent estimator for the asymptotic variance

matrix of 2SLS robust to multiple-LATEs.

Proposition 2. A multiple-LATEs-robust asymptotic variance estimator for 2SLS is

given by

Σ̂MR = n ·
(
X′Z (Z′Z)

−1
Z′X

)−1(∑
i

ψ̂iψ̂
′
i

)(
X′Z (Z′Z)

−1
Z′X

)−1
(3.14)

where

ψ̂i =
1

n
X′Z

(
1

n
Z′Z

)−1(
Ziêi −

1

n
Z′ê

)
(3.15)

+

(
XiZ

′
i −

1

n
X′Z

)(
1

n
Z′Z

)−1
1

n
Z′ê

+
1

n
X′Z

(
1

n
Z′Z

)−1(
1

n
Z′Z− ZiZ

′
i

)(
1

n
Z′Z

)−1
1

n
Z′ê,

êi = Yi −X′iβ̂, and ê = (ê1, ê2, ..., ên)′.

The formula of Σ̂MR is different from that of the conventional heteroskedasticity-

robust variance estimator:

Σ̂C = n ·
(
X′Z (Z′Z)

−1
Z′X

)−1(∑
i

ZiZ
′
iê

2
i

)(
X′Z (Z′Z)

−1
Z′X

)−1
. (3.16)

Under homogeneous treatment effect, both Σ̂MR and Σ̂C have the same probability

limit, but they are generally different in finite sample. Σ̂MR is consistent for the true

asymptotic variance matrix even when the postulated moment condition is misspeci-

fied, and thus can be used regardless of whether there is one or more than one LATE.

In contrast, Σ̂C is consistent only if the underlying LATEs are the same. This is also

true for the standard errors based on Σ̂MR and Σ̂C .
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When there is a single endogenous variable without covariates, Proposition 1 co-

incides with the result in the proof of Theorem 3 of Imbens and Angrist (1994) when

the first stage is known but needs to be estimated.3 Their derivation is based on

the stacked moment condition that consists of first-order conditions of the first and

second stages. This is a special case of general two-step estimators of Newey and

McFadden (1994). The derivation of Imbens and Angrist uses the condition that the

population fitted value of the endogenous variable is uncorrelated with ei, where ei is

defined in Proposition 1. For example, the condition is E[(δ + π1Z
1
i + π2Z

2
i )ei] = 0

for a two instruments case, which does not necessarily imply E[Z1
i ei] = E[Z2

i ei] = 0.

This makes their asymptotic variance and its estimator robust to violations of the un-

derlying moment condition, E[Z1
i ei] = E[Z2

i ei] = 0. Thus, they coincide with ΣMR

and Σ̂MR. Even in such cases, however, their formula has not been used in practice.

Statistics softwares such as Stata do not estimate their asymptotic variance, but the

standard GMM one assuming correct specification. This results in wrong standard

errors. The main contribution of this paper is to observe that 2SLS using multiple in-

struments under treatment effect heterogeneity is a special case of misspecified GMM

of Hall and Inoue (2003). Specifically, Proposition 1 is a special case of their Theorem

2 in the context of treatment effect heterogeneity.

Since the 2SLS estimator is a special case of a GMM estimator using (Z′Z)−1 as

a weight matrix, we may consider an alternative GMM estimator based on another

weight matrix. This will lead to a different weighted average of LATEs, which may be

more appealing than the conventional 2SLS estimand. Let E[LiL
′
i] be an alternative

symmetric positive definite matrix where Li is an (l+q)×1 vector, and let (L′L)−1 be

the sample weight matrix, where L is an n× (l+q) matrix. The alternative estimator

based on the same moment condition but a different weight matrix is given by

β̃ = (X′Z(L′L)−1Z′X)−1X′Z(L′L)−1Z′Y. (3.17)

Let βa be the probability limit of the estimator. The asymptotic distribution of
√
n(β̃ − βa) and the variance estimator can be obtained by slight modifications of

Propositions 1 and 2. In particular, replace ZiZ
′
i with LiL

′
i, Z′Z with L′L, and êi

3There are typos in the proof of Theorem 3 of Imbens and Angrist (1994). Their matrix ∆ shoud

read ∆ =

 E[ψ(Z,D, θ) · ψ(Z,D, θ)′] E[ε · ψ(Z,D, θ)] E[g(Z) · ε · ψ(Z,D, θ)]
E[ε · ψ(Z,D, θ)]′ E[ε2] E[g(Z) · ε2]

E[g(Z) · ε · ψ(Z,D, θ)]′ E[g(Z) · ε2] E[g2(Z) · ε2]

.
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with ẽi = Yi −X′iβ̃, whenever they appear.

Remark 1 (Using the propensity score as an instrument). When Di is binary, Heck-

man and Vytlacil (2005) show that the propensity score, P (Di = 1|Wi,Zi), has a few

desirable properties when used as an instrument. With the same set of instruments

and covariates in the 2SLS first stage, one can estimate the (nonlinear) propensity

score. The resulting IV estimate4 would differ from 2SLS point estimate, but they are

both valid based on different weighting. One may wonder if the proposed variance

estimator can be used for the IV estimator in this case. Since it is not a linear GMM

estimator, the proposed formula cannot be used to calculate the standard error. In-

stead, the formula for two-step estimators of Newey and McFadden (1994) can be

used. The formula for a logit first stage with covariates is given in the appendix. On

the other hand, the standard 2SLS would yield the same point estimate with the IV

estimator using the propensity score as an instrument when the first stage is fully

saturated, because the first stage consistently estimates the propensity score. In this

case, the standard error can be calculated using Proposition 2.

Remark 2 (Invalid Instruments). The proposed multiple-LATEs-robust variance es-

timator Σ̂MR is also robust to invalid instruments, i.e., instruments correlated with

the error term. Consider a linear model Yi = X′iβ0 + ei where Xi is a (k + p) × 1

vector of regressors. Among k + p regressors, p are endogeneous, i.e. E[Xiei] 6= 0.

If a k + q vector of instruments Zi is available such that E[Ziei] = 0 and q ≥ p,

then β0 can be consistently estimated by 2SLS or GMM. If any of the instruments

is invalid, then E[Ziei] 6= 0 and β0 may not be consistently estimated. Instead, a

pseudo-true value that minimizes the corresponding GMM criterion is estimated.5

Since the moment condition does not hold, the model is misspecified. There are two

types of misspecification: (i) fixed or global misspecification such that E[Ziei] = δ

where δ is a constant vector containing at least one non-zero component, and (ii)

local misspecification such that E[Ziei] = n−rδ for some r > 0. A particular choice of

r = 1/2 has beeen used to analyse the asymptotic behavior of 2SLS estimators with

invalid instruments by Hahn and Hausman (2005), Bravo (2010), Berkowitz, Caner,

4If a nonlinear model such as probit or logit is used to estimate the propensity score in the first
stage, then the usual 2SLS procedure cannot be directly applied because the first stage residuals
are not uncorrelated with fitted values and covariates. This is often called a forbidden regression.
Instead, one can use the estimated propensity score as the instrument and calculate the IV estimator.

5The 2SLS estimand β0 in Proposition 1 is an example of such pseudo-true values.
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and Fang (2008, 2012), Otsu (2011), Guggenberger (2012), and DiTraglia (2015). Un-

der either fixed or local misspecification, Σ̂MR in Proposition 2 is consistent for the

true asymptotic variance. However, the conventional variance estimator Σ̂C is incon-

sistent under fixed misspecification. Under local misspecification, Σ̂C is consistent

but the rate of convergence is negatively affected.

Remark 3 (Bootstrap). Bootstrapping can be used to get more accurate t tests

and confidence intervals (CI’s) based on β̂, in terms of having smaller errors in the

rejection probabilities or coverage probabilities. This is called asymptotic refinements

of the bootstrap. Since the model is over-identified and possibly misspecified, and

2SLS is a special case of GMM, the misspecification-robust bootstrap for GMM of

Lee (2014) can be used. In contrast, the conventional bootstrap methods for over-

identified GMM of Hall and Horowitz (1996), Brown and Newey (2002), and Andrews

(2002) assume correctly specified moment conditions. Since this implies the constant

treatment effect, they achieve neither asymptotic refinements nor consistency in this

context. Suppose one wants to test H0 : βm = β0,m or to construct a CI for β0,m where

β0,m is the mth element of β0. The misspecification-robust bootstrap critical values

for t tests and CI’s are calculated from the simulated distribution of the bootstrap t

statistic

T ∗n =
β̂∗m − β̂m√
Σ̂∗MR,m/n

where β̂∗m and β̂m are the mth elements of β̂∗ and β̂, respectively, Σ̂∗MR,m is the mth

diagonal element of Σ̂∗
MR, and β̂∗ and Σ̂∗

MR are the bootstrap versions of β̂ and

Σ̂MR based on the same formula using the bootstrap sample rather than the original

sample.

4 Conclusion

Two-stage least squares (2SLS) estimators are widely used in practice. When hetero-

geneity is present in treatment effects, 2SLS point estimates can be interpreted as a

weighted average of the local average treatment effects (LATE). I show that the con-

ventional standard errors, typically generated by econometric softwares such as Stata,

are incorrect in this case. The over-identifying restrictions test is often used to test

the presence of heterogeneity, but it is not useful in this context because it can also
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reject due to invalid instruments. I provide a simple standard error formula for 2SLS

which is correct regardless of whether there are multiple LATEs or not. In addition,

this standard error is robust to invalid instruments, and can be used for bootstrapping

to achieve asymptotic refinements under treatment effect heterogeneity.

Appendix

A Proofs of Propositions

Proposition 1

Proof. Let e ≡ (e1, ..., en)′ be an n × 1 vector where ei ≡ Yi −X′iβa. Evaluated at

βa, the moment condition does not hold:

E[Zi(Yi −X′iβa)] ≡ E[Ziei] 6= 0, (A.1)

if there are more than one LATE. This can be shown by the following argument.

For simplicity, assume that we have two instruments, Z1
i and Z2

i , such that each in-

strument satisfies regularity conditions for identifying the instrument-specific LATE.

Let ρj be the LATE with respect to Zj
i and βj ≡ (γj′ , ρj)′ be the parameter vec-

tor for j = 1, 2. By assumption, β1 6= β2. If we use each instrument at a time,

E[Z1
i (Yi−X′iβ

1)] = E[Z2
i (Yi−X′iβ

2)] = 0. Now assume E[Zi(Yi−X′iβa)] = 0 holds.

Then E[Z1
i (Yi − X′iβa)] = E[Z2

i (Yi − X′iβa)] = 0, but this implies βa = β1 = β2.

This contradicts to the assumption. Thus, (A.1) holds.

From the first-order condition of GMM, we substitute Xβa + e for Y, rearrange
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terms, and multiply
√
n to have

√
n(β̂ − βa) = (X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1

√
nZ′e, (A.2)

=

(
1

n
X′Z

(
1

n
Z′Z

)−1
1

n
Z′X

)−1
×{

1

n
X′Z

(
1

n
Z′Z

)−1√
n

(
1

n
Z′e− E[Ziei]

)
+
√
n

(
1

n
X′Z− E[XiZ

′
i]

)(
1

n
Z′Z

)−1
E[Ziei]

+ E[XiZ
′
i]
√
n

((
1

n
Z′Z

)−1
− (E[ZiZ

′
i])
−1

)
E[Ziei]

}
.

The second equality holds because the population first-order condition of GMM holds

regardless of misspecification, i.e., 0 = E[XiZ
′
i]E[ZiZi]

−1E[Ziei]. The expression

(A.2) is different from the standard one because E[Ziei] 6= 0. As a result, the asymp-

totic variance matrix of
√
n(β̂−βa) includes additional terms, which are assumed to

be zero in the standard asymptotic variance matrix of 2SLS. We use the fact that(
1

n
Z′Z

)−1
− E[ZiZ

′
i]
−1 = (E[ZiZ

′
i])
−1
(
E[ZiZ

′
i]−

1

n
Z′Z

)(
1

n
Z′Z

)−1
, (A.3)

and take the limit of the right-hand-side of (A.2). By the weak law of large numbers

(WLLN), the continuous mapping theorem (CMT), and the central limit theorem

(CLT),
√
n(β̂ − βa)

d→ H−1 ·N(0,Ω). (A.4)

Q.E.D.

Proposition 2

Proof. Since β̂ is consistent for βa, by WLLN and CMT, n−1
∑

i ψ̂iψ̂
′
i is consistent

for Ω. By using WLLN and CMT again, Σ̂MR is consistent for H−1ΩH−1. Q.E.D.
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B Asymptotic variance when the logit model is used for the

first stage

Let Wi be a covariate vector including a constant. Assume the logit model for the

propensity score:

P (Di = 1|Wi, Zi) =
1

1 + exp(−W ′
iδ0 − Z ′iπ0)

. (B.1)

Then the log-likelihood function is

L(δ, π) = −
n∑
i=1

(1−Di)(W
′
iδ + Z ′iπ)−

n∑
i=1

ln (1 + exp(−W ′
iδ − Z ′iπ)) . (B.2)

The first-order condition of the first stage is

0 = n−1
n∑
i=1

(
Wi

Zi

)
ûi (B.3)

where

ui(δ, π) = −(1−Di) +
exp(−W ′

iδ − Z ′iπ)

1 + exp(−W ′
iδ − Z ′iπ)

(B.4)

and ûi = ui(δ̂, π̂). For the second stage, the first-order condition is

0 = n−1
n∑
i=1

(
Wi

1

1+exp(−W ′
i δ̂−Z′

iπ̂)

)
êi (B.5)

where

ei(γ, ρ) = Yi −W ′
iγ −D′iρ (B.6)

and êi = ei(γ̂, ρ̂). Now consider a stacked moment function

hi(β) =


Wiui(δ, π)

Ziui(δ, π)

Wiei(γ, ρ)
1

1+exp(−W ′
i δ−Z′

iπ)
ei(γ, ρ)

 , (B.7)
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where β = (δ, π, γ, ρ)′. This forms a just-identified moment condition model. Let

β̂ = (δ̂, π̂, γ̂, ρ̂)′ and β0 = (δ0, π0, γ0, ρ0)
′ be the probability limit. Using standard

asymptotic theory for just-identified GMM, the asymptotic distribution of
√
n(β̂−β0)

is N(0, V ) where V = Γ−1∆(Γ′)−1, Γ = E(∂/∂β′)hi(β0), and ∆ = E[hi(β0)hi(β0)
′].

A consistent estimator of V can be obtained by replacing the population moments

with the sample moments: V̂ = Γ̂−1∆̂(Γ̂′)−1 where Γ̂ = n−1
∑n

i=1(∂/∂β
′)hi(β̂) and

∆̂ = n−1
∑n

i=1 hi(β̂)hi(β̂)′. The correct standard errors for β̂ can be obtained by

taking the square roots of the diagonal elements of V̂ divided by n.
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