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Abstract

We study a model in which individual agents use simple linear first order price fore-

casting rules, adapting them to the complex evolving market environment with a smart

Genetic Algorithm optimization procedure. The novelties are: (1) a parsimonious exper-

imental foundation of individual forecasting behaviour; (2) an explanation of individual

and aggregate behavior in four different experimental settings, (3) improved one-period and

50-period ahead forecasting of lab experiments, and (4) a characterization of the mean, me-

dian and empirical distribution of forecasting heuristics. The median of the distribution of

GA forecasting heuristics can be used in designing or validating simple Heuristic Switching

Model.
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1 Introduction

Expectations are a cornerstone of many dynamic economic models. The traditional literature af-

ter Muth (1961), Lucas (1972) and others emphasizes the Rational Expectations (RE) hypothesis,

which states that the expectations of all agents have to be model consistent.1 This hypothesis

provides an elegant and universally applied solution concept for an economic expectations feed-

back system. Most economists would assume that agents are rational enough to avoid systematic

errors and so RE remain a commonly used modeling tool to derive the aggregate market dynam-

ics. Nevertheless, two problems with RE approach are widely recognized. First, the RE impose

strict informational and computational assumptions. Second, they are at odds with many em-

pirical studies. These shortcomings have already been highlighted in the early works of Pesaran

(1987), Sargent (1993) and others, and recent evidence both from the surveys2 and controlled

laboratory experiments3 only adds further support to the criticism of the RE. In particular, the

outcomes of many Learning-to-Forecast experiments which we use in this paper contradict the

RE hypothesis.

The empirical deficiencies of the RE benchmark signifies the importance of learning and

bounded rationality. Recent years witnessed a surge of the adaptive learning literature in macroe-

conomics relaxing the strong informational assumptions underpinnings the REs.4 This literature,

1See Wagener (2014) for a discussion of different versions of RE hypothesis and their theoretical and empirical

obstacles.
2Perhaps, the most prominent recent example on failure of REs comes from the housing market in the US,

which in the last decade exhibited first the boom and then the collapse. Case, Shiller, and Thompson (2012)

conduct survey of households’ expectations about change in their home value over the next years and reject the

RE hypothesis. They conclude that people’s expectations are consistent with trend-extrapolation and that people

systematically misjudge the long-term value of their houses. Similar effects were observed with expectations before

the previous housing bubble in the end of 80’s, see Goodman and Ittner (1992). In fact, economic history knows

many similar examples of prolonged asset misvaluation, see, e.g., Reinhart and Rogoff (2009) and Kindleberger

and Aliber (2011). Many studies use the surveys of inflation expectations. For example, Malmendier and Nagel

(2009) studies the responses in the Reuters/Michigan Survey of Consumers and find a support for the backward

looking, learning from experience model. Branch (2004) shows that the responses are consistent with a mixed

models where non-rational expectations (such as naive or adaptive) have a high weight. Similar conclusion is

reached in Nunes (2010) who uses, instead, the Survey of Professional Forecasters.
3Recent papers with a special focus on inflationary expectations include Adam (2007), Pfajfar and Žakelj

(2014) and Assenza, Heemeijer, Hommes, and Massaro (2014). Despite differences in design of the experiment

and underlying macroeconomic models, all of them reject the RE hypothesis. See Duffy (2014) for an overview of

macroeconomic experiments.
4Non-learning streams of macroeconomic literature on bounded rationality include the rational inattention ap-

proach, see Sims (2010) for a comprehensive review, the rational or ”near-rational” beliefs approach, see Woodford

(2010) and Kurz and Motolese (2011), and the eductive approach of Guesnerie (2005). In the rational inattention

literature agents do not react on all relevant information quickly but instead process information at some finite

rate. Similarly to the adaptive learning models it induces sluggish behavior which then can be translated into

sluggishness of economic variables. ’Near-Rational’ expectations allow distortions of expectations with respect to

the RE case within certain bounds. Eductivity means that agents’ expectations are consistent with the actual
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whose early contributions are discussed in Evans and Honkapohja (2001), studies the emerging

dynamics in the case when agents do not know the actual dynamic laws of the economy but only

estimate their perceived model on observable data. The focus is on whether the RE equilibrium

can emerge as the long-run outcome of such learning process, or the dynamics can become more

complicated as in Bullard (1994) when it converges to a limit cycle.5

Adaptive learning and other streams of literature on bounded rationality in macroeconomics

can reproduce some empirical regularities and are well-suited to address policy issues, but still

face many empirical and theoretical obstacles as discussed, e.g., in Woodford (2013). Also their

behavioral assumptions remain to be very demanding and the phenomenon of heterogeneity is

often ignored. However, heterogeneity in expectations is one of the most recurring findings in

survey and experimental studies.6 At the same time, experimental research in psychology and

game theory suggests that people rely on relatively simple behavioral rules in their decision-

making and that an important ingredient of their learning is reinforcement of the successful rules

and forgetting the less successful.7

This paper is inspired by and belongs to this line of research. More precisely, we address

here an important question: how exactly do people invent, reinforce and update their forecasting

rules in a complex world? We address the ‘wilderness of bounded rationality’ problem: there is

a myriad of possible learning or other behavioral mechanisms with varied restrictions on human

memory and computational capabilities. In the literature these range from simple linear models in

the spirit of adaptive expectations in macroeconomics (Evans and Ramey, 2006), through models

with switching between heterogeneous expectations (Brock and Hommes, 1997), to evolutionary

learning mechanisms (Arifovic, Bullard, and Kostyshyna, 2013). Which of them shall be used?

law of motion and some common knowledge and assumption about expectations of others. All these threads of

literature produce a richer set of equilibrium dynamics than the RE.
5For other examples see Grandmont (1998) and Tuinstra and Wagener (2007). Note, however, that adaptive

learning is not a necessary condition for dynamic complexity. Even when agents know the structure of the economy

the price-expectation feedback can by itself lead to non-trivial dynamics as shown, for instance, in Grandmont

(1985) and Tuinstra and Weddepohl (1999).
6Heterogeneity in expectations is reported, for instance, in all the references in footnotes 2 and 3. Between

and within treatment heterogeneity was also found in the Learning-to-Forecast experiments, see Hommes (2011).

Starting from Allen and Taylor (1990) heterogeneity in expectations is recognized as a driving force behind

the bubbles and crashes in financial markets and also, for instance, in the housing bubble, see, e.g., Burnside,

Eichenbaum, and Rebelo (2015) and Bolt, Demertzis, Diks, Hommes, and Van der Leij (2014).
7On the use of simple heuristics in decision making especially in a complex environment, see Tversky and

Kahneman (1974), Kahneman (2011) and Gigerenzer and Todd (1999). Hommes (2011) reviews the experimental

literature finding evidence of the use of intuitive behavioral forecasting rules. Two prominent models emphasizing

the role of reinforcing in learning in game theory are Erev and Roth (1998) and Camerer and Ho (1999). It is

worth to notice that in the game theoretical studies there is also evidence of using more sophisticated belief-based

learning, see, e.g., Feltovich (2000). However, in the experiments which we explain in this paper there is not much

space for belief learning, because the payoffs as well as the game-theoretical structure are not explicitly explained

to the subjects. This would, actually, be the case in most real situations, where the law of motion of the market

is unknown.
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We propose a model that incorporates all these features and use the results of recent Learning-

to-Forecast (LtF) experiments to fit the model to the data. Our findings are based on extensive

simulations, but our model has a parsimonious and analytically tractable counterpart to it, namely

the Heuristics Switching Model of Anufriev and Hommes (2012).

The model which we present in this paper is a model of individual learning of forecasting

heuristics based on Genetic Algorithms updating. Heterogeneous agents use linear first order

price forecasting rules with only two parameters, adapting them to the current environment with

a smart Genetic Algorithm optimization procedure. In this sense agents use simple forecasting

heuristics that make them smart (Gigerenzer and Todd, 1999). We fit our GA model to individual

and aggregate data from LtF experiments to study the mean, the median and the distribution of

individual forecasting heuristics in four different experimental laboratory settings.

Learning-to-Forecast experiments offer a simple laboratory testing ground for adaptive learn-

ing mechanisms (Lucas, 1986). These controlled experimental economies have a straightforward

and unique fundamental equilibrium consistent with RE. As in real markets, subjects observe the

realized prices and their own past individual predictions, but not the history of other subjects’

predictions, and are not informed about the exact law of motion of the economy. The outcomes

of many LtF laboratory experiments contradict the RE hypothesis, see review in the Hommes

(2011). The experiments in Hommes, Sonnemans, Tuinstra, and van de Velden (2005), henceforth

HSTV05, showed that the subjects can coordinate on oscillating and serially correlated time se-

ries, and that convergence to the fundamental equilibrium happens only under severe restrictions

on the underlying law of motion. Further experiments in Heemeijer, Hommes, Sonnemans, and

Tuinstra (2009), henceforth HHST09, and Bao, Hommes, Sonnemans, and Tuinstra (2012),

henceforth BHST12, demonstrated that the expectations feedback structure plays crucial role.

Negative feedback systems (i.e., where more optimistic forecasts lead to lower market prices, as

in supply driven commodity markets) tend to generate convergence to the fundamental equilib-

rium rather easily, while positive feedback systems (i.e., where more optimistic forecasts lead to

higher market prices, as in speculative asset markets) typically generate behavior with the price

oscillating around the fundamental equilibrium dynamics.

Anufriev and Hommes (2012) propose a parsimonious Heuristic Switching Model (HSM) to

provide an explanation for different types of aggregate behavior, including both convergence and

oscillations, observed in the LtF experiments of HSTV05. The basic idea of the model is that

agents have a small set of simple forecasting heuristics (rules of thumb, such as adaptive or trend

extrapolating expectations) and gradually switch to relatively better performing rules as in Brock

and Hommes (1997). Both in-sample and out-of-sample performance of the HSM is usually better

than for the RE model and several other homogeneous and heterogeneous expectation models.

However, the HSM has some shortcomings. First, the small set of given heuristics cannot fully

account for within treatment individual heterogeneity, observed in the experiments. Second,

different experiments may require the HSM to utilize (for a better fit) different sets of heuristics,

see, e.g., Anufriev, Hommes, and Philipse (2013). It is unclear why the subjects would use only
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those particular forecasting rules and how they would learn them in the first place.

This paper addresses those weaknesses of the HSM by using Genetic Algorithms (GA). GA

are a prominent tool in the economic literature to model individual learning (see, e.g., Sargent,

1993 and Dawid, 1996). From the very first economic application in Arifovic (1994), GA were

used to model both the social and individual learning and to explain the results of experiments

with human subjects. Areas of GA applications include the overlapping generation monetary

economies (Arifovic, 1995), exchange rate volatility (Arifovic, 1996; Lux and Schornstein, 2005)

and production level choices in a cobweb producers economy (Dawid and Kopel, 1998). Recently

in a related paper Hommes and Lux (2013) investigate a model in which agents use GA to optimize

a forecasting heuristic (instead of directly optimizing a prediction) and, much like the actual

subjects in the LtF experiments, cannot observe each others behavior or strategies. The authors

replicate the distribution (mean, variance and first order auto-correlation) of the predictions and

prices of the cobweb experiments by Hommes, Sonnemans, Tuinstra, and van de Velden (2007)

and van de Velden (2001) (henceforth HSTV07 and V01, respectively).

The main contribution of our paper is that it provides a general explanation of four different

LtF experiments simultaneously and at different levels of aggregation. Agents forecast prices

using a large set of heuristics from a simple but general class. The agents then independently use

GA to update and select the heuristics based on their relative success. This explicitly accounts

for individual learning and endogenous heterogeneity observed in the experiments. Monte Carlo

simulations of this model provide insight in the mean, median and the distribution of forecasting

heuristics.

More specifically, this paper has four contributions. The first is that the computational

model presented here is microfounded and reasonably parsimonious. It is as parsimonious as a

computational model can be because its heuristic space is based on a simple linear first order rule

with only two free parameters. It is microfounded because this simple rule is a mixture of adaptive

and trend extrapolating heuristics, consistent with the individual forecasting behavior estimated

in HSTV05 and HHST09. The second contribution is that we apply the same GA learning

model to explain four different LtF experiments: (1) the simple, linear positive/negative feedback

system with small shocks (HHST09); (2) the linear positive/negative price-expectations feedback

system with unexpected large shocks to the fundamental price (BHST12); (3) a stable/unstable

cobweb producers economy (HSTV07; V01), used also in the GA model of Hommes and Lux

(2013); and (4) a non-linear positive feedback asset pricing economy, where the subjects are asked

for two-period ahead predictions (HSTV05).

The third contribution of the paper is that our model is able to capture the dynamics at both

the aggregate and the individual level for different experimental settings. The GA model replicates

the long-run behavior of the experimental prices, as well as the individual forecasting decisions.

We are also the first to evaluate the out-of-sample predictive power of the model by means of a

simple Sequential Monte Carlo technique. We find that depending on the experiment, our model

is comparable or better than the HSM in terms of predicting both prices and individual price
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forecasts one period ahead. This is an important contribution to the literature on heterogeneous

agent models, which usually focuses only on a model’s fit to aggregate stylized facts.

Finally, the fourth contribution is that the Monte Carlo studies of the GA model enable us to

characterize the emerging median forecasting behavior, together with its corresponding confidence

bounds, in various experimental settings. The GA simulations thus (1) provide a solid motivation

for describing the LtF experimental dynamics in terms of simple ‘stylized’ heuristics, and (2) guide

the specific choice of these heuristics for a particular experimental market. This yields natural

empirical micro-foundations for heterogeneous expectations models such as HSM.

The paper is organized as follows. In Section 2 we present the setup and findings of the

LtF experiments and briefly discuss the HSM by Anufriev and Hommes (2012). In Section 3 we

introduce our GA model and fit it to the experimental setup of HHST09. Section 4 investigates

three other experimental settings. Finally, the concluding Section 5 gives an overview of the

results and suggestions for future research. The appendices contain GA simulation details and

various robustness checks.

2 Learning to Forecast and Heuristic Switching

Consider an experimental market with I subjects indexed by i ∈ {1, . . . , I} who at each period

t forecast the price of a certain good. The subjects are informed that they act as forecasting

consultants for firms and are rewarded only for the accuracy of the predictions. The relationship

between the prices and predictions is summarized by a law of motion of the form

(1) pt = F (pe1,t, . . . , p
e
I,t) + εt,

where the realized price pt is a function of all individual forecasts pei,t and a small white noise noise

term εt. The function F (·) is obtained from the market clearing condition with aggregate supply

and demand derived from optimal (i.e., profit/utility maximizing) choices of firms, consumers or

investors, given the subjects’ individual forecasts.8 Define the fundamental price pf as the steady

state self-fulfilling (RE) prediction: pf = F
(
pf , . . . , pf

)
. In all examples below the fundamental

price exists and is unique.

The subjects in the LtF experiments are endowed with limited information about the market.

They are told that their predictions affect realized prices, but the feedback’s description is only

qualitative. Subjects do not know exact number and nature of other participants and are not

explicitly informed about the fundamental price.9 The forecasts are submitted repeatedly for

8The LtF experiments focus only on the forecasting behavior and abstract from other considerations (e.g.,

trading) by assuming that the subjects’ actions are rational conditional on the submitted forecast. See Hommes

(2011) for an in-depth discussion on the methodology of the LtF experiments.
9The fundamental price can sometimes be inferred from the experimental instructions. For example, in the

asset pricing (positive feedback) treatment in HHST09 the fundamental price is equal to the present value of the

future dividends, which is the ratio of the average dividend to the interest rate. Both variables were provided to

the subjects, but most of the individual first period predictions were not at the fundamental.

6



a number of periods and the experimental screen shows the past realized prices and the past

predictions and earnings of the participant.

HHST09 study the subjects’ behavior conditional on whether the market is built upon neg-

ative or positive feedback. A typical example of positive feedback is a stock exchange: optimistic

investors will buy more stock and due to increased demand the stock price will go up. In this

sense the investor sentiments are self-fulfilling. Negative feedback arises in a supply driven mar-

ket where producers face a lag in production. If they expect a high price, they will increase

production and the market clearing price will go down. HHST09 run two treatments with linear

specifications of (1):

Negative feedback: pt = pf − 20

21

(
p̄et − pf

)
+ εt ,(2)

Positive feedback: pt = pf +
20

21

(
p̄et − pf

)
+ εt ,(3)

where p̄et =
∑I

i=1 p
e
i,t/I is the average prediction of all individuals at period t and pf is the funda-

mental price. The experiment run for 50 periods for groups of I = 6 subjects. The two treatments

are symmetrically opposite, with the same fundamental price pf = 60, and the dampening fac-

tors of the same absolute value but opposite signs.10 Under homogeneous naive expectations

(i.e., p̄et = pt−1) the fundamental price for both treatments is a stable steady state of dynamics.

The aggregate price dynamics in the two feedback treatments were very different, see Figs. 1a

and 1b (two lower panels are explained in Section 3). Under the negative feedback after a short

volatile phase of 7− 8 periods, the price converged to the fundamental value pf = 60, after which

the subjects’ forecasts coordinated on the fundamental price as well. In most of the positive

feedback groups11 persistent price oscillations arose where the price overshot and undershot pf .

In spite of the price oscillations the subjects’ forecasts became close to each other after already

2 − 3 periods and remained so until the end of the experiment. In positive feedback markets

subjects’ forecasts are thus strongly coordinated, but not on the fundamental price. It is the

almost self-fulfilling character of the near-unit root positive feedback system that allows subjects

to coordinate on trend following behavior, which results in price oscillations (Hommes, 2013).

HHST09 described the subjects’ forecasting behavior in the experiment with the first-order

rule (FOR):

(4) pei,t = α1pt−1 + α2p
e
i,t−1 + α3p

f + β(pt−1 − pt−2),

for α1, α2, α3 > 0, α1 + α2 + α3 = 1, β ∈ [−1, 1]. Rule (4) is an anchor and adjustment rule

extrapolating a price change from an anchor given by a weighted average of the previous price

10In an asset pricing market, the near unit root coefficient 20/21 arises from a realistic discount factor. To have

symmetric treatments, the factor in the negative feedback was set to −20/21.
11There were 6 experimental groups for the negative feedback treatment with very similar price dynamics.

Fig. 1a is a typical example. There were 7 experimental groups for the positive feedback treatment and in 4 of

them price oscillated. Fig. 1b is a typical example for the oscillating group. Even when price converged (which

happened for 3 groups), it did so only towards the end of the experiment.
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Figure 1: HHST09 experimental groups (upper panels) and sample 50-period ahead simulations of

GA-S1 model with random initial predictions (lower panels). Black thick line shows the

price, green dashed lines show 6 individual predictions. The long-run dynamics of the model

is close to the experiment both under negative (left) and positive (right) feedback.

and forecast, and the fundamental price pf .12 HHST09 estimated this simple rule separately for

each subject, fitting well the forecasting behavior of around 60% of the individuals.

HHST09 found a significant variability in terms of the individual forecasting, within the

same treatment, and even more so between treatments. The main difference appears to lie in

the trend extrapolation, which is popular under positive feedback (β > 0) and disregarded under

negative feedback (β ≈ 0). This shows that a model with a homogeneous forecasting rule may

explain one of the two treatments, but not both at the same time.

These findings led Anufriev, Hommes, and Philipse (2013) to investigate the Heuristic Switch-

ing Model (HSM), in which the subjects are endowed with two prediction heuristics

adaptive expectations: pei,t = αpi,t−1 + (1− α)pei,t−1 with α ∈ [0, 1] ,

trend extrapolation: pei,t = pi,t−1 + β(pt−1 − pt−2) with β ∈ [−1, 1] .

Both heuristics are special cases of the first-order rule (4), and for the benchmark specification

the values α = 0.75 and β = 1 were used. The idea of the HSM model is that the subjects can at

12Under RE, the FOR in (4) should be specified with α1 = β = 0, and subjects always predict the fundamental

price, pei,t = pf = 60.
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any time use any of the two heuristics, but tend to focus on the rule with a higher relative past

performance. The dynamics of the HSM are similar to the experimental outcome. Under positive

feedback agents quickly coordinate to use the trend extrapolation heuristic, leading to persistent

price oscillations and thus self-confirming trend chasing predictions. In contrast, under negative

feedback the trend extrapolation rule performs poorly and agents tend to switch to adaptive

expectations. This does not allow a fast coordination, but eventually causes the price to converge

to the fundamental price.

HSM captures the essence of the aggregate forecasting behavior in the LtF experiment by

successfully replicating the results of HHST09 in both treatments in a stylized fashion. It leaves

open, however, important questions about the origins of the forecasting heuristics. It does not

say where do those particular rules come from and is silent about which rules (and how many of

them) should be used in a more general setting. Moreover, the HSM cannot fully account for the

within-treatment heterogeneity of predictions and hence does not explain the experiment at the

individual level. To overcome these drawbacks, we will introduce a model with explicit individual

heuristic-learning through Genetic Algorithms.

3 The Genetic Algorithms model

Genetic Algorithms (GA) form a class of numerical stochastic maximization procedures that

mimic the evolutionary operations with which DNA of biological organisms adapts to the envi-

ronment. GA were introduced to solve ‘hard’ optimization problems, which may involve non-

continuities or high dimensionality with complicated interrelations between the arguments. They

are flexible and efficient and so are often used in computer sciences and engineering. See Haupt

and Haupt (2004) for technical discussion and Dawid (1996) for applications in economics.

A GA routine starts with a population of random trial solutions to the problem. Individual

trial arguments are encoded as binary strings (strings of ones and zeros), so-called ‘chromo-

somes’.13 They are retained into the next iteration with a probability that increases with their

relative functional value (performance or ‘fitness’). This so-called procreation operator means

that with each iteration, the trial arguments are likely to have a higher functional value, i.e., be

‘fitter’. On top of procreation, GA use three evolutionary operators that allow for an efficient

search through the problem space: mutation, crossover and election, where the last operator was

introduced in the economic literature in Arifovic (1995).

Mutation. At each iteration, every bit in each chromosome has a small probability to mutate,

in which case it changes its value from zero to one and vice versa. The mutation operator

utilizes the binary representation of the arguments. A single change of one bit at the end

of the chromosome leads to a minor, numerically insignificant change of the argument. But

13We use a binary representation for the sake of parsimony. The real number variant of the GA requires

additional parametrization, such as distribution of the mutation changes.
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with the same probability a mutation of a bit at the beginning of the chromosome can

occur, which changes the argument drastically. With this experimentation, GA can easily

search through the whole parameter space and have a good chance of shifting from a local

maximum towards the region containing the global maximum.

Crossover. Pairs of arguments can, with a predefined probability, exchange predefined parts

of their respective binary strings. In practice, the crossover is set to exchange subset of

the arguments. For example, if the objective function has two arguments, crossover would

swap the first argument between pairs of trial arguments. This allows for experimentation

in terms of different mixtures of arguments.

Election. This operator screens inefficient outcomes of the experimentation phase by transmit-

ting the new chromosomes (selected from the old generation and treated with mutation and

crossover) into the new generation only if their fitness is greater than that of the original

chromosome. This ensures that once the routine finds the global solution, it will not diverge

from it due to unnecessary experimentation.

These four operators have a straightforward economic interpretation for a situation in which

the agents optimize their behavioral rules such as forecasting heuristics. The procreation means

that – as in the case of HSM – people focus on better solutions (or heuristics). The mutation and

crossover are experimentation with the heuristics’ specifications, and finally the election ensures

that the experimentation does not lead to suboptimal heuristics.14

3.1 Model specification

In GA model we follow the experimental information structure where the subjects did not have

an access to the predictions and performances of other subjects and, therefore, could learn only

individually. We populate the price-expectation feedback economy (1) by I = 6 GA agents. At

the beginning of each period t an agent i submits the forecast using one of H = 20 specifications

of a general linear forecasting rule. Different specifications available to this agent in the period t

are indexed by h and the agent’s forecast pei,h,t of price pt conditional on picking specification h

is described by

(5) pei,h,t = αi,hpt−1 + (1− αi,h)pei,t−1 + βi,h(pt−1 − pt−2) ,

where pei,t−1 denotes the prediction of price pt−1 submitted by agent i in period t− 1. Our model

has empirical micro-foundations because rule (5) is a version of the general FOR estimated in

HHST09 on individual data.15

14An important additional condition for a GA routine is that it requires a predefined interval for each parameter.

For the example with updating behavioral rules through GA it means that we confine them to some predetermined,

finite grid of heuristics.
15In comparison with the estimated FOR (4), in rule (5) the coefficient in front of the fundamental price (which

can be thought of as an anchor) is set to 0. We experimented with the full FOR with the anchor specified as either
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Parameter Notation Value

Number of agents I 6

Number of heuristics per agent H 20

Allowed α, price weight [αL, αH ] [0, 1]

Allowed β, trend extrapolation coefficient

Specification 1 (GA-S1) [βL, βH ] [−1.1, 1.1]

Specification 2 (GA-S2) [βL, βH ] [0, 1.1]

Number of bits per parameter {L1, L2} {20, 20}

Mutation rate δm 0.01

Crossover rate δc 0.9

Performance measure U(·) exp(−MSE(·))

Table 1: Parameter specification used by the Genetic Algorithms agents.

Heuristic (5) depends on two parameters, αi,h (price weight) and βi,h (trend extrapolation

coefficient), and 20 specifications differ only in the values of these coefficients. Importantly, these

parameters are modeled as changing over time, as the agents repeatedly fine-tune the rule to

adapt to the specific market conditions. For example, in an asset pricing market it may pay off

to extrapolate the price trend and agents would try to find the optimal value of β, depending

on current trend. This learning is embodied as a heuristic optimization with the GA procedure,

and introduces the individual heterogeneity to the model which is absent in the HSM or in any

homogeneous expectations model.

Define Hi,t as the set of H = 20 heuristics of agent i at time t, where heuristic h is specified as

a pair of parameters (αi,h, βi,h) ∈ Hi,t. Each pair is a ‘chromosome’ represented as a binary string

of length 40 with 20 bits per coefficient. The bounds for the coefficients are chosen as follows.

The price weight belongs to the unit interval [0, 1]. For the trend extrapolation coefficient we

report two specifications, depending on the bounds. Under Specification 1 (denoted as GA-S1),

the restriction is symmetric, βi,h ∈ [−1.1, 1.1]. Under Specification 2 (denoted as GA-S2), the

restriction is βi,h ∈ [0, 1.1], i.e., contrarian rules are not allowed.16

The heuristics are updated independently for each agent by GA evolutionary operators, see

Table 1 for the specific parameter values. The updating is based on the relative forecasting

(i) the fundamental price pf or (ii) the average realized price so far. Neither specification could closely match

the experimental dynamics of the positive feedback treatment, where the anchor dampens the oscillations, see

Appendix E.1. This is consistent with the fact that in the estimated rules of HHST09 under positive feedback

the anchor weight α3 is typically insignificant. GA forecasting model in Hommes and Lux (2013) explains the

HSTV07 experiment with even simpler rule pei,h,t = αi,h + βi,h(pt−1 − αi,h). However, our simulations showed

that this rule does not fit the positive feedback experiment well.
16Heuristics with negative extrapolation coefficient are often called the contrarian strategies. HHST09 found

only two subjects with such contrarian rules, but for the sake of completeness we report both specifications.
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performances of the heuristics. The experimental payoffs decreased with the mean squared error

(MSE) of the prediction. Accordingly, at time t for every heuristic from Hi,t we compute the

(hypothetical) mean squared error, MSEi,h = (pei,h,t − pt)2, and apply the logit transformation17

to define the normalized performance (‘fitness’) of heuristic h that agent i uses in individual

learning:

(6) Πi,h =
exp(−MSEi,h)∑H
k=1 exp(−MSEi,k)

.

Before the market starts to operate, the set Hi,1 of agents’ heuristics is initialized at random.

Every agent samples 800 initial bits (20 initial heuristics with 2 parameters, each encoded by 20

bits) independently as 0 or 1 with equal probability. Two other aspects of initialization should

be specified. First, in initial periods, with no past prices and predictions, the heuristics cannot

be used. Here we sample random predictions from an exogenous distribution.18 Second, in the

first period when the heuristics can be used for prediction, their performances are still undefined.

In this case, every agent picks one of own 20 heuristics with equal probabilities.

Once the agents have enough observations to use their heuristics and evaluate their perfor-

mances, the timing at period t is as follows:

1. Agents forecast price, the market price pt is realized according to (1), agents observe it;

2. Agents independently update their heuristics using one GA iteration. The criterion function

is Πi,h computed in (6) from the hypothetical MSE’s of different heuristics in predicting price

pt. To be specific, agent i uses four evolutionary operators:

(a) procreation: agent samples H so-called ‘child’ heuristics from the pool of ‘parent’

heuristics, Hi,t, with replacement using Πi,h as the corresponding probabilities;

(b) mutation: each bit of each child heuristic has probability δm = 0.01 to switch its value;

(c) crossover : each pair of child heuristics has probability δc = 0.9 to swap the last twenty

bits (it corresponds to exchanging β’s);

(d) election: each child heuristic (possibly modified after mutation and crossover) is com-

pared in terms of MSE with a randomly chosen parent heuristic. The child joins Hi,t+1

if it outperforms the parent. Otherwise, the parent is passed to Hi,t+1.

3. Now, when the new sets Hi,t+1 are formed, period t+ 1 starts.

17We use the logit and not the power transformation as in Hommes and Lux (2013) to have a clear link with

the HSM literature.
18As it will be clear later, we use both experimental and random initial predictions. Specification of the

distribution of the latter is important, since in the experiment the average initial prediction affected the group

dynamics (cf., Anufriev, Hommes, and Philipse, 2013). Appendix B provides the details for every experiment.
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4. With probabilities as in (6), but now based on the hypothetical MSE’s of heuristics from

the new pool, each agent i stochastically picks one heuristic from Hi,t+1. Agent uses this

heuristic to generate prediction pei,h,t+1. The algorithm now returns to step 1.

For the HHST09 experiment, GA agents use the first-order rule (with no observed trend as if

∆p1 = 0) already in the second period (choosing uniformly), and start to update their heuristics

sets in the third period.

While the last step – the choice of heuristic – is the same as in the HSM, there are two

important differences between HSM and our GA model. First, the set of heuristics evolves over

time with Hi,t 6= Hi,t+1. As a result, the heuristics have time varying parameters adapted to the

specific market dynamics. Second, this learning operates through a stochastic GA procedure and

is independent between the agents. In practice thus the agents will learn different heuristics and

remain heterogeneous with Hi,t 6= Hj,t when i 6= j.

3.2 50-period ahead simulations

The first test for the fit of our GA model to the experimental data are 50-period ahead simula-

tions for the HHST09 experiment.19 Thus we compare the long-run model dynamics with the

experimental data.20

In the first Monte Carlo (MC) exercise, we begin by sampling the first predictions from an

exogenous distribution calibrated from all experimental first period forecasts, see Appendix B

for details.21 Then the model is simulated for 50 periods with no other information from the

experiment. To compute prices, Eq. (3) or Eq. (2) is applied for positive or negative feedback

simulations, respectively. We resample the model 1000 times, including new initial predictions

and realizations of the learning algorithm, to obtain a satisfactory MC distribution. The median

of 1000 GA simulations with 95% confidence intervals (CI) for Specification 1 (i.e., allowing

contrarian rules) are shown in Fig. 2. For an example, we show two typical simulations of the

model in the lower panels of Fig. 1. It is striking that these simulations are almost identical to

the experimental data shown in the two upper panels.22

19All simulations were written in Ox matrix algebra language (Doornik, 2007) and are available upon request.
20We treat one of the groups in the positive feedback treatment as an outlier and omit this group from the

analysis. In this group, in period 6 one of the subjects ‘out of the blue’ submitted the forecast which was ten

times larger than the previous price and own forecasts. This destabilized the market for a number of periods. In

total, we focus on six positive feedback and six negative feedback treatment groups.
21In the first period the subjects in the LtF experiments have limited, mostly qualitative information about the

market, and have not yet interacted with each other. Their initial forecasts are necessarily more a matter of a

guess than a reasoned out prediction. Thus, we treat these as coming from an exogenous distribution (see also

Diks and Makarewicz, 2013, for a comprehensive discussion), and use the experimental one as we are interested

in the model’s dynamics fit to the experimental price and forecast paths.
22Simulations presented in Fig. 1c and 1d were among the first that we run.
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Figure 2: HHST09: 50-period ahead MC simulation (1000 markets) for GA-S1 model compared

with the experimental data. Upper panels: price. Lower panels: degree of coordination

(log2 scale). Green dashed line and black pluses show the experimental median and group

observations, respectively. Red thick line is the median and blue dotted lines are the 95%

confidence interval for the GA model.

Fig. 2 shows the MC simulations of the realized prices (upper panels) and the degree of

coordination computed as the standard deviation of six individual forecasts (lower panels that use

the log2 scale). The model replicates the experimental outcomes well. Under negative feedback

(left panels), prices are quickly pushed close to the fundamental, but individual heterogeneity

of GA agents declines slowly and is visible until period 15, consistent with the experimental

data. Under positive feedback, GA agents coordinate their forecasts in less than five periods, but

the distribution of realized prices does not collapse into the fundamental even after 50 periods,

when the 95% CI of prices is as wide as [55, 70]. The median price resembles the experimental

oscillations, including the typical amplitude and turning points. Overall, the 95% CI for our GA

model captures 65% (resp. 81%) of the experimental prices and 81% (resp. 72%) of the degree

of coordination for the negative (resp. positive) feedback treatment. In other words, we are able

to replicate roughly 75% of the long-run (50-period ahead) behavior of the experimental groups,

both at the aggregate and individual levels.

Which heuristics were learned by our GA agents? Fig. 3 reports the median (with 95% and

90% CI) for the MC simulations of the price weight α and the trend extrapolation coefficient
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Figure 3: HHST09: Emerging heuristics in 50-period ahead MC simulation (1000 markets) for GA-

S1 model. The price weight α (upper panels) and the trend extrapolation coefficient β (lower

panels) of the chosen heuristic are shown. Red thick line is the median, blue dotted lines

are 95% CI, purple dashed are 90% CI for the GA model. The green star-line in panel (d)

represents the 28% percentile of chosen β.

β. Large heterogeneity of individual rules persists, but there are clear differences between the

two treatments. Under the positive feedback treatment, the median GA agent quickly converges

towards an approximate rule

(7) pei,t+1 ≈ 0.9pt + 0.1pei,t + 0.6(pt − pt−1).

This median rule is close to a pure trend-following rule (i.e., with anchor pt), but has a coefficient

β ≈ 0.6, smaller than β = 1 that Anufriev, Hommes, and Philipse (2013), AHP henceforth, used

in the 2-type HSM. Furthermore, 72% of the GA agents never had negative β in the last 30

periods (see the green star-line in Fig. 3d for 28% percentile). For the distribution of β in period

50, see Fig. 10a. On the other hand, under negative feedback, the median GA agent learns a rule

close to

(8) pei,t+1 ≈ 0.5pt + 0.5pei,t

with median trend coefficient β close to 0. Thus the median rule under negative feedback is

adaptive expectations with price weight of 0.5; AHP used adaptive expectations with coeffi-

cient 0.75 on price in their 2-type HSM. Our learning dynamics therefore confirm the results by
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Negative feedback Positive feedback

Model Prices Predictions Prices Predictions

Trend extrapolation 3421 1696 62.84 72.45

Adaptive 4.164 16.97 95.62 108.6

Contrarian 3.446 16 .18 108.5 122.8

Naive 112.3 136.2 69.11 79.38

RE 2.571 15.21 46.835 54.811

HSM from AHP 19.64 34.02 55.15 63.98

GA-S1 2 .884 20.03 44 .22 51 .98

GA-S2 (no contrarian) 9.392 29.51 25.3 31.1

Table 2: HHST09: 50-period ahead simulation. MSE of various models for experimental prices and

subjects’ predictions, averaged over six experimental groups for the corresponding treatment.

MSE of the best model is in bold, of the second best is in italic.

HHST09 and yield empirical support for the 2-type HSM by AHP, albeit with slightly different

parametrization.

In the second MC study, we investigate how well our GA model can replicate long-run dy-

namics of a specific experimental group, focusing on both realized prices and individual forecasts.

We fix experimental group X and initialize the 50-period ahead simulations of the GA model

with the actual predictions submitted in the first period in this group. For each simulation we

define the GA model expectations for the price forecast of agent i as

(9) pe,GA
i,t =

H=20∑
h=1

Πi,h,tp
e
i,h,t,

where the forecasts of heuristics, pei,h,t, are weighted by their fitness Πi,h,t given by (6). Using

this prediction (9) and the price trajectory generated by the GA model, pGA
t , we compute the

mean squared error (MSE) in predicting the experimental data (both prices and individual price

forecasts) for the last 47 periods, i.e., excluding the initialization phase, as follows

MSE
prices
X =

1

47

50∑
t=4

(
pGrX
t − pGA

t

)2
,

MSE
predictions
X =

1

6× 47

6∑
i=1

50∑
t=4

(
pe,GrX
i,t − pe,GA

i,t

)2
,(10)

where pGrX
t and pe,GrX

i,t denote period t price and forecast of subject i in the experiment.

Table 2 reports these MSE averaged over 1024 sample GA model paths per experimental

group and over the six groups for each treatment. We also include the results for a number of

benchmark models, including several homogeneous expectation rules, RE, as well as the HSM

16



from AHP.23 The MSE for the best model is shown in bold and for the second best in italic. Two

simple models of adaptive and contrarian expectations as well as RE perform well under negative

feedback, because they correctly predict convergence to the fundamental price. Our GA model

performs only slightly worse. Under positive feedback, the contrarian and adaptive expectations

perform badly, because they still predict convergence, in contrast to the experimental data. The

HSM, trend extrapolation and naive expectations perform relatively well, but surprisingly they

are not better than RE. The reason is that the price oscillations predicted by these three models

at the long time horizon fall out of phase with the experimental oscillations. The best fit is

achieved by our GA model, especially by GA-S2 model, without contrarian rules. We conclude

that most models are able to capture the long-run dynamics of possibly one feedback treatment,

but not of both treatments at the same time. Only our GA model successfully predicts long-run

behavior in both treatments.

3.3 One-period ahead predictions

Another indicator of the model’s fit is the precision of its one-period ahead predictions: how well

the model predicts experimental outcomes in period t + 1, conditional on the data available to

the subjects of the experiment until period t.24 For deterministic models such as HSM and the

homogeneous expectations models, computing one period-ahead MSE is straightforward. For our

GA model with its evolutionary operators, however, evaluating MSE is more complicated. Our

model is both stochastic and highly non-linear: it evolves according to an analytically intractable

period-to-period distribution. To address this issue, we compute the expected MSE using a simple

Sequential Monte Carlo (SMC) approach designed as follows.

For each experimental group X, we run 1024 independent GA model simulations. In every

simulation, we associate one GA agent with one subject, and in each period t > 2 every GA

agent i (1) retains own heuristics from the previous period and (2) is given the experimental

prices and the price forecasts of subject i until the previous period t − 1. GA agents now use

the experimental (not artificial) data to update their heuristics and forecast price in a usual way,

which gives us the GA’s price forecasts (9) and realized prices (1) for period t. We evaluate the

fit of the model to the experimental group by computing the average MSE (10) over all 1024 GA

simulations.

The results are similar to the 50-period ahead simulations, see Table 3. Under negative

feedback many rules (RE, HSM, adaptive, contrarian, naive) capture the convergence of prices

and forecasts to the fundamental price, slightly outperforming our GA model. Under positive

feedback, these models (except for HSM) loose their predictive power and under-estimate the

23For the definition of the benchmark rules, please refer to Appendix A.
24Anufriev and Hommes (2012) and Anufriev, Hommes, and Philipse (2013) mostly focus on this measure to

evaluate the fit of HSM. As Table 2 shows, the long-run simulations may generate oscillations that are qualitatively

similar to the experimental data, but – being out of phase – have high MSE.
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Negative feedback Positive feedback

Model Prices Predictions Prices Predictions

Trend extrapolation 21.101 35.648 0.926 4 .196

Adaptive 2 .3 14 .912 2.999 6.482

Contrarian 2.249 14.856 3.864 7.436

Naive 3.09 15.782 1.822 5.184

RE 2.571 15.21 46.835 54.811

HSM from AHP 2.999 17.106 0.889 4.156

GA-S1 4.95 25.017 0 .806 4.235

GA-S2 (no contrarian) 4.496 25.012 0.802 4.198

Table 3: HHST09: one-period ahead predictions. MSE of various models for experimental prices and

subjects’ predictions, averaged over six experimental groups for the corresponding treatment.

MSE of the best model is in bold, of the second best is in italic.

experimental oscillatory behavior of individual forecasts. The GA model has the best fit for the

positive feedback treatment and outperforms RE by a factor of 10.

4 Evidence from other experiments

Our GA model fits the HHST09 experiment well. We will now move from the simple linear

feedback to more complicated experimental settings. To be specific, we look at three other

experiments that offer a hierarchy of challenges for the GA model of individual learning:

1. BHST12: linear feedback with large and unanticipated shocks to the fundamental price;

2. V01; HSTV07: nonlinear (cobweb) negative feedback economy, investigated with a GA

model by Hommes and Lux (2013);

3. HSTV05: non-linear positive feedback economy with the two-period ahead predictions;

4.1 Large shocks to the fundamental price

BHST12 report an LtF experiment with the same structure as HHST09: two treatments with

positive and negative feedback, based on linear price equations (2) and (3) with the same damp-

ening factor 20
21

. In this experiment, however, there are two large, permanent and unanticipated

shocks to the fundamental price. First it changes from pf = 56 to pf = 41 in period t = 21 and

then it changes again in period t = 44 and remains pf = 62 until the last period t = 65.

The results of BHST12 are similar to HHST09 and typical time paths are shown in Fig. 4.

Under negative feedback (Fig. 4a), a shock to the fundamental breaks the subjects’ coordination
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Figure 4: BHST12: experimental groups (upper panels) and sample 65-period ahead simulations of

GA-S1 model and random initial predictions (lower panels). Black thick line shows the

price, green dashed lines show 6 individual predictions.

and is followed by a quick convergence to the new fundamental price. Under positive feedback

(Fig. 4b), shocks leave the coordination intact, and the predictions and prices move smoothly

towards the new fundamental, eventually over- or undershooting it. The long-run dynamics of

the GA model illustrated in Figs. 4c and 4d are very close to the experiment both under negative

(left panels) and positive (right panels) feedback.

This is further visible on Fig. 5, which illustrates 65-period ahead MC simulations of prices,

shown both in levels (upper panels) and in deviations from the fundamental price (middle panels),

and the degree of coordination (lower panels). The simulations closely follow the median exper-

imental price paths for both treatments. They also replicate the difference in between-groups

variability in the dynamics, which was observed only under positive feedback. The GA long-run

simulations are also surprisingly good in evaluating the impact of the shocks on individual coor-

dination under both treatments. The 95% CI of GA-S1 model contains 66% (resp. 84%) of the

experimental prices and 84% (resp. 67%) of the standard deviation of individual forecasts under

negative (resp. positive) feedback. Overall, we can replicate around 75% of the experimental data

from BHST12 experiment with 65-period ahead simulations.

Fig. 6 illustrates the time evolution of the price weight α and trend extrapolation coeffi-

cient β, which were chosen by the GA agents in the 65-period ahead simulations. The median
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Figure 5: BHST12: 65-period ahead MC simulation (1000 markets) for GA-S1 model compared with

the experimental data. Upper panels: price. Middle panels: distance from the fundamental

price. Lower panels: degree of coordination (log2 scale). Green dashed line and black pluses

show the experimental median and group observations, respectively. Red thick line is the

median and blue dotted lines are the 95% confidence interval for the GA model.

behavior is similar to HHST09 experiment discussed in the previous section. In fact, under

negative feedback, the median GA agent learns the same adaptive expectations rule as before,

pei,t+1 ≈ 0.5pt + 0.5pei,t. Under positive feedback, the median GA agent converges to heuristic

(11) pei,t+1 ≈ 0.95pt + 0.05pei,t + 0.9(pt − pt−1),

which is a trend following rule with the trend extrapolation coefficient β ≈ 0.9. This trend

coefficient is significantly larger than the coefficient 0.6 in rule (7) used by the median GA
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Figure 6: BHST12: Emerging heuristics in 65-period ahead MC simulation (1000 markets) for GA-

S1 model. The price weight α (upper panels) and the trend extrapolation coefficient β (lower

panels) of the chosen heuristic are shown. Red thick line is the median, blue dotted lines are

95% CI, purple dashed are 90% CI for the GA model.

agent under the positive feedback from HHST09 experiment without large shocks. The 95%

CI for the trend extrapolation coefficient β becomes significantly positive towards the end of

the experiment (see also Fig. 10b for the histogram of β’s chosen in period 65). Hence, due to

the large, unanticipated shocks in the positive feedback treatment, GA agents become strong trend

followers.

Table 4 reports the MSE for the 65-period ahead simulations initialized with the experimental

initial predictions (1024 simulated markets per group for the GA models). We observe that the

adaptive expectations have a good fit to the negative feedback treatment, while naive expectations

perform well under positive feedback. Interestingly, RE are poor for both treatments: they

cannot explain oscillations of the positive feedback and the short spells of volatility that follow

the fundamental shocks under the negative feedback treatment. The HSM also performs below

average. Our GA model performs, at a balance, very well: it is the second best for the negative

feedback and the best for the positive feedback.

We also use the Sequential Monte Carlo (SMC) approach to compute the GA model’s one-

period ahead predicting power, reported in Table 5. The results are consistent with the 65-period

ahead simulations. For both treatments, the GA model (especially without contrarian rules)
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Negative feedback Positive feedback

Model Prices Predictions Prices Predictions

Trend extrapolation 2736 1289 101.3 113.3

Adaptive 3.629 10.75 55 62.14

Contrarian 6.984 14 .45 58.46 65.95

Naive 94.44 110.9 46.62 52.9

RE 13.871 20.923 55.133 60.859

HSM from AHP 73.57 87.86 90.8 101.8

GA-S1 8.01 21.97 43 .49 49 .44

GA-S2 (no contrarian) 6 .333 17.39 43.49 49.64

Table 4: BHST12: 65-period ahead predictions. MSE of various models for experimental prices and

subjects’ predictions, averaged over eight experimental groups for the corresponding treat-

ment. MSE of the best model is in bold, of the second best is in italic.

Negative feedback Positive feedback

Model Prices Predictions Prices Predictions

Trend extrapolation 114.061 121.329 1.183 2.165

Adaptive 3.689 10.332 3.776 4.618

Contrarian 5.92 12 .534 4.737 5.559

Naive 9.979 16.81 2.411 3.286

RE 13.871 20.923 55.133 60.859

HSM from AHP 38.309 45.679 0.9996 2.024

GA-S1 10.247 21.464 0 .342 2.059

GA-S2 (no contrarian) 4.208 15.267 0.341 2 .036

Table 5: BHST12: one-period ahead predictions. MSE of various models for experimental prices and

subjects’ predictions, averaged over eight experimental groups for the corresponding treat-

ment. MSE of the best model is in bold, of the second best is in italic.

ranks among the best of all reported models.

4.2 Cobweb economy

HSTV07 and V01 conducted an LtF experiment in a setting of the cobweb economy. HSTV07

investigate 18 markets with six subjects each, divided into three treatments of 6 groups: with

stable, unstable (on the verge of stability) and strongly unstable parametrization under the

assumption of homogenous naive expectations. V01 report the latter treatment with 12 subjects.
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The experiment resulted in average prices very close to the RE fundamental price. However, the

prices were excessively volatile, and – in contrast to the positive feedback experiments – also non-

persistent (with weak autocorrelation structure). Hommes and Lux (2013), HL henceforth, study

this experiment with a GA model in which agents learn parameters of a simple AR1 forecasting

rule, pet = αi,t + βi,tpt−1. It is now interesting to compare that specification, which we denote

GA-AR1, and our GA model.

We test our model by conducting a MC exercise in the vein of HL. For each treatment, we

compute six (as the number of groups per treatment) 50-period ahead simulations with different

random seeds for sampling the initial predictions and the between period learning. Next we

compute the mean and standard deviation of the realized prices and the individual price forecasts.

We repeat this procedure 1000 times to obtain a distribution (including 95% CI) of the realized

means and variances of prices and price predictions. We report the results in Table 6 for the two

specifications of our GA model comparing them with the results of the GA model from HL.

Our 50-period ahead simulations explain well the experimental data and perform significantly

better than RE. The 95% CI of GA-S1 and GA-S2 models replicate 12 and 11 out of 16

experimental statistics, respectively, see Table 6. Among 11 cases successful for GA-S2 model,

9 statistics reported by HL are outside 95% CI of our model. It means that we can replicate

around three quarters of experimental descriptive statistics, most of which with a significantly

higher precision than the GA model in HL.25

We also check the 50-period ahead dynamics of the model conditional on the initial predictions

submitted in a particular group of HSTV07, see Table 7. Homogeneous expectation models, as

well as HSM for the two unstable treatments are outperformed by RE. The dynamics of this

experiment (in contrast to the experiments with linear feedback) resemble a white noise around

the fundamental price. As a result, predicting the mean (as RE do) of these dynamics is better

than trying to capture them with structural models. However our GA model, in particular GA-

S2, keeps up with RE and performs better than GA-AR1 used in HL.

The next MC exercise is the one-period ahead forecasting of the model with SMC approach

for the 18 groups from HSTV07. Table 8 gives the summary of the results. It is apparent that

the less stable the treatment is, the worse fit any model has. As for the 50-period ahead forecasts,

the clear winners are RE and our GA model, which are able to explain the data well also for the

strongly unstable treatment.26 Our specification again prevails over GA-AR1 model.

We conclude that in the cobweb experiments with unstable dynamics the simple homogeneous

25The GA simulations are also closer to the experimental data in terms of the autocorrelation of the prices. RE

predicts zero autocorrelation, whereas benchmark models predict high autocorrelation up to the third lag. The

experimental data exhibited weak autocorrelation, which is replicated by all three GA model specifications with

comparable performance. See Table 12 in Appendix C for the results.
26Note that the scale of prices in this experiment is [0, 10] in contrast with the two previous settings, where the

prices belonged to [0, 100] interval. The highest possible MSE in the linear experiments is 100 times higher than

in the cobweb experiment.
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models, but also HSM, miss-identify any structure. As a result, their point forecasts are so poor

that it is better to predict the mean price, as RE does missing, however, excess volatility. Our

GA model (without contrarian behavior) comes close to RE in terms of fitting the mean but also

allows to explain the excess volatility observed in the experiments. Finally, it is clear that the use

of experimental evidence for micro-behaviour has an advantageous effect: our GA model, with

an empirically motivated anchor and adjustment rule (5), has a better fit to the data than the

AR1 specification used by Hommes and Lux (2013).

4.3 Two-period ahead asset pricing

HSTV05 report an experiment based on a 2-period ahead non-linear positive feedback market,

an asset-pricing model. In this market the current price depends on the average of the subjects’

expectations about the price in the next period, i.e., pt = F (p̄et+1). There were two treatments

with different fundamental price: in seven markets pf = 60 and in three markets pf = 40. Three

different aggregate outcomes were observed: (i) monotonic convergence to the fundamental price

(2 groups), (ii) dampened oscillations (3 groups) and (iii) volatile price oscillations (5 groups).

Participants had to predict pt+1 without knowing pt, and therefore their decisions were based

on a different information set than in the previous one-period ahead experiments. The 2-period

ahead version of our GA model is based on the following prediction heuristic:

(12) pei,h,t+1 = αi,hpt−1 + (1− αi,h)pei,t + βi,h(pt−1 − pt−2) .

Once pt is realized, the agents can evaluate their rules based on the hypothetical performance of

predicting pt two periods ago, i.e., their fitness is a normalized MSE = (pei,h,t − pt)2, as before. This

specification is the most straightforward adaptation of the baseline one-period ahead forecasting

heuristic (5). Recall that in the two baseline specifications, GA-S1 and GA-S2, we imposed

the restrictions on the trend coefficients, β ∈ [−1.1, 1.1] and β ∈ [0, 1.1], respectively. HSTV05,

however, found that many subjects used stronger trend extrapolation. Therefore, for the sake

of completeness we will also report the results of our model with β ∈ [−1.3, 1.3] (specification

GA-S3) and β ∈ [0, 1.3] (specification GA-S4).

Among seven groups with pf = 60, HSTV05 observe both the groups with the price con-

verging to the fundamental price, and the non-converging groups with oscillations of different

amplitude and frequency. Fig. 7 displays three typical simulated markets of GA-S3 model for

HSTV05 economy with pf = 60.27 GA agents can either converge to the fundamental price

(Fig. 7a) or coordinate on oscillations (Fig. 7c). Furthermore, sometimes an intermediate out-

come occurs, which can be interpreted as transitory dynamics between the stable and unstable

outcome. Fig. 7b shows a sample simulation, in which after the first 20 periods, the price seem-

27The simulations are based on different initial predictions and learning realization, though the supply shocks

εt are the same.

24



 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

(a) Convergence

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

(b) Unclear

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

(c) Oscillations

Figure 7: HSTV05: three 50-period ahead simulations of GA-S3 model for different seeds giving

different initial predictions and learning. Green dotted lines are individual predictions and

black thick line is the price.
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Figure 8: HSTV05: sample 2000-period ahead simulation (right panels) and its first 500 periods (left

panels) of GA-S3 model with pf = 60. Top panels: individual predictions (green dashed

lines) and price (black line). Bottom panels: average trend extrapolation coefficient β chosen

by six GA agents.

ingly stabilizes at the fundamental value around 60. One may expect to see the same fundamental

dynamics as in Fig. 7a. However, in the remaining periods, the price resume to oscillate mildly.

To further stress the volatile behavior of this market structure, we report one long-run sim-

ulation for GA-S3 model, see Fig. 8. The top panels display price dynamics with persistent

oscillations of different amplitude, where large oscillations can reappear even after the market

seemingly settled on the fundamental price. It suggests that the invariant distribution of our
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Figure 9: HSTV05: Emerging heuristics in 50-period ahead MC simulation (1000 markets) for GA-

S1 (left panel) and GA-S3 (right panel) models. The price (upper panels), the price weight

α (middle panels) and the trend extrapolation coefficient β (lower panels) of the chosen

heuristic are shown. Red thick line is the median, blue dotted lines are 95% CI, purple

dashed are 90% CI for the GA model.

stochastic model may have several modes.28 GA model generates economically relevant dynamics

28Due to the presence of mutation in the learning phase and the noise in the pricing equation, our GA model is an

ergodic Markov process. Therefore, the invariant distribution exists, though it cannot be computed analytically

due to the complexity of the model. As this paper is motivated by the experimental data, we simulated and

compared in Fig. 10 the distributions of the trend extrapolation coefficient after the first 50 periods for all the

positive feedback treatments discussed in the paper, leaving more systematic investigation of the asymptotic

properties of GA dynamics to future research.
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Figure 10: Positive feedback treatments: HHST09, BHST12 and HSTV05 with pf = 60. Distri-

bution of trend extrapolation coefficient β chosen by the agents in period t = 50 across the

whole MC sample for GA-S1 and GA-S3 (last panel) models.

with clustered volatility, i.e., when phases of relatively stable price behavior interchange with

highly volatile price fluctuations. The bottom panel of Fig. 8 shows the average β chosen by

the six GA agents. Despite continuing instability, a clear pattern is that the average β remains

close to zero in the stable phase of the simulation, but stays close to the upper limit of 1.3 in

volatile times. We interpret this pattern in the following way. If the price is stable and close to

the fundamental value, the fittest heuristics give predictions that are close to the fundamental

value. Due to averaging of the predictions of six GA agents and the artificial robotic funda-

mentalist, deviations from the fundamental price can be mitigated. This discourages GA agents

from extrapolating an insignificant trend, reinforcing price stability. Nevertheless, the trend in

prices may become sufficiently large, so that the predictions of GA agents become sufficiently

coordinated to counter-weight the stabilizing effect of the artificial fundamental robot traders.

This leads to a drift of the extrapolating coefficients in the fittest heuristics towards the upper

bound, and the price oscillations become self-reinforcing. Under the non-linear (due to the robotic

trader) two-period ahead price feedback mechanism, the specific shape (i.e., phase, amplitude)

of oscillations is diversified. As a result, there is still space for GA agents to experiment with

the specific strength of trend following. In the two-period ahead feedback system, our GA model

thus entails not only two ‘attractors’ (ie., two types of long run behavior), fundamental price

and large volatility (oscillations), but also generates endogenous switching between them. This

corresponds well to the diversified dynamics observed in the experiment.

To support this story, we take a closer look at the trend extrapolation coefficient β chosen

by the GA agents during the first 50 periods. Fig. 9 shows the results for MC 50-period ahead

simulations for two GA model specifications, GA-S1 and GA-S3. Under the latter setting, the

agents are allowed to experiment with higher β. The median price has a very similar oscillatory

shape in both cases, but the difference is seen in the 95% CI. Both specifications are likely to

generate two price bubbles within 50 periods, but GA-S3 model with higher β’s has larger

potential oscillations (Fig. 9b), and the second bubble can be even bigger than the first (unlike
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in the linear positive feedback). In both specifications, the median GA agent converges to a

strong trend extrapolation rule, close to pei,t+1 = pt−1 + (pt−1 − pt−2), which is consistent with

the behavior of our model in the previous experiments. Nevertheless, the 95% CI of the chosen

trend coefficient remain wide and the distribution of this variable in period 50 is close to bi-modal

(see Figs. 10c and 10d), with a relatively large mass centered around zero, i.e., weak or no trend

extrapolation, and a peak around the maximum possible trend coefficient.

Even though our GA model leaves space for improvement,29 it is the only model which is

comparatively good in predicting the experimental results of HSTV05 both in the long- and

the short-run. Table 9 reports the MSE of 50-period ahead simulations initialized with the

experimental initial predictions. The long-run predictive power is relatively poor for all models.

The best three models are naive, adaptive and RE, though our model (with 1.1 as the upper

bound for trend extrapolation) yields similar results. Table 10 shows the MSE of one-period

ahead predictions for our GA model and other benchmark models. The GA model is now among

the best, especially in terms of predicting the experimental prices. Surprisingly, the models that

did well in 50-period ahead predictions are poor now, while trend extrapolation is comparable

with our model. Anufriev and Hommes (2012) investigated the HSTV05 experiment with a four-

heuristics HSM, which is a richer model than the two-heuristic HSM we used as a benchmark

for the previous experiments. Interestingly, only our GA model (specifically with β restricted to

[0, 1.1]) is able to compete with this richer HSM in terms of predicting the experimental prices.

5 Conclusions

In the model of this paper agents independently use Genetic Algorithms (GA) to optimize a

simple forecasting heuristic. The model dynamics was compared with the outcomes of Learning-

to-Forecast experiments, where the realized market price depends on individual forecasts. These

experiments are used to study how human subjects adapt to the price-predictions feedback in

a controlled environment. We showed that GAs capture individual forecasting behavior in the

experiments quite well and also reproduce the aggregate outcomes. GA agents use a linear first-

order heuristic (a mixture of adaptive and trend extrapolating expectations) to forecast prices.

They independently optimize the two parameters of their forecasting rule with GAs, learning to

fine-tune them to the specific market conditions.

Experimental data can be used to test various theories. Our goal was to compare the prediction

accuracy of the GA model with other models: rational expectations, a number of homogeneous

29For instance, the GA model seemingly does not generate the dynamics with relatively frequent (with period

of 8-9 periods) oscillations of constant amplitude around the fundamental price, observed in some sessions of

HSTV05. HSM with four heuristics (adaptive, two different trend extrapolation and anchor and adjustment)

did actually capture such dynamics and also had a good one-period ahead fit to these faster price oscillations

(Anufriev and Hommes, 2012). In order to improve the GA model’s fit to the observed subjects learning in this

setup, one could experiment with higher order rules, but we leave this for future investigations.
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expectation models, and the Heuristic Switching Model of Anufriev and Hommes (2012). We

focused on the out-of-sample one-period and 50−periods ahead predictions and showed that in

comparison with other models, the GA model is able to account for both the aggregate outcomes

and the individual behavior across four different experiments.

The strength of the model lies in its flexibility, generality and parsimony in optimizing only

two parameters. When agents face a negative feedback type of economy, a median GA agent will

increasingly rely on adaptive expectations, enforcing convergence of the market to the fundamen-

tal equilibrium. In contrast, positive feedback induces the agents to follow the observed price

trend and median forecasting behavior converges to a trend extrapolation rule, which amplifies

price oscillations. Also, the more ‘complex’ the positive feedback is (in terms of shocks to the

fundamental solution, or a non-linear law of motion of the price), the stronger trend extrapolation

chosen by the median agent the more volatile the price fluctuations will be.

The GA model can also be used to investigate settings with more complicated interactions

between individual agents. This can include economies with heterogeneous preferences, unequal

market power, information networks, decentralized price setting, etc. In any of these cases,

heterogeneous price expectations may have important consequences for market efficiency and price

dynamics. Our Genetic Algorithms model gives a realistic explanation of how such heterogeneity

between the agents emerges from their individual learning and, for each environment, which

heuristics make them smart.
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Prices Predictions

Mean(p) Var(p) Mean(pe) Var(pe)

Stable

Experiments 5.64∗† 0.36∗† 5.56∗† 0.087∗

GA-AR1 5.565¶ 0.326¶ 5.576¶ 0.1

GA-S1 5.628 0.372 5.571 0.082

95% CI [5.613, 5.643] [0.359, 0.389] [5.553, 5.59] [0.065, 0.101]

GA-S2 5.649 0.353 5.548 0.0565

95% CI [5.631, 5.667] [0.341, 0.371] [5.527, 5.57] [0.043, 0.077]

Unstable

Experiments 5.85† 0.63∗† 5.67∗† 0.101∗†

GA-AR1 5.817 0.647 5.645¶ 0.16¶

GA-S1 5.792 0.598 5.705 0.103

95% CI [5.744, 5.841] [0.525, 0.746] [5.667, 5.739] [0.067, 0.171]

GA-S2 5.825 0.557 5.694 0.079

95% CI [5.786, 5.863] [0.487, 0.658] [5.67, 5.719] [0.052, 0.122]

Strongly unstable

Experiments 5.93† 2.62∗ 5.73 0.429∗

GA-AR1 6.2¶ 2.161 5.434 0.769

GA-S1 5.809 2.172 5.832 0.345

95% CI [5.693, 5.908] [1.626, 2.875] [5.735, 5.918] [0.182, 0.598]

GA-S2 5.962 1.487 5.807 0.206

95% CI [5.876, 6.045] [1.188, 1.834] [5.75, 5.858] [0.113, 0.347]

Strongly unstable, group size 12

Experiments 5.937† 1.783∗ 5.781∗† 0.204∗†

GA-AR1 6.183¶ 1.571 5.515¶ 0.5¶

GA-S1 5.812 1.699 5.852 0.194

95% CI [5.731, 5.892] [1.368, 2.157] [5.779, 5.918] [0.122, 0.338]

GA-S2 5.972 1.316 5.804 0.173

95% CI [5.918, 6.026] [1.118, 1.553] [5.768, 5.843] [0.111, 0.253]

Table 6: HSTV07: 50-period ahead MC results for GA simulations for four treatments. Median

statistics for average prices, predictions, and their variances are shown for the experiment

and three GA models: with AR1 rule used in HL and our two specifications (also with 95%

confidence intervals). ∗ and † denote experimental statistic which falls into 95% CI of GA-S1

and GA-S2, respectively. ¶ denotes GA-AR1 statistics which fall outside the 95% CI of

GA-S2 model that contain the experimental statistics.
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Treatments Stable Unstable Strongly unstable

Models Prices Predictions Prices Predictions Prices Predictions

Trend extrapolation 13.3 71.1 16.33 89.59 16.55 89.07

Adaptive 0.117 0.339 7.206 3.272 16.45 7.822

Contrarian 0.093 0.308 1.746 0.834 13.95 5.282

Naive 1.076 1.724 14.67 16.18 16.55 18.55

RE 0 .048 0.248 0.364 0.385 2.257 1.844

HSM from AHP 0.178 0.422 7.446 3.431 16.46 7.885

GA-AR1 0.05742 0.3759 0.3552 0.6596 2.838 2.64

GA-S1 0.088 0.356 0 .346 0.631 3.445 3.261

GA-S2 0.043 0 .275 0.223 0 .449 2 .376 2 .114

Table 7: HSTV07: 50-period ahead predictions. MSE of various models for experimental prices and

subjects’ predictions, averaged over all six experimental groups for the corresponding treat-

ment. MSE of the best model is in bold, of the second best is in italic.

Treatments Stable Unstable Strongly unstable

Models Prices Predictions Prices Predictions Prices Predictions

Trend extrapolation 1.176 1.997 2.122 3.719 5.856 14.39

Adaptive 0.108 0.328 0.434 0.549 2.784 2.863

Contrarian 0.102 0.318 0.414 0 .497 2 .929 2.729

Naive 0.196 0.448 0.577 0.788 3.095 3.731

RE 0.048 0.248 0 .364 0.385 2.257 1.844

HSM from AHP 0.212 0.474 0.52 0.732 3.065 3.691

GA-AR1 0.054 0.36 0.51 0.674 5.36 3.432

GA-S1 0.13 0.393 0.866 0.795 5.547 3.25

GA-S2 0 .07 0 .31 0.25 0.531 3.079 2 .358

Table 8: HSTV07: one-period ahead predictions. MSE of various models for experimental prices

and subjects’ predictions, averaged over all six experimental groups for the corresponding

treatment. MSE of the best model is in bold, of the second best is in italic.
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Models Prices Predictions

Trend extrapolation 178.2 174.9

Adaptive 96 .12 145 .9

Contrarian 157 146.8

Naive 95.29 144.6

RE 96.0328 145.998

GA-S1 103.9 155.8

GA-S2 114.9 169.1

GA-S3 139.4 201.5

GA-S4 226.5 318.5

Table 9: HSTV05: 50-period ahead predictions. MSE of various models for experimental prices and

subjects’ predictions, averaged over all experimental groups for the corresponding treatment.

MSE of the best model is in bold, of the second best is in italic.

Models Prices Predictions

Trend extrapolation 17.4527 55.0898

Adaptive 44.125 25 .3157

Contrarian 59.3905 30.8646

Naive 31.6864 20.8416

RE 96.0328 145.998

HSM (4 heuristics) 6 .798 —

GA-S1 42.224 74.95

GA-S2 5.934 30.341

GA-S3 21.192 53.238

GA-S4 16.29 42.125

Table 10: HSTV05: one-period ahead predictions. MSE of various models, including 4-type Heuristic

Switching Model (source: Anufriev and Hommes, 2012), for experimental prices and subjects’

predictions, averaged over all experimental groups for the corresponding treatment. MSE of

the best model is in bold, of the second best is in italic.
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Appendices

A Definition of forecasting rules

Table 11 provides the exact specification for all prediction rules used in the paper. For the full

specification of the HSM with two heuristics, see Anufriev, Hommes, and Philipse (2013). For

the full specification of the HSM with four heuristics, see Anufriev and Hommes (2012).

Rule Prediction

Homogeneous rules

Trend extrapolation pt−1 + γ(pt−1 − pt−2) with γ = 1

Adaptive wpt−1 + (1− w)peprevious, with w = 0.75

Contrarian pt−1 − 0.5(pt−1 − pt−2)
Naive pt−1

RE pf

Heterogeneous rules

HSM from AHP switching between 2 heuristics: trend extrapolation

and adaptive expectations, as specified above;

learning parameters are β = 1.5, η = 0.1, γ = 0.1

HSM (4 heuristics) switching between 4 heuristics: adaptive with w = 0.65,

two trend extrapolation (with γ = 0.4 and γ = 1.3), and

the anchor-and-adjustment rule;

learning parameters are β = 0.4, η = 0.7, γ = 0.9

GA model αi,tpt−1 + (1− αi,t)pei,previous + βi,t(pt−1 − pt−2)
GA-S1 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [−1.1, 1.1]

GA-S2 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [0, 1.1]

GA-S3 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [−1.3, 1.3]

GA-S4 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [0, 1.3]

Table 11: Specification of the forecasting rules used in the paper. For the one-period ahead environ-

ments (HHST09; BHST12; HSTV07; V01), the rules generate prediction pet , the adaptive

rule includes peprevious = pet−1, whereas GA model includes pei,previous = pei,t−1. For the two-

period ahead environment HSTV05, the rules generate prediction pet+1, and the adaptive

rule includes peprevious = pet , whereas GA model includes pei,previous = pei,t.
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B Initialization of the model

In this Appendix we discuss one aspect of initialization of the GA model for the 50-period Monte

Carlo simulations, namely the choice of distribution for the initial predictions. Recall that our

task is to demonstrate that GA model can replicate experimental stylized facts. Two examples

can be given for HHST09 experiment to show that the initialization of the model can be crucial

in achieving this task.

First, under negative feedback, the individual price forecasts coordinated only after the price

itself has already converged. To replicate this feature in our simulations, one has to start with a

similar degree of initial heterogeneity in the agents predictions and then to show that due to the

learning of GA agents it can disappear as it happened in the experiment.

Second, under positive feedback, as Anufriev, Hommes, and Philipse (2013) suggest, price

oscillations emerged in the groups where the average of the first predictions was relatively far

from the fundamental price. Therefore, in this setup the initial individual predictions influenced

later outcomes, such as appearance and characteristics of oscillations, or dynamics of coordination.

One would like to have a model that can mimic this path-dependence. But without a realistic

initialization, the path-dependent model will not fit the data well.

How did subjects make predictions in the very first period of the experiment, when the

information set of past prices and predictions is empty? Diks and Makarewicz (2013) investigate

this issue in a systematic fashion for the case of the HHST09 experiment. They argue that

the initial subject predictions can be regarded as a sample from a common distribution, which

they estimate. We use their methodology and estimate a distribution of initial predictions for all

other experiments. In those MC simulations, where the initial predictions are sampled from the

distribution, this distribution is the one estimated from the respective experiment.

HHST09 For this experiment we use the estimated Winged Focal Point (WFP) reported by

Diks and Makarewicz (2013), which is given by

(13) pei,1 =


ε1i ∼ U(9.546, 50) with probability 0.45739 ,

50 with probability 0.30379 ,

ε2i ∼ U(50, 62.793) with probability 0.23882 ,

where U(a, b) is the uniform distribution on interval [a, b]. Around 1/3 would predict 50, a mid-

point of the suggested interval for the initial price forecast [0, 100]. Others were spread around

this focal point with more people predicting low price and almost nobody predicting price higher

than 60. Hence the distribution is a composite of a unit mass at 50 and two ‘wings’, uniform

distributions spreading from the focal point. See Fig. 11 for visualization.
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509.546 62.793

P = 0.45739 P = 0.23882

P = 0.30379

Figure 11: Estimated density of winged focal point distribution for HHST09 as given in Eq. 13. The

sizes of the wings around the mass point p = 50 are scaled to their masses and lengths.

BHST12 We reestimate WFP model for the data reported by BHST12 using the same

methodology as reported by Diks and Makarewicz (2013). This leads to WFP specified as

pei,1 =


ε1i ∼ U(16.406, 50) with probability 0.32296,

50 with probability 0.35159,

ε2i ∼ U(50, 70.312) with probability 0.32296.

V01; HSTV07 In the case of the cobweb economy experiment, the subjects were asked to

predict prices in the [0, 10] interval. Interestingly, the initial predictions still have the WFP form,

with a large proportion equal to the midpoint 5 and the rest (not necessarily rounded to a full

integer) distributed around this new focal point. To account for that, we reestimate the WFP

and obtain

pei,1 =


ε1i ∼ U(1.875, 5) with probability 0.17983,

5 with probability 0.36344,

ε2i ∼ U(5, 7.5) with probability 0.45673.

HSTV05 In this experiment, the predictions are two-period ahead, hence the subjects would

have to give two initial predictions, pei,1 and pei,2. First period forecasts are similar to those from

the other experiments. As for the second period, one can notice that 2/3 of the subjects, who

would predict pei,1 = 50 the focal point in the first period, would do the same in the second

period; otherwise they would again draw predictions resembling WFP, but with a substantially

small weight on the focal point 50. Hence we follow Diks and Makarewicz (2013) and get the

following estimations for the first period:

pei,1 =


ε1i ∼ U(4.712, 50) with probability 0.31306,

50 with probability 0.45536,

ε2i ∼ U(50, 64.062) with probability 0.23158.
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To generate the second period predictions, we define the auxiliary draw

(14) pauxi,2 =


ε1i ∼ U(3.125, 50) with probability 0.44958,

50 with probability 0.018761,

ε2i ∼ U(50, 67.227) with probability 0.53166.

With the realization from this draw, the second period predictions are defined as

(15) pei,2 =


pauxi,2 always if pei,1 6= 50,

pauxi,2 with probability 1/3 if pei,1 = 50,

50 with probability 2/3 if pei,1 = 50.
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C Price autocorrelation in the cobweb experiment

Table 12 gives the first three autocorrelations of the experimental groups in HSTV07 and the 50-period ahead simulations of the

GA and benchmark models.

Treatments Stable Unstable Strongly unstable

Autocorrelation ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3

Experiment −0.1878 0.06323 −0.12 −0.2948 0.01363 −0.01114 −0.1973 0.211 0.02144

Trend extrapolation −0.9661 0.9423 −0.9209 −0.9655 0.9404 −0.9159 −0.9639 0.9403 −0.918

Adaptive −0.5996 0.3446 −0.3078 −0.9628 0.9235 −0.8927 −0.964 0.94 −0.9176

Contrarian −0.257 −0.3006 0.1604 −0.4556 −0.4895 0.8202 −0.4756 −0.4704 0.8974

Naive −0.9043 0.837 −0.7911 −0.967 0.9394 −0.9143 −0.9639 0.9403 −0.918

RE 0 0 0 0 0 0 0 0 0

HSM from AHP −0.6528 0.4224 −0.3438 −0.9561 0.9153 −0.8816 −0.9639 0.9399 −0.9175

GA-AR1 −0.1161 0.008603 −0.1253 −0.1686 −0.005697 −0.1028 −0.2346 −0.09282 −0.02373

GA-S1 −0.1102 −0.3232 0.002674 −0.2201 −0.2013 0.0362 −0.2478 −0.3148 0.2432

GA-S2 −0.2955 0.1059 −0.171 −0.3882 0.1405 −0.1848 −0.6206 0.4428 −0.356

Table 12: HSTV07: 50-period ahead predictions. First three autocorrelations in prices for various models compared with the experimental

data. Autocorrelations are averaged over six groups for each treatment.
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D Formal definition of Genetic Algorithms

In this Appendix we present a formal definition of the Genetic Algorithms (GA) version, which

served as the cornerstone of our model. It closely follows the standard specification suggested by

Haupt and Haupt (2004) and used by Hommes and Lux (2013).

D.1 Optimization procedures: traditional and Genetic Algorithms

Consider a maximization problem where the target function F of N arguments θ = (θ1, . . . , θN)

is such that a straightforward analytical solution is unavailable. Instead, one needs to use a

numerical optimization procedure.

Traditional maximization algorithms, like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm, iterate a candidate argument for the optimum of the target function F by (1) estimating

the curvature around the candidate and (2) using this curvature to find the optimal direction and

length of the change to the candidate solution. This so called ‘hill-climbing’ algorithm is very

efficient in its use of the shape of the target function. On the other hand, it will fail if the target

function is ‘ill-behaved’: non-continuous or almost flat around the optima, has kinks or breaks.

Here the curvature cannot be reliably estimated. Another problem of a computational nature is

that the BFGS may perform poorly for a problem of large dimensionality.

The Genetic Algorithms are based on a fundamentally different approach and therefore can

be used for a wider class of problems. The basic idea is that we have a population of arguments

which compete only in terms of their respective function value. This competition is modeled in

an evolutionary fashion: mutation operators allow for a blind-search experimentation, but the

probability that a particular candidate will survive over time is relative to its functional value.

As a result, the target function may be as general as necessary, while the arguments can be of

any kind, including real numbers, integers, probabilities or binary variables. The only constraint

is that each argument must fall into a predefined dense interval (or set) [an, bn].

D.2 Binary strings

A Genetic Algorithm (GA) uses H chromosomes gh,t ∈ H which are binary strings divided into

N genes gnh,t, each encoding one candidate parameter θnh,t for the argument θn. A chromosome

h ∈ {1, . . . , H} at time t ∈ {1, . . . , T} has predetermined length L and is specified as

(16) gh,t = (g1h,t, . . . , g
N
h,t),

such that each gene n ∈ {1, . . . , N} has its length equal to an integer Ln (with
∑N

n=1 Ln = L)

and is a string of binary entries (bits)

(17) gnh,t = (gn,1h,t , . . . , g
n,Ln

h,t ), gn,lh,t ∈ {0, 1} for each j ∈ {1, . . . , Ln}.
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The relation between the genes and the arguments is straightforward. An integer θn is simply

encoded by (17) with its binary notation. Consider now an argument θn which is a probability.

Notice that
∑Ln−1

l=0 2j = 2Ln − 1. It follows that a particular gene gnh,t can be decoded as a

normalized sum

(18) θnh,t =
Ln∑
l=1

gn,lh,t2
l−1

2Ln − 1
.

A gene of zeros only is therefore associated with θn = 0, a gene of ones only – with θn = 1,

while other possible binary strings cover the [0, 1] interval with an 1
2Ln−1 increment. Any desired

precision can be achieved with this representation. Since 2−10 ≈ 10−3, the precision close to one

over trillion (10−12) is obtained by a mere of 40 bits.

A real variable θn from an [an, bn] interval can be encoded in a similar fashion, by an affine

transformation of a probability:

(19) θnh,t = an + (bn − an)
Ln∑
l=1

gn,lh,t2
l−1

2Ln − 1

where the precision of this representation is given by bn−an
2Ln−1 . Notice that one can approximate an

unbounded real number by reasonably large an or bn, since the loss of precision is easily undone

by a longer string.

D.3 Evolutionary operators

The core of GA are evolutionary operators. GA iterates the population of chromosomes for T

periods, where T is either large and predefined, or depends on some convergence criterion. First,

at each period t ∈ {1, . . . , T} each chromosome has its fitness equal to a monotone transformation

of the function value F . This transformation is defined as V (F(θh,t)) ≡ V (hk,t) → R+ ∩ {0}.
For example, a non-negative function can be used directly as the fitness. If the problem is to

minimize a function, a popular choice is the exponential transformation of the function values,

similar to the one used in the logit specification of the Heuristic Switching Model (Brock and

Hommes, 1997).

Chromosomes at each period can undergo the following evolutionary operators: procreation,

mutation, crossover and election. These operators first generate an offspring population of chro-

mosomes from the parent population t and therefore transform both populations into a new

generation of chromosomes t+ 1 (notice the division of the process).

D.3.1 Procreation

For the population at time t, GA picks subset X ⊆ H of χ chromosomes and picks κ < χ of them

into a set K. The probability that the chromosome h ∈ X will be picked into K as its zth element
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(where z ∈ {1, . . . , κ}) is usually defined by the power function:

(20) Prob(gz = gh,t) =
V (gh,t)∑
j∈X V (gj,t)

.

This procedure is repeated with differently chosen X’s until the number of chromosomes in all

such sets K’s is equal to H. For instance, the roulette is procreation with χ = H and κ = 1:

GA picks randomly one chromosome from the whole population, where each chromosome has

probability of being picked equal to its function value relative to the function value of all other

chromosomes. This is repeated exactly H times.

So called tournaments are often used for the sake of computational efficiency. Here, χ << H.

For instance, GA could divide the chromosomes into pairs and sample two offspring from each

pair.

Procreation is modeled as the basic natural selection mechanism. We consider subsets of the

original population (or maybe the whole population at once). Out of each such a subset, we pick

a small number of chromosomes, giving advantage to these which perform better. We repeat this

procedure until the offspring generation is as large as the old one. Thus the new generation is

likely to be ‘better’ than the old one.

D.3.2 Mutation

For each generation t ∈ {1, . . . , T}, after the procreation has taken place, each binary entry in

each new chromosome has a predefined δm probability to mutate: ones turned into zeros and vice

versa. In this way the chromosomes represent different numbers and may therefore attain better

fit.

The mutation operator is where the binary representation becomes most useful. If the bits,

which are close to the beginning of the gene, mutate, the new argument will be substantially

different from the original one. On the other hand, small changes can be obtained by mutating

bits from the end of the gene. Both changes are equally likely! In this way, GA can easily

evaluate arguments which are both far away from and close to what the chromosomes are currently

encoding. As a result, GA efficiently converges to the maximum, but are also likely not to get

stuck on a local maximum. This is clearly independent of the initial conditions, which gives GA

additional advantage over hill-climbing algorithms (like BFGS), where a good choice of the initial

argument can be crucial to obtain the global maximum.

D.3.3 Crossover

Let 0 6 CL, CH 6
∑N

n=1 Ln = L be two predefined integers. The crossover operator divides

the population of chromosomes into pairs. If CL < L − CH , it exchanges the first CL and the

last CH bits between chromosomes in each pair with a predefined probability δc. Otherwise, the

crossover operator exchanges max{CL, CH} bits in each pair of chromosomes with this predefined

44



probability δc. This operator facilitates experimentation in a different way than the mutation

operator. Typically, it is set to exchange whole arguments, that is there are 0 6 νL 6 νH 6 N

such that CL =
∑νL

n=1 Ln and CH =
∑N

n=νH
Ln. This allows the chromosomes to experiment with

different compositions of the individual arguments, which on their own are already successful.

D.3.4 Election

The experimentation done by the mutation and crossover operators does not need to lead to

efficient binary sequences. For instance, a chromosome which actually decodes the optimal argu-

ment should not mutate at all. To counter this effect, it is customary to divide the creation of

a new generation into two stages. First, the chromosomes procreate and undergo mutation and

crossover in some predefined order. Next, the resulting set of chromosomes is compared in terms

of fitness with the parent population. Thus, offspring will be passed to the new generation only

if it strictly outperforms the parent chromosome. In this way each generation will be at least as

good as the previous one, what in many cases facilitates convergence.
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E Parametrization of the forecasting heuristic

In this Appendix, we will address two issues. First, we will investigate the importance of the

anchor in the forecasting heuristic both for the one-period ahead HHST09 and for the two-period

ahead HSTV05 settings. Second, we study the proper degree of allowed trend extrapolation,

based on the linear feedback from HHST09.

E.1 Is the anchor important for HHST09?

HHST09 show that most of their subjects (around 60%) use First-Order prediction rule with

heterogeneous parameter specification:

(21) pei,t = α1pt−1 + α2p
e
i,t−1 + α360 + β(pt−1 − pt−2)

where the fundamental price 60 serves as an anchor,30 α’ span a simplex (α1 + α2 + α3 = 1) and

β is the trend extrapolation coefficient. Our rule (5) is a special case of (21) with the restriction

that α3 = 0, which implies that fixed anchor is not used by the agents.

Experimental literature suggests that, in general, anchors and focal points are important in

describing human behavior. However, HHST09 report that the anchor weight α3 is typically

significant for the subjects under negative feedback treatment, while most of the subjects under

positive feedback treatment would not use it. Furthermore, under negative feedback prices and

predictions converge to the vicinity of 60, which in practice makes the coefficients α sample-

unidentifiable; and could also make redundant the anchor itself. When designing our GA model,

we therefore investigated whether the anchor has any additional explanatory power.

To simplify econometric issues, in the previous literature the anchor was set at the fundamental

level, which however was not directly given to the subjects. It is more plausible that the subjects

used the average of all previous prices as an anchor. We will use thus anchored-FOR specified as

(22) pei,t = α1pt−1 + α2p
e
i,t−1 + α3

(
1

t− 1

t−1∑
s=1

ps

)
+ β(pt−1 − pt−2).

We run the Monte Carlo (MC) simulations exactly as in the first part of Section 3.2, but for

the GA model based on (22) with the restriction for β ∈ [−1.1, 1.1]. The results are presented on

Fig. 12. We observe for the positive feedback that, in contrast to our restricted model without

an anchor, the GA model based on FOR as in (22) does not predict oscillations at all. Instead a

sluggish convergence towards the fundamental is generated, as can be seen in the stable median

price, bounded by relatively narrow 95% CI. In other words, this specification misses most of the

dynamics observed in half of the experimental groups. We conclude that there is no evidence for

a need of an anchor, specified as a long-run average of the observed prices, in our GA model.

30Notice that what is the anchor, can be a matter of interpretation. One may think of rule (5) as an anchor-

based rule as well, since it can be rewritten as a rule that adjusts the anchor given by the previous price forecast

with the latest observed price and trend.
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Figure 12: HHST09: 50-period ahead Monte Carlo simulation (1000 markets) for the GA-S1 model

with the anchored-FOR compared with the experimental data. Upper panels: price. Lower

panels: degree of coordination (log2 scale). Green dashed line and black pluses show the

experimental median and group observations, respectively. Red thick line is the median

and blue dotted lines are the 95% confidence interval for the GA model.

E.2 Anchor and HSTV05

The HSTV05 non-linear, two-period ahead LtF asset pricing market resulted in much more

unruly oscillations than those observed in the simple linear experiment HHST09 under positive

feedback. One could therefore think that some kind of a long-run anchor might have been impor-

tant for the subjects, even though they would not use it in one-period ahead forecasting setting.

Furthermore, in the experiment the oscillations typically unraveled around the fundamental price,

which again suggests that the subjects tried to anchor the price changes to it. To address this

issue, we run the 50-period ahead MC simulation like in Section 4.3, but where the rule (12) is

replaced by the anchored-FOR rule (22) appropriately adapted for the two-period ahead setting,

and where the anchor was given by the fundamental price pf = 60.

Results for two specifications (with allowed trend extrapolation β ∈ [−1.1, 1.1] and β ∈
[−1.3, 1.3]) are presented on Fig. 13. Just as in the case of HHST09, we find that the GA

model with anchored-FOR rule generates sluggish convergence towards the fundamental price

from below. Indeed, in contrast to HHST09, the 95% CI of the GA model’s prices do not

include the fundamental pf = 60 even after 50 periods. This indicated that adding an anchor to
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(a) GA-S1, β ∈ [−1.1, 1.1]
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(b) GA-S3, β ∈ [−1.3, 1.3]

Figure 13: HSTV05 with pf = 60: 50-period ahead Monte Carlo simulation (1000 markets) for the

GA-S1 (left panel) and GA-S3 (right panel) models with anchored-FOR. Price evolution

is shown. Red line is the median and blue dotted lines are the 95% CI.

the GA model would decrease its fitness to the experimental data.31

E.3 Degree of trend extrapolation

Recall that the GA requires a predefined finite interval for the optimized parameters. In the case

of our GA model based on (5), the price weight is confound to α ∈ [0, 1], but prima facie there

is no ‘natural’ bound for the trend extrapolation β ∈ [βL, βH ], since a priori we do not know

the degree of trend extrapolation that people consider while forecasting prices. As mentioned in

Section 3, we argue that the model performs well if we specify the (5) rule to use 1.1 as the upper

bound to the trend (as in GA-S1 and GA-S2 models).

It turns out (not surprisingly) that the allowed trend extrapolation interval has little effect on

the behavior of our GA model under negative feedback. However, the effect exists for the model

under positive feedback: the larger the interval β ∈ [βL, βH ] is, the bigger the amplitude of the

price fluctuations is. We experimented with different bounds, trying to calibrate the model to

the experimental oscillations. We used the same Monte Carlo experiments as in the first part of

Section 3.2.

Allowing for a high trend extrapolation β ∈ [−1.5, 1.5] results in a model with huge possible

oscillations and little predictive power, see Fig. 14. On the other hand, specification with β ∈
[−0.5, 0.5] has narrow CI, but predicts small oscillations, see Fig. 15. We found the model with

β ∈ [−1.1, 1.1] is the best trade-off between in-sample fit and out-sample predictive power of the

model.

This result reflects the experimental findings. HHST09 find that under positive feedback,

four out of twenty estimated rules had β > 0.9 and further five rules had β > 0.75. Nevertheless,

HHST09 in their estimations impose a restriction that β ∈ [−1, 1]. Our GA model suggests that

such a restriction is inconsistent with the degree of experimental price oscillations.

31We found similar results when the anchor was specified as the average price so far 1
t−1

∑t−1
s=1 ps.
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Figure 14: HHST09: 50-period ahead Monte Carlo simulation (1000 markets) for the model with

restriction β ∈ [−1.5, 1.5] compared with the experimental data. Upper panels: price. Lower

panels: degree of coordination. Green dashed line and black pluses show the experimental

median and group observations, respectively. Red thick line is the median and blue dotted

lines are the 95% confidence interval for the GA model.
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Figure 15: HHST09: 50-period ahead Monte Carlo simulation (1000 markets) for the model with re-

striction β ∈ [−0.5, 0.5]) compared with the experimental data. Upper panels: price. Lower

panels: degree of coordination. Green dashed line and black pluses show the experimental

median and group observations, respectively. Red thick line is the median and blue dotted

lines are the 95% confidence interval for the GA model.
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