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Abstract

In financial disputes arising from divorce, inheritance, or the disso-
lution of a partnership, frequently the need arises to assign ownership
of an indivisible item to one member of a group. This paper introduces
and analyzes a dynamic auction for simply and e¢ciently allocating
an item when participants are privately informed of their values. In
the auction, the price rises continuously. A bidder who drops out of
the auction, in return for surrendering his claim to the item, obtains
compensation equal to the di§erence between the price at which he
drops and the preceding drop price. When only one bidder remains,
that bidder wins the item and pays the compensations of his rivals.
We characterize the unique equilibrium with risk-neutral and CARA
risk averse bidders. We show that dropout prices are decreasing as
bidders become more risk averse. Each bidder’s equilibrium payo§ is
at least 1/N -th of his value for the item. Indeed, we show that each
bidder’s security payo§ is 1/N -th of his value. We introduce the notion
of a perfect security strategy, we show that each bidder has a unique
perfect security strategy, and that it coincides with the equilibrium
bidding strategy as bidders becomes infinitely risk averse.
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1 Introduction

In financial disputes arising from divorce, inheritance, or the dissolution of

a partnership, frequently the need arises to assign ownership of an indivisi-

ble item to one member of a group. This paper introduces and analyzes a

dynamic auction for simply and e¢ciently resolving such disputes.

The canonical example of a division mechanism is divide and choose. In

addition to helping children split pieces of cake, this procedure is widely used

in a variety of other practical settings. A version of divide and choose called a

“Texas Shoot-Out” is a commonly used exit mechanism found in two-person

equal-share partnership contracts.1 In this mechanism, the owner who wants

to dissolve the partnership names a price and the other owner is compelled to

either purchase his partner’s share or sell his own share at the named price.

Divide and choose is simple and fair. Parents (lawyers) can explain the

procedure to their children (clients) without di¢culty. Moreover, whether a

participant is the divider or the chooser, they can guarantee themselves at

least half of their value for the object by following a simple security strategy.

In a Texas Shoot-Out, for example, an owner who names a price that leaves

him indi§erent to whether his partner buys or sells is guaranteed to receive

half of his value for the partnership. Likewise, his partner, by simply taking

the best deal, either selling or buying at the proposed price, cannot leave

with less than fifty percent of her value for the partnership.

Despite these properties, divide and choose has several flaws which limit

its applicability and attractiveness. First, the procedure does not easily scale

to more than two participants. Second, it does not treat the participants

symmetrically: there is an advantage to being the divider when information

is complete and to being the chooser when information is incomplete. Finally,

when information is incomplete, then divide and choose is not e¢cient.2

1Brooks, Landeo, and Spier (2010) detail the popularity of this exit mechanism and
examine why Texas Shoot-Outs are rarely triggered in real-world contracts.

2In a complete information environment, these issues have been well studied. Crawford
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We present a dynamic auction which avoids the negative features of divide

and choose while retaining its many attractive properties. In the auction,

the price, starting from zero, rises continuously. Bidders may drop out at

any point. A bidder who drops out surrenders his claim to the item and,

in return, receives compensation from the (eventual) winner equal to the

di§erence between the price at which he drops and the price at which the

prior bidder dropped. The auction ends when exactly one bidder remains.

That bidder wins the item and compensates the other bidders. Thus in an

auction with N bidders, if {pk}N−1k=1 is the sequence of dropout prices, then

the compensation of the k-th bidder to drop is pk − pk−1, where p0 = 0, and
the winner’s total payment is pN−1 = ΣN−1k=1 (pk − pk−1).

3 Hereafter, we refer

to this auction as the compensation auction.

In our setting, a strategy for a bidder is a sequence of bid functions,

where the k-th bid function identifies the price at which the bidder drops

out as a function of his value and the k − 1 prior dropout prices. In the
symmetric independent private values setting we provide necessary and suf-

ficient conditions for a sequence of bid functions to be a symmetric Bayes

Nash equilibrium in increasing and di§erentiable strategies. We characterize

the unique such equilibrium when bidders are risk neutral and when they are

CARA risk averse; in equilibrium the compensation auction e¢ciently dis-

solves partnerships. We show that equilibrium dropout prices are decreasing

as bidders become more risk averse. Equilibrium is also interim proportional,

i.e., each bidder’s equilibrium expected payo§ is equal to at least 1/N -th of

(1979) shows that auctioning o§ the divider role in divide and choose can correct the
asymmetry of the procedure, and Demange (1984) o§ers a procedure for N players that
is fair and e¢cient. In an incomplete information environment, de Frutos and Kittsteiner
(2008) show how bidding to be the chooser can restore e¢ciency to a Texas Shoot-Out.

3The auction can equivalantly be framed as follows: At the beginning of each round,
compensation is set zero and then increased continuously until one of the participants
agrees to take this compensation in return for giving up his claim to the item. This par-
ticipant exits, and the process is repeated, until only one participant remains. The last
participant is awarded the item and pays each of the others their individualized compen-
sation.
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his value for the item, and thus it is individual rational for each bidder to

participate in the auction if 1/N -th of his value is his disagreement payo§.

We show that when the price reaches a risk-neutral bidder’s equilibrium

dropout price (and at least three bidders remain in the auction) then the

bidder, rather than dropping out, obtains the same payo§ by remaining in

the auction and “mimicking” the equilibrium behavior of the bidder with

the next highest value. The analogous feature arises in Dutch multi-unit

sequential auctions. We show that the sequence of compensations obtained

by mimicking higher-value bidders forms a martingale.

In the actual application of any dissolution mechanism it is useful to be

able provide participants with a simple strategy which is guaranteed to do

“not too badly.” A bidder’s security payo§ is the largest payo§ the bidder

can guarantee himself, regardless of the values and strategies of the other

bidders, and a security strategy is one that guarantee’s a bidder his security

payo§. We show for the compensation auction that a bidder’s security payo§

is equal to 1/N -th of his value and we identify simple security strategies that

guarantee a bidder this amount. One of these strategies has the property

that it continues to be a security strategy in the auction that remains after

any number of bidders has dropped. We say such a strategy is a “perfect

security strategy” and we show there is a unique such strategy. We show that

the equilibrium bidding function of a CARA risk averse bidder converges to

the perfect security strategy as bidders become infinitely risk averse.

Related Literature

In an independent private values setting, Cramton, Gibbons, and Klem-

perer (1987) identify necessary and su¢cient conditions for a N -bidder part-

nership to be e¢ciently dissolvable when bidders are risk neutral, and they

identify a static bidding game that dissolves it. They show that only equal

partnerships are dissolvable as the number of bidders grows large. When

bidders do have equal ownership shares, they show that partnerships are dis-
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solvable by simple k+1 auctions.4 A mechanism is simple in McAfee’s (1992)

sense if it can be described without reference to the players’ utility functions

or the distribution of their values. Loertscher and Wasser (2015) characterize

the optimal dissolution mechanism for arbitrary initial ownerships, when the

objective is to maximize a weighted sum of revenue and social surplus.

To our knowledge, McAfee (1992) is the only paper to study the dissolu-

tion of partnerships when the participants are risk averse. It characterizes the

equilibrium bid functions of several simple mechanisms when there are N = 2

CARA risk averse bidders: the Winner’s bid auction, the Loser’s bid auc-

tion, and the Texas Shootout (which he calls the Cake Cutting Mechanism).5

Morgan (2004) considers fairness in dissolving a two-person partnership in a

common value framework. Athanassoglou, Brams, and Sethuraman (2008)

consider the problem of dissolving a partnership when the objective of the

bidders is to minimize maximum regret.

The present paper is the first to propose and analyze a dynamic procedure

for dissolving a partnership with N > 2 bidders. Abundant experimental ev-

idence suggests that dynamic mechanisms perform more reliably than static

ones, e.g., English ascending bid auctions achieve e¢cient allocations far

more reliably than second-price sealed-bid auctions, despite being strategi-

cally equivalent.6 The prior literature has imposed the restriction that either

4In a k+1 auction, bids are simultaneous, the item is transferred to the highest bidder,
and he pays each of the other bidders a price equal to

1

N
[kbs + (1− k)bf ] ,

where bs is the the second highest bid, bf is the highest bid, and k 2 [0, 1]. This mechanism
is also studied in Guth and van Damme (1986). de Frutos (2000) studies the k = 0
and k = 1 versions of this auction when bidders’ values are drawn from asymmetric
distributions. A similar family of auctions is considered by Lengwiler and Wolfstetter
(2005).

5In the Winner’s Bid auction the high bidder wins and pays half his own bid to the loser,
while in the Loser’s Bid auction he pays half the losing bid to the loser. The Loser’s Bid
auction is strategically equivalent to the two-player version of our compensation auction.

6See Kagel (1995) for a discussion of several such studies in his well-known survey of
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bidders be risk neutral or there only be two bidders. We dispense with both

restrictions.7

We address the e¢cient allocation of an indivisible object. However, the

dynamic auction we propose is inspired by the early cake cutting literature

which concerned the division of a divisible item.8 In the classical cake cut-

ting problem, N individuals are interested in dividing a heterogeneous cake.

Assume that the cake is rectangular and of unit width, where t = 0 and

t = 1 correspond to the left and right edge, respectively. Dubins and Spanier

(1961) describe one solution to this problem: A referee holds a knife at the

left edge of the cake (i.e., t = 0) and slowly moves it rightward across the

cake, keeping it parallel to the left edge. At any time, any of the participants

can call out “cut.” If the first participant calls cut at t1 then he takes the

piece to the left of the knife, i.e., [0, t1), and exits. The knife now continues

moving rightward until a second participant calls cut at some t2, and he re-

ceives [t1, t2) and exits. This continues until the N−1-st participant calls cut
and takes the piece [tN−2, tN−1]. The last participant receives the remainder

[tN−1, 1].

A participant who calls “cut” whenever his value for the piece of cake to

the left of the knife is 1/N -th of his value for whole cake is easily verified

to obtain a piece no smaller that 1/N -th (in his own estimation), indepen-

dent of when the other participants call cut. If pieces of cake are viewed as

compensation, then the Dubins and Spanier procedure is similar to our auc-

tion: In each round, compensation (money or cake) is continuously increased

until one participant agrees to take the compensation and give up his right

to continue. The process continues until a single participant remains, who

wins the cake or the item, and who compensates the other participants (with

auction experiments.
7See Moldovanu (2002) for a survey of the literature on dissolving a partnership.
8Steinhaus (1948), Dubins and Spanier (1961), and Kuhn (1967) are early examples.

See Brams and Taylor (1996) or Robertson and Webb (1998) for a textbook treatment of
the subject. Chen, Lai, Parkes, and Procaccia (2013) is a more recent contribution.
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either money or compensatory pieces of the cake). The two procedures are

not identical, and we focus on equilibrium behavior rather than fair division.

Nonetheless, the parallel is useful and is exploited later when we develop new

results on security payo§s and security strategies.

2 The Model

A single indivisible item is to be allocated to one of N ≥ 2 bidders. The

bidders’ values for the item are independently and identically distributed

according to cumulative distribution function F with support [0, x̄], where

x̄ < 1 and f ≡ F 0 is continuous and positive on [0, x̄]. Let X1, . . . , XN be

N independent draws from F , and let Z(N)1 , . . . , Z
(N)
N be a rearrangement of

the Xi’s such that Z
(N)
1 ≤ Z(N)2 ≤ . . . ≤ Z(N)N , and let G(N)k denote the c.d.f.

of Z(N)k , i.e., G(N)k is the distribution of the k-th lowest of N draws. It is easy

to verify that the conditional density of Z(N)k+1 given Z
(N)
1 = z1, . . . , Z

(N)
k = zk

is

g
(N)

Z
(N)
k+1|Z

(N)
1 ,...,Z

(N)
k

(zk+1|z1, . . . , zk) = (N − k)f(zk+1)
[1− F (zk+1)]N−(k+1)

[1− F (zk)]N−k

if 0 ≤ z1 ≤ . . . ≤ zk+1 and is zero otherwise.9 As the conditional distribution
of Z(N)k+1 given Z

(N)
1 , . . . , Z

(N)
k depends only on Z(N)k , we simply denote it by

G
(N)
k+1(zk+1|Zk = zk) rather than the more cumbersomeG

(N)

Z
(N)
k+1|Z

(N)
1 ,...,Z

(N)
k

(zk+1|Z
(N)
1 =

z1, . . . , Zk = z
(N)
k ), and likewise we write g(N)k+1(zk+1|zk) for the conditional

density. Define

λNk (z) ≡ g
(N)
k+1(z|z) = (N − k)

f(z)

1− F (z)
,

9See Claim 1 of the Supplemental Appendix for the derivation of this density.
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to be the instantaneous probability that one of N − k bidders has a value of
z conditional on the k-th lowest value being z.

In the auction, the price starts at 0 and rises continuously untilN−1 of the
bidders drop out. The remaining bidder wins the item. A bidder may drop

out at any point as the price ascends, dropping out is irrevocable, and dropout

prices are publicly observed. Let p0 = 0 and suppose p1 ≤ p2 ≤ . . . ≤ pN−1
is the sequence of N − 1 dropout prices.10 The winner pays compensation of
pk−pk−1 to the k-th bidder to drop, for each k 2 {1, . . . , N−1}. We say that
the k-th bidder has dropped at “round” k. Thus if a bidder whose value is x

wins the auction, then his total payment is pN−1 =
PN−1

k=1 (pk− pk−1) and his
payo§ is u(xi− pN−1). The payo§ of the k-th bidder to drop is u(pk − pk−1).
We assume that u0 > 0 and u00 ≤ 0.
A strategy is a list ofN−1 functions β = (β1, . . . , βN−1), where βk(x; p1, . . . , pk−1)

gives the dropout price in the k-th round of a bidder whose value is x, when

k − 1 bidders have previously dropped out at prices p1 ≤ p2 ≤ . . . ≤ pk−1.

Since a strategy must call for a feasible dropout price, we require that

βk(x; p1, . . . , pk−1) ≥ pk−1 for each k and p1, . . . , pk−1. Sometimes we refer to
a bidder’s dropout price simply as his bid.

3 Equilibrium Bidding Strategies

We characterize symmetric equilibria in increasing and di§erentiable bidding

strategies, using a simple cost-benefit heuristic.

Round N-1

Suppose that β is a symmetric Bayes Nash equilibrium in increasing and

di§erentiable strategies. In the last round (i.e., round N − 1), two bidders
remain. Let pN−2 = (p1, . . . , pN−2) be the vector of dropout prices from

10In the event that several bidders drop at the same price, then one randomly selected
bidder drops, the rest remain, and the auction resumes.
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the prior N − 2 rounds. Since bidding strategies are increasing, the dropout
prices reveal the N − 2 smallest values zN−2 = (z1, . . . , zN−2) of the bidders
who dropped in prior rounds.

Consider a bidder with value x at the moment the bid reaches his equi-

librium bid of βN−1(x;pN−2). He knows that he has the second highest

value, i.e., Z(N)N−1 = x. We consider the benefit and cost of remaining in

the auction until the bid reaches βN−1(x + ∆;pN−2). If his rival’s value

z = Z
(N)
N exceeds x+∆, then raising his bid increases his compensation from

βN−1(x;pN−2)− pN−2 to βN−1(x+∆;pN−2)− pN−2. The probability of this
event is11

1−G(N)N (x+∆|Z(N)N−1 = x).

Thus the marginal expected benefit of raising his bid is

"
u(βN−1(x+∆;pN−2)− pN−2)
−u(βN−1(x;pN−2)− pN−2)

#(
1−G(N)N (x+∆|Z(N)N−1 = x)

)
,

which, for ∆ small, is approximately equal to

u0(βN−1(x;pN−2)− pN−2)β
0
N−1(x;pN−2)∆. (1)

If his rival’s value z satisfies x < z < x + ∆, then as a result of raising

his bid he wins the auction and obtains compensation of x− βN−1(z;pN−2),
rather than receiving equilibrium compensation of βN−1(x;pN−2) − pN−2.
Thus the marginal expected cost of raising his bid, conditional on the dropout

prices observed thus far, is

"
u(βN−1(x;pN−2)− pN−2)
−u(x− βN−1(z;pN−2))

#(
G
(N)
N (x+∆|Z(N)N−1 = x)−G

(N)
N (x|Z(N)N−1 = x)

)

11Recall that the conditional distribution G(N)N (z|Z(N)N−1 = x) depends only on Z
(N)
N−1 = x

and not on the entire vector zN−2 of revealed values.
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which, since z ≈ x for small ∆, is approximately

[u(βN−1(x;pN−2)− pN−2)− u(x− βN−1(x;pN−2))]g
(N)
N (x|Z(N)N−1 = x)∆.

Using the definition of λNN−1(x), we write this as

[u(βN−1(x;pN−2)− pN−2)− u(x− βN−1(x;pN−2))]λ
N
N−1(x)∆. (2)

At equilibrium, marginal benefit equals marginal cost as∆ vanishes. Thus

equations (1) and (2) yield

u0(βN−1(x;pN−2)− pN−2)β
0
N−1(x;pN−2) (3)

= [u(βN−1(x;pN−2)− pN−2)− u(x− βN−1(x;pN−2))]λ
N
N−1(x).

In a Bayes Nash equilibrium the bidding strategy βN−1 must satisfy this

di§erential equation.

Round k < N − 1
Consider a bidder with value x at the moment the bid reaches his round-k

equilibrium bid of βk(x;pk−1). This bidder knows that Z
(N)
k = x. Analogous

to the case for round N −1, the marginal benefit of remaining in the auction
until the bid reaches βk(x+∆;pk−1) is approximately

u0(βk(x;pk−1)− pk−1)β
0
k(x;pk−1)∆. (4)

The marginal expected cost of dropping out at a higher bid is slightly

di§erent in round k < N − 1 than in round N − 1. If the value of a rival
bidder z = Z(N)k+1 satisfies x < z < x +∆ then, as a result of raising his bid,

this rival drops out in round k and sets the dropout price p̃k = βk(z;pk−1),

and the auction moves to round k + 1. In round k + 1 it is optimal, as we

establish later, for the bidder to bid as though his type were z, i.e., to drop
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at the price βk+1(z;pk−1, p̃k). Thus, he will be the next bidder to drop and

he will receive compensation of βk+1(z;pk−1, p̃k) − βk(z;pk−1) rather than
βk(x;pk−1)− pk−1. The probability of this event is

G
(N)
k+1(x+∆|Z

(N)
k = x)−G(N)k+1(x|Z

(N)
k = x) ≈ g(N)k+1(x|Z

(N)
k = x)∆ = λNk (x)∆.

Hence, for ∆ small, the marginal expected cost of raising one’s bid is approx-

imately12

"
u(βk(x;pk−1)− pk−1)

−u(βk+1(x;pk−1, βk(x;pk−1))− βk(x;pk−1))

#
λNk (x)∆. (5)

At equilibrium, marginal benefit equals marginal cost as ∆ vanishes.

Equations (4) and (5) yield the di§erential equation

u0(βk(x;pk−1)− pk−1)β
0
k(x;pk−1)

=

"
u(βk(x;pk−1)− pk−1)

−u(βk+1(x;pk−1, βk(x;pk−1))− βk(x;pk−1))

#
λNk (x).

An equilibrium bidding strategy β = (β1, . . . , βN−1) must satisfy the system

of di§erential equations for k = 1, . . . , N − 1.

Equilibrium Theorem

Proposition 1(i) identifies necessary conditions for β to be a symmetric

equilibrium in strictly increasing and di§erentiable strategies. Proposition

1(ii) establishes that any solution to this system of di§erential equations

is an equilibrium. The remainder of this section establishes existence and

uniqueness of equilibrium in two important special cases — (i) risk neutral

bidders and (ii) bidders with constant absolute risk aversion.

12Since z ≈ x for ∆ small, we replace z by x in the terms βk+1(z;pk−1, p̃k) and
βk(z;pk−1).
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Proposition 1: (i) Any symmetric equilibrium β, in increasing and di§er-

entiable bidding strategies, satisfies the following system of di§erential equa-

tions:

u0(βN−1(x;pN−2)− pN−2)β
0
N−1(x;pN−2) = (6)

[u(βN−1(x;pN−2)− pN−2)− u(x− βN−1(x;pN−2))]λ
N
N−1(x)

and, for k 2 {1, . . . , N − 2}, that

u0(βk(x;pk−1)− pk−1)β
0
k(x;pk−1) (7)

=

"
u(βk(x;pk−1)− pk−1)

−u(βk+1(x;pk−1, βk(x;pk−1))− βk(x;pk−1))

#
λNk (x).

(ii) If β = (β1, . . . , βN−1) is a solution to the system of di§erential equations

in (i), then it is an equilibrium.

Risk Neutral Bidders

Proposition 2 characterizes equilibrium when bidders are risk neutral. It

shows that in round k a bidder whose value is x sets a drop price equal to

a weighted average of the dropout price observed in round k − 1 and the
expectation of the second highest value conditional on x being between the

k-th and the k − 1-st lowest values.

Proposition 2: Suppose that bidders are risk neutral. The unique sym-

metric equilibrium in increasing and di§erentiable strategies is given, for

k = 1, . . . , N − 1, by

β0k(x;pk−1) =
N − k

N − k + 1
pk−1 +

1

N − k + 1
E
h
Z
(N)
N−1|Z

(N)
k > x > Z

(N)
k−1

i
. (8)

According to Proposition 2, equilibrium dropout prices in round k are

determined by a bidder’s value and the round k − 1 dropout price, but do
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not depend on dropout prices in rounds prior to k − 1.
Let N , k, N 0, and k0, be integers such that N − k = N 0 − k0 ≥ 1, but

otherwise be arbitrary. It is straightforward to verify that13

E[Z
(N 0)
N 0−1|Z

(N 0)
k0 > x > Z

(N 0)
k0−1] = E[Z

(N)
N−1|Z

(N)
k−1 > x > Z

(N)
k−1] 8x 2 [0, x̄].

In other words, the expectation of the second highest of N 0 draws, conditional

on x being between the k0-th and k0 − 1-st lowest draws, is the same as the
expectation of the second highest of N draws, conditional on x being between

the k-th and k − 1-st lowest draws. Corollary 1 follows immediately from
Proposition 2. In stating the corollary it is useful to write β0k,N(x;pk) for the

equilibrium bid function in round k of an auction with N bidders.

Corollary 1: If N 0−k0 = N −k and bidders are risk neutral, then the equi-
librium bid function in round k0 of an auction with N 0 bidders is the same as

the equilibrium bid function in round k of an auction with N bidders. Equi-

librium bids depend on only the number of rounds remaining in the auction

and the last observed dropout price. In particular, β0k0,N 0(x;pk0) = β
0
k,N(x;pk)

whenever pk0 = pk.

Corollary 1 identifies an intuitive property of equilibrium, but it depends

on the uniqueness of equilibrium. If there are multiple equilibria, then one

might make a selection based on the number of bidders.

Example 1: Suppose N = 3, bidders are risk neutral, and values are dis-

tributed U [0, 1]. Equilibrium drop out prices in round 1 are given by

β01(x) =
1

6
x+

1

6
,

13See Claims 2 and 3 of the Supplemental Appendix.
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and in round 2 are given by

β02(x; p1) =
1

3
x+

1

6
+
1

2
p1.

By Corollary 1, the equilibrium bid function in round 3 of an auction with 4

bidders is β03(x;p2) =
1
3
x+ 1

6
+ 1

2
p2.

CARA Bidders

Proposition 3 characterizes equilibrium when bidders have constant ab-

solute risk aversion (CARA), i.e., their utility functions are given by

uα(x) =
1− e−αx

α
,

where α > 0 is their index of risk aversion. Note that limα!0 u
α(x) = x, i.e.,

bidders are risk neutral in the limit as α approaches zero. Denote by βαk the

equilibrium bid function in round k when bidders have CARA index of risk

aversion α.

Proposition 3: Suppose that bidders are CARA risk averse with index of

risk aversion α > 0. The unique symmetric equilibrium in increasing and

di§erentiable strategies is given, for k = 1, . . . , N − 1, by

βαk (x;pk−1) =
N − k

N − k + 1
pk−1 −

N − k
(N − k + 1)α

ln (Jαk (x)) , (9)

where

JαN−1(x) = E[e
−αZ(N)N−1|Z(N)N−1 > x > Z

(N)
N−2]

and, for k < N − 1, Jαk (x) is defined recursively as

Jαk (x) = E

[(
Jαk+1(Z

(N)
k )

)N−k−1
N−k |Z(N)k > x > Z

(N)
k−1

]
.
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Example 2: Suppose N = 3, bidders are CARA risk averse with index of

risk aversion α, and values are distributed U [0, 1]. Equilibrium drop out

prices in round 1 are given by

βα1 (x) = −
2

3α
ln

0

BB@

R 1
x

(R 1
z e

−αt2(1−t)dt
(1−z)2

) 1
2

3(1− z)2dz

(1− x)3

1

CCA ,

and in round 2 are given by

βα2 (x; p1) =
1

2
p1 −

1

2α
ln

 R 1
x
e−αz2(1− z)dz
(1− x)2

!
.

Figure 1 (below) shows the equilibrium bid functions for α = 10. The

round 2 bid function is shown under the assumption that the first bid-

der drops at a bid of .2, which reveals (in equilibrium) his value is z1 =

(β101 )
−1(.2) ≈ .35154. Since this value is the lower bound of the set of buyer

types remaining in the auction, the figure shows β102 (x; 1/5) for x ≥ z1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

Price

K110›xfi

K210›x; . 2fi

p1

Figure 1: Equilibrium bids by round, for N = 3, U [0, 1], and CARA (α = 10).
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Proposition 4 establishes tight upper and lower bounds for the dropout

prices of CARA risk averse bidders.

Proposition 4: Suppose that bidders are CARA risk averse with index of

risk aversion α > 0. Then for each k = 1, . . . , N − 1 and pk−1 we have that

β0k(x;pk−1) > β
α
k (x;pk−1) >

x− pk−1
N − k + 1

+ pk−1 for x < x̄,

i.e., CARA risk averse bidders demand less compensation than risk neutral

bidders, but always demand compensation of at least (x− pk−1)/(N − k+1).

Proposition 5 establishes the intuitive result that CARA bidders drop out

at lower prices as they become more risk averse.

Proposition 5: Suppose that bidders are CARA risk averse with index of

risk aversion α. Dropout prices decrease as bidders become more risk averse,

i.e., α̃ > α implies, for k = 1, . . . , N − 1, that

βαk (x;pk−1) > β
α̃
k (x;pk−1) 8k 2 {1, . . . , N − 1}, 8x 2 [0, x̄), 8pk−1,

except for bidders with the highest possible value x̄, for whom the dropout

price does not depend α.

Proposition 6 shows that as CARA bidders become infinitely risk averse,

equilibrium bids approach the (linear) lower bound identified in Proposition

4.

Proposition 6: Suppose that bidders are CARA risk averse with index of

risk aversion α. Then for each k = 1, . . . , N − 1 and pk−1 we have

limα!1 β
α
k (x;pk−1) =

x− pk−1
N − k + 1

+ pk−1 for x < x̄.
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Figure 2 below illustrates these results. It shows equilibrium bids in

round 1 for α = 0, 10, 100, and 1 when N = 3 and values are distributed

U [0, 1]. As α approaches infinity, limα!1 β
α
1 (x) = x/3. Later we shall see

that β11 (x) = x/3 corresponds to a particular security strategy.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

x

Price

K1
0›xfi

K110›xfi

K1
100›xfi K1K›xfi

Figure 2: Round 1 equilibrium bids for N = 3, U [0, 1], and α = 0, 10, 100, and 1.

4 Properties of Equilibrium

In this section we examine the properties of equilibrium in the compensation

auction. The auction is clearly ex-post e¢cient in any equilibrium in strictly

increasing bidding strategies. Let V ∗(x) denote the (ex-ante) symmetric

equilibrium expected utility of a bidder whose value is x.14 We say that an

auction is interim proportional if V ∗(x) ≥ u(x/N) 8x 2 [0, x̄]. In other
words, each bidder in the auction obtains in expectation a utility equal to at

least 1/N -th of his value for the item. An auction is ex-post proportional

if for each bidder and each of his possible values x 2 [0, x̄], the realized payo§
of the bidder is at least u(x/N).

14Recall from Propositions 1 and 2 there is a unique symmetric equilibrium when bidders
are either risk neutral or CARA risk averse.
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Proposition 7: The compensation auction is interim proportional.

The intuition for Proposition 7 is straightforward: If a bidder with value

xi follows the strategy of dropping out whenever his compensation reaches

xi/N , then he guarantees himself a payo§ of at least u(xi/N). In particular,

regardless of the strategies and values of the other bidders, he either drops

at some stage k and obtains compensation of exactly xi/N or he wins the

item at a price no more than (N − 1)xi/N . Since a bidder’s equilibrium
strategy must give him at least this payo§, the compensation auction is

interim proportional.

In equilibrium a bidder acts to maximize his expected payo§. Thus,

while a bidder can guarantee himself a payo§ of at least u(xi/N) in the

compensation auction, he may follow instead some other strategy which gives

him a higher expected payo§ but which possibly realizes a payo§ ex-post of

less than u(xi/N).

An auction that is interim proportional is “fair” in the sense that, prior to

the auction, each bidder expects to obtain at least 1/N -th of what he himself

regards as the value of the item. If the auction is “ex-post” proportional,

then even bidders who do not win the auction will regard the outcome as

fair. Example 3 illustrates our results on interim proportionality, and shows

that the compensation auction is not ex-post proportional.

Example 3: Suppose N = 3, bidders are risk neutral, and values are dis-

tributed U [0, 1]. In the compensation auction, a bidder with value zero has

an expected payo§ of 1/6. Therefore, by the Revenue Equivalence Theorem,

the expected payo§ of a bidder with value x is 1
6
+ 1

3
x3. The compensation

auction is interim proportional since 1
6
+ 1

3
x3 ≥ 1

3
x for x 2 [0, 1].

It is also ex-post proportional for the first two bidders to drop. If the value

of the first bidder to drop is x1 then his compensation is β1(x1). Since x1 ≤ 1,
then β1(x1) =

1
6
x1+

1
6
≥ 1

3
x1. If the value of the second bidder to drop is x2,

then p1 ≤ 1
3
implies his compensation is β2(x2, p1)−p1 =

1
3
x2+

1
6
− 1
2
p1 ≥ 1

3
x2.
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The auction need not be ex-post proportional for the winner. If all three

bidders have values near zero, for example, then the first bidder drops at

approximately 1
6
, the second bidder drops at approximately 1

4
, and thus the

payo§ of the winner is approximately −1
4
. !

Mimic Deviations

Suppose bidders are risk neutral and follow a symmetric equilibrium β.

In this section we show that bidders’ equilibrium strategies are not strict

best responses. A bidder also obtains his equilibrium payo§ by a deviation

from β in which, rather than dropping at his equilibrium bid, he “mimics”

the equilibrium behavior of a bidder with a higher value. Consider, in par-

ticular, a bidder for whom in round k the auction price has just reached his

equilibrium dropout price. (This bidder therefore has the k-th lowest value

Z
(N)
k .) In a one-round mimic deviation this bidder remains in the auction

until the next bidder drops, he infers the bidder’s value Z(N)k+1, and then in

round k + 1 he bids as if his own value were Z(N)k+1.
15 Likewise, a m-round

mimic deviation is one in which the bidder allows his dropout price to pass,

he remains in the auction and observes the next m lowest type bidders drop

at rounds k, . . . , k +m − 1, inferring their values Z(N)k+1, . . . , Z
(N)
k+m, and then

in round k+m he bids as though his own value is Z(N)k+m. Note that a m > 0

mimic deviation entails dropping out at a later round, rather than winning

the auction.

For each m 2 {0, . . . , N − k− 1}, let Ck+m be the random variable which
is the bidder’s payo§ from the m-round mimic deviation, where Ck is his

compensation if he obeys β, evaluated at the moment he drops out. Our

main result is that the sequence {Ck+m}
N−k−1
m=0 is a martingale.16

15This bidder will be the next bidder to drop since the values of the remaining bidders
exceed Z(N)k+1.
16Martingales have also been studied in standard sequential first and second price sealed

bid auctions by Weber (1983) and Milgrom and Weber (2000) which demonstrated that
the sequence of sale prices forms a martingale. Mezzetti (2011) and Hu and Zou (2015)
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Proposition 8: For any k < N−1, the sequence {Ck+m}
N−k−1
m=0 of m round

mimic compensations is a martingale, i.e., E[Ck+m+1|Ck+m, . . . , Ck] = Ck+m
for m 2 {0, . . . , N − k − 1}.

The following corollary is an immediate consequence of the martingale

property of mimic compensations.

Corollary: E[Ck+m|Z
(N)
k = xk, . . . , Z

(N)
1 = x1] = Ck for all m = 0, . . . , N −

1− k.

A m-round mimic deviation does not influence which bidder wins the

auction (so long as m ≤ N − 1 − k) and hence has no e§ect on the surplus
realized in the auction. Further, since the expected compensation of the

deviating bidder is unchanged, the expected payo§ of all the other bidders is

unchanged as well.

Example 4: Mimic Martingales Suppose N = 4, bidders are risk neutral,

and values are distributed U [0, 1]. The equilibrium bidding functions are

β01(x) =
1
10
x + 3

20
, β02(x; p1) =

1
6
x + 1

6
+ 2

3
p1, and β

0
3(x; p1, p2) =

1
3
x + 1

6
+

1
2
p2. In what follows it is useful to observe that E

h
Z
(4)
2 |Z

(4)
1 = 1

2

i
= 5

8
,

E
h
Z
(4)
3 |Z

(4)
1 = 1

2

i
= 3

4
, and E

h
Z
(4)
4 |Z

(4)
1 = 1

2

i
= 7

8
.

Consider a bidder with type x = 1/2 when, in round 1, the bid has

reached his equilibrium drop-out price of β01(1/2) = 1/5. He knows he has

the lowest type (i.e., Z(4)1 = 1/2) and, if he obeys β0, he obtains compensation

of 1/5. Suppose instead he follows a 1-round mimic deviation. He remains in

the auction until the bidder with the next lowest value drops in round 1 at

p1 = β
0
1(Z

(4)
2 ). He infers Z

(4)
2 from the price p1 and then in round 2 he bids

as if his value were Z(4)2 , i.e., he drops at the price β
0
2(Z

(4)
2 ; β

0
1(Z

(4)
2 )). The

study how price sequences depend on the bidders’ risk attitudes.
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compensation from this strategy is the random variable

C2(Z
(4)
2 ) = β02(Z

(4)
2 ; β

0
1(Z

(4)
2 ))− β

0
1(Z

(4)
2 )

=
1

6
Z
(4)
2 +

1

6
−
1

3

(
1

10
Z
(4)
2 +

3

20

)

=
2

15
Z
(4)
2 +

7

60
.

The bidder’s expected payo§ from the 1-round mimic deviation is

E

[
C2(Z

(4)
2 )|Z

(4)
1 =

1

2

]
=
2

15
E

[
Z
(4)
2 |Z

(4)
1 =

1

2

]
+
7

60
=
2

15

(
5

8

)
+
7

60
=
1

5
.

In other words, conditional on the bid reaching his dropout price in round

1, the bidder obtains the same expected payo§ from following the 1-round

mimic strategy.

If he follows a 2-round mimic strategy, the bidder waits two rounds, in-

ferring the second and third lowest values Z(4)2 and Z(4)3 , respectively, from

the drop prices in round 1 and 2, and he then bids Z(4)3 in round 3, i.e., he

drops at the price β03(Z
(4)
3 ; β

0
2(Z

(4)
3 , β

0
1(Z

(4)
2 ))).

17 The compensation from this

strategy is

C3(Z
(4)
3 , Z

(4)
2 ) = β03(Z

(4)
3 ; β

0
2(Z

(4)
3 , β

0
1(Z

(4)
2 )))− β

0
2(Z

(4)
3 ; β

0
1(Z

(4)
2 ))

=
1

3
Z
(4)
3 +

1

6
−
1

2

(
1

6
Z
(4)
3 +

1

6
+
2

3

(
1

10
Z
(4)
2 +

3

20

))

=
1

4
Z
(4)
3 −

1

30
Z
(4)
2 +

1

30

The bidder’s expected payo§ from the 2-round mimic deviation is likewise

E

[
C3(Z

(4)
3 , Z

(4)
2 )|Z

(4)
1 =

1

2

]
=
1

4

(
3

4

)
−
1

30

(
5

8

)
+
1

30
=
1

5
.

17We abuse notation here by supressing p1 in β03(x; p1, p2) and instead writing
β03(Z

(4)
3 ;β02(Z

(4)
3 ,β01(Z

(4)
2 ))).
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The bidder’s payo§, however, is strictly lower if he simply remains in the

auction until he wins. In this case he obtains his value minus the price at

which the third bidder drops

1

2
−β03(Z

(4)
4 ; β

0
2(Z

(4)
3 ; β

0
1(Z

(4)
2 ))) =

1

2
−
[
1

3
Z
(4)
4 +

1

6
+
1

2

[
1

6
Z
(4)
3 +

1

6
+
2

3

[
1

10
Z
(4)
2 +

3

20

]]]
.

Expected compensation, conditional on Z(4)1 = 1/2, is only −7/40.

5 Security Strategies

A significant practical obstacle to the actual implementation of any dissolu-

tion mechanism may be that the participants are uncertain of their equilib-

rium strategies or uncertain of whether the other participants will play their

part of an equilibrium, and therefore uncertain of what payo§ they are likely

to obtain via the mechanism. In this section we provide advice to the bidders

with the goal of guaranteeing that they do not do “too badly” regardless of

the behavior of their rivals.

We identify security strategies and security payo§s in the compensation

auction. A player’s security payo§ is the largest payo§ that he can guarantee

himself, regardless of the values and strategies of the other players, and a

security strategy is a strategy which guarantees a player his security payo§.

Write v(xi, x−i, β
i, β−i) for the payo§ to a bidder whose value is xi and who

follows the strategy βi, where x−i = (x1, . . . , xi−1, xi+1, . . . , xN) and β
−i =

(β1, . . . , βi−1, βi+1, . . . , βN) are the values and strategies of the remaining

players.

Definition: Bidder i’s security payo§ when his value is xi is the largest

value v̄(xi) for which he has a strategy β̄
i such that

v(xi, x−i, β̄
i
, β−i) ≥ v̄(xi) 8x−i, β−i.
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We say that β̄i a security strategy for bidder i if for each xi 2 [0, x̄] the

strategy guarantees him v̄(xi).

Proposition 9 identifies bidder i’s security payo§ and a security strategy

which attains it.

Proposition 9: The strategy which calls for bidder i to drop out when his

compensation reaches xi/N is a security strategy and realizes the security

payo§ of xi/N . More formally, the strategy β̄
i
k(xi;pk−1) = xi/N + pk−1 for

each k 2 {1, . . . , N − 1}, and every xi 2 [0, x̄] and pk−1 such that 0 ≤ p1 ≤
. . . ≤ pk−1, is a security strategy.

The strategy given in Proposition 9 is simple in the sense that the com-

pensation a bidder demands does not depend on the prior history of dropout

prices — he drops as soon as the current bid exceeds the prior dropout price

by xi/N . A bidder, however, has many security strategies. Of particular

interest is the one which calls for a bidder to drop in stage k when the bid

exceeds the prior dropout price by (xi − pk−1)/(N − k + 1). Proposition 10
establishes that this strategy is also security strategy.

Proposition 10: Let β̄i be such that β̄ik(xi;pk−1) = (xi − pk−1)/(N − k +
1) + pk−1 for each k 2 {1, . . . , N − 1}, and every xi 2 [0, x̄] and pk−1 such
that 0 ≤ p1 ≤ . . . ≤ pk−1 ≤ xi.18 Then β̄

i is a security strategy.

Proposition 11 generalizes Proposition 10 by identifying a class of secu-

rity strategies.19 It shows that any strategy in which the bidder demands

compensation between xi/N + pk−1 and (xi − pk−1)/(N − k + 1) + pk−1 is a
security strategy.

18No restriction is placed on β̄
i
k(xi;pk−1) if xi < pk−1 since this contingency never arises

if bidder i follows β̄
i
.

19We adopt the usual convention that [a, b] = {a} if a = b, and [a, b] = ; if a > b.
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Proposition 11: Let β̄i be such that β̄ik(xi;pk−1) 2 [
xi
N
+pk−1,

xi−pk−1
N−k+1 +pk−1]

for each k 2 {1, . . . , N − 1}, and every xi 2 [0, x̄] and pk−1 such that 0 ≤
p1 ≤ . . . ≤ pk−1 ≤ x̄.20 Then β̄

i is a security strategy.

Perfect Security Strategies

A bidder’s security payo§ is the maximum payo§ he can guarantee himself

at the start of the auction. The main result in this subsection is to identify

the unique strategy which maximizes the payo§ a bidder guarantees himself

following any sequence p1, . . . , pk of drop out prices.

To proceed, it is useful to introduce the notation of a subauction. In

the subauction Γ(n, p0) there are n ≤ N bidders and the price ascends from

p0, where p0 may be strictly positive. If p1 ≤ . . . ≤ pn−1 is the sequence of
dropout prices in Γ(n, p0), then the winner pays the di§erence pk − pk−1 to
the k-th bidder to drop for k = {1, . . . , n − 1}, and also pays p0 to a third
party.

Our results to this point concern the auction Γ(N, 0). However, if at

round k the sequence of dropout prices is p1, . . . , pk−1, then the remaining

bidders participate in Γ(N−(k−1), pk−1), i.e., the subauction withN−(k−1)
bidders and the price ascending from pk−1.

Proposition 10 identified a security strategy for Γ(N, 0). Proposition 12 is

the analogue to Proposition 10 for Γ(n, p0). It identifies the bidders’ security

payo§s and a security strategy when the initial price p0 need not be zero.

Proposition 12: Let p0 ≥ 0. In the subauction Γ(n, p0) the strategy β̄
i,

given by

β̄
i
k(xi;pk−1) =

8
>><

>>:

(xi − pk−1)/(n− k + 1) + pk−1 if xi ≥ pk−1

pk−1 if xi < pk−1

20Observe that no restriction is placed on dropout prices for k, xi, and pk−1 such that
[xiN + pk−1,

xi−pk−1
N−k+1 + pk−1] is empty.
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for each k 2 {1, . . . , n − 1}, and every xi 2 [0, x̄] and pk−1 such that p0 ≤
p1 ≤ . . . ≤ pk−1, is a security strategy. Furthermore, bidder i’s security

payo§ when his value is xi is (xi − p0)/n.

An implication of Proposition 12 is that a bidder’s security payo§ weakly

increases from one round to the next when he follows the security strategy

β̄
i identified in Proposition 10. To see this, consider a bidder whose value

is xi and who remains in the auction at round k + 1 following drops at

prices p1, . . . , pk. By Proposition 12, his security payo§ in the subauction

Γ(N − k, pk) is
xi − pk
N − k

.

Since the bidder did not drop in round k, then the bid at which a rival

dropped must be less than his own round k bid, i.e.,

pk ≤ β̄
i
k(xi;pk−1) =

xi − pk−1
N − k + 1

+ pk−1.

Hence
xi − pk
N − k

≥
xi − (

xi−pk−1
N−k+1 + pk−1)

N − k
=

xi − pk−1
N − (k − 1)

,

where the right hand side was the bidder’s security payo§ in round k in Γ(N−
(k−1), pk−1). Indeed, so long as bidder i is never indi§erent between dropping
or continuing, the inequalities above are strict and bidder i’s security payo§

strictly increases from one round to the next.

A security strategy is perfect if it continues to be a security strategy

in the auction that remains following any sequence of drops. Formalizing

this idea requires introducing the notion of the restriction of a strategy (for

Γ(N, 0)) to a subauction. Let βi|pk−1 be the restriction of β
i to the auction

Γ(N − (k − 1), pk−1) obtained after k − 1 bidders in Γ(N, 0) drop at prices
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(p1, . . . , pk−1), i.e., define

βi1|pk−1(xi) ≡ βik(xi,pk−1),

βi2|pk−1(xi; pk) ≡ βik+1(xi;pk−1, pk),
...

βiN−k|pk−1(xi; pk, . . . , pN−2) ≡ βiN−1(xi;pk−1, pk, . . . , pN−2).

Formally, a perfect security strategy is defined as follows:

Definition: β̄i is a perfect security strategy for bidder i if for each xi 2
[0, x̄], k 2 {1, . . . , N − 1}, and pk−1 such that p0 ≤ p1 ≤ . . . ≤ pk−1, then

β̄
i|pk−1 is a security strategy for bidder i in Γ(N − (k − 1), pk−1).

Proposition 13 shows that the security strategy identified in Proposition

10 is the unique perfect security strategy.

Proposition 13: In the compensation auction Γ(N, 0) the strategy β̄i, given

by

β̄
i
k(xi;pk−1) =

(
(xi − pk−1)/(n− k + 1) + pk−1 if xi ≥ pk−1

pk−1 if xi < pk−1

for each k 2 {1, . . . , N − 1}, and every xi 2 [0, x̄] and pk−1 such that 0 ≤
p1 ≤ . . . ≤ pk−1, is the unique perfect security strategy.

6 Discussion

Compensation auctions can also be used to allocate an indivisible undesirable

item (e.g., a waste dump or a nuclear power plant) or an indivisible costly

task or chore (e.g., an administrative position). An allocation mechanism

in such a setting must determine which of the N players is to accept the
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undesirable item or complete the chore and how the other players are going

to compensate him. We consider the problem of allocating a chore.

The key to employing the compensation auction (which is defined for a

“good”) is to make the chore desirable. Suppose each bidder’s cost of com-

pleting the chore is independently and identically distributed according to

cumulative distribution function F with support [0, c̄]. In order to make

the chore desirable, each of the N bidders contributes c̄/N into a pot which

will be awarded to the bidder assigned to complete the chore. Thus, if bid-

der i with cost ci undertakes the chore, then he receives a total payo§ of

vi = c̄− ci ≥ 0. The compensation auction can be used to allocate the chore
to a bidder and to determine the compensations (which can be viewed as

rebates of c̄/N) that the winner provides to the remaining bidders.

The auctions operates as before: The price, starting from zero, rises con-

tinuously and a bidder may drop out at any point. A bidder who drops out

surrenders the opportunity to do the chore but, in return, receives compen-

sation from the winner equal to the di§erence between the price at which

he drops and the price at which the prior bidder dropped. The auction

ends when exactly one bidder remains. Since the auction is interim pro-

portional (see Proposition 7), then bidder i’s equilibrium payo§ is at least

vi/N = (c̄− ci)/N . Thus bidder i’s payo§, net of his contribution c̄/N , is at
least

c̄− ci
N

−
c̄

N
= −

ci
N
.

In other words, each bidder’s payo§ is equal to at least 1/N -th of his cost of

undertaking the chore. Each bidder i has a security strategy which guarantees

that he incurs a cost no more than ci/N (Proposition 9). Furthermore, since

the auction is ex-post e¢cient, the chore is allocated to the bidder for whom

the cost of completing the chore is smallest.
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7 Appendix

Lemma 0 found in McAfee (1992) is not directly applicable to our paper since

the payo§ function may not be C2 for all x and y. However, the following

simple extension plays the same role and can be applied in our setting.

Lemma 0: Suppose an agent of type x who reports y receives profits equal

to

π(x, y) =

(
πH(x, y) if y ≥ x
πL(x, y) if y ≤ x

.

Further suppose that for all x we have

@

@y
π(x, x) =

@

@y
πH(x, x) =

@

@y
πL(x, x) = 0 (10)

and that
@2

@x@y
πH(x, y) ≥ 0 for y > x

@2

@x@y
πL(x, y) ≥ 0 for y < x.

(11)

Then π is maximized over y at y = x.

Proof of Lemma 0: First, from (10), we have that @
@y
π(x, x) = @

@y
πH(x, x) =

@
@y
πL(x, x) = 0 for all x. Second, since (10) and (11) if y > x, then

@

@y
πH(x, y) ≤ 0

and if y < x, then
@

@y
πL(x, y) ≥ 0.

Hence, we have established that: (i) if y < x, then @
@y
π(x, y) = @

@y
πL(x, y) ≥ 0;

(ii) if y = x, then @
@y
π(x, x) = 0; and (iii), if y > x, then @

@y
π(x, y) =

@
@y
πH(x, y) ≤ 0. Therefore π is maximized over y at y = x. !
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Proof of Proposition 1: Part (i) is established by the heuristic derivation.

We prove (ii). Let β = (β1, . . . , βN−1) be a solution to the system of di§er-

ential equations. Since equilibrium is in increasing strategies, the sequence

of dropout prices (p1, . . . , pk−1) at round k reveals the k − 1 lowest values
(z1, . . . , zk−1). In the proof it is convenient to write the round k equilib-

rium bid as a function of the prior dropout values rather than as a function

of the prior dropout prices. In particular, we write βk(x|zk−1) rather than
βk(x;pk−1).

For each k < N , let πk(y, x|zk−1) be the expected payo§ to a bidder with
value x who in round k deviates from equilibrium and bids as though his

value is y (i.e., he bids βk(y|zk−1)), when zk−1 is the profile of values of the
k − 1 bidders to drop so far and the remaining bidders follow β. Define

Πk(x|zk−1) = πk(x, x|zk−1).

It is clearly never optimal for a bidder to bid as though his type were less

than zk−1, i.e., bid less than βk(zk−1|zk−1), since bidding zk−1 yields a greater
compensation.21

Consider the following two-part claim for round k:

(a) For each zk−1: if x ≥ zk−1 then x 2 argmaxy πk(y, x|zk−1), i.e., it is
optimal for the bidder to follow βk in round k; if x < zk−1 then zk−1 2
argmaxy πk(y, x|zk−1).
(b) For each zk−1 we have that

dΠk(x|zk−1)
dx

≥ 0 .

We prove by induction that the claim is true for each k 2 {1, . . . , N − 1}.
We first show the claim is true for round N − 1. Let zN−2 be arbitrary.

21Hereafter it is convenient to say the bidder bids y rather than saying he bids
βk(y|zk−1).
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Consider an active bidder in the k-th round whose value is x but who bids

as though it were y ≥ zN−2. Suppose that x ≥ zN−2. With a bid of y ≥
zN−2, the bidder wins and obtains x − βN−1(zN−1|zN−2) if y > zN−1, and

he obtains compensation βN−1(y|zN−2) − pN−2 if y < zN−1, where pN−2 =

βN−2(zN−2|zN−3). Hence

πN−1(y, x|zN−2) =
yR

zN−2

u(x− βN−1(zN−1|zN−2))g
(N−1)
N−1 (zN−1|zN−2)dzN−1

+
x̄R
y

u(βN−1(y|zN−2)− pN−2)g
(N−1)
N−1 (zN−1|zN−2)dzN−1.

Di§erentiating with respect to y yields @πN−1(y, x|zN−2)/@y =

[u(x− βN−1(y|zN−2))− u(βN−1(y|zN−2)− pN−2)]g
(N−1)
N−1 (zN−1|zN−2)

+ u0(βN−1(y|zN−2)− pN−2)β
0
N−1(y|zN−2)(1−G

(N−1)
N−1 (y|Z

(N−1)
N−2 = zN−2)).

(12)

Since equation (3) holds for all x and, in particular, for x = y, we have that

u0(βN−1(y|zN−2)− pN−2)β
0
N−1(y|zN−2)

=
[
u(βN−1(y|zN−2)− pN−2)− u(y − βN−1(y|zN−2))

]
λ
(N−1)
N−1 (y|zN−2).

(13)

Substituting (13) into (12) and simplifying yields

@πN−1(y, x|zN−2)
@y

=
[
u(x− βN−1(y|zN−2))− u(y − βN−1(y|zN−2))

]
g
(N−1)
N−1 (y|zN−2).

Clearly, @πN−1(y, x|zN−2)/@y|y=x = 0. Moreover, for y ≥ zN−2 we have

@2πN−1(y, x|zN−2)
@y@x

= u0(x− βN−1(y|zN−2))g
(N−1)
N−1 (y|zN−2) ≥ 0,

where the inequality holds since u0 > 0 and g(N−1)N−1 (y|zN−2) > 0.
Suppose x < zN−2. As already noted, it is never optimal to bid y less
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than zN−2. Furthermore, y ≥ zN−2 > x implies that

[u(x− βN−1(y|zN−2))− u(y − βN−1(y|zN−2))]g
(N−1)
N−1 (y|zN−2) < 0.

Thus @πN−1(y, x|zN−2)/@y < 0 for y ≥ zN−2 and therefore zN−2 2 argmaxy πN−1(y, x|zN−2).
Hence (a) is true for k = N − 1 by Lemma 0 of McAfee.
To prove (b), note that

dΠN−1(x|zN−2)
dx

=
@πN−1(y, x|zN−2)

@y

∣∣∣∣
y=x

+
@πN−1(y, x|zN−2)

@x

∣∣∣∣
y=x

=

xZ

zN−2

u0(x− βN−1(zN−1|zN−2))g
(N−1)
N−1 (zN−1|zN−2)dzN−1

≥ 0,

where @πN−1(y, x|zN−2)/@y|y=x = 0. Hence (b) holds for k = N − 1.

Assume the claim is true for rounds k + 1 through N − 1. We show that
the claim is true for round k. Let zk−1 be arbitrary. Case (i): Consider an

active bidder in the k-th round whose value is x but who bids as if it were

y 2 [zk−1, x]. If zk 2 [zk−1, y] he continues to round k + 1 where, by the
induction hypothesis, he optimally bids x and he obtains Πk+1(x|zk, zk−1).
If zk ≥ y he obtains compensation u (βk(y|zk−1)− pk−1) in round k, where
pk−1 = βk−1(zk−1|zk−2). Hence his payo§ is

πk(y, x|zk−1) =
R y
zk−1

Πk+1(x|zk, zk−1)g
(N−1)
k (zk|zk−1)dzk

+
R x̄
y
u (βk(y|zk−1)− pk−1) g

(N−1)
k (zk|zk−1)dzk.

Di§erentiating with respect to y yields

@πk(y, x|zk−1)
@y

= [Πk+1(x|y, zk−1)− u (βk(y|zk−1)− pk−1)]g
(N−1)
k (y|zk−1)

+u0 (βk(y|zk−1)− pk−1) β
0
k(y|zk−1)(1−G

(N−1)
k (y|Z(N−1)k−1 = zk−1))
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From our heuristic derivation we have

u0 (βk(y|zk−1)− pk−1) β
0
k(y|zk−1)

= −
[
u(βk+1(y|y, zk−1)− βk(y|zk−1))− u (βk(y|zk−1)− pk−1)

]
λ
(N−1)
k (y|zk−1).

Substituting this expression into the prior equation, and using the definition

of λ(N−1)k (y|zk−1), yields

@πk(y, x|zk−1)
@y

= [Πk+1(x|y, zk−1)−u(βk+1(y|βk(y|zk−1))−βk(y|zk−1))]g
(N−1)
k (y|zk−1).

When a bidder has the same value x as the last bidder to drop, then he is

the next bidder to drop and he obtains compensation u(βk+1(x|x, zk−1) −
βk(x|zk−1)). Hence

Πk+1(x|x, zk−1) = u(βk+1(x|x, zk−1)− βk(x|zk−1)),

and therefore @πk(y, x|zk−1)/@y|y=x = 0.
For y 2 [zk−1, x] we have

@2πk(y, x|zk−1)
@y@x

=
d

dx
Πk+1(x|y, zk−1)g

(N−1)
k (y|zk−1) ≥ 0,

where the inequality follows since (b) is true for round k+1 by the induction

hypothesis.

Case (ii): Suppose the bidder bids as if his value is y ≥ x. If zk 2
[zk−1, x], then he continues to round k + 1 and, by the induction hypothesis,

he bids x and obtains Πk+1(x|zk, zk−1). If zk 2 [x, y], then he continues

to round k + 1 and, by the induction hypothesis, he bids zk and obtains

compensation βk+1(zk|zk, zk−1) − βk(zk|zk−1). If zk > y then in round k he
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wins compensation βk(y|zk−1)− pk−1. Thus his payo§ at round k is

πk(y, x|zk−1) =
R x
zk−1

Πk+1(x|zk, zk−1)g
(N−1)
k (zk|zk−1)dzk

+
R y
x
u(βk+1(zk|zk, zk−1)− βk(zk|zk−1))g

(N−1)
k (zk|zk−1)dzk,

+
R x̄
y
u (βk(y|zk−1)− pk−1) g

(N−1)
k (zk|zk−1)dzk.

Di§erentiating with to y yields

@πk(y, x|zk−1)
@y

= u(βk+1(y|y, zk−1)− βk(y|zk−1))g
(N−1)
k (y|zk−1)

−u (βk(y|zk−1)− pk−1) g
(N−1)
k (y|zk−1)

+u0 (βk(y|zk−1)− pk−1) β
0
k(y|zk−1)(1−G

(N−1)
k (zk|zk−1))dzk.

From the heuristic derivation we have

u0 (βk(y|zk−1)− pk−1) β
0
k(y|zk−1)

= −
[
u(βk+1(y|y, zk−1)− βk(y|zk−1))− u (βk(y|zk−1)− pk−1)

]
λ
(N−1)
k (y|zk−1).

Substituting this expression into the prior equation, and using the definition

of λ(N−1)k (y|zk−1), yields for y ≥ x that

@πk(y, x|zk−1)
@y

= u(βk+1(y|y, zk−1)− βk(y|zk−1))g
(N−1)
k (y|zk−1)

−u (βk(y|zk−1)− pk−1) g
(N−1)
k (y|zk−1)

−
[
u(βk+1(y|y, zk−1)− βk(y|zk−1))− u (βk(y|zk−1)− pk−1)

]
g
(N−1)
k (y|zk−1)

= 0.

We have shown that @πk(y, x|zk−1)/@y|y=x = 0 and @πk(y, x|zk−1)/@y for
y ≥ zk−1. If x < zk−1 then clearly zk−1 2 argmaxy πk(y, x|zk−1). Hence (a)
is true for round k by Lemma 0 of McAfee (1992).
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To establish (b) is true for round k, observe that

dΠk(x|zk−1)
dx

=
@πk(y, x|zk−1)

@y

∣∣∣∣
y=x

+
@πk(y, x|zk−1)

@x

∣∣∣∣
y=x

=

xZ

zk−1

d

dx
Πk+1(x|zk, zk−1)g

(N−1)
k (zk|zk−1)dzN−1

+Πk+1(x|x, zk−1)g
(N−1)
k (x|zk−1)

≥ 0,

since dΠk+1(x|zk, zk−1)/dx ≥ 0 by the induction hypothesis andΠk+1(x|x, zk−1) ≥
0. !

Proof of Proposition 2: The proof is symmetric to the proof of Propo-

sition 3, and is therefore omitted. Alternatively, one can obtain the risk

neutral bidding functions as limits of the CARA risk averse functions, i.e.,

as βk(x;pk−1) = limα!0 β
α
k (x;pk−1). !

Proof of Proposition 3: We first solve for the round N − 1 bid function.
When u(x) = (1− e−αx)/α, then (6) yields the di§erential equation

−αe−α(2β
α
N−1(x;pN−2)−pN−2)dβ

α
N−1(x;pN−2)

dx
=
(
e−α(2β

α
N−1(x;pN−2)−pN−2) − e−αx

)
λNN−1 (x) .

Multiply both sides by 2(1− F (x))2, this equation can be written as

d

dx

(
e−α(2β

α
N−1(x;pN−2)−pN−2)(1− F (x))2

)
= −2e−αxf(x)(1− F (x)).

By the Fundamental Theorem of Calculus

e−α(2β
α
N−1(x;pN−2)−pN−2)(1− F (x))2 = −

Z x

0

e−αz2f(z)(1− F (z))dz + C,

where C is the constant of integration. Since the left hand side of this
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equation is zero when x = x̄, then

C =

Z x̄

0

e−αz2(1− F (z))f(z)dz.

and therefore the equation can be written as

e−α(2β
α
N−1(x;pN−2)−pN−2)(1− F (x))2 =

Z x̄

x

e−αz2(1− F (z))f(z)dz.

Solving yields

βαN−1(x;pN−2) =
1

2
pN−2 −

1

2α
ln

[Z x̄

x

e−αz
2(1− F (z))f(z)
(1− F (x))2

dz

]
,

which, by Claim 4 in the Supplemental Appendix, can be written as22

βαN−1(x;pN−2) =
1

2
pN−2 −

1

2α
ln
(
E
h
e−αZ

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−2

i)
.

Finally, by the definition of JαN−1, we can write

βαN−1(x;pN−2) =
1

2
pN−2 −

1

2α
ln
(
JαN−1(x)

)
.

Next, we solve for the round k bid function when k < N − 1. Assume
that in round k + 1 bidders follow the bid function

βαk+1(x;pk) =
N − k − 1
N − k

pk −
N − k − 1
(N − k)α

ln
(
Jαk+1(x)

)
.

Then

βαk+1(x; β
α
k (x;pk−1),pk−1) =

N − k − 1
N − k

βαk (x;pk−1)−
N − k − 1
(N − k)α

ln
(
Jαk+1(x)

)
.

22See Claim 2 of the Supplemental Appendix for the conditional density
g
(N)
N−1(zN−1|Z

(N)
k > x > Z

(N)
k−1).
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and thus βαk+1(x; β
α
k (x;pk−1),pk−1)− β

α
k (x;pk−1) equals

−
N − k − 1
(N − k)α

ln
(
Jαk+1(x)

)
−

1

N − k
βαk (x;pk−1).

For round k < N , by equation (7) we have

−αe−α(
N−k+1
N−k βαk (x;pk−1)−pk−1) dβ

α
k (x;pk−1)

dx

=
h
e−α(

N−k+1
N−k βαk (x;pk−1)−pk−1) − Jαk+1(x)

N−k−1
N−k

i
(N − k) f(x)

1−F (x) .

Multiplying both sides of this equation by N−k+1
N−k (1− F (x))N−k+1 yields

d
dx

(
e−α(

N−k+1
N−k βαk (x;pk−1)−pk−1)(1− F (x))N−k+1

)

= −Jαk+1(x)
N−k−1
N−k (N − k + 1) (1− F (x))N−kf(x).

Applying the Fundamental Theorem of Calculus, we obtain

e−α(
N−k+1
N−k βαk (x;pk−1)−pk−1)(1− F (x))N−k+1

= −
R x
0
Jαk+1(z)

N−k−1
N−k (N − k + 1) (1− F (z))N−kf(z)dz + C,

(14)

where C is an arbitrary constant.

Since the LHS of (14) is zero when x = x̄, then

C =

Z x

0

Jαk+1(z)
N−k−1
N−k (N − k + 1) (1− F (z))N−kf(z)dz.

Hence
e−α(

N−k+1
N−k βαk (x;pk−1)−pk−1)(1− F (x))N−k+1

=
R x̄
x
Jαk+1(z)

N−k−1
N−k (N − k + 1) (1− F (z))N−kf(z)dz.

35



Hence βαk (x;pk−1) equals

N − k
N − k + 1

pk−1−
N − k

(N − k + 1)α
ln

 Z x̄

x

(Jαk+1(z))
N−k−1
N−k

(N − k + 1) (1− F (z))N−k f(z)
(1− F (x))N−k+1

dz

!
.

By Claim 4 of the Supplemental Appendix, we can write

βαk (x;pk−1) =
N − k

N − k + 1
pk−1−

N − k
(N − k + 1)α

ln

(
E

[(
Jαk+1(Z

(N)
k )

)N−k−1
N−k |Z(N)k > x > Z

(N)
k−1

])
,

and hence by the definition of Jαk we have

βαk (x;pk−1) =
N − k

N − k + 1
pk−1 −

N − k
(N − k + 1)α

ln (Jαk (x)) ,

which is the desired result. !

Let

H0
k+1(x) =

1

N − k
E[Z

(N)
N−1|Z

(N)
k+1 > x > Z

(N)
k ].

The conditional density for this expectation is given by

g
(N)
N−1(t|Z

(N)
k+1 > x > Z

(N)
k ) =

(N − k) (N − k − 1) [F (t)− F (x)]N−k−2[1− F (t)]f(t)
(1− F (x))N−k

.

The following lemma is useful in proving Proposition 4.

Lemma A:
Z x̄

x

H0
k+1(t)

(N − k + 1)[1− F (t)]N−kf(t)
[1− F (x)]N−k+1

dt =
1

N − k
E
h
Z
(N)
N−1|Z

(N)
k > x > Z

(N)
k−1

i
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Proof: We have
Z x̄

x

H0
k+1(t)

(N − k + 1)[1− F (t)]N−kf(t)
[1− F (x)]N−k+1

dt

=

Z x̄

x

 
1

N − k

Z x̄

t

q
(N − k)(N − k − 1) [F (q)− F (t)]N−k−2 [1− F (q)]f(q)

[1− F (t)]N−k

!
dq

×
(N − k + 1)[1− F (t)]N−kf(t)

[1− F (x)]N−k+1
dt

=

Z x̄

x

Z x̄

t

q
(N − k + 1)(N − k − 1) [F (q)− F (t)]N−k−2 [1− F (q)]f(q)f(t)

[1− F (x)]N−k+1
dqdt.

Changing the order of integration, we can write this as

Z x̄

x

Z q

x

q
(N − k + 1)(N − k − 1) [F (q)− F (t)]N−k−2 [1− F (q)]f(q)f(t)

[1− F (x)]N−k+1
dtdq,

or

Z x̄

x

q
(N − k + 1)(N − k − 1)[1− F (q)]f(q)

[1− F (x)]N−k+1

(Z q

x

[F (q)− F (t)]N−k−2 f(t)dt
)
dq.

Since

Z q

x

[F (q)− F (t)]N−k−2 f(t)dt = −
[F (q)− F (t)]N−k−1

N − k − 1

∣∣∣∣∣

t=q

t=x

=
[F (q)− F (x)]N−k−1

N − k − 1
,

the above expression is equal to

1

N − k

Z x̄

x

q
(N − k + 1)(N − k) [F (q)− F (x)]N−k−1 [1− F (q)]f(q)

[1− F (x)]N−k+1
dq

which is just 1
N−kE

h
Z
(N)
N−1|Z

(N)
k > x > Z

(N)
k−1

i
. !

Proof of Proposition 4: Part (i). We first show that for each k =

1, . . . , N − 1 and pk−1 that β0k(x;pk−1) ≥ β
α
k (x;pk−1) for x < x̄. The proof
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is by induction.

For k = N − 1, since ex is a convex function, then by Jensen’s Inequality,
for x < x̄ we have

eE[−αZ
(N)
N−1|Z

(N)
N−1>x>Z

(N)
N−2] < E[e−αZ

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−2].

Noting that the RHS is JαN−1(x), taking the log of both sides, and then

multiplying through by −1/(2α) yields

1

2
E[Z

(N)
N−1|Z

(N)
N−1 > x > Z

(N)
N−2] > −

1

2α
ln(JαN−1(x))

Adding 1
2
pN−2 to both sides yields the result β

0
N−1(x;pN−2) > β

α
N−1(x;pN−2)

for x < x̄.

For k ≤ N − 1, define

H0
k(x) =

1

N − k + 1
E[Z

(N)
N−1|Z

(N)
k > x > Z

(N)
k−1],

and

Hα
k (x) = −

N − k
(N − k + 1)α

ln(Jαk (x)) = −
1

α
ln
(
Jαk (x)

N−k
N−k+1

)
,

where Jαk (x) is defined in Proposition 3. We have that

e−αH
α
k (x) = Jαk (x)

N−k
N−k+1 .

We established above that H0
N−1(x) > H

α
N−1(x), i.e.,

1

2
E[Z

(N)
N−1|Z

(N)
N−1 > x > Z

(N)
N−2] > −

1

2α
ln(E[e−αZ

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−2]).

Assume for k < N − 2 that H0
k+1(x) > Hα

k+1(x) for x < x̄. We show

that H0
k(x) > Hα

k (x) for x < x̄. Since −αH0
k+1(x) < −αHα

k+1(x) and e
x is
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increasing, then

e−αH
0
k+1(x) < e−αH

α
k+1(x) for x < x̄,

or

e−αH
0
k+1(x) < Jαk+1(x)

N−k−1
N−k for x < x̄,

Thus

E[e−αH
0
k+1(Z

(N)
k )|Z(N)k > x > Z

(N)
k−1] < E[J

α
k+1(Z

(N)
k )

N−k−1
N−k |Z(N)k > x > Z

(N)
k−1].

(15)

The right hand side is Jαk (x). Consider the left hand side. Since e
x is convex,

then

eE[−αH
0
k+1(Z

(N)
k )|Z(N)k >x>Z

(N)
k−1] < E[e−αH

0
k+1(Z

(N)
k )|Z(N)k > x > Z

(N)
k−1].

This inequality and (15) imply

eE[−αH
0
k+1(Z

(N)
k )|Z(N)k >x>Z

(N)
k−1] < Jαk (x).

Taking logs of both sides of this inequality yields

E[−αH0
k+1(Z

(N)
k )|Z(N)k > x > Z

(N)
k−1] < ln (J

α
k (x)) .

Multiplying both sides by − N−k
(N−k+1)α yields

Z x̄

x

H0
k+1(z)

(N − k)[1− F (z)]N−kf(z)
(1− F (x))N−k+1

dz > −
N − k

(N − k + 1)α
ln (Jαk (x)) .

By Lemma A, the LHS can be written as

1

N − k + 1
E
h
Z
(N)
N−1|Z

(N)
k > x > Z

(N)
k−1

i
.
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Hence

1

N − k + 1
E
h
Z
(N)
N−1|Z

(N)
k > x > Z

(N)
k−1

i
> −

N − k
(N − k + 1)α

ln (Jαk (x)) .

Adding N−k
N−k+1pk−1 to both sides yields β

0
k(x;pk−1) > β

α
k (x;pk−1) for x < x̄.

This proves Part (i).

Part (ii). We now show that for each k = 1, . . . , N − 1 and pk−1 that

βαk (x;pk−1) >
1

N − k + 1
x+

N − k
N − k + 1

pk−1 for x < x̄.

The proof is by induction.

Since e−αz < e−αx for z 2 (x, x̄] then

JαN−1(x) = E[e
−αZ(N)N−1|Z(N)N−1 > x > Z

(N)
N−2] < e

−αx.

Taking logs of both sides and rearranging yields

−
1

2α
ln(JαN−1(x)) >

1

2
x,

i.e.,Hα
N−1(x) > x/2 for x < x̄. Adding

1
2
pN−2 to both sides yields β

α
N−1(x;pk−1) >

x/2 + pN−2/2 for x < x̄.

Assume for k < N − 2 that Hα
k+1(x) > 1/(N − k) for x < x̄. We show

that

Hα
k (x) >

1

N − k + 1
x for x < x̄.

Since Hα
k+1(x) is increasing, then for z > x we have Hα

k+1(z) > Hα
k+1(x) >

x/(N − k) or −αHα
k+1(z) < −αHα

k+1(x) < −αx/(N − k) and thus

e−αH
α
k+1(z) = Jαk+1(z)

N−k−1
N−k < e−αH

α
k+1(x) < e−α

x
N−k .

40



Hence

E[Jαk+1(Z
(N)
k )

N−k−1
N−k |Z(N)k > x > Z

(N)
k ] < e−α

x
N−k .

Taking logs of both sides yields

ln(E[Jαk+1(Z
(N)
k )

N−k−1
N−k |Z(N)k > x > Z

(N)
k ]) < −α

x

N − k
,

i.e.,

−
N − k

(N − k + 1)α
ln(E[Jαk+1(Z

(N)
k )

N−k−1
N−k |Z(N)k > x > Z

(N)
k ]) >

x

N − k + 1
.

Hence Hα
k (x) > x/(N − k + 1) for x < x̄. Adding N−k

N−k+1pk−1 to each side

gives us

βαk (x;pk−1) >
x

N − k + 1
+

N − k
N − k + 1

pk−1 for x < x̄. !

Proof of Proposition 5: The proof is by induction. Suppose α̃ > α. Since

the transformation y = x
α
α̃ is concave, then by Jensen’s inequality we have

that (
E[e−α̃Z

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−1]

)α
α̃

≥ E[
(
e−α̃Z

(N)
N−1

)α
α̃ |Z(N)N−1 > x > Z

(N)
N−1]

= E[e−αZ
(N)
N−1|Z(N)N−1 > x > Z

(N)
N−1].

(16)

Next, after applying logs to both sides of (16), doing some algebraic manip-

ulations, and adding 1
2
pN−2 to both sides of (16) we have

1
2
pN−2 − 1

2α
lnE[e−αZ

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−1]

≥ 1
2
pN−2 − 1

2α̃
lnE[e−α̃Z

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−1]

(17)
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Thus, we have βαN−1(x; pN−1) ≥ β
α̃
N−1(x; pN−1).

(Induction Hypothesis): Suppose βαk+1(x; pk) ≥ β
α̃
k+1(x; pk). Let H

α
k+1(x)

be the non-linear part of βαk+1(x; pk) and let H
α̃
k+1(x) be the non-linear part

of βα̃k+1(x; pk).

We now consider the k-th round. As before, since the transformation

y = x
α
α̃ is concave, then by Jensen’s inequality we have that

(
E[e−α̃H

α̃
k+1(Z

(N)
N−1)|Z(N)k > x > Z

(N)
k−1]

)α
α̃

≥ E[e−αH
α̃
k+1(Z

(N)
N−1)|Z(N)k > x > Z

(N)
k−1].

(18)

By the induction hypothesis we have that Hα
k+1(x) ≥ H α̃

k+1(x) and therefore

the RHS of (18) is greater than

E[e−αH
α
k+1(Z

(N)
N−1)|Z(N)k > x > Z

(N)
k−1]. (19)

Consequently, the LHS of (18) is greater than (19) or

(
E[e−α̃H

α̃
k+1(Z

(N)
N−1)|Z(N)k > x > Z

(N)
k−1]

)α
α̃

≥ E[e−αH
α
k+1(Z

(N)
N−1)|Z(N)k > x > Z

(N)
k−1].

(20)

Using simple manipulations of (20) we have

Hα
k (x) = −

N−k
(N−k+1)α lnE[e

−αHα
k+1(Z

(N)
N−1)|Z(N)k > x > Z

(N)
k−1]

≥ − N−k
(N−k+1)α̃ lnE[e

−α̃Hα̃
k+1(Z

(N)
N−1)|Z(N)k > x > Z

(N)
k−1] = H

α̃
k (x)

and therefore that βαk (x; pk−1) ≥ β
α̃
k (x; pk−1). !

Proof of Proposition 6: The bidding function βαk (x;pk−1) in an arbitrary
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round k ≤ N − 1 can be written as

βαk (x;pk−1) =
N − k

N − k + 1
pk−1 −

1

α
ln
(
Jαk (x)

N−k
N−k+1

)
.

By the definition of Jαk (x) we have

Jαk (x)
N−k

N−k+1 =

(
E

[(
Jαk+1(Z

(N)
k )

)N−k−1
N−k |Z(N)k > x > Z

(N)
k−1]

]) N−k
N−k+1

.

Since y
N−k

N−k+1 is concave, then by Jensen’s inequality

Jαk (x)
N−k

N−k+1 ≥ E

"((
Jαk+1(Z

(N)
k )

)N−k−1
N−k

) N−k
N−k+1

|Z(N)k > x > Z
(N)
k−1]

#

= E

[(
Jαk+1(Z

(N)
k )

)N−k−1
N−k+1 |Z(N)k > x > Z

(N)
k−1]

]

=

Z x̄

x

Jαk+1(zk)
N−k−1
N−k+1

(N − k + 1)(1− F (zk))N−k

(1− F (x))N−k+1
dF (zk).

Likewise, since y
N−k−1
N−k+1 is concave, repeating the same argument yields

Jαk+1(zk)
N−k−1
N−k+1 ≥ E

[(
Jαk+2(Z

(N)
k+1)

)N−k−2
N−k+1 |Z(N)k+1 > x > Z

(N)
k ]

]

=

Z x̄

zk

Jαk+2(zk+1)
N−k−2
N−k+1

(N − k)(1− F (zk+1))N−k−1

(1− F (zk))N−k
dF (zk+1).

Substituting this expression into the prior one, and simplifying yields

Jαk (x)
N−k

N−k+1 ≥
(N − k + 1)!
(N − k − 1)!

Z x̄

x

Z x̄

zk

Jαk+2(zk+1)
N−k−2
N−k+1

(1− F (zk+1))N−k−1

(1− F (x))N−k+1
dF (zk+1)dF (zk).
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Changing the order of integration, the right hand side is

(N − k + 1)!
(N − k − 1)!

Z x̄

x

Z zk+1

x

Jαk+2(zk+1)
N−k−2
N−k+1

(1− F (zk+1))N−k−1

(1− F (x))N−k+1
dF (zk)dF (zk+1)

=
(N − k + 1)!
(N − k − 1)!

Z x̄

x

Jαk+2(zk+1)
N−k−2
N−k+1

[F (zk+1)− F (x)](1− F (zk+1))N−k−1

(1− F (x))N−k+1
dF (zk+1).

This last integral is just an expectation, taken with respect to the density of

Z
(N)
k+1 conditional on Z

(N)
k > x > Z

(N)
k−1. Thus

Jαk (x)
N−k

N−k+1 ≥ E[Jαk+2(Z
(N)
k+1)

N−k−2
N−k+1 |Z(N)k > x > Z

(N)
k−1].

Continuing in this fashion, we obtain

Jαk (x)
N−k

N−k+1 ≥ E[JαN−1(Z
(N)
N−2)

1
N−k+1 |Z(N)k > x > Z

(N)
k−1]. (21)

Since

fN−2(zN−2|Z
(N)
k > x > Z

(N)
k−1) =

(N − k + 1)!
(N − k − 2)!2!

[F (zN−2)− F (x)]
N−k−2 [1− F (zN−2)]

2

[1− F (x)]N−k+1
f(zN−2),

the right hand side of (21) can be written as

Z x̄

x

JαN−1(zN−2)
1

N−k+1
(N − k + 1)!
(N − k − 2)!2!

[F (zN−2)− F (x)]
N−k−2 [1− F (zN−2)]

2

[1− F (x)]N−k+1
dF (zN−2).

(22)

By a now-standard argument, we have

JαN−1(x)
1

N−k+1 =
(
E[e−αZ

(N)
N−1|Z(N)N−1 > x > Z

(N)
N−2]

) 1
N−k+1

≥ E[e−
α

N−k+1Z
(N)
N−1|Z(N)N−1 > x > Z

(N)
N−2]

=

Z x̄

x

e−
α

N−k+1 zN−1
2(1− F (zN−1))
[1− F (x)]2

dF (zN−1).
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Replacing JαN−1(zN−2)
1

N−k+1 in (22) with the right hand side of this expression

with x = zN−2 yields

(N − k + 1)!
(N − k − 2)!

Z x̄

x

Z x̄

zN−2

e−
α

N−k+1 zN−1
(1− F (zN−1)) [F (zN−2)− F (x)]

N−k−2

[1− F (x)]N−k+1
dF (zN−1)dF (zN−2).

Changing the order of integration, this expression can be written as

(N − k + 1)!
(N − k − 2)!

Z x̄

x

Z zN−1

x

e−
α

N−k+1 zN−1
(1− F (zN−1)) [F (zN−2)− F (x)]

N−k−2

[1− F (x)]N−k+1
dF (zN−2)dF (zN−1).

Since

Z zN−1

x

[F (zN−2)− F (x)]
N−k−2 f(zN−2)dzN−2 =

1

N − k − 1
[F (zN−2)− F (x)]

N−k−1
∣∣∣∣
zN−1

x

=
1

N − k − 1
[F (zN−1)− F (x)]

N−k−1 ,

the expression further simplifies to

(N − k + 1)!
(N − k − 1)!

Z x̄

x

e−
α

N−k+1 zN−1
(1− F (zN−1)) [F (zN−1)− F (x)]

N−k−1

[1− F (x)]N−k+1
dF (zN−1)

= E[e−
α

N−k+1Z
(N)
N−1|Z(N)k > x > Z

(N)
k−1]).

Thus we have established that

1

α
ln(Jαk (x)

N−k
N−k+1 ) ≥

1

α
ln
(
E[e−

α
N−k+1Z

(N)
N−1|Z(N)k > x > Z

(N)
k−1])

)
.

The round k equilibrium bidding function therefore is bounded above by

βαk (x;pk−1) ≤
N − k

N − k + 1
pk−1 −

1

α
ln
(
E[e−

α
N−k+1Z

(N)
N−1|Z(N)k > x > Z

(N)
k−1])

)
.

We show that limα!1− 1
α
ln(E[e−

α
N−k+1Z

(N)
N−1|Z(N)k > x > Z

(N)
k−1]) =

x
N−k+1 ,
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i.e.,

limα!1−
1

α
ln

0

@
x̄Z

x

e−
α

N−k+1 th(t)dt

1

A =
x

N − k + 1
,

where

h(t) =
(N − k + 1)!
(N − k − 1)!

[1− F (t)] [F (t)− F (x)]N−k−1

(1− F (x))N−k+1
f(t).

Then limα!1 β
α
k (x;pk−1) ≤

N−k
N−k+1pk−1+

x
N−k+1 . By Proposition 4, β

α
k (x;pk−1) ≥

N−k
N−k+1pk−1 +

x
N−k+1 for α > 0. Hence we have

limα!1 β
α
k (x;pk−1) =

N − k
N − k + 1

pk−1 +
x

N − k + 1
.

We now establish the above limit. Applying l’Hopital’s rule, this limit

equals

limα!1
1

N − k + 1

x̄R
x

te−
α

N−k+1 th(t)dt

x̄R
x

e−
α

N−k+1 th(t)dt

.

We show that

limα!1

x̄R
x

te−αth(t)dt

x̄R
x

e−αth(t)dt

= x.

Clearly
x̄R
x

te−αth(t)dt

x̄R
x

e−αth(t)dt

≥
x
x̄R
x

e−αth(t)dt

x̄R
x

e−αth(t)dt

= x.
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Also, for any ∆ > 0 small

limα!1

x̄R
x

te−αth(t)dt

x̄R
x

e−αth(t)dt

≤ limα!1

x+∆R
x

te−αth(t)dt+
x̄R

x+∆

te−αth(t)dt

x+∆R
x

e−αth(t)dt

≤ limα!1

(x+∆)
x+∆R
x

e−αth(t)dt+ e−α(x+∆)
x̄R

x+∆

x̄h(t)dt

x+∆R
x

e−αth(t)dt

= x+∆+ limα!1

x̄R

x+∆

x̄h(t)dt

x+∆R
x

eα(x+∆−t)h(t)dt

.

Since h(t) > 0 for t 2 [x, x + ∆], then limα!1

x+∆R
x

eα(x+∆−t)h(t)dt = 1 for

any ∆ > 0. Hence we have shown that for any ∆ > 0 we have

x ≤ limα!1

x̄R
x

te−αth(t)dt

x̄R
x

e−αth(t)dt

≤ x+∆.

Thus

limα!1

x̄R
x

te−αth(t)dt

x̄R
x

e−αth(t)dt

= x. !

Proof of Proposition 7: Consider the strategy β̄ which calls for bidder i

to drop out when his compensation reaches xi/N . More formally, suppose

bidder i’s strategy is β̄ki (xi;pk−1) = xi/N + pk−1 for each k 2 {1, . . . , N − 1},
and every xi 2 [0, x̄] and (p1, . . . , pk−1) such that 0 ≤ p1 ≤ . . . ≤ pk−1. We
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show that guarantee’s bidder i a payo§ of at least u(xi/N). Thus in any

equilibrium bidder i’s payo§ is at least u(xi/N).

Suppose that bidder i has value xi and follows β̄i. Let x−i and β−i be

arbitrary, and let p1, . . . , pN−1 be the sequence of dropout prices that result.

The sequence is uniquely determined unless there is a tie at some stage. If

there is a tie then, depending on which bidder drops, one of several di§erent

prices sequences (p1, p2, . . . , pN−1) may result. In this case, let (p1, . . . , pN−1)

be an arbitrary such sequence.

Either bidder i drops out at some stage k or all the other bidders drop out

first. In the former case, i’s compensation is xi/N+pk−1−pk−1 = xi/N and he
obtains utility u(xi/N). If all the other bidders drop out before bidder i, then

it must be the case that p1 ≤ xi/N , p2−p1 ≤ xi/N, . . . , pN−1−pN−2 ≤ xi/N
since otherwise, if pk−pk−1 > xi/N then bidder i would have dropped out at

stage k. Hence p1 + (p2 − p1) + . . .+ (pN−1 − pN−2) = pN−1 ≤ (N − 1)xi/N .
Bidder i wins the item and obtains utility u(xi − pN−1) ≥ u(xi/N). !

Proof of Proposition 8: Consider a bidder who has the k-th lowest value.

Let m be such that k+m < N − 1. If the bidder follows the m round mimic

strategy, then at round k+m the bidder (i) infers Z(N)1 = x1, . . . , Z
(N)
k−1 = xk−1,

(ii) he knows his own value Z(N)k = xk is the k-th lowest and, if m > 0,

then (iii) he infers Z(N)k+1 = xk+1, . . . , Z
(N)
k+m = xk+m.23 Under the mimic

strategy, he bids in round k + m as though his type is xk+m and drops at

price p̃k+m = βk+m(xk+m; p̃k+m−1), where p̃k+m−1 = (p̃1, . . . , p̃k+m−1) is given

by

p̃1 = β1(x1) and p̃j = βj(xj; p̃1 . . . , p̃j−1) for j 2 {2, . . . , k − 1}

and p̃k = βk(xk; p̃1 . . . , p̃k−1) if m = 0 and

p̃j = βj(xj+1; p̃1 . . . , p̃j−1) for j 2 {k, . . . , k +m− 1}

23m = 0 corresponds to following his equilibrium strategy.
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otherwise. He obtains compensation

ck+m = βk+m(xk+m; p̃k+m−1)− p̃k+m−1

=
1

N − (k +m) + 1

n
E
h
Z
(N)
N−1|Z

(N)
k+m > xk+m > Z

(N)
k+m−1

i
− p̃k+m−1

o
.

We show that the bidder obtains the same expected compensation if,

instead of dropping at round k+m at price p̃k+m, he follows the m+1 round

mimic strategy.24 In that case, he observes the rival with the next lowest

value drop in round k +m and infers his rivals’ type to be Q = Z(N)k+m+1. In

round k+m+1 he bids as though his own type is Q = Z(N)k+m+1 and therefore

he is the next bidder to drop since all bidders of type Q or lower have already

dropped. He obtains compensation

Ck+m+1(Q) = βk+m+1(Q; p̃k+m−1, P̃k+m(Q))− P̃k+m(Q),

where P̃k+m(Q) = βk+m(Q; p̃k+m−1) is the price in round k +m.

Using the equilibrium bidding function in Proposition 2, if q is the realized

value of Q, then in round k +m+ 1 the bidder obtains compensation

ck+m+1(q) =
1

N − (k +m)

n
E
h
Z
(N)
N−1|Z

(N)
k+m+1 > q > Z

(N)
k+m

i
− βk+m(q; p̃k+m−1)

o
,

where

βk+m(q; p̃k+m−1) =
1

N − (k +m) + 1
E
h
Z
(N)
N−1|Z

(N)
k+m > q > Z

(N)
k+m−1

i
+

N − (k +m)
N − (k +m) + 1

p̃k+m−1.

24Since k +m < N − 1 then k +m + 1 ≤ N − 1 and the bidder drops out rather than
winning.
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Defining

D(q) ≡
N − (k +m) + 1
N − (k +m)

E
h
Z
(N)
N−1|Z

(N)
k+m+1 > q > Z

(N)
k+m

i

−
1

N − (k +m)
E
h
Z
(N)
N−1|Z

(N)
k+m > q > Z

(N)
k+m−1

i
,

we can write

ck+m+1(q) =
1

N − (k +m) + 1
{D(q)− p̃k+m−1}.

The term E[Z
(N)
N−1|Z

(N)
k+m+1 > q > Z

(N)
k+m] is

Z x̄

q

t
(N − (k +m))(N − (k +m)− 1)f(t)[1− F (t)][F (t)− F (q)]N−(k+m)−2

[1− F (q)]N−(k+m)
dt

and the term E[Z
(N)
N−1|Z

(N)
k+m > q > Z

(N)
k+m−1] is

Z x̄

q

t
(N − (k +m) + 1)(N − (k +m))f(t)[1− F (t)][F (t)− F (q)]N−(k+m)−1

[1− F (q)]N−(k+m)+1
dt.

Thus

D(q) =

Z x̄

q

t
(N − (k +m) + 1) (N − (k +m)− 1)f(t)[1− F (t)][F (t)− F (q)]N−(k+m)−2

[1− F (q)]N−(k+m)
dt

−
Z x̄

q

t
(N − (k +m) + 1)f(t)[1− F (t)][F (t)− F (q)]N−(k+m)−1

[1− F (q)]N−(k+m)+1
dt,

which can be written as

D(q) =

Z x̄

q

t (N − (k +m) + 1) f(t)[1− F (t)]

×
[F (t)− F (q)]N−(k+m)−2 ((N − (k +m)− 1)[1− F (q)]− [F (t)− F (q)])

[1− F (q)]N−(k+m)+1
dt.
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Hence E[D(Q)|Z(N)k+m = xk+m] equals

Z x̄

xk+m

Z x̄

q

t (N − (k +m) + 1) f(t)[1− F (t)]

×
[F (t)− F (q)]N−(k+m)−2 ((N − (k +m)− 1)[1− F (q)]− [F (t)− F (q)])

[1− F (q)]N−(k+m)+1

×g(N)k+m+1(q|Z
(N)
k+m = xk+m)dtdq,

where

g
(N)
k+m+1(q|Z

(N)
k+m = xk+m) =

(N − (k +m))f(q)[1− F (q)]N−(k+m)−1

[1− F (xk+m)]N−(k+m)
.

Changing the order of integration, this can be rewritten as

Z x̄

xk+m

Z t

xk+m

[t (N − (k +m) + 1) f(t)[1− F (t))]]

×
[F (t)− F (q)]N−(k+m)−2 ((N − (k +m)− 1)[1− F (q)]− [F (t)− F (q)])

[1− F (q)]N−(k+m)+1

×
(N − (k +m))f(q)[1− F (q)]N−(k+m)−1

[1− F (xk+m)]N−(k+m)
dqdt,

Simplifying further yields

Z x̄

xk+m

t (N − (k +m) + 1) (N − (k +m))f(t)[1− F (t))]
[1− F (xk+m)]N−(k+m)

×
Z t

xk+m

[F (t)− F (q)]N−(k+m)−2f(q) ((N − (k +m)− 1)[1− F (q)]− [F (t)− F (q)])
[1− F (q)]2

dqdt.

The inner integral

Z t

xk+m

[F (t)− F (q)]N−(k+m)−2f(q) ((N − (k +m)− 1)[1− F (q)]− [F (t)− F (q)])
[1− F (q)]2

dq
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reduces to

[
−
[F (t)− F (q)]N−(k+m)−1

1− F (q)

]q=t

q=xk+m

=
[F (t)− F (xk+m)]N−(k+m)−1

1− F (xk+m)
.

Thus E[D(Q)|Z(N)k+m = xk+m] equals

Z x̄

xk+m

[t (N − (k +m) + 1) (N − (k +m))f(t)[1− F (t))]] [F (t)− F (xk+m)]N−(k+m)−1

[1− F (xk+m)]N−(k+m)+1
,

i.e.,

E[D(Q)|Z(N)k+m = xk+m] = E
h
Z
(N)
N−1|Z

(N)
k+m > xk+m > Z

(N)
k+m−1

i
.

Hence

E[Ck+m+1(Q)|Z
(N)
k+m = xk+m] =

1
N−(k+m)+1

n
E
h
Z
(N)
N−1|Z

(N)
k+m > xk+m > Z

(N)
k+m−1

i
− p̃k+m−1

o

= ck+m.

This establishes that the sequence of mimic compensations {Ck+m}
N−1−k
m=0 is

a martingale. !

Proof of Proposition 9: We need to establish two facts: (i) β̄i guarantees

bidder i a payo§ of at least xi/N , and (ii) there is no strategy which guar-

antees player i a payo§ above xi/N . This establishes that v̄i(xi) = xi/N is

player ı́’s security payo§ and β̄i is a security strategy.

Part (i). Suppose that bidder i has value xi and follows β̄
i given in

the proposition. Let x−i and β
−i be arbitrary, and let p1, . . . , pN−1 be the

sequence of dropout prices that result. The sequence is uniquely determined

unless there is a tie at some stage. If there is a tie then, depending on which

bidder drops, one of several di§erent prices sequences may result. In this

case, let (p1, . . . , pN−1) be an arbitrary such sequence.
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Either bidder i drops out at some stage k, or all the other bidders drop

out first. In the former case, i’s payo§ is xi/N+pk−1−pk−1 = xi/N . Suppose
that all the other bidders drop out before bidder i. Then it must be the case

that p1 ≤ xi/N , p2 − p1 ≤ xi/N, . . . , pN−1 − pN−2 ≤ xi/N since otherwise, if

pk−pk−1 > xi/N for some k, then bidder i would have dropped out at round

k. Hence p1+(p2−p1)+ . . .+(pN−1−pN−2) ≤ (N −1)xi/N and thus bidder

i’s payo§ is at least xi − (N − 1)xi/N = xi/N .

Part (ii). Suppose to the contrary that for some x̂i 2 [0, x̄] that there is
a strategy β̂

i
for bidder i such that

v(x̂i, x−i, β̂
i
, β−i) > v̄(x̂i) =

x̂i
N
8x−i, β−i.

Since the inequality holds for all x−i and β
−i, then it holds in particular

for x̂−i = (x̂i, . . . , x̂i) and β̂
−i
= (β̂

i
, . . . , β̂

i
), i.e., v(x̂i, x̂−i, β̂

i
, β̂

−i
) > x̂i/N .

When every bidder has the same value x̂i and follows the same strategy

β̂
i
, then by symmetry every bidder has the same expected payo§, which is

at least v̄(x̂i). Summing across the N bidders, the total payo§ is at least

Nv̄(x̂i), which is greater than x̂i. This is a contradiction since the total gain

to allocating the item, i.e., the sum of the bidders’ payo§s, is x̂i when every

bidder’s value is x̂i. !

Proof of Proposition 10: Suppose that bidder i has value xi and follows

β̄
i. Let x−i and β

−i be arbitrary, and let p1, . . . , pN−1 be the sequence of

dropout prices that results. We show that bidder i’s payo§ is at least his

security payo§ of xi/N . In the proof below, take n = N and p0 = 0.

Suppose that bidder i is not among the first k̂ − 1 bidders to drop. We
show for k 2 {1, . . . , k̂−1} that (i) pk−p0 ≤ k(xi−p0)/n and (ii) pk−pk−1 ≤
(xi − pk−1)/(n− k + 1). Assume xi > p0. If bidder i is not the first to drop,
then

β̄
i
1(xi; p0) =

xi − p0
n− 1 + 1

+ p0 ≥ p1,
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i.e.,

p1 − p0 ≤
xi − p0
n

.

Hence (i) and (ii) hold for k = 1.

Assume that (i) and (ii) hold for some k0 < k̂ − 1. We show they hold
for k0 + 1. By the induction hypothesis, pk0 − p0 ≤ k0(xi − p0)/n and hence
k0 < n and xi > p0 implies pk0 − p0 ≤ xi − p0, i.e., pk0 ≤ xi. Since bidder i
did not drop at k0 + 1 ≤ k̂ − 1, then

β̄
i
k0+1(xi;pk0) =

xi − pk0
n− (k0 + 1) + 1

+ pk0 ≥ pk0+1,

which establishes (ii) for k = k0 + 1. Rearranging, we obtain

pk0+1−p0 ≤
xi + (N − k0 − 1)pk0

N − k0
−p0 ≤

xi + (n− k0 − 1)(k
0(xi−p0)
n

+ p0)

n− k0
−p0 =

k0 + 1

n
(xi−p0),

where the second inequality holds by the induction hypothesis. Hence (i)

holds for k = k0 + 1.

If bidder i drops in round k̂, then his payo§ is (xi − pk̂−1)/(n − k̂ + 1).
Since pk̂−1 ≤ (k̂ − 1)(xi − p0)/n+ p0 then

xi − pk̂−1
n− k̂ + 1

≥
xi − ( k̂−1n (xi − p0) + p0)

n− k̂ + 1
=
xi − p0
n

.

If bidder i is not among the first N−1 bidders to drop, then pN−1−p0 ≤ (n−
1)(xi−p0)/n. He wins the auction and his payo§ is xi− (n−1n (xi−p0)+p0) =
− 1
n
(p0 − xi)

xi − pN−1 ≥ xi − (
n− 1
n

(xi − p0) + p0) =
xi − p0
n

.

Hence β̄i guarantee’s bidder i his security payo§ of (xi−p0)/n and is therefore
a security strategy. !
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Proof of Proposition 11: Suppose that bidder i has value xi and follows

β̄
i. Let x−i and β

−i be arbitrary, and let p1, . . . , pN−1 be the sequence of

dropout prices that results.

Suppose bidder i has not dropped at round k̂ ≥ 1. We show that pk ≤
k/N for each k 2 {1, . . . , k̂}. Since bidder i did not drop at round 1 then
p1 ≤ β̄

i
1(xi) = xi/N . Suppose that pk ≤ k/N for some k0 < k̂. We show that

pk0+1 ≤ (k0+1)/N . Since pk0 ≤ k0/N , then [xiN +pk0 ,
xi−pk0
N−k0 +pk0 ] is non-empty,

and hence β̄ik0+1(xi;pk0) 2 [
xi
N
+ pk0 ,

xi−pk0
N−k0 + pk0 ]. Since bidder i did not drop

at round k0 + 1, then

pk0+1 ≤ β̄
i
k0+1(xi;pk0) ≤

xi − pk0
N − k

+ pk0 =
xi + pk0(N − k0 − 1)

N − k0
.

Furthermore, pk0 ≤ k0/N implies

pk0+1 ≤
xi +

k0

N
xi(N − k0 − 1)
N − k0

=
(k0 + 1)xi

N
.

By induction, pk ≤ k/N for each k 2 {1, . . . , k̂}.
Since β̄i1(xi) = xi/N , if bidder i dropped at round 1 his payo§ was xi/N .

If bidder i dropped at round k > 1 then pk−1 ≤ (k − 1)/N (since he did not

drop at round k − 1) and hence his payo§ is

β̄
i
k(xi;pk−1)− pk−1 ≥

xi
N
+ pk−1 − pk−1 =

xi
N
.

If bidder i wins the auction (i.e., he did not drop at round N − 1) then
pN−1 ≤ (N − 1)xi/N and his payo§ is

xi − pN−1 ≥ xi −
N − 1
N

xi =
xi
N
.

Thus β̄i is a security strategy for bidder i. !

55



Proof of Proposition 12: If xi ≥ p0, the proof of Proposition 10 goes

through since it holds for general n and p0.

If xi < p0, then bidder i’s payo§ is negative if he wins the auction. We

first show that β̄i guarantees bidder i a payo§ of a least (xi−p0)/n. Since β̄
i
1

calls for bidder i to drop immediately, his payo§ is zero unless he wins the

auction. The later occurs only if all n − 1 other bidders drop immediately
and ties are broken in bidder i’s favor. In this case, bidder i’s payo§ is xi−p0.
Since this occurs with at most probability 1/n, his expected payo§ is at least

(xi − p0)/n.
To see that there is no strategy which guarantees bidder i a payo§ above

(xi − p0)/n, simply note that for any strategy he follows, if all of his rivals
follow the same strategy and have the same values, then by symmetry each

bidder wins with probability 1/n and bidder i’s payo§ is (xi − p0)/n. !

Proof of Proposition 13: Suppose that β̄ik(xi;pk−1) < (xi − pk−1)/(N −
k + 1) + pk−1 for some k, xi and pk−1 such that p0 ≤ p1 ≤ . . . ≤ pk−1. We
show that β̄i is not a perfect security strategy. In particular, we show that

β̄
i|pk−1(xi) < v̄N−(k−1),pk−1(xi) for some x−i and β

−i.

From Proposition 10, the security payo§ to player i in Γ(N−(k−1), pk−1)
is v̄N−(k−1),pk−1(xi) = (xi−pk−1)/(N − (k−1)). Let x−i and β

−i be such that

the bids of the other N − k bidders in round 1 of Γ(N − (k − 1), pk−1) are
greater than β̄ik|pk−1(xi). Then bidder i drops in round 1 and his payo§ is

β̄
i
k|pk−1(xi)− pk−1 <

xi − pk−1
N − (k − 1)

+ pk−1 − pk−1 = v̄N−(k−1),pk−1(xi).

Hence β̄i is not a perfect security strategy.

Suppose that β̄ik(xi;pk−1) > (xi − pk−1)/(N − k + 1) + pk−1 for some k,
xi and pk−1 such that p0 ≤ p1 ≤ . . . ≤ pk−1. Let x−i and β−i be such that (i)
one of the other N − k bidders in Γ(N − (k − 1), pk−1) has a dropout price
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p̂k satisfying

β̄
i
k|pk−1(xi) > p̂k >

xi − pk−1
N − (k − 1)

+ pk−1,

and (ii) the remaining bidders’ dropout prices are above β̄ik|pk−1(xi). Then
bidder 1 does not drop out in round 1 of Γ(N − (k − 1), pk−1), but enters
the subgame Γ(N − k, p̂k). From Proposition 10 the largest payo§ he can

guarantee himself in this subgame is v̄N−k,p̂k(xi) = (xi − p̂k)/(N − k). We
have that

xi − p̂k
N − k

<
xi −

h
xi−pk−1
N−(k−1) + pk−1

i

N − k
=

xi − pk−1
N − (k − 1)

< v̄N−(k−1),pk−1(xi).

Hence β̄i is not a perfect security strategy. !
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