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Incentive design is more likely to elicit desired outcomes when it is derived based on accurate models of agent behavior. A
substantial literature in behavioral economics, however, demonstrates that individuals systematically and consistently deviate
from the standard economic model—expected utility theory—for decision-making under uncertainty, which is at the core
of the equilibrium analysis necessary to facilitate mechanism design. Can these behavioral biases—as modeled by prospect
theory [Kahneman and Tversky 1979]—in agents’ decision-making make a difference to the optimal design of incentives
in these environments? In this paper, we explore this question in the context of markets for online labor and crowdsourcing
where workers make strategic choices about whether to undertake a task, but do not strategize over quality conditional on
participation. We ask what kind of incentive scheme—amongst a broad class of contracts, including those observed on major
crowdsourcing platforms such as fixed prices or base payments with bonuses (as on MTurk or oDesk), or open-entry contests
(as on platforms like Kaggle or Topcoder)—a principal might want to employ, and how the answer to this question depends
on whether workers behave according to expected utility or prospect theory preferences.

We first show that with expected utility agents, the optimal contract—for any increasing objective of the principal—
always takes the form of an output-independent fixed payment to some optimally chosen number of agents. In contrast,
when agents behave according to prospect theory preferences, we show that a winner-take-all contest can dominate the
fixed-payment contract, for large enough total payments, under a certain condition on the preference functions; we show
that this condition is satisfied for the parameters given by the literature on econometric estimation of the prospect theory
model [Tversky and Kahneman 1992; Bruhin et al. 2010]. Since these estimates are based on fitting the prospect theory
model to extensive experimental data, this result provides a strong affirmative answer to our question for ‘real’ population
preferences: a principal might indeed choose a fundamentally different kind of mechanism—an output-contingent contest
versus a ‘safe output-independent scheme—and do better as a result, if he accounts for deviations from the standard economic
models of decision-making that are typically used in theoretical design.
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1. INTRODUCTION
The vast range of systems with outcomes that depend on the choices made by economic agents
has led to a rich and large literature on mechanism design, which regards designing incentives
so that agents make choices resulting in ‘good’ outcomes. Incentives are more likely to elicit
desired outcomes when they are derived based on accurate models of agent behavior. A growing
literature, however, suggests that people do not quite behave like the standard economic agents
in the mechanism design literature. Can such differences have significant consequences for the
optimal design of incentive mechanisms?

Decision making under uncertainty: Prospect theory. A particular instance of such a difference
involves behavioral biases in decision-making under uncertainty. Many, if not most, environments
to which the mechanism design literature has been applied involve risky choice—agents who must
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make decisions between a set of choices, each of which yields an associated payoff with some prob-
ability. The standard economic model for choice under uncertainty is expected utility theory [von
Neumann and Morgenstern 1944; Savage 1954], whereby agents make choices by comparing the
expected utility of outcomes resulting from each possible choice. A substantial body of work in be-
havioral economics, however, demonstrates that individuals display systematic deviations from the
expected utility model, including overweighting low-probability events and under-weighting high-
probability ones, as well as displaying a greater disutility for losses compared to utilities from a gain
of the same amount.

Prospect theory, introduced in Kahneman and Tversky [1979] and further refined to cumulative
prospect theory in Tversky and Kahneman [1992], is a descriptive model that describes much em-
pirically observed decision-making behavior more accurately than expected utility theory, and can
explain a wide range of experimentally documented behavioral biases, including the status quo bias
and endowment effects. One of the best-known achievements of behavioral economics, prospect the-
ory led to the award of the 2002 Nobel prize in economics to Kahnemann for his “ . . . contributions
to behavioral economics, in particular the development of cumulative prospect theory”.

Yet the literature on mechanism design almost uniformly models agents as making choices ac-
cording to the tenets of the classical expected utility theory. While the expected utility model may
be an accurate description of choice-making for the applications addressed by classical mechanism
design—such as auction theory applied to large firms which are possibly exempt from these be-
havioral biases, are the decision-making agents—a number of online systems that are the subject
of several newer applications of mechanism design, such as crowdsourcing and labor markets, on-
line auctions with small bidders, or peer-to-peer economies, depend on the decisions of individual
agents to whom these behavioral biases do apply. What consequences might such biases in decision-
making have for the design of incentives in these environments?

In this paper, we explore this idea of ‘behavioral’ design—how departures from standard eco-
nomic models of agent behavior affect mechanism design—in the context of principal-agent prob-
lems in online labor and crowdsourcing markets. Broadly speaking, principal-agent problems—
whereby a principal derives value from the outputs produced by agents who undertake his task
(see Hart and Holmstrom [1987] for a survey)—requires analyzing how agents make choices under
uncertainty: since an agent’s payoff depends, in general, on the (non-deterministic) quality of the
output she produces as well as possibly that of other workers, the incentive effects of any particu-
lar mechanism or contract that the principal might use, and therefore the equilibrium value to the
principal, depends on how agents make choices in the face of this uncertainty. We ask the question
of whether a principal might want to choose incentive structures that are fundamentally different
depending on whether agents behave according to prospect theory, or expected utility theory, in the
setting of online labor and crowdsourcing markets, which we describe next.

1.1. Online labor and crowdsourcing markets
Jobs—of all kinds—are going online, with platforms for work ranging from microtasks such as
Amazon Mechanical Turk (AMT or MTurk) to more substantial jobs including conventional ‘desk
jobs’ such as software and data entry on online labor markets like oDesk, to research and devel-
opment on platforms hosting crowdsourcing contests such as Kaggle and TopCoder. While there
are, naturally, many similarities between online and traditional ‘offline’ employment, there are also
some fundamental differences between the structure and organization of online and offline labor
markets which point to interesting new economic questions.

A basic difference between online and offline labor markets comes from the short-term, ‘per-task’
nature of employment in online platforms, in contrast with longer-term employment in traditional
labor settings where firms typically hire workers for more than just one task done once. The move-
ment of labor online therefore means that a principal with a demand for workers can choose to use
different platforms—and correspondingly different contract structures—for each task. The problem
of which incentive scheme is most effective can then be addressed separately for individual tasks,



without being constrained by an organizational structure and existing employee assets of the firm
which needs the task completed.1

Workers’ choice sets: Endogenous participation and exogenous quality. A second fundamental dif-
ference between offline and online environments comes from what workers strategize about. While
the central issue in most of the principal-agent literature centers around effort elicitation—providing
the right incentives for workers to elicit high effort (as a means to high output quality) in situations
with imperfectly observable effort, incentives for participation, rather than quality, are the central
issue in several online labor and crowdsourcing settings, for the following reasons:

— Experimental evidence of participation-only choices: A pattern discovered by multiple experimen-
tal studies investigating worker behavior in online crowdsourcing platforms is that a change in the
level of offered incentives affects participation rates, but not the degree of effort that workers exert
conditional on participation. As one example, Mason and Watts [2009] investigate the effect of
financial compensation on performance in an online labor market for microtasks, and find in two
experiments conducted on Amazon’s Mechanical Turk (AMT) that increased financial incentives
increase the quantity, but not the quality, of work performed by participants. In a very different
kind of crowdsourcing task—answering questions in online Q&A forums—Jeon et al. [2010] in-
vestigate price as a predictor of quality in a field experiment on Google Answers, and also find the
same pattern, namely that the prize offered to winning answers affects participation (or quantity),
but not the quality of elicited answers. Both studies, therefore, display the same pattern of en-
dogenous participation and exogenous quality, where increased pay increases how many users are
willing to undertake the task, but not how much a user who has chosen to participate works at the
task. Such behavior, possibly related to intrinsic motivation amongst workers for the task, arises in
a range of crowdsourcing platforms ranging from microtasks to contests, and is summarized as a
‘design claim’ by Kraut and Resnick [2012] in their text on designing online communities: “With
task-contingent rewards for small, discrete tasks, larger rewards will motivate people to take on
tasks, but will not motivate higher effort on accepted tasks.”

— Tools for monitoring: A different reason that effort (conditional on participation) may not be well-
modeled as a strategic choice in online crowdwork platforms is the presence of monitoring tools
that allow an employer to remotely observe and monitor workers. Virtual office applications for
monitoring of workers, for example allowing employers to observe timed screen shots of workers’
computers, are offered by various online labor platforms (including oDesk); these platforms also
allow employers to make payments for work contingent on contractors performing the work while
logged in to these virtual offices and monitored through regular screen shots and activity logs. With
such monitoring software, the central issue of non-observability of effort driving the principal-
agent problem disappears,2 and the primary incentive question becomes one of incentivizing the
appropriate number of workers to undertake the task.3

Consider, therefore, a principal with a single task that he wants to complete by hiring workers via an
online platform. The principal has many options available in terms of what incentive structures he
can use, such as those supported by various online crowdsourcing platforms—fixed-price contracts
on platforms such as Amazon Mechanical Turk (MTurk) or their analog with price discovery, an
auction to determine the payment for the task as on oDesk, as well as contests of various kinds on
platforms like TopCoder or Kaggle. How should the principal choose between these various kinds of
incentive structures—and does the answer to his question change depend on whether his population

1In contrast, the decision of a firm with long-term employees between, say, whether to run an open-entry contest or simply
assign some of its employees to work on a particular task, may depend on the skill set and size of its existing workforce.
2While such software can only monitor a worker’s screen as opposed to her actual mental effort, the per-task nature of
employment in online labor markets (such as oDesk) means that a worker who has undertaken a task might have strong
incentives to put in her best effort to maximize her chances of future employment, with the same or a different requester.
3We do not model the issue of competition amongst principals which is beyond the scope of this paper; as we will shortly
see, the principal-agent problem for incentivizing participation (as with effort) is already non-trivial with just one principal.



of potential workers behaves according to the classical model of expected utility theory, or whether
they deviate, behaving instead according to prospect theory?

1.2. Our contributions
We investigate the question of whether behavioral biases in decision-making—as captured by
prospect theory—can alter the answer to a principal’s incentive design problem in markets for on-
line labor and crowdsourcing. We consider a simple model with a principal with a single task and a
population of potential workers or agents, each of whom incurs an opportunity cost c to undertaking
the task. Agents make endogenous participation choices but quality is exogenous (see §1.1), with
each agent who strategically decides to undertake the task producing output with quality qi ∼ F (q)
at a cost c. To allow addressing the broader question of what kind of incentive contract the principal
might prefer—as opposed to optimizing within a specific class of contracts (as, for instance, in an
optimal contest design problem)—we use a general model for contracts encompassing a broad vari-
ety of incentive schemes, including those observed on major crowdsourcing platforms such as fixed
prices to a fixed number of workers (MTurk), base payments with bonuses (oDesk), to open-entry
tournaments with prizes to a small number of contestants (Kaggle, Topcoder).

We first consider a population of agents that make choices according to expected utility theory
(§3). For such agents, we show in Theorem 3.1 that the optimal contract—for any increasing objec-
tive of the principal—always takes the form of an output-independent, fixed payment to each agent
he employs: while the optimal number of agents to employ will depend on the specific parameters of
the problem, the structure of payments does not. We then consider agents whose decision-making is
described by prospect theory (§4), which models the empirically observed loss aversion via asym-
metric value function u(·) over losses and gains and inaccurate weighting of probabilities via and, of
particular significance to the incentive design question, a non-linear decision weight function π(p)
mapping probabilities to decision weights. To address the question of whether a principal would
ever choose a fundamentally different kind of contract for agents with such prospect theory pref-
erences, we analyze and compare the incentives created by contests—which are widely used in a
variety of crowdsourcing applications and hosted by prominent crowdsourcing platforms such as
Kaggle and TopCoder—against fixed payment contracts.

Contests are a very different kind of contract than fixed-payment schemes, in a qualitative sense:
an agent’s reward in a contest is strongly output-contingent, depending not only on her own output
quality qi but also on the draws of all other participants in the contest. So when might a contest,
which is inherently a riskier prospect, provide stronger incentives for participation than the safer
fixed-payment contract with its output-independent payoffs? If agents used actual outcome prob-
abilities as their decision weights, Theorem 3.1 can be extended to show that a principal would
never use output-contingent payments for any risk-neutral or risk-averse population of agents, no
matter what the nature of his task. With prospect theory preferences, however, a small chance of
winning a large prize might contribute more than its ‘true’ share of utility due to the overweighting
of small probabilities, potentially creating a larger perceived payoff for the same expected payout
to the principal.

Despite the overweighting of small probabilities, however, a contest nonetheless does not always
dominate a fixed-payment scheme: if the prize from winning the contest is not much larger than
the cost of undertaking the associated task, few enough agents participate in equilibrium so that
the probability of winning the prize becomes too large to be overweighted. This occurs even with
risk-neutral agents (Theorem 4.2); when agents display risk and loss aversion, the overweighting
of probabilities—favoring the contest—needs to also compensate for this aversion to uncertainty if
a contest is to dominate a fixed-payment contract. We first derive a necessary and sufficient con-
dition (Theorem 4.1) under which a contest will dominate the fixed-payment contract for general
preferences (u, π). Our first application of this condition, Theorem 4.3, shows when this condition
cannot be satisfied: we show that, for any prospect theory preferences, a principal who does not
have a large enough budget to spend on the task should not conduct a contest, even for agents who



overweight small probabilities—for such small prizes, risk and loss aversion beat out the benefits
from overweighting of small probabilities.

More specific structure on the preference functions is required to say when the condition in Theo-
rem 4.1 can be satisfied, i.e., when a contest can do better than fixed-payment contracts; for this, we
use the functional forms for u and π from the literature on econometric estimation of the cumulative
prospect theory model [Tversky and Kahneman 1992; Bruhin et al. 2010]. Since these functional
forms are based on fitting the prospect theory model to extensive experimental data, they are the
most natural candidates for our need for specific preference functions to evaluate (3), yielding the
best answer we can hope to have to our question—without conducting a measurement of the func-
tions u and π in the specific marketplace of interest—for ‘real’ population preferences u, π. Our
main results in §4.2, Theorem 4.4 and Theorem 4.5, together with the estimated parameter values
from Tversky and Kahneman [1992]; Bruhin et al. [2010], provide an affirmative answer to our
central question: to the extent that these parameters indeed describe the decision-making behavior
of agents in online crowdsourcing environments, a principal who values the output from crowd-
sourcing his task sufficiently highly (compared to the cost to a worker to produce that output) might
indeed choose a different kind of mechanism, and do better as a result, if he accounts for deviations
from the standard economic model of expected utilities that are typically used in theoretical design.

1.3. Related work
A vast literature, too large to properly cite here, studies the optimal design of labor contracts, as well
as rank-order contests as incentive schemes for the procurement of labor, beginning with Lazear
and Rosen [1981]; Green and Stokey [1983]. The subset of this literature that is most relevant to
our work concerns comparing amongst mechanisms for the procurement of innovation [Che and
Gale 2003; Fullerton et al. 2002; Schottner 2008]: this work, like ours, compares different kinds
of incentive structures as opposed to deriving the optimal mechanism of a given kind (such as the
optimal contest or the optimal bonus-payment scheme). The most relevant of these is the beautiful
work of Che and Gale [2003], which derives the optimal mechanism for procuring innovations in a
very general class of market structures. However, while asking the same broad question about what
kind of incentive structure (rather than specifics of which mechanism of a certain kind) is optimal,
our work and Che and Gale [2003] differ in two fundamental ways. First, the agents in Che and Gale
[2003] are standard expected utility maximizers, while we allow for agents to have more general
prospect theory preferences, in keeping with our primary interest in contrasting the two models of
decision-making. Second, agents in Che and Gale [2003] make strategic effort choices, unlike in
our setting where quality is exogenous and only participation is a strategic choice (§1.1). These
differences in choice sets and decision-making behavior, in addition to consequential differences in
information structure between the motivating environments, fundamentally alter the nature of the
incentive problem across the two settings.

There is also an extensive body of work on contest design, studying several variants of the prob-
lem of optimally designing a contest’s reward structure—the number and amounts of the prizes
for each rank is the most common version—in a variety of models including, for example, het-
erogeneous and homogeneous agent populations, risk-neutral and risk-averse preferences, and non-
monetary rewards, as well as various objectives and constraints for the principal running the contest.
The work closest to ours from this literature is Ghosh and Kleinberg [2014], which considers con-
test design in a similar model with strategic participation decisions but exogenous quality (although
a somewhat different information structure), and asks how this departure from the strategic effort
choice model that is typical in the contest design literature can change the structure of the optimal
contest design problem. The primary difference between our work and the contest design literature,
in addition to the differences in expected utility versus prospect theory preferences and whether
quality is strategically chosen or non-strategic,4 is the question addressed: the contest design liter-

4With the exception noted above, agents are almost uniformly modeled as making strategic effort choices that affect their
outputs quality.



ature takes the incentive structure of a rank-based contest as given, assuming that the principal (for
a variety of well-justified reasons) will use a contest mechanism, and asks what is the best contest
mechanism he can use. In contrast, we do not assume that the principal is bound to a contest mech-
anism at all, but rather can choose amongst a much more general space of contracts that include,
but are not limited to, rank-order contests. Thus, while we ask about choosing amongst a much
richer class of mechanisms, in a simpler model, the contest design literature asks about choosing
amongst a more restricted set of mechanisms, but in a richer model (albeit without prospect theory
preferences).

Finally, while prospect theory has been extensively studied in the behavioral economics literature,
it has seen relatively little application in theoretical work. The settings and models addressed in these
papers, as well as the nature of the questions posed, in the few exceptions [de Meza and Webb 2007;
Kanbur et al. 2008; Nakajima 2011; Chang et al. 2014] are very different from our work.

2. MODEL
We begin by describing a simple model to address the question of how a principal using an on-
line labor or crowdwork platform to recruit workers should choose between various kinds of in-
centive structures—such as fixed prices or base payments with bonuses as on MTurk and oDesk,
or crowdsourcing contests as on Kaggle or Topcoder—and how this answer depends on workers
decision-making behavior. To allow addressing the broader question of what kind of incentive con-
tract the principal might prefer—as opposed to optimizing within a specific class of contracts (as,
for instance, in an optimal contest design problem)—we use a very general model for contracts
encompassing a broad variety of incentive schemes, including those supported by the largest online
crowdsourcing platforms. The principal’s choice of incentive scheme affects both his total expected
payout and the extent of participation by agents, which are determined in an equilibrium of the
participation game induced by the contract. The model, described in detail below, allows us to ask
what kind of mechanism the principal should choose, both for classical expected utility maximizing
workers and for workers who deviate from the expected utility model, behaving instead according
to prospect theory preferences.

2.1. Agents
There is a large pool of agents, or workers, indexed i = 1, 2, . . . , N , each of whom strategically
decides whether or not she would like to work on the single task posed by a principal. As discussed
in §1.1, we consider scenarios with exogenous quality and endogenous participation, i.e., where
agents make strategic participation choices, but do not strategize over the quality of their output.
We model this by assuming that qualities are random draws from a fixed distribution: an agent
who undertakes the task produces output of quality qi ∈ <1

++ where the qualities qi are IID draws
from a distribution5 with CDF F (q). The realization of the quality draw qi becomes known to the
agent (and the principal) only after the agent incurs the cost associated with undertaking the task,
corresponding to typical crowdwork scenarios where uncertainty in an agent’s output quality is
resolved only after the agent works on the task (for example, in microtasks such as image labeling,
as well as with larger tasks such as designing algorithms in data mining contests).6 We consider

5The assumption that all workers’ qualities are drawn from the same distribution F says that the principal or requester
does not have a priori information predicting which workers will produce better outputs on the task. If such information is
available, the assumption still remains relevant if we suppose that the requester chooses amongst a subset of workers all of
whom have the same ‘best’ distribution. Note also that qualities are non-zero for participating workers; we reserve 0 for
workers who do not participate.
6While appropriate for our setting, we note that this assumption differs from that in some other prior work, for example,
where an agent’s quality is either the result of her strategic effort choice (as in Che and Gale [2003], where c and q are
essentially ‘revealed simultaneously when the agent chooses her effort), or in situations where the cost c models the cost of
submitting existing output of known quality to the principal (such as an entry fee in a contest) as in Ghosh and Kleinberg
[2014], resulting in corresponding differences in the incentive structure.



agents who are ex-ante homogeneous, so that each agent has an opportunity cost ci = c of working
on the task (we address heterogeneous costs in the appendix of the full version of the paper).

Homogeneity amongst workers, while not without loss of generality, is nonetheless a reasonable
assumption in a variety of crowdsourcing environments. For instance, consider ‘routine’ tasks such
as image labeling on MTurk or data entry tasks on online labor platforms. If cmodels the opportunity
cost of time spent on a task (e.g. the price offered by other requesters for similar tasks in the market),
and routine tasks take all workers essentially the same time, workers would incur homogeneous
costs c. Similarly, if c models the effort cost for a task, and the routineness of the task is such that
workers do not have vastly differing abilities or skills for the task, it is again reasonable to suppose
that c is the same (to a first order) for all workers. For non-routine tasks (such as innovation or
development) also, homogeneity amongst the population of potential participants can apply, to a
first approximation, for at least one of two reasons: self-selection, such as in contest environments
(for example, programmers with similar levels of expertise or graphic designers with similar skill
levels), as well as filtering or selection by the requester (the principal), resulting in workers with
similar ability or expertise levels, and therefore similar costs, either opportunity or effort costs,
to undertaking the task (for example, AMT supports a feature whereby a requester can specify
‘qualifications’—including customizable, self-defined ones—which a worker must satisfy in order
to be considered for the task7). In addition to the appendix, see also §5 for a more general discussion
on heterogeneity in worker populations.

2.2. Preferences and decision making: Expected utility and prospect theory
A worker in a principal-agent problem (as in the crowdsourcing scenarios we study) faces uncertain
payoffs, since her reward from undertaking the task may depend on the non-deterministic quality of
her output as well as those of other workers employed by the principal. The worker therefore faces a
problem of decision making under uncertainty, the classical economic model for which is expected
utility theory. Suppose a worker who undertakes the task will receive payoffs xk, k = 1, . . . ,K, with
corresponding probabilities pk; such a (p1, x1, . . . , pK , xK) tuple is called a prospect or gamble.8
According to the expected utility model, an agent ascribes a utility u(xk) to each possible payoff
xk (where u is typically assumed to be concave, to model risk aversion), and makes decisions by
evaluating the expected utility

∑
k pku(xk) from the prospect. We assume that the set of possible

payoffs contains the payoff xk = 0, and that non-participation in the task yields this zero payoff.
In their seminal work on decision making under risk, Kahneman and Tversky [1979] presented

experimental evidence of choice-making behavior that is irreconcilable with this classical expected
utility model, and proposed an alternative model—prospect theory—that can explain systematic de-
viations from expected utility theory such as inaccuracy in weighting payoffs by their probabilities,
and greater disutility for losses compared to utilities from a gain of the same amount. In this paper,
we will be interested in the question of whether these deviations from the standard model can have
an effect on the outcome of the mechanism design problem faced by the principal.

We use the following abstract model, which includes expected utility theory as a special case, to
describe agents with prospect theory preferences in our setting. Given a task that yields uncertain
payoffs xk with corresponding probabilities pk, an agent decides whether to undertake the task by
evaluating its net benefit according to prospect theory preferences [Kahneman and Tversky 1979]
as ∑

k

π(pk)u(xk), (1)

7Quoting from AMT: “A Qualification is a property of a Worker that represents a Worker’s skill, ability or reputation. You
can use Qualifications to control which Workers can perform your HITs. A HIT can have Qualification requirements that a
Worker’s Qualifications must meet before the Worker is allowed to accept the HIT. . . . You can create and maintain your
own Qualifications using the web service API. ”
8Note that these payoffs xk and their probabilities pk might be determined in an equilibrium of the game corresponding
to a particular contracting mechanism used by the principal; here we are interested in describing how an agent evaluates an
uncertain proposition given xk and pk , rather than where these values come from.



where u(·) is the value function over the payoffs xk, and the π(·) are decision weights that map
the probabilities pk of each outcome into the weights with which they contribute to the perceived
total utility from the gamble. Without loss of generality, we normalize the utility function so that
the utility of current wealth, a payoff of 0 is 0.9

The standard model of expected utility maximizing agents is obtained by setting the decision
weight function π to be the identity function (π(p) = p for all p ∈ [0, 1]), and the utility function
u to be strictly concave to model risk aversion. Prospect theory [Kahneman and Tversky 1979;
Tversky and Kahneman 1992] deviates in both the decision function π and the structure of u. First,
prospect theory says that agents do not correctly weigh uncertain outcomes, except at the extremes
of absolute impossibility (p = 0) and absolute certainty (p = 1): rather than weight payoffs via
the identity function π(p) = p, they tend to act as if they overestimate the likelihood of very
low probability events or equivalently overweight unlikely outcomes (π(p) > p for small p), and
underweight highly likely events that are not completely certain (corresponding to π(p) < p for
large p). We abstract this property of the decision weight function π from prospect theory as follows:

There exists a p∗ ∈ (0, 1) such that π(p∗) = p∗, π(p) ≥ p for p < p∗, and π(p) ≤ p for p > p∗.

Second, prospect theory models loss aversion—the observation that a loss of x dollars typ-
ically causes more pain than the pleasure from gaining the same amount x—via asymmetry
around 0 in the value function u over payoffs.10 In prospect theory, the function u, which is con-
cave for positive payoffs, convex for negative payoffs, and satisfies u(0) = 0, has the property
−u(−x) > u(x) for all x > 0.

In our context, a worker with prospect theory preferences will decide whether or not to participate
in a task with opportunity cost c and offering payoffs xk with probabilities pk for k = 1, . . . ,K
(and zero payoff with the remaining probability p0 = 1 −

∑
pk) by comparing her perceived total

utility from this gamble against the payoff from not-participating. Deciding to participate results
in a cost of c with probability 1, contributing π(1)u(−c) to the perceived utility, and a benefit of
xk with probability pk, each contributing π(pk)u(xk), while the payoff from not participating is 0.
Using u(0) = 0, and π(1) = 1, an agent will therefore decide to undertake the task if and only if:∑

k

π(pk)u(xk) + u(−c) ≥ 0. (2)

Of course, the payoffs xk and their probabilities pk are typically not exogenously specified, but
rather arise as an equilibrium of the game induced by the principal’s chosen contracting mechanism;
we discuss this next.

2.3. Contracts
We consider a principal, or firm—a ‘requester’—who has a task or project that he wishes to
crowdsource amongst the pool of workers on a crowdsourcing platform (we use the term firm and
principal interchangeably throughout the paper). The principal can choose how many workers,
amongst the set of workers who are willing to undertake his task, he would like to employ, as
well as the (possibly output-dependent) payments that he will make to each of these workers. We
are interested in the question of what form of contract a principal should use, motivated by the
observation that many different kinds of contracts, ranging from fixed wage payments to a fixed
number of workers, to open-entry tournaments with prizes to a very small number of contestants,
are observed across various crowdsourcing platforms. To allow addressing this question (rather

9This normalization is free in the sense that the normalized and un-normalized utility function represent the same preferences
over gambles, but the fact that current wealth has utility 0 has no cardinal meaning. In prospect theory, however, “utility” is
defined over gains and losses and so making the starting point 0 does have meaning.
10The value function u in prospect theory is defined with respect to the reference point of the agent’s current wealth i.e. it
takes as argument only gains or losses (the possible payoffs xk and loss c) relative to the reference point



than the more restricted question asking what is the optimal mechanism of a certain form, for
instance the optimal contest), we will first need an adequately general definition of mechanisms.

Mechanisms. Consider a task with a set of N potential workers, each of whom decides whether or
not to undertake the task. Workers who undertake the task produce outputs with qualities qi ∼ F (q);
if a worker does not participate, we denote her output quality by 0. Let [q] denote the vector of allN
qualities. A mechanismM is specified by the schedule of payments (w1([q]), w2([q]), . . . , wN [q])
that the principal will make to each of the i = 1, . . . , N workers, for all possible values of the vector
of output qualities [q]. (If workers are ex-ante homogeneous (as we assume throughout, except in
the appendix), the payment functions wi need not depend on the ‘name’ of a worker (although they
may still depend on the worker’s output quality qi.)

Note that this is a general abstraction of a contract, encompassing a number of observed market
mechanisms:

(1) Fixed payment contracts to a fixed number of workers. A principal may specify that he requires
NFP workers, and that he will pay a uniform price w to every worker (up to NFP ) that com-
pletes his task. As an example, requesters on Amazon Mechanical Turk can specify the number
of HITs (Human Intelligence Tasks) available for a given job, as well as the price for the HIT
that will be paid to each worker upon its completion. This corresponds to wi([q]) = w if i is
amongst the set of (up to) NFP workers employed by the principal, and wi([q]) = 0 otherwise.

(2) Fixed payments with bonuses. The payment specified for each participating worker may be made
contingent upon the quality of her output. For example, a contractor on oDesk may specify that
he will hire one worker who receives some pre-determined base payment for the task plus
possibly an additional, quality-dependent bonus. Such fixed-payment-plus-bonus schemes are
captured by setting wi([q]) = w0

i + wi(qi) for every agent i employed by the principal, and
wi([q]) = 0 for all other agents.

(3) Rank-order contests. Both previous schemes make payments to workers that do not depend on
the quality of the output produced by other agents working on the task: the first scheme is com-
pletely agnostic to the realized qualities, while the second scheme bases an agent’s payment only
on the quality of her own output. A commonly observed mechanism in crowdsourcing scenarios
is a rank-order contest, where the principal announces a schedule of prizes to be awarded to the
agents with the k highest-ranked outputs. For instance, Topcoder runs competitions where the
competitor who submits the best code for an algorithm design problem receives a pre-specified
prize while all other competitors win nothing; Kaggle hosts contests with a wide range of prize
structures—winner-take-all contests, equal or unequal prizes to the top three submissions, and
so on. Contests are captured by setting wi([q]) = wπ(i), where π(i) is the rank of qi in [q], and
wj ≥ 0 is the pre-announced prize for the j-th ranked entry.

(4) Cardinal contests. The payment to an agent may depend both on her rank π(i) and her absolute
output qi—such cardinal contests [Ghosh and Hummel 2015] are growing in popularity due to
contest environments with measurable output qualities. For instance, some data mining contests
on Kaggle specify the prizes that will be awarded to the top k-contestants provided their algo-
rithm’s performance exceeds a certain baseline or threshold q̄; this corresponds to a contract
with wi([q]) = wπ(i)1qi≥q̄ .

Equilibrium participation NM. Each potential worker in the market needs to make a decision about
whether she would like to undertake the task or not, given the mechanismM that will be used by
the principal to make payments. At the time she makes her decision, a worker knows the cost c
associated with the task, the preference parameters π(·) and u(·) and the distribution F from which
her (and other workers’) qualities will be drawn. However, she does not know the actual realization
of her output quality qi (or that of other agents)—this is revealed (both to her and the principal) only
after incurring the cost c to perform the task, as in typical crowdsourcing scenarios where the quality
uncertainty about output is resolved only after a worker attempts the task. (Note that this means that



while the payment may depend on the realized qualities qi, any pre-selection by the principal of
which workers to hire—i.e., choosing which subset of agents will undertake the task (incurring the
cost of c), for example as in (1) above—cannot use information about the realized qualities qi, since
this information is unavailable to the principal or agents until the agent undertakes the task.)

A choice of mechanismM by the principal induces a game; recall that workers only make strate-
gic participation choices in this game. Given a mechanism M the number11 of workers NM that
decide to undertake a task is determined endogenously as a Nash equilibrium in the participation
game induced byM as follows. Workers’ participation decisions (and the distribution F ) induce a
distribution on the vector of output qualities [q] = (q1, . . . , qN ) (with non-participation by worker
i modeled as qi = 0), which in turn induces a distribution on the payments w[q] to each worker.
Given this distribution on payoffs induced by all workers’ participation decisions (and the qualities
F ), an equilibrium is one in which all participants’ value from this prospect (§2.2) is greater than
or equal to 0, and would be less than or equal to 0 to non-participants if any one of them chose to
participate. Note that as each worker makes only a yes-no participation decision, there is at least one
equilibrium. To simplify the discussion we will ignore the discreteness of the number of workers
and simply assume that in any equilibrium the payoff to the marginal worker is 0.

2.4. Principal
Different kinds of tasks benefit from multiple workers in different ways: for instance, a requester
whose task has little or no uncertainty about quality may place little value on having more than
one worker to complete this routine task. Alternatively, a requester whose task has highly variable
qualities, and who values high quality, may want to have many workers attempt the task. We use
the function V to model how the principal benefits from the output of multiple workers: the value
to the principal from an ordered vector12 of qualities (q[1], . . . , q[N ]) is V (q[1], . . . , q[N ]). We
assume that V (0, ..., 0) = 0, i.e., the principal derives no value if no worker undertakes his task.
Since workers’ qualities all come from the same distribution F , the expected value to the principal
depends only on the number of workers incentivized to participate inM, i.e.,EUp(M) = V (NM),
and of course the distribution F . In addition to the mechanism itself which plays an important role
in determining the equilibrium participation NM, note that NM will, in general, depend on the
exogenous parameters describing the population of workers: their costs c, the functions describing
their preferences in decision making—the value function u(·) over payoffs, and the decision weights
π(p), as well as the distribution F from which output qualities are drawn.

Information structure. We assume, as is standard in the literature, that the principal knows the
distribution F from which workers’ output qualities for his task are drawn and the parameters de-
scribing the decision-making preferences—the valuation functions u and decision weights π—of
the worker population. We also assume that the cost c of undertaking the task is known to the prin-
cipal: this is a reasonable assumption, for example, in markets where there are many tasks of the
same kind (e.g. image labeling, or audio transcription tasks of a certain length, on MTurk), so that
a requester can likely easily estimate the opportunity cost to workers for his task. In markets where
the principal cannot accurately gauge the cost for her task (for instance, if every task in the market
is different), the value of c can be elicited by a price-discovery process such as an auction (indeed,
one observes fixed prices without the need for auctions for price discovery on MTurk while oDesk
supports, and requesters do use, auctions where workers can bid their price for a job). In either case,
the price-discovery via the auction does not affect our arguments, which center around whether pay-
ments are contingent on output quality or not. This holds even if agents have heterogeneous costs

11Note that with homogeneous workers, the relevant quantity is the equilibrium distribution of the number of participants.
12Note that this form of V implicitly assumes that the principal’s value depends only on the set of qualities produced, not
on which worker produced which quality.



ci, as long as there are not unknown correlations between the cost ci to the worker and the quality
qi of the agent’s output.13

Objective. For any mechanismM, the principal can compute the expected payoff in equilibrium
in the participation game induced by the contract M. We consider a principal who has a fixed
amount W to spend (for instance, a manager who has been given a total feasible spend to have
the task completed, without concern for leftover money) and wants to maximize its value over all
mechanismsM that spend (no more than) W . An optimal contract is thus a contractM costing no
more than W that induces an NM that maximizes V (NM) over all feasible contracts.

3. OPTIMAL CONTRACTS: EXPECTED UTILITY MAXIMIZERS
We begin by investigating the nature of the optimal contract that a principal should use to employ
agents when the population of workers behaves according to the standard model of expected utility
theory—namely, agents with decision weights that equal probabilities, π(p) = p, and risk-neutral
or risk-averse preferences corresponding to concave functions u(x) (risk neutrality corresponds to
the special case of linear u). In such an environment—modeling a wide range of crowdsourcing
markets—where agents make strategic participation choices about whether or not to participate in
a task (but do not strategize over quality), what kind of contractM—for instance, fixed prices (as
in MTurk), fixed payments with bonuses (as in some tasks on MTurk or oDesk), or contests as in
several crowdsourcing platforms (Kaggle, TopCoder)—is optimal for the principal? The answer to
this question could potentially depend on a number of parameters, such as the dependence of the
principal’s utility on the number of workers V (n), the scale of the principal’s utility V compared to
workers’ costs c, the spread in workers’ output qualities F , and so on.

Our main result in this section, Theorem 3.1, shows that the optimal contract always takes the
form of a fixed price mechanism, where the principal pays an optimally chosen number of agents a
fixed price14 independent of output quality. The proof, presented in the appendix, hinges on agents’
not being risk-seeking, and proceeds by arguing that for any total expected payout W the princi-
pal might make, that payout W incentivizes the highest participation when it is disbursed as fixed
payments rather than via any output-contingent scheme, if the agent population has risk-averse or
risk-neutral preferences.

THEOREM 3.1. Consider a market where agents are expected utility maximizers with concave
valuation functions, u(·), over payoffs. Suppose agents have an opportunity cost c to participation
and qualities qi exogenously drawn from a distribution F . Then, for any increasing value function
V (n) = V (q1, . . . , qn), any c, F , and any equilibrium of any mechanismM there is an equilibrium
of a fixed-price mechanism in which:

— Each worker makes the same participation decision as in the given equilibrium ofM,
— The firm’s value is at least as large as in the given equilibrium ofM.

This result is striking when viewed in light of the wide range of contract structures that our model
allows the principal to choose from—for instance, making payments output-dependent to hedge
against the possibility of paying too much for poor output could arguably improve utility over a
fixed-price scheme; as another reasonable hypothesis, using contests to get away with paying a few
agents while benefiting from the efforts of a larger number of agents. Nonetheless, the theorem
shows that the principal is always best off making payments that are not output-contingent, no
matter what his value function V or the agent parameters c, F, u are; those parameters only affect
the number of agents that the principal would optimally hire. (See the appendix for the analog of this
result with heterogeneous agents, which retains the same central feature of pre-specified payments
that are not contingent on an agent’s absolute or relative output quality.)

13The case of such correlations leads to a significantly more complex two-dimensional mechanism design problem, which
is both beyond the scope of the paper and not central to our primary interest about the differences resulting from prospect
theory versus expected utility behavior; see §5.
14This price is c; if the value of c is private information to agents it can be elicited using an auction mechanism



We note that there is a conceptual similarity between this argument and a basic result in the
principal-agent literature (albeit in a different model) regarding the optimal mechanism for a prin-
cipal facing a single agent if the principal could directly observe and reward effort, setting the
comparison point for a principal facing an agent whose strategic, unobservable, effort choice af-
fects the output she produces. Theorem 3.1 above also sets a comparison point for us, although in
quite a different sense: it tells us that the principal is always best off making payments that are not
output-contingent, no matter what his value function V or the agent parameters c, F, u are (which
only affect the number of agents to optimally hire), as long as he faces expected utility maximizing
agents. This sets the stage for asking whether prospect theory preferences might lead a principal to
prefer to use commonly observed alternative contract structures—contests in particular—in crowd-
sourcing markets which are reasonably described by our model.

4. CONTRACT DESIGN: PROSPECT THEORY PREFERENCES
We now ask whether behavioral biases can indeed matter to the incentive design problem faced by a
principal: would a principal ever choose a fundamentally different contract for agents with prospect
theory preferences than that for expected utility maximizing agents? In this section, we address this
question by comparing the incentives created by contests, which are widely used in a variety of
crowdsourcing applications, against fixed payment contracts which were shown in §3 to be optimal
for expected utility maximizing agents. Specifically, the question we ask is the following. Consider a
given population of agents with preferences described by some value and decision weight functions
(u, π), and a principal with a task with cost c and distribution F of workers’ output qualities. In
this (c, F, u, π) environment, are there any values of W—the total amount the principal wants to
spend on his task—for which he is better off using a winner-take-all contest with prize W , where
the agent who produces the highest-quality output amongst all participants receives W and all other
contestants receive nothing, instead of a fixed-payment contract?

We address this question, instead of the optimal contract design problem as in §3, for two rea-
sons.15 First, it is reasonable to restrict attention to contract structures that a principal crowdsourcing
his task can realistically offer to workers, which are those supported by major online crowdsourcing
platforms with large worker bases (online labor markets like MTurk and oDesk, or contest platforms
such as Kaggle and TopCoder). While all of these platforms offer significant flexibility to requesters
about the specific terms of a contract (for instance, the actual prices for labor or the number of
workers employable per task on oDesk or MTurk, or the prize amount and number of prizes offered
on, say, Kaggle), the structure of supported contracts most commonly take the form of either fixed
payments (possibly with performance-based bonuses), or contests (we briefly discuss contests with
more general prize structures than the winner-take-all contest in the appendix). Second and more
important, we choose the simplest set of results that illustrate the central point we want to make,
namely that behavioral biases—deviations from standard economic models of decision-making—
can indeed make a fundamental difference to the principal’s choice of mechanism in some realistic
environment, which purpose is served by the outcome of this comparison.

4.1. Contests versus fixed payments: Preliminaries
Contests are a very different kind of contract than fixed-payment schemes, in a qualitative sense: in
contrast with the fixed-payment scheme from §3, an agent’s reward in a contest is output-contingent,
depending not only on her own output quality qi but also on the draws of all other participants in the
contest. So when might a contest, which is inherently a riskier prospect, provide stronger incentives
for participation than the fixed-payment contract with its output-independent payoffs? If agents used
actual outcome probabilities as their decision weights, Theorem 3.1 shows that a principal would
never use output-contingent payments for any risk-neutral or risk-averse population of agents, no

15In addition to these reasons, note that the structure of the optimal contract can possibly be quite sensitive to specific
parameters describing both the population of workers (c, u, π) and the nature of the principal’s task (F, V ) when agents are
not expected utility maximizers.



matter what the nature of his task.16 With prospect theory preferences, however, a small chance of
winning a large prize might contribute more than its ‘true’ share of utility due to the overweighting
of small probabilities, favoring a contest.

To understand the intuition behind why contests might provide stronger incentives with over-
weighting of small probabilities, assume for a moment that an agent will ‘win’ the prize W if her
quality draw beats an exogenous threshold q∗ (imagine, for example, that the principal derives a
value W if the output quality is greater equal the current state of the art q∗, and no value otherwise).
This event qi ≥ q∗ has probability ε = 1 − F (q∗), and the perceived payoff to the agent from the
contest is u(W )π(ε). A different payment scheme that has the same expected payout to the principal
is the following: rather than wait to see if the output quality exceeds q∗ before making the payment,
the (risk-neutral) principal commits to paying his expected value, which is Wε, yielding payoff
u(Wε) to the worker. To develop intuition, imagine that the agent is risk-neutral so that u(x) = αx;
the agent then perceives respective payoffs αWπ(ε) and αWε from the output-contingent contest
and fixed-payment schemes respectively. Now if the chance of winning the contest ε = 1−F (q∗) is
small enough for the overweighting of small probabilities to become relevant, the agent overweights
the outcome of winning W (π(ε) > ε), leading to a larger perceived benefit (αWπ(ε)) from the
contest than from the fixed-payment scheme (αWε), and correspondingly stronger incentives for
participation. Of course, this reasoning is oversimplified—it ignores risk aversion, corresponding
to non-linear u; more importantly, it ignores the fact that the threshold q∗ that an agent’s output qi
needs to beat in a contest is not exogenous but rather is endogenously determined in equilibrium by
the choices of all other workers: q∗(N∗) = maxj=2,...,N∗{qj} whereN∗ is the equilibrium number
of participants in the contest. However, it illustrates why overweighting of small probabilities can
skew incentives in favor of ‘riskier’ gambles than ‘safer’ prospects, under the right circumstances.17

Even when agents use decision weights that overweight small probabilities, though, it will not
always be the case that contests yield a more attractive incentive scheme than fixed-prices, because
of risk aversion: the increased weighting of small probabilities by π—favoring contests where there
is a small chance of winning a large prize—trades off against the risk and loss aversion in the value
function u, which favors the smaller but certain payoffs awarded by a fixed-price scheme. This
tradeoff between u and π in the prospect theory preferences will be central to whether the riskier,
output-contingent, contest can ever yield stronger incentives than ‘safe’ fixed-payment contracts.

We first prove a theorem that tells us whether a contest will provide better incentives than a
fixed payment scheme in terms of the value and decision weight functions u, π describing agents’
preferences. This result forms the basis for all our remaining results in this section.

THEOREM 4.1. Consider a population of agents with value function u(x) and decision weights
π(p), and a task with cost c. A winner-take-all contest with prize W dominates a fixed-payment
contract with total payout W in this environment with preferences (u, π) if and only if W is such
that

π
( c

W

)
>
−u(−c)
u(W )

. (3)

Note that the proof of this result does not rely on any properties of the u and π functions except
that the decision weights π(p) are increasing in p; it is merely a comparison between the numbers
of participants for any preferences described by u and π.

We now want to understand ‘when’, i.e., for what kinds of total payouts W and preferences u, π,
this inequality can hold, since this can help us answer our question about whether behavioral biases
can make a difference to incentive design: if there are (realistic) (u, π) such that this inequality

16If agents’ preferences display loss aversion −u(−x) > u(x) in addition to risk aversion this only makes output-
contingent payments less valuable to them reinforcing the attractiveness of a fixed payment contract.
17This same reasoning can be used to understand why an output-dependent bonus payment, while strictly dominated for risk-
averse agents with linear weighting of probabilities, may similarly improve incentives if agents overweight small probabilities
for the same expected payout to the principal.



does hold for some range of payouts W , the designer can indeed do better with a contest for such
(u, π,W ) than with the fixed-payment contract which is optimal if agents behave according to
expected utility theory (Theorem 3.1).

Before discussing when (3) can hold, however, we point out first when it cannot hold. Suppose
the decision weights π are linear (π(p) = p), so that agents weigh outcomes by their actual
probabilities when computing their expected payoff. In this case, π( c

W ) = c
W but c

W ≤ −u(−c)
u(W )

for preferences u with risk and loss aversion (as shown in the proof of Theorem 4.3), so that (3)
cannot hold. Therefore, if agents accurately weigh outcomes by their probabilities, a designer
will never—for any value of the total payout W—prefer to use a contest over a fixed-payment
contract.18 The difference between probabilities and the corresponding decision weights—between
p and π(p)—in the prospect theory preferences must therefore be central to any possible difference
in the principal’s choice of contract.

Risk-neutral agents. Recall that the overweighting of small probabilities and under-weighting of
larger ones in prospect theory is modeled by saying that exists a p∗ ∈ (0, 1) such that π(p) ≥ p
for p < p∗, π(p∗) = p∗, and π(p) ≤ p for p > p∗ (see §2). Our first result below shows that
a contest does not always dominate a fixed-payment scheme despite the overweighting of small
probabilities—which makes the high-risk contest seem a more favorable incentive scheme—even
with risk-neutral agents: the reason is that if the total prize from the contest is not much larger
than the cost of undertaking the contest task, few enough agents participate in equilibrium so that
the probability of winning the prize becomes too large to be overweighted. Therefore, it is only
when W/c is large enough that a contest can dominate a fixed-payment contract. The proof follows
immediately from Theorem 4.1 by noting that if u is linear, −u(−c)/u(W ) is c/W .

THEOREM 4.2. Suppose agents are risk-neutral, that is, u is linear. Then, a winner-take-all
contest dominates fixed payment contracts if and only if the total payment W > c/p∗.

Risk-averse and loss-averse agents. In general, of course, we would not expect agents to be risk-
neutral. Prospect theory models u as concave on x > 0 to capture risk aversion, and u(x) <
−u(−x) to model loss aversion. Now the increased weighting of small probabilities by π has to
additionally also compensate for the risk and loss aversion in the value function u, which favors the
smaller—but certain—payoffs with fixed payments, if the contest is to dominate the fixed-payment
contract. Unlike the case of linear value functions u corresponding to risk neutrality, the range of
valuesW for which a contest dominates a fixed-payment contract need not, for an arbitrary concave
preference u, be as nicely structured as an interval, and in fact, need not even be non-empty.

While obtaining a result about when a contest does dominate a fixed-payment contract (i.e., when
inequality (3) will be satisfied) requires more specific structure on the function u than concavity, we
can give conditions under which a contest will not dominate a fixed-payment contract for any pref-
erences u satisfying risk and loss aversion. Theorem 4.3 below says that when the total payment W
is not large—specifically, not larger than c/p∗—contests cannot dominate fixed payment contracts.
So a principal who does not have a large enough budget to spend on the task should not conduct a
contest, even for agents with prospect theory preferences: for such small W , risk and loss aversion
(concave u) beat out the benefits from overweighting of small probabilities (π(p) > p for small p).

THEOREM 4.3. For any prospect theory preferences (u, π), a winner-take-all contest cannot
dominate a fixed-payment contract for any total payout W ≤ c/p∗.

18Note that this is closely related to our claim from §3 that a fixed-payment contract (weakly) dominates all other forms
of contracts for expected utility maximizing agents with risk-neutral or risk-averse valuations over payoffs, and is in fact a
special case of that claim if there is no loss aversion in u.



4.2. Contests versus fixed payments: Decision weights from cumulative prospect theory
Recall that our primary question was whether a principal might choose a contract different from that
which is optimal for expected-utility agents when facing a population of agents who demonstrate
behavioral biases; to this end, Theorem 4.1 gives us a necessary and sufficient condition (3) under
which a contest will dominate the fixed-payment contract. So far, we have seen when this condi-
tion cannot be satisfied for general prospect theory preferences u, π; however, saying when (3) is
satisfied requires more specific structure on u and π.

In this section, we use specific forms of the utility functions u and decision weights π from
the literature on econometric estimation of the cumulative prospect theory model [Tversky and
Kahneman 1992], a theoretical refinement of the prospect theory model in Kahneman and Tversky
[1979]. Since the functional forms in this literature are based on fitting prospect theory preferences
to experimental data, they are the most natural candidates for our need for specific u, π functions to
evaluate (3), and yield the best answer we can hope to have to our question—without conducting a
measurement of the functions u and π in the specific marketplace of interest—for ‘real’ population
preferences u, π.

Cumulative prospect theory preferences u, π. We will first investigate the condition in Theorem 4.1
for the u, π functions from Tversky and Kahneman [1992], which uses experimental data to estimate
the value functions u(·) and the decision weights π(·).

The value function u over payoffs proposed by Tversky and Kahneman [1992] is

u(x) =

{
xα x ≥ 0
−λ(−x)α x < 0.

(4)

The exponent α ≤ 1 models risk aversion since xα is strictly concave for α ∈ (0, 1), with smaller
α indicating a greater degree of risk aversion.19 The multiplier λ > 1 models loss aversion—a loss
of x incurs greater disutility |u(−x)| = λxα than the corresponding utility u(x) = xα from a gain
of x—with a larger value of λ indicates a greater degree of loss aversion.

The decision weight function π proposed in Tversky and Kahneman [1992] is

π(p) =
pδ

[pδ + (1− p)δ]1/δ
, (5)

where the parameter δ ∈ [0, 1] models the extent to which agents use decision weights that differ
from outcomes’ probabilities. As δ becomes smaller, there is increased deviation from probability
weighting, while at δ = 1, this function reduces to π(p) = p, corresponding to expected utility
maximizing preferences with decision weights equal to the probabilities of outcomes.

We can now use Theorem 4.1 with these functions to ask whether and when a contest domi-
nates a fixed-payment contract for a population with preferences describes by these payoffs and
decision weights u, π. Our main result in this section, Theorem 4.4 below, shows that if the pa-
rameter α describing the degree of risk aversion in u is larger than the parameter δ describing the
degree of probability weighting in π, a contest will eventually dominate a fixed payment scheme
for large enough total payouts W . Further, the total payment W ∗(λ, α, δ) beyond which the con-
test dominates behaves as one might expect with the parameters quantifying risk and loss aversion:
the minimum contest prize W ∗ needed to beat a fixed-payment contract increases as α becomes
smaller—corresponding to more risk-averse agents—and as λ becomes larger, which corresponds
to more loss aversion.

19For this utility function the measure of relative risk aversion is 1− α.



THEOREM 4.4. Consider a population of agents with value functions and decision weights
(u, π) as in (4) and (5). A contest dominates a fixed-payment contract for such a population for all
large enough W if the parameters δ and α satisfy α > δ.

In particular, if α > δ, the winner-take-all contest with prize W dominates a fixed-payment
contract with total payment W for all W ≥W ∗(λ, α, δ) = c(λ · 2 1−δ

δ )
1

α−δ .

(Note that while the theorem is stated in terms of W , it is really the relative scale W/c—the size of
the prize relative to the cost that must be sunk to attempt to gain it—that determines when contests
begin to dominate fixed payments. So a principal willing to offer a large sum W in absolute dollar
amounts might still be better off with a fixed payment contract than a contest if working on the task
for his contest involves a high cost c, and conversely for low absolute payouts W and ‘easy’ tasks
with low c.)

The condition α > δ in Theorem 4.4 has an intuitive interpretation as capturing the tradeoff
between the increased weighting of small probabilities by π (which, roughly speaking, favors a
contest) and agents’ risk and loss aversion (favoring the ‘safer’ fixed-payment contract). Recall
that risk aversion increases as α shrinks further away from 1 (with α = 1 corresponding to risk-
neutrality), and deviation from linear probability weighting also increases as δ shrinks further away
from 1 (with δ = 1 corresponding to expected-utility behavior). The theorem says that if the degree
of deviation from linear probability weighting in π is ‘greater’ than the extent of deviation from
risk-neutrality in u as captured by the condition α > δ, a contest will eventually dominate fixed
payment contracts for the agent population with preferences u, π.

We note that the values of α and δ estimated in Tversky and Kahneman [1992] are α = 0.88 and
δ = 0.65, so that α − δ is indeed positive according to these estimated cumulative prospect theory
valuations. Theorem 4.4 therefore suggests that contests will indeed serve as a better incentive
scheme than fixed-payment contracts for large enough W .

Alternate functional forms. Subsequent work on econometric estimation of preferences in risky
decision-making environments corroborates the main findings of cumulative prospect theory, al-
though using somewhat different functional forms for u and π than those in (4) and (5) from Tversky
and Kahneman [1992]. For completeness, we outline how our qualitative conclusions in Theorem
4.4 continue to hold for these alternate functional forms as well. We consider the model from Bruhin
et al. [2010], which performs an econometric estimation based on experimental results from an ex-
tensive study with 18000 subjects. The π and u functions in Bruhin et al. [2010] are

π(p) =
ηpγ

ηpγ + (1− p)γ
; u(x) =

{
xα x ≥ 0
−λ(−x)β x < 0.

(6)

where the parameter γ in the π function plays a role akin to δ in the model from Tversky and
Kahneman [1992], with small values of γ ∈ (0, 1) indicating greater deviation from linear weighting
of probabilities, and the additional parameter β in u allows different curvatures for the utility from
losses and gains. Again, we can use these functional forms in Theorem 4.1 to address when contests
dominate a fixed-payment contract, giving us the analog of Theorem 4.4:

THEOREM 4.5. Consider a population of agents with value functions and decision weights
(u, π) as in (6). A contest dominates a fixed-payment contract for such a population for all large
enough W if the parameters γ and α satisfy α > γ.

Bruhin et al. [2010] find that the majority of their experimental subjects (∼80%) display signifi-
cant non-linear weighting of probabilities, segregating consistently into two subpopulations—CPT-I
and CPT-II—with lesser and greater deviation from EU preferences; they estimate α = 0.901 and
γ = 0.309 for the CPT-I and α = 0.957 and γ = 0.451 for the CPT-II population. Again, these
parameter values satisfy the condition (α > γ) under which a contest can dominate fixed-payment
contracts in a market described by these preferences.



Theorem 4.4 and Theorem 4.5 allow us to affirmatively answer the question posed at the start of
this section. Together with the estimated values of α and δ from Tversky and Kahneman [1992] and
α and γ from Bruhin et al. [2010], these results suggest that—to the extent that these parameters
indeed describe the decision-making behavior of agents in online crowdsourcing environments20—
a principal who values the output from crowdsourcing his task adequately highly (compared to the
cost to a worker to produce that output) might indeed choose a different kind of mechanism, and
do better as a result, if he accounts for deviations from the standard economic model of expected
utilities that are typically used in theoretical design.

5. CONCLUSION AND FURTHER DIRECTIONS
In this paper, we asked whether behavioral biases—in particular, the consistently observed
deviations of behavior from expected utility theory, the standard economic model of decision
making under uncertainty—can matter to mechanism design. We explored this problem in the
context of the incentive design problem faced by a principal in a crowdsourcing market with
participation-only strategic choices, and demonstrated that a principal’s choice of contract can
change in fundamental way—from an output-independent, ‘safe’ fixed-payment scheme to a
riskier, output-contingent contest—depending on whether agents behave according to expected
utility theory (with risk aversion) or prospect theory preferences. While our model is a reasonable
description of the specific crowdsourcing markets we use to motivate it, it is deliberately chosen
to be the simplest, most parsimonious possible model that illustrates our central point—that
deviations from expected utility theory, according to prospect theory preferences, are potentially
quite significant to theoretical design—in a realistic setting. This means that there are a number
of complexities of crowdsourcing markets that our model does not capture, presenting promising,
and important, directions for further work; we discuss several of these in the full version of the paper.

Prospect theory in mechanism design: Beyond principal-agent problems. The question of how
choice according to prospect theory versus expected utility affects equilibrium analysis and optimal
design extends to domains beyond principal-agent problems in online labor—principal-agent prob-
lems are merely one amongst many applications of mechanism design where agents make decisions
under uncertainty. A number of other domains to which mechanism design applies, especially those
motivated by online systems where individuals rather than large firms are decision makers—such
as online auctions with small bidders, or reputation systems in peer-to-peer economies—depend on
the decisions of individual agents to whom these behavioral biases do apply. The issue of whether
agents choose according to prospect theory versus expected utility preferences is a fundamental
component of equilibrium analysis and the optimal design question in each of these environments,
and as such, lays open a vast field of problems for further exploration.
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