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Behavioral biases in individual decision-making are generally regarded as mistakes that reduce the individ-
ual’s welfare. In this paper, we investigate one specific setting with widely documented behavioral biases—
that of updating beliefs using data, where empirical and experimental evidence indicates that people do not
accurately update beliefs using Bayes rule—and demonstrate, in a simple model capturing this setting, that
biases need not be welfare reducing. If the parameters in the decision environment are purely exogenous,
biased updating is indeed suboptimal. However, when the parameters of the decision environment are en-
dogenously determined, as they are in several real scenarios, by a strategic agent with decision-contingent
utility, a behavioral bias may actually help the decision-maker by inducing equilibrium decision parameters
that improve her net payoff—despite her bias—as well as overall welfare.
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1. INTRODUCTION

Individual decision-making is a fundamental component in several realms of economic
analysis, and has been studied from various perspectives and in various contexts, both
theoretical and experimental. A growing component of this literature studies biases in
individual decision-making, documenting how people make suboptimal decisions that
do not match those that would be made by rational agents.

Biases sound like a bad thing!, potentially causing harm to the individual display-
ing the bias, and possibly also to welfare at large. But is that really so—do biases
always hurt, and if not, is there a systematic understanding of when or why they
might help? In this paper, we investigate this question in one specific setting where
behavioral biases have been widely documented—that of updating beliefs using data,
where empirical and experimental evidence indicates that people sometimes do not
act as if they accurately update beliefs according to Bayes rule.

Posterior beliefs and (non-)Bayesian updating. An extensive literature (see §1.2)
documents how individuals systematically make errors by deviating from Bayes rule
in updating their beliefs, displaying biases such as the confirmation bias or represen-
tativeness bias in their estimates of posterior probabilities. A typical decision-making
scenario that requires updating of beliefs is that of making payoff-relevant inferences
about an unknown state, or ground truth, from an observed signal: an individual
must choose one amongst a set of actions, each of which has a payoff that depends
on the realized state of some random variable (the ‘ground truth’) with some known

!Indeed, the Wikipedia article on biases says: “In science and engineering, a bias is a systematic error”.
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prior distribution. The individual does not observe the realization, but only receives
data—one amongst a possible set of signals, the probabilities of which depend on the
state; she then updates her belief about the (distribution of the) ground truth based
on the observed signal and uses this updated belief to guide her decision. This model
describes a variety of decision-making environments, ranging from toy problems in
experimental setups (such as identifying the type of an urn based on the color of the
ball drawn from it, or the taxicab problem [Easley and Kleinberg 2010]), to decisions
about trading under information asymmetry in online markets, where buyers without
adequate first-hand information about the quality of goods need to decide whether or
not to participate in the market.

Inference in strategic environments. In settings such as the urn experiment or the
taxicab problem, the prior and signal probabilities are determined exogenously—by
nature, or some entity (such as an experimenter) whose utility is not contingent upon
the individual’s choice. But there are also settings where the individual faces an iden-
tical decision problem, but where the parameters of the data-generating process have
been chosen by strategic agents whose utility depends on the choice she makes. For
example, sellers (whether of goods or services) deciding whether to invest in a good
product or not (choosing the prior), or deciding whether to invest in a costly signal
such as a warranty, or certification or coursework (choosing the signal probabilities)
derive different utilities contingent on the buyer’s choice of whether or not to trade
in the market. How does the updating rule—Bayesian or biased—of an otherwise ra-
tional (i.e., perceived expected utility-maximizing) decision-maker affect her payoff in
such environments?

1.1. Outline of results

We consider the simplest version of this decision-making scenario, where the ground
truth (say the ‘type’ of a seller) can take one of two binary values, G (good) or B (bad),
the signal can take one of two possible values, H (high) or L (low), and the decision-
maker (the ‘buyer’) chooses between two actions, t (trade) and n (not trade). The type is
drawn according to a distribution (7, 1 — ) (the prior), where G occurs with probability
m, and the two possible signals, H and L occur with probabilities that depend on the
type—H occurs with probability p¢ if the ground truth is G, and pg if the type is B (and
L occurs with the remaining probability 1 — pg or 1 — pg). Given the observed signal S
€ {H,L}, and knowledge of 7, ps, p5, the individual updates her beliefs from the prior
to a posterior, and makes her decision based on the expected payoff given her posterior
beliefs.

When the parameters of the data-generating process—pq, pp and m—are exogenous,
biases are indeed sub-optimal: the decision-maker maximizes her welfare by accu-
rately updating her beliefs using Bayes rule. However, when the data-generating pro-
cess is not entirely exogenous, we show that the decision-maker can improve her wel-
fare when she updates her beliefs with a systematic behavioral bias instead of using
accurate Bayesian updating. Note that this updating rule (whether Bayesian or bi-
ased) is fixed prior to, or outside of, the game and is not a part of the buyer’s strategy
space in the game.

We study two versions of the setting where the data-generating process is
endogenous—first, where the signaling probabilities p; and pgp are exogenous, but
prior (m,1 — 7) is chosen by a strategic agent who incurs a higher cost from choos-
ing to be good (G) than bad (B) (§3), and second, where the seller chooses the signaling
probabilities pg and pg, with a higher cost to the H signal when the type is bad (§4).
Each of these induces a sequential game whereby the seller chooses his parameters
in order to maximize his expected payoff from the buyer’s choice, knowing that (a) the



buyer will choose to trade if her perceived expected utility, given the (probabilistic) re-
ceived signal (H or L), is greater than zero, and (b) knowing how the buyer computes
her posterior beliefs that determine her perceived utility, given the data and the prior.
We emphasize here that the buyer always plays a best response given her beliefs, i.e.,
she chooses the action that maximizes her (perceived) expected utility—the only bias
is in how she updates the prior using the data to compute her posterior.

We analyze the equilibrium outcomes in the two games, both of which? contain
mixed equilibria (under appropriate conditions on the market) in addition to the triv-
ial equilibrium of no trade, and ask how the non-trivial mixed equilibria vary with
the buyer’s updating rule. We show that a buyer who updates her prior in a consis-
tently ‘pessimistic’ fashion—in that she underreacts to good news, i.e., underestimates
the probability that the seller is good G upon receiving an H signal, and overreacts
to bad news, overestimating the probability that the seller is bad upon receiving an
L signal—obtains higher payoffs in the mixed equilibria in both games than a buyer
who updates accurately using Bayes rule. Interestingly, this higher payoff to the buyer
comes at no cost to the seller, whose payoff in equilibrium is independent of whether
the buyer updates her beliefs as an accurate Bayesian or with a bias.

The results in §3 and §4 together illustrate our main conceptual point, namely
that a behavioral bias—which is suboptimal in a decision environment with exoge-
nous parameters—can actually help when that same decision is instead embedded
within a game which determines the parameters of the choice problem: despite the
suboptimality of her decision-making given the parameters of the data-generating
process, the decision-maker is better off with her behavioral bias than without, since
an (appropriate) bias in her updating rule nudges the endogenous parameters of the
decision environment in a direction that increase her final payoff.

Remark. While our analysis shows that a behavioral bias can be payoff-improving in
the specific model we study, we clarify that we are not using this analysis to suggest
that such payoff improvements are the—or even a—reason that behavioral biases are
actually observed as widely as they are: to make such a claim would require an ex-
perimental design that must eliminate wide-ranging and rather complex confounding
factors, which is well beyond the scope of this paper. Our primary point is to offer an
alternative perspective on behavioral biases, which are typically perceived as purely
irrational in the sense of being utility-reducing, by investigating their effects in a game
environment rather than a pure decision environment.

1.2. Related work

Economists typically describe individual decision-making under uncertainty using ex-
pected utility theory as developed in [von Neumann and Morgenstern 1947] or [Savage
1954]; or sometimes a modern generalization of expected utility theory as in [Gilboa
and Schmeidler 1989] and the many papers that build on it. This theory, in its subjec-
tive form due to [Savage 1954], is built on axioms which imply that beliefs are updated
upon the arrival of new information using Bayes rule (see [Blume and Easley 2006],
[Ghirardato 2002]). An immediate implication of this observation is that in the frame-
work underlying this theory a decision maker cannot improve her payoff by misusing
information from the Bayesian point of view; that is, non-Bayesian updating, followed
by choosing optimally using these incorrect conditional beliefs, can only reduce payoffs.

2The buyer’s decision problem is essentially identical in the two games, as also in the situation with purely
exogenous parameters. However, the seller’s strategy space and payoff structure is somewhat different in the
two games, since one involves a two-dimensional strategy space (choosing p¢, pg) while the other involves
only choosing .



Although criticisms of expected utility as a model of individual behavior have a long
standing in economics, much of this work is either silent on updating or has Bayesian
updating embedded in it. The basic critiques began with the experiments of [Allais
1953] calling into question the implications of objective expected utility theory and the
thought experiments of [Ellsberg 1961] calling into question the implications of sub-
jective expected utility theory. More recently, there has been renewed interest in alter-
native or generalized models of decision making as in [Gilboa and Schmeidler 1989]
and the vast decision theory and applied economics literatures following the multiple
priors approach, or the vast literature using prospect theory [Kahneman and Tversky
1979]. This literature typically does not focus on updating or uses Bayesian updating.
There is however, recent interest in axiomatic decision theories using non-Bayesian
updating, see [Epstein and Sandroni 2008], [Epstein and Sandroni 2010], and [Or-
toleva 2012]. And, of course, there is a substantial literature in both economics and
finance exploring the implications of non-Bayesian updating, see for example [Daniel
et al. 1998], [Rabin and Schrag 1999] and [Rabin 2002].

Our work differs from this literature in that we do not attempt to axiomatize a non-
Bayesian decision theory or to discover its implications for observed behavior in an
experiment or a market. Instead, we show that non-Bayesian updating is individual
payoff improving in a variety of strategic settings.

There is, of course, a large experimental literature on Bayesian updating: psychol-
ogists, as well as experimental and behavioral economists, have found that in some
settings individuals do not act as if they have beliefs which are updated according to
Bayes rule, see [Rabin 1998] or [Camerer 1995] for surveys that address this large
literature. In some settings, individuals seem to overweight data relative to Bayes
rule (or equivalently underweight their prior—base-rate neglect), see [Kahneman and
Tversky 1982], and in others they seem to underweight data (or equivalently over-
weight their prior—conservatism), see [Kahneman and Tversky 1973]. Both of these
non-Bayesian behaviors have been widely documented. For a sample of the vast lit-
erature in psychology and in economics on non-Bayesian behavior see [Dominiak and
Lefort 2012; Grether 1980; Holt and Smith 2009; Kahneman and Tversky 1972, 1982;
Tversky and Kahneman 1974].

2. PRELIMINARIES

We ask about the potential for payoff-improving, non-Bayesian updating in two
simple, standard games derived from the decision-making scenario outlined in §1.1.
Before analyzing these games, we describe the buyer’s decision problem as well as
other parts of the model that are common to both games.

Inference with payoff-relevant unknown ground truth. Recall from §1.1 that we
have a single buyer deciding whether to trade (t) or not (n) with a seller of unknown
type, based on the observed data and knowledge of the data-generating process (7, pg
and pg). The buyer obtains a payoff of z from trading with a good seller (G), and a
payoff of y from trading with a bad seller (B). If the buyer chooses to not trade with the
seller, the payoff to the buyer is 0. The seller obtains a revenue of p, irrespective of his
type, if the buyer trades with him and no revenue if he does not. This revenue p is an
exogenous parameter throughout, and not a part of the strategy space of the seller in
either game.

We assume that the buyer would (strictly) prefer to trade than not if she knows that
the seller is good, and not trade if she knows the seller is bad, so that

z>0>y.



However, the buyer doesn’t have this information about the type of the seller—rather,
she only receives a signal conveying information about the seller’s type (G or B). The
probability of receiving a H signal varies with the type of the seller: the signal H
(indicating ‘high quality’) is received with probability ps if the seller is a good (G)
type and with probability pg if the seller is bad; the signal L (indicating ‘low quality’)
is received with probabilities 1 — pg and 1 — pp, respectively.? The signals H and L
can be thought of as the reputation of the seller, or samples provided by the seller to
demonstrate his type.

Timing and information. First the seller’s type is drawn from a distribution (7,1 — 7)
on {G,B}. Next, the buyer receives one of two signals H or L drawn according to either
pc or pp, depending on the outcome of the draw from the distribution on {G,B}. The
buyer uses the observed data, along with the prior (7,1 — 7) and the probabilities pg
and pp, to update her beliefs about the probability that the seller is good, and uses this
inference to make her decision of whether to trade or not. We assume that the buyer
knows the distribution (7,1 — 7) of the seller’s type and the conditional probabilities,
pc and pg, of signals.

Behavioral biases: Bayesian and non-Bayesian updating. A buyer who accu-
rately updates her beliefs using Bayesian updating computes the posterior probability
of G, given the observed data and the parameters of the data-generating process (the
prior (w,1 — 7) and the probabilities p; and pg), using Bayes rule. We denote the pos-
terior probabilities corresponding to the two signals H and L for a Bayesian buyer as
pu = Pr(G|H) and p;, = Pr(G|L):

yZexs
p— 1
bH pem+pp(l —7) D
pL = (1 —pa)T (2)

(1 =pe)m+ (1 =pp)(1 —m)

We will allow for buyers who make inferences that are biased, or non-Bayesian, by
assuming that such buyers perceive the posterior probabilities of the seller being good
upon seeing a signal S € {H,L} as

qs = f(ps)-

We assume that f is strictly increasing, i.e., f(p1) > f(p2) iff p1 > po. This assumption
says that the buyer, despite making errors in updating beliefs, preserves the ‘order-
ing’ of posterior probabilities, i.e., she perceives more likely events as having a higher
probability.

Thus, the non-Bayesian buyer knows the parameters of the data generating process
(i.e., the values of 7, pc and pg), but may make errors (relative to Bayes) in how she
uses data (high and low signals) to make inferences about the probability that the
seller is good or bad (that individuals actually make such errors is widely documented
in both the economics and psychology literature; see section §1.2). Note that these
errors are only in inference—the buyer has accurate knowledge of the prior (7,1 — m)
and the frequencies of high signals (pg and pg), and therefore accurately computes,
for instance, the unconditional probability of seeing a high signal. Also, while the
buyer may make errors in updating her beliefs, perhaps by under- or over-weighting
the data she receives, she otherwise behaves ‘as usual’—given her (possibly mistaken)

30f course, whether H is actually a signal that the seller is a G type (or L a signal that the seller is a B type)
is determined in equilibrium.



posterior beliefs, she acts to correctly maximize her expected utility as she perceives it.

Decision-making. There are four pure strategies that the buyer can use in her deci-
sion problem, corresponding to two actions (t and n) for each of the two possible signals
(H, L): (i) always trade irrespective of the signal (tH, tL), (ii) trade when a high signal
is received but not trade on a low signal (tH, nL), (iii) never trade (nH, nL), and (iv)
trade on a low signal but not on a high signal, (nH, tL).

Suppose a signal S € {H,L} is observed. Let g5 denote the buyer’s updated belief
that the seller is good (G), conditional on having received the signal S—i.e., qy is the
buyer’s perception of the probability Pr(G|H) and ¢y, is the buyer’s perception of the
probability Pr(G|L). Define uy and uy to be the buyer’s perceived expected payoffs,
based on her perceived (posterior) beliefs qg, g1, from trading on a high (H) and low
(L) signal respectively:

ug = qur+ (1 —qn)y, 3)
ur = qrr+ (1 —qr)y. 4)
Her payoffs from each of her pure strategies are therefore

(1) (tH,tL): Pr(H)up + Pr(L)uy,
(2) tH,nL): Pr(H)uy

(3) (nH,nL): 0

(4) mHtL): Pr(L)uy,

where Pr(H) = pem + pp(l — ) and Pr(L) = (1 — pg)m + (1 — pp)(1 — ) denote the
unconditional probabilities of the buyer observing a high and low signal, respectively.*

Observe that if any of the parameters governing the data-generating process (either
T or pa, pr) are endogenously determined by a strategic seller, the buyer’s payoffs will
have the seller’s strategy embedded in them since the values of uy and u; depend on
the values of gy = f(py) and q;, = f(pr), each of which are functions of 7, pg, pg. The
buyer’s payoff for each strategy (and consequently her choice of strategy) therefore
depends on the seller’s strategy, which will be determined in an equilibrium of the
corresponding game; we analyze this next.

3. STRATEGIC HIDDEN EFFORT

We now introduce strategic behavior in the buyer’s decision-making environment. We
start with strategic choice of 7, the type of the seller: the seller can choose to be good
(G), incurring a cost of ¢, or bad (B), which costs nothing. The seller’s strategy, which
may be a mixture over G and B, determines the distribution (7,1 — 7).

The probabilities pe and pp remain exogenous, and we will assume throughout this
section that

0 <pp <pg<land (pc—pp)p>c.

The first assumption says that signals are not perfectly informative. The second as-
sumption comes from requiring that if a high signal generates trade (i.e., the buyer
plays t on observing H), then the return to being a good seller G, namely pgp — ¢, is
greater than the return pgp to being a bad seller B—otherwise, it would never pay for
a seller to invest in being good. (Recall that the revenue p obtained upon trading is
exogenous, and not part of the seller’s strategy space in this game, so that assuming
(pc — pp)p > cis indeed a valid assumption on the parameters of the game).

4Note that these unconditional probabilities of seeing an H or L signal are accurately estimated by the
buyer, in accordance with the discussion above.



This structure induces a standard, simple hidden-action problem as the buyer
cannot observe the seller’s action (G or B); she cares about the action choice (because
the payoff to trading with a good seller z is greater than the payoff from not trading
(r > 0), and vice versa for a bad seller (y < 0)); and, she observes a signal (Low or
High) correlated with the seller’s action. We use this canonical hidden-action game to
illustrate one type of setting in which non-Bayesian updating can be advantageous.

Strategies and equilibria. The pure strategies available to the seller are to be good
(G), paying a cost ¢, or bad (B) at a cost of 0. A seller can also use a mixed strategy;
we denote the probability of choosing G in the seller’s mixed strategy by =. Recall from
§2 that the buyer has four pure strategies (tH, tL), (tH, nL), (nH, nL), and (nH, tL),
corresponding to trading or not for each possible observed signal. A mixed strategy for
the buyer is a probability distribution over these pure strategies. Both the buyer and
the seller choose their strategies before any random draws are made.

A distribution (7,1 — 7) for the seller on (G,B), and a distribution a = (a1, as, a3z, ay)
on the four possible strategies for the buyer is a (mixed-strategy) Nash equilibrium if
neither buyer nor seller can improve their expected payoff by changing « or 7 given
the choice of the other player.

3.1. Equilibrium analysis

We will begin by analyzing the equilibria of this game G, and then investigate the
equilibrium payoffs in §3.2.

LEMMA 3.1. There are exactly three equilibria in Gg, one pure and two mixed:

(1) Equilibrium Eqy: The buyer plays the pure strategy (nH,nL) and the seller plays the
pure strategy B.

(2) Equilibrium Ey: The buyer mixes over (tH,tL) and (tH,nL) with probability o given
by (7) on (tH,tL) and seller mixed over G and B with probability ©} given by (6) on
G

3) Equilibrium Es: The buyer mixes over (tH,nL) and (nh,nL) with probability o on
(nH,nL) given by (10) and the seller mixes over G and B with probability =} given
by (9) on G.

Before proceeding to prove this claim, we note the following details about how non-
Bayesian updating affects these equilibria and their structure; the justifications for
these follow directly from the equilibrium analysis below.

(1) The no-trade and no-investment-in-quality equilibrium, ((nH,nL), B), is unaffected
by non-Bayesian updating: in this equilibrium the seller does not invest, and know-
ing this, the buyer is best off not buying irrespective of the signal observed.

(2) In the two mixed strategy equilibria F; and FE», the buyer plays strategy (tH, nL)—
i.e., trading conditional on a high signal—with the same probability 1 —af = 1—a3.
Note that this probability, which is the buyer’s equilibrium mixture and is deter-
mined by equating the seller’s payoffs in equilibrium from G and B, is unaffected
by non-Bayesian updating.

(3) Non-Bayesian updating also does not change the set of equilibria. However, it does
affect the seller’s mixture over G and B in the mixed equilibria.

The remainder of §3.1 provides the argument for why these are the (only) equilibria
in G and can be skipped by the reader not interested in the details.

3.1.1. Pure-strategy equilibria. We first observe that there is a single (and rather dull)
pure-strategy equilibrium where the seller chooses B and the buyer chooses (nH, nL),



where the seller does not try and the buyer does not trade. This is immediate from
writing the payoffs to both players in normal form (recall that z > 0 > y):

Buyer / seller G B
(tH, tL) T,p—cC Y, D
(tH, nL) DG, pap — ¢ PBY, DBD
(nH, nL) 0, —c 0,0
(nH, tL) (1—=pg)z, 1 —pg)p—c | (1 =pp)y, 1 —pp)p

3.1.2. Mixed-strategy equilibria. We begin by noting that the buyer does not play strategy
(nH, tL) with positive probability in any equilibrium of the game. To see this, first
rewrite the payoff from a signal S, S € {H,L}, as

us = qsz + (1 —qs)y = gs(z —y) +v.

Since x — y > 0, ug is increasing in ¢gg. Since pg > pgp, we have that pg > py from (3).
Therefore, since ¢ = f(p) is increasing in p, gy > g1 and so uy > uy. Note also that
since 0 < pp, pe < 1, Pr(L) and Pr(H) are both nonzero for all = € [0, 1].

With this, we can now see that (nH, tL) is not a best response for any value of
7 € [0,1] that the seller may choose: (i) if uy > 0 then (tH,tL) has a greater payoff than
(nH,tL), and (ii) if uy = 0 then u;, must be less than 0 (since ug > ur), in which (nH,nL)
has a greater payoff than (nH,tL). So (nH,tL) will not be played in an equilibrium of
the game.

We next show that there are, in fact, exactly two mixed-strategy equilibria in this
game. In one equilibrium, the buyer mixes between always buying (tH, tL) and buying
only on a high signal (tH, nL)—that is, she mixes between trading and not when she
sees the low signal, while in the other equilibrium she mixes between never buying
(nH, nL) and buying only on the high signal (tH, nL) (corresponding to mixing upon
seeing the high signal).

1. Equilibrium E,: Buyer mixing (tH,tL) and (tH,nL). Suppose the buyer mixes by
playing (tH,tL) with probability a1, and (tH, nL) with probability 1 — a1, and the seller
mixes playing G w.p. * and B w.p. 1 — 7.

For the buyer to mix (« € (0, 1)), she must perceive equal payoffs from the two strate-
gies (tH,tL) and (tH, nL) when the seller uses the strategy =. Recall that the payoff
from (tH,tL) is Pr(H)uy + Pr(L)uy and that from (tH, nL) is Pr(H)ug: for these to be
equal, we must have Pr(L)uy, = 0. Given our assumption that 0 < pg, pg < 1, the prob-
ability of seeing a low signal Pr(L) = mpe + (1 — m)pp > 0 for all = € [0, 1]. Therefore,
ur, must be 0 for the buyer to mix between these two strategies, i.e.,

qgrr+ (1—gqr)y=20 = qr = i (5)
r—y

Note that g;, € (0,1) since > 0 > y. So in this mixed equilibrium the seller’s strategy
7} must solve

- B 71 (1 —pe) —
QL—f(pL)—f(Wf(l_pc)q_(l—wf)(l—PB)) @ .

The equilibrium value of 7 is thus

o (1 -pp)f ()
V0 pa) (- TG + (- pp) 1)

where z = . Since 7} € [0, 1], it describes a valid mixed strategy for the seller.

(6)




If we can now also find an «; € (0,1) such that the seller is indifferent between the
strategies of G and B when the buyer plays (tH,tL) with probability o, and (tH, nL)
with probability 1 — a1, we have a mixed strategy equilibrium. Note that the value
of oy characterizing the buyer’s mixed strategy does not depend on whether or not
the buyer uses accurate Bayesian updating or not: a; is determined by equating the
seller’s payoffs from choosing G and B when the buyer mixes according to «. Those
payoffs depend on the true probabilities pg and pp of seeing an H signal, rather than
the buyer’s perception of those probabilities.

The payoff to the seller when she chooses G is

—c+ [a1p + (1 — 1) (pap)]

while the payoff from choosing B is

a1p+ (1 — a1)(psp)-

Equating these two allows us to solve for the value of «; at which the seller is indiffer-
ent between G and B:
C
aj=1— ——— (7
! p(pc — pB)

which lies in (0, 1) by the assumption that pgp — ¢ > ppp.

Since both 7} and «f are valid probabilities in [0,1], we have a mixed-strategy
equilibrium.

2. Equilibrium Es: Buyer mixing (tH,nL) and (nH,nL). There is another mixed equilib-
rium in this game where the buyer mixes between (tH,nL) and (nH, nL). Again, for the
buyer to mix, the seller’s mixed strategy must be such that she receives equal payoffs
from the two strategies (tH,nL) and (nH, nL). Equating the payoff from (tH,nL), which
is Pr(H)uy and that from (nH,nL), which is zero, we obtain:

qar+ (1 —qu)y =0 = qu = f(pu(7)) = xiyy_ (8)

Once again, note that gy € (0,1) since z > 0 > y. So in this mixed equilibrium the
seller’s strategy 75 must solve

_ _ TP _ Y
qu = [(pu) f<7T§‘pc+(1—7T§)pB> prat

The equilibrium value of 7 is thus

* f_l(z)pB
T pa(l— f~1z2) +psf~(z)’ ®

where z = . Note that 73 € [0, 1].
For the seller to be willing to mix, he must obtain equal payoffs from G and B when

the buyer mixes with probability 1 — a5 on (tH, nL) and as on (nH, nL). The payoff to
the seller when she chooses G and the buyer mixes wp « is

(1 —a2)(pap — ) + az(—c),
while the payoff from choosing B is

(1 —ag)ppp + a2 - 0.



Equating these two allows us to solve for the value of « at which the seller is indifferent
between G and B, which is

__c
p(pc — pB)
Again, note that o3 does not vary with f(-).

*
ay =1-—

€ (0,1). (10)

3.1.3. No other equilibria. We now argue that the three equilibria above are the only
equilibria in the game. We have already seen that there is exactly one pure strategy
equilibrium of the game, and that there is exactly one equilibrium where the buyer
mixes between (tH, nL) and (tH, tL), and exactly one where the buyer mixes between
(tH, nL) and (nH, nL). Now note that:

(a) There is no equilibrium where the buyer mixes between (tH, tL) and (nH, nL), since
the seller’s unique best response to both strategies is the pure strategy B, to which
the buyer’s unique best response is (nH,nL).

(b) There is no equilibrium where the buyer plays all three strategies (tH, tL), (tH, nL)
and (nH, nL) with non-zero probability, for any mix 7 chosen by the seller: If so, the
buyer must obtain equal payoffs from all three strategies, which requires

Pr(H)ug + Pr(L)ur = Pr(H)ug =0,

which cannot be simultaneously satisfied, since we have already argued that (i)
both Pr(H) and Pr(L) are nonzero for all 7, and (ii) that uy > ur, so that we cannot
simultaneously have uy = 0 and uy = 0.

Together, we have shown that there exist no equilibria other than the three equilibria
above.

3.2. Equilibrium payoffs

We now investigate equilibrium payoffs, and how they depend on how the buyer up-
dates her beliefs, f(p).

First, note that the seller’s payoff in any equilibrium depends only on the buyer’s
mixture over strategies. Since the buyer’s mixture over strategies is independent of
f, which describes how the buyer mis-updates posterior beliefs, the seller’s payoff is
independent of f as well. Thus, the buyer’s inaccurate updating does not harm, or
help, the seller.

Next we investigate the buyer’s payoffs. The buyer’s payoff in the pure strategy equi-
librium where she plays (nH,nL) and the seller plays B is always 0, irrespective of f.
For the mixed equilibria, the buyer’s true payoffs (in contrast with her perceived pay-
offs) can be computed as the weighted sum of the payoffs from each of her component
pure strategies. Note that when the buyer updates accurately, the payoffs from all pure
strategies that the buyer mixes over are equal, but if the buyer updates inaccurately,
it is the perceived, rather than the true, payoffs from strategies belonging to a mixture
that are equal.

The true payoff from the strategy (tH, tL) is

utper =+ (1 —my=7n(z —y) +y,
from the strategy (tH,nL) is
gL = ™pax + (1 — m)ppy = 7(pax — PBY) + PBY,

while the payoff from (nH,nL) is 0.
Note that the payoffs u:r +; and w1 are both (strictly) increasing in 7: since z > 0
and y < 0, and pg > pg, the coefficients of 7 are positive. Therefore, the total payoff in



both the equilibria E; and F> are increasing in w, since they are the sum of terms each
of which is (weakly) increasing in .

Finally, we ask how the seller’s probability 7 of playing G in the two mixed equilibria
E, and E> depends on f, the function describing how the buyer updates her posterior
belief. For the first equilibrium where the buyer mixes between (tH,tL) and (tH,nL),
recall that 7] is such that

B (1 — pa) —
flor) = f (ﬁ(l —pa)+ (1 —m)(1 —pB)) I

while for the other equilibrium where the buyer mixes between (tH,nL) and (nH,nL),
the seller mixes according to 75 which satisfies

_ T5PG Yy
fom) =1 <7T§pc: +(1— W%‘)pB) Cz—y

Rewriting p; and py, we can see immediately that py and p; are both strictly in-
creasing in 7:

pr(m) = il - o) = L
m(1=pe)+ A =m)(L—ps) 14 (L-1) =2
_ e _ 1
pulm) = e+ (1—mpp 14+ (£—1)82"

Since f(p) is strictly increasing in its argument, and since the arguments py and pp,
are strictly increasing in w, we have that f is strictly increasing in .

Now suppose that the buyer updates according to a function f that consistently un-
derestimates posterior probabilities °, i.e., such that f(p) < p. For such a buyer, the
equilibrium values of 7] and 7} are larger than they are for a Bayesian buyer with
f(p) = p: alarger 7 is needed to generate a larger py (respectively py) so that f(py) (re-
spectively f(pr)) takes on the same value of % Therefore, the seller chooses higher

values of 7 in both equilibria of the game when the buyer perceives posterior proba-
bilities according to a function f(p) < p: that is, if a buyer is ‘pessimistic’—relative to
the truth—in her estimate of the probability that the seller is good conditional on the
received data, the seller will choose a more favorable mix over being good and bad.

In fact, this buyer pessimism is Pareto-improving, since this increase in m comes at
no cost to the seller—the seller mixes only over strategies that give him equal payoff,
and therefore any mix over the two pure strategies is payoff-equivalent for the seller.
That is, the buyer’s pessimism, f(p) < p, has made her strictly better off without
making the seller worse off. We summarize these arguments as a theorem below.

THEOREM 3.2. In each of the non-trivial equilibria E; and E5 of game Gg, the pay-
off to a non-Bayesian ‘pessimistic’ buyer, who perceives her posterior beliefs according to
f(p) < p, is strictly larger than that of a Bayesian buyer (f(p) = p). Further, the seller’s
payoff is independent of the buyer’s updating rule f(p), so that non-Bayesian updating
with f(p) < p Pareto-improves welfare.

This Pareto improvement generated by non-Bayesian updating may seem surpris-
ing, but can be understood simply as follows. Relative to a Bayesian buyer our pes-
simistic, non-Bayesian buyer appears to be not best-responding to the seller’s strategy,
and a commitment to not best-respond can be valuable in a variety of games (of course,

5Note that this is not at odds with f being strictly increasing in its argument; for example, the function
f(p) = p? is strictly increasing in p and less than p for p € [0, 1]).



note that this biased updating is not strategically chosen within the game but comes
instead from a behavioral rule that is fixed prior to the game). Thus, while our buyer is
best-responding given her incorrect posterior beliefs—she chooses the action that max-
imizes her perceived expected utility—the fact that her beliefs are incorrect effectively
functions as a credible threat to not best-respond, a threat the buyer does in fact carry
out; this credible threat earns the buyer more in a favorable distribution over types
than she loses with her suboptimal updating.

4. STRATEGIC SIGNALING

We next consider a simple, standard signaling game using the structure outlined
previously. The difference from the previous section is that now strategic behavior
is with respect to signaling: the distribution over types, (7,1 — 7), is exogenous, but
the probabilities pe and pg of a high signal given a good or bad type are chosen by a
strategic seller. The cost to a seller to sending the high signal H is ¢ if he is good (G),
and cg is he is bad (B), with cg > c¢g; the cost of sending a low signal L is always zero.
We assume that the revenue p that a seller receives from trade is greater than cg, so
that both types of sellers would be willing to signal if this would lead to trade.

Assumptions on market parameters 7,r,y and updating function f. To make
the game non-trivial, we make the following two assumptions: (i) when the seller in-
vests in a perfectly informative signal, the buyer wants to trade when the signal indi-
cates the seller is good and not when it implies he is bad, and (ii) the buyer is not will-
ing to trade unless the seller invests in an informative signal. For a Bayesian buyer,
these assumptions translate to z > 0 > y and nz + (1 — 7)y < 0 respectively. For a
non-Bayesian buyer, they generalize® as follows:

(1) The assumption corresponding to when the seller invests in a perfectly informative
signal (HGLB or LGHB) translates to the inequalities f(1)-2+(1— f(1))-y > 0, and
fO)-z+ (1 — f(0)) -y < 0: With the strategy HGLB, p; = 1,pp = 0 so that py =1
and pr = 0. Requiring the perceived expected utilities upon seeing H (respectively
L) to be bigger (respectively smaller) than 0 yields these inequalities; analyzing
LGHB gives the same inequalities again.

(2) The assumption that the buyer does not trade if the seller does not invest in an
informative signal (i.e., plays HGHB or LGLB) translates to f(7)- 2+ (1— f(7))-y <
0. This inequality follows from noting that if po = pp then py = py = =. Also,
since a buyer who always trades—i.e., plays (tH,tL)—is essentially trading against
the prior m, we would like the buyer’s perception to be ‘accurate enough’ that she
perceives her expected payoff from this strategy to be negative, irrespective of the
seller’s strategy. This leads to two inequalities on f corresponding to informative
and uninformative seller strategies: the first is the same as the assumption we just
made, while the second adds the assumption that #(f(1) -z + (1 — f(1)) -y) + (1 —

m)(f(0) -z + (1= f(0))-y) <O.

We note that the stronger, but simpler, assumption that f(0) = 0 and f(1) = 1 in
addition to f(7) -z + (1 — f(7)) - y < 0 would be sufficient for our analysis; we state the
less simple assumptions above because they are a strictly weaker set of requirements
on the f function.

6(Recall that f(p) = p for a Bayesian buyer.)



4.1. Equilibrium analysis

The seller has four pure strategies in this game: HGHB, HGLB, LGLB, and LGHB
(as before, the buyer has the same four pure strategies as in §2, and both the
buyer and the seller choose their strategies before any random draws are made). Let
v = (7,72,73,7v4) denote the distribution placed on these strategies by the seller. The
probabilities po and pp relate to the probabilities +; of the pure strategies as:

PG =71+ 2; PB =71+ 74 (11)

Again, we start with the equilibria of this game Gg, and then investigate equilibrium
payoffs.

LEMMA 4.1. There are two equilibria in Gs, one pure and one mixed:

(1) The buyer plays the pure strategy (nH,nL) and the seller plays the pure strategy
(LGLB).

(2) The buyer mixes over (tH,nL) and (nH,nL) with probability as on (tH,nL) given by
(13) and seller mixes over HGHB and HGLB with probability v, on HGHB implic-
itly given by (12).

Remark. That there are only two equilibria in this game—as opposed to an odd total
number of equilibria—can be understood by noting the following facts: (i) Strategies
(tH,tL), LGLB and (nH,tL) are not rationalizable. (ii) In the restricted two-by-two game
with buyer strategies (tH,nL) and (nH,nL) and seller strategies HGHB and HGLB,
there is a unique (mixed) equilibrium. (iii) There is one additional (pure strategy) equi-
librium when the strategy LGLB for the seller is added to the two-by-two game. (iv)
The payoffs to both players are 0 if the seller plays LGLB and the buyer’s payoffs to the
strategy (nH,nL) are 0 regardless of the seller’s strategy. This special payoff structure
is responsible for the unusual, even number of equilibria in this game.
There are a few details to note about these equilibria:

(1) First, the no-trade and no-investment in signaling equilibrium, ((nH,nL), LGLB), is
unaffected by non-Bayesian updating. In this equilibrium, the seller never invests
in signaling, and the buyer never buys.

(2) In the mixed strategy equilibrium, the buyer’s strategy, specifically her probability
of playing (tH, nL)—trading conditional on a high signal—is not affected by non-
Bayesian updating.

(3) Non-Bayesian updating again does not change the set of equilibria, but it does
affect the seller’s mixed strategy.

The remainder of §4.1 provides the argument for why these are the (only) equilibria
and can be skipped by the reader not interested in the details.

4.1.1. Pure strategy equilibrium. We begin by analyzing pure-strategy equilibria, writing
the payoffs in normal form. For brevity, the payoffs below are written for a Bayesian
buyer, with u, = 7z + (1 — m)y denoting the expected payoff to the buyer from trading
when her belief that the seller is good is 7, her prior. For a non-Bayesian buyer, the en-
tries need to be modified appropriately to reflect the buyer’s perceived expected utility.
However, the comparisons between the buyer’s payoffs for each combination of buyer-
seller strategy remains the same as for a Bayesian buyer because of our assumptions
on the function f, and therefore the arguments that follow in the equilibrium analysis
below remain valid.”

"For example, the payoff from ((tH,tL), HGHB), as also ((tH,tL), HGHB) is f(m)z + (1 — f(7))y < 0; the
payoff from ((tH,nL), HGLB) is 7 (f(1)z + (1 — f(1))y) > 0, and so on.



Buyer / seller HGHB HGLB LGLB LGHB
(tH’ tL) Up, P — (ﬂ-CG + (1 - ’/T)CB) Up, P — TCG Uy, P Up, P — (]- - W)CB
(tH, nL) up, p— (reg + (1 —7)ep) 7x, m(p — cq) 0,0 (I1-my, (1—7m)(p—cB)
(nH, nL) 0, —(meg + (1 —m)cg) 0, —mea 0,0 0, —(1—m)cp
(nH, tL) 0, —(meg + (1 —m)ep) (1-my, (1 —m)p—mcag | up, p 7wz, mp — (1 —7)ep

Note that since the buyer’s expected payoff from trading when her belief that the seller
is good is the prior, u;, is negative, (tH, tL) is a strictly dominated strategy for the
buyer: it is dominated by the strategy (nH, nL) which always yields 0 payoff.

Next, it is easy to see that ((nH,nL), LGLB) is a pure-strategy equilibrium, and in
fact is the unique pure equilibrium in the game: there is no equilibrium where the
seller plays (i) HGHB (the buyer’s best response to HGHB is (nH,nL) and (nH, tL), for
both of which the seller would be better off playing LGLB); (ii) HGLB, since the buyer’s
unique best response is (tH,nL) to which the seller’s unique best response is HGHB;
(iii) LGHB, since the buyer’s unique best response is (nH,btL) to which the seller’s
unique best response is LGLB. Finally, note that the only pure strategy equilibrium
with the seller playing LGLB has the buyer playing (nH,nL), since the seller’s best
response to (tH,nL), the other best response of the buyer to LGLB, is to deviate to
HGHB.

4.1.2. Mixed strategy equilibrium. The outline of the mixed equilibrium analysis is as fol-
lows. With (tH,tL) being dominated for the buyer, we show that (LGHB) is never a
best response for the seller. With LGHB eliminated, we show that (nH,tL) is never
played by the buyer in any equilibrium. We now have a reduced game with two strate-
gies for the buyer —(tH,nL) and (nH,nL)—and three for the seller, HGHB, HGLB, and
LGLB. First we show that LGLB is not played with non-zero probability in any equi-
librium other than the pure equilibrium (nH,nL)-LGLB. We then solve for the unique
mixed-strategy equilibrium where the buyer mixes between (tH,nL) and (nH,nL) and
the seller mixes between HGHB and HGLB.

We first show that the seller never plays LGHB given that (tH, tL) is a strictly
dominated strategy for the buyer. To see this, suppose the buyer uses a mixture with
probabilities «as, a3, ay respectively on the remaining three strategies (tH,nL), (nH,nL)
and (nH,tL). If the seller ever plays LGHB, it must be that LGHB is a best response
for some values of a3, as, as. The seller’s payoffs from the four strategies are

(1) HGHB: asp — (meg + (1 — m)ep)

(2) HGLB: asmp + ay(l — 7)p — weg

(3) LGLB: ayp

(4) LGHB: ax(1 —7)p+ asmp — (1 —7)cp

For LGHB to be a best response its payoff must be at least as large as that from HGHB.
This yields the following constraint on the « values:

as(l—mp+ aump — (1 —7w)ep > asp — (meg + (1 — 7)eg)

= (Oég—()é4) < Cﬁ

Also, the payoff from LGHB must be at least as large as that from LGLB:

as(l—m)p+aump— (1 —m)eg > ayp

C
= (01270[4) > 7B
D

But ¢ > cg, so these two inequalities can never be simultaneously satisfied. Therefore
LGHB is never a best response.



Given this, we will next show that there does not exist an equilibrium in which (nH,
tL) is played with positive probability. First note that for any ~;, 72, v3 with v +72+73 =
1 the strategy (nH, nL) is a strictly better response that (nH, tL) unless v; = 1. So (nH,
tL) can only be played if the seller plays that pure strategy HGHB. Second, note that
at 7, = 1 the buyer is indifferent between (nH, nL) and (nH, tL). But if the buyer plays
any mixture of (nH, nL) and (nH, tL) the seller’s unique best response is LGLB, not
HGHB. So there is no equilibrium in which (nH, tL) is played.

Together, these arguments leave us with the following truncated game:

Buyer / seller HGHB HGLB LGLB
(tH, nL) up, p— (mecg + (1 —m)ep) | mz, 71(p—cg) | 0,0
(nH, nL) 0, —(meq + (1 —m)egp) 0, —mcq 0,0

Recall that we denote the probabilites used by the buyer on strategies (tH,nL) and
(nH,nL) by a2 and a3 (with as + a3 = 1), and the probabilities used by the seller on
strategies HGHB, HGLB, LGLB by ~1, 72, v3 respectively (again, v, + 72 + 3 = 1).

Note that pc = Pr(H|G) = v1 + 72 (the seller sends a H conditional on being good
in the strategies HGHB and HGLB) and pg = 1 + 74 = 71 (the seller sends H if he
is a bad type in strategies HGHB and LGHB respectively; recall that we argued that
~v4 = 0 always).

First we argue that there is no mixed equilibrium with 3 > 0: 1. If all three probabil-
ities 71, 72,3 are non-zero, the buyer’s mixture over the two strategies (ao on (tH,nL)
and a3 = 1 — az on (nH,nL) must be such that the seller derives equal payoffs from
HGHB, HGLB, and LGLB, which requires:

agp — (meg + (1 — w)ep) = agmp — weg = 0,
which requires as to simultaneously equal %’3 and %G, which is impossible (we assumed

cg < c¢p). 2. There is also no equilibrium with 73 > 0 and only one of the remaining
two probabilities non-zero: for the buyer to derive the same payoff from the strategies
of (tH,nL) and (nH,nL), we must have Pr(H)uy = 0. Suppose v; = 0, then pp = 0. With
pg = 0, we have that py = 1 (unless pg = 0 as well in which case py is undefined,
but for p¢ = 0 we need v, = 0 also, which implies v3 = 1 corresponding to the pure
strategy LGLB for the seller, which we have already analyzed. With py = 1, and our
assumption that

f)-z+1-f(1) y>0,
we have uy > 0 so we cannot have Pr(H)ug = 0 since Pr(H) > 0 (recall that = € (0,1).)
Similarly, if v» = 0, p¢ = pp which implies that py = p;, = 7. With the assumption
that

f(m)-a+ (1= f(m) y <0,
ug(m) # 0 and Pr(H) > 0 as before, so we cannot have Pr(H)uy = 0. So we have ruled
out equilibria that mix LGLB with one of HGHB or HGLB for the seller. Therefore, if
there is a mixed equilibrium, it must satisfy v3 = 0.
We now solve for this equilibrium. With v3 = 0, we know that pg = v; + 72 = 1. This
means that Pr(H) # 0: for the buyer to mix between (tH,nL) and (nH,nL), therefore, v,
must be such that uy = 0, or

QH$+(1_QH)y:0:>f(pH):(IH:%~ (12)
For the seller to mix, we must have
asp — (meg + (1 — m)ep) = aamp — we = oy = B (13)



4.2. Equilibrium payoffs
The buyer’s true payoff in the mixed equilibrium is

Pr(H)(pu (v —y) +y) = Pr(G,H)(x —y) + Pr(H)y
m(r—y)+ T+ 1 -m)n)y
= 7wz + (1 —7)My.

Since y < 0, the buyer’s payoff is decreasing in v; (= pg).
The equilibrium value of v; is given by the solution to

Fom =g =) = 5y

When f(p) < p, the value that v; needs to take to satisfy this equation is smaller than
that when f(p) = p, since f is strictly increasing in its argument and the argument
is strictly decreasing in 7, (recall 7 € (0,1). Therefore, the buyer’s welfare increases
when she miscomputes posterior probabilities by f(p) < p and again, buyer pessimism,
f(p) < p, is Pareto improving since seller payoff is unaffected by f. We summarize this
analysis in a result very similar to Theorem 3.2:

THEOREM 4.2. The payoff to a non-Bayesian buyer who perceives her posterior be-
liefs according to f(p) < p is strictly larger than that of a Bayesian buyer (f(p) = p)
in the non-trivial equilibrium of game Gg. Further, since the seller’s payoff does not
vary with the buyer’s updating rule f(p), non-Bayesian updating with f(p) < p Pareto-
improves welfare.

5. CONCLUSION AND FURTHER DIRECTIONS

In this paper, we asked whether behavioral biases, which are typically perceived
as welfare-reducing errors in individual choice, are indeed always ‘bad’—and if not,
whether there is a systematic reason they might be valuable. We investigated this
question in the specific context of biases in Bayesian updating of beliefs, providing
an affirmative answer: Our results in Theorems 3.2 and 4.2 show that an ‘unusually
suspicious’ buyer, who underreacts to good news and overreacts to bad news, obtains
higher payoffs in equilibrium than a buyer who accurately uses Bayes rule to compute
her posterior beliefs from data. Thus, while biases are known to be suboptimal when
the input parameters to a decision are exogenous, they may actually improve payoffs
when the same decision must be made with input parameters that are endogenously
determined by a strategic agent with decision-contingent payoffs: when the input pa-
rameters to the decision are determined in a game, the decision-maker’s overall payoff
may improve—despite her bias, which remains suboptimal given the parameters—
because the parameters of the environment are (adequately) modified in her favor.
We note here that we do not intend to conclude from our results that a pessimism
bias is to be expected in a population that routinely makes decisions in environments
similar to our model: whether a bias at all improves payoffs, and what specific direc-
tion it must take to improve payoffs, is very possibly dependent on the specific game in
question. Our primary intent is to illustrate our central point—namely that behavioral
biases needn’t be bad—in the simplest possible model that captures the essence of
a range of situations where an individual makes payoff-relevant inferences from data.?

Future work. This observation—that a decision-maker’s behavioral bias may actu-
ally improve her final payoff in a decision environment with endogenous parameters—

8This is also the reason we do not analyze a natural third game where both 7 and pg, pp are controlled by
a strategic agent.



suggests some intriguing questions, in addition to the immediate and natural one of
the welfare effects of other behavioral biases in decision-making in game environ-
ments:

— Design of online marketplaces: Reputations and social norms. The fact that the
buyer’s welfare improves without cost to the seller suggests potential implications
for the design of online markets with information asymmetries, if such a behavioral
bias can be implemented via the design of the platform itself. In online market-
places for goods or services, a buyer cannot directly observe the quality (type) of a
seller or provider, but only sees signals in the form of reviews from previous buyers.
The essence of the analysis of equilibrium buyer welfare—namely that a buyer com-
pares her expected payoff conditional on seeing a signal (or a set of signals) to decide
whether or not to trade—provides some insight here as well, despite the larger sig-
nal set: as long the probability of the seller being good conditional upon observing
a signal remains increasing in the prior, a pessimism bias in the update will induce
the seller to choose a higher 7 in an equilibrium (provided that equilibrium contin-
ues to exist). If posterior beliefs about sellers are controlled to any degree by the
design of the marketplace—for instance, the aggregated rating of a seller, or a repu-
tation score—this suggests that a scheme that essentially punishes sellers more for
bad reviews than it rewards them for good ones might improve quality and welfare
in the market.

Another question relates to observed social norms in online marketplaces, with
under-reporting of negative experiences in some online communities, or over-
reporting of extreme experiences (positive or negative) in other marketplaces. Sup-
pose good and bad types generate positive (and negative, mediocre, and so on) expe-
riences at certain ‘true rates but are selectively reported, yielding pg, pp that differ
from the true rates. This induces a bias in the corresponding conditional beliefs,
leading to the following question: are the biases induced by the prevailing social
norms payoff-improving for the participants in the market, and can these social
norms emerge as ones that survive in an evolutionary model of such a marketplace?

— Endogenous selection of behavioral biases in the population. We do not model or
analyze how (decision-makers with) biases might be ‘selected for’ in a game, which
could be analyzed either within an evolutionary model?, or a model with endogenous
entry from a diverse population. If equilibrium payoffs depend on biases, which bias
occurs in the population might depend on which game is being played, and it is
conceivable that payoff-improving behavioral biases might persist in the population
playing a game. This suggests intriguing questions regarding mechanism design—
how does the design of a game influence the biases in the population playing the
game? If the mechanism does determine which population plays the game, this has
a potentially significant conceptual implication for design: rather than assume a
certain (homogeneous) model of behavior for her agent population, a mechanism
designer should instead account for the fact that (the game induced by) her design
might select for certain behavioral biases—so that the model of behavior (whether
biased or otherwise) now becomes an endogenous component of the design problem.
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