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1 Introduction

Longitudinal analysis of binary outcomes is central to many studies in applied economics

and other social sciences.1 In the two-state panel data considered in this paper individuals

are followed over time, and the basic outcome measure is which of two states each indi-

vidual is occupying in each period.2 The aim of the analysis is understanding the factors

which influence either which state is occupied or the times of transitions between states.

Often the individual dynamic processes are characterized by a degree of persistence, and

an important part of the analysis is to understand whether this persistence is due either

to heterogeneity across individuals or to true state dependence.3

There are two conceptually distinct approaches to analyzing two-state panel data.4

The first approach focuses on modeling individuals’ probabilities of occupying each state

in each period. State dependence is typically modeled in terms of the effects of previous

periods’ state occupancy on the probability distribution for the current period’s state

occupancy (Markovian state dependence). Furthermore, the effects of covariates and

unobserved heterogeneity on the implied probabilities of transiting into and out of a

particular state are usually assumed to be symmetric. We refer to these as dynamic

binary response (DBR) panel data models.

The second approach focuses on modeling the individuals’ probability of moving be-

tween states between periods. State dependence is typically modeled in terms of the effects

of the elapsed duration since entering the current state on the probability of a transition

occurring (duration dependence). Most applications allow these effects to depend on the

1Typical examples include employment (Heckman, 1981a; Hyslop, 1999), unemployment (Arulam-
palam et al., 2000), welfare dependency (Bane and Ellwood, 1983), poverty (Capellari and Jenkins, 2004;
Stevens, 1999), health (Halliday, 2008; and Contoyannis et al., 2004, using ordered rather than binary
outcomes), and peace and conflict between national states (Beck et al., 2002; Beck and Katz, 1997).

2These are also know as discrete-time transition data (Lancaster, 1990).
3Heckman (1978, 1981c) first proposed the latent variable threshold model (with general intertempo-

ral covariance matrix for the disturbances). Heckman distinguishes three sources of persistence: time-
invariant unobserved heterogeneity, persistent shocks, and true state dependence. Heckman and Borjas
(1980) distinguish four types of state dependence: Markovian state dependence, duration dependence,
lagged duration dependence, and occurrence dependence. The focus of the models considered in this
paper are generally on the first and second of these types.

4For example, welfare participation outcomes may be analyzed either in terms of the probability
of being on-welfare (Card and Hyslop, 2005), or in terms of the probability of a spell on-welfare (or
off-welfare) ending (Zabel et al., 2010).
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current state (Markovian state dependence), and some applications analyze the effects of

the number of previous transitions (occurrence dependence) and of completed durations

of previous spells (lagged duration dependence). We refer to these as multi-spell duration

(MSD) models.

The objective of this paper is to compare and contrast these two alternative approaches

to modeling two-state panel data.5 We start by outlining a general framework for rep-

resenting binary outcome processes, which provides a unifying framework for the DBR

and MSD models. We first show that, in general, a sequence of binary outcomes can be

equivalently represented by the initial-period outcome and a sequence of transition indica-

tors associated with subsequent periods.6 We then show that modeling the probabilities

of state occupancy or the probabilities of moving between states is nonparametrically

equivalent.

The discussion of the general framework also considers issues associated with incor-

porating observed covariates and unobserved heterogeneity in the models, and handling

left-censored spells and initial conditions at the start of the observation period. This gen-

eral discussion demonstrates that the data requirements for each of the two approaches

are equivalent, and they typically differ in the choice of the parameters of interest and

in the way they incorporate state dependence. Furthermore, differences arise due to the

typical parametric specification of DBR and MSD models used in empirical analyses. In

particular, typical DBR models are comparatively parsimonious, while the MSD models

are relatively flexible.

It is fair to say that DBR models are more widely used than MSD models. The

use of DBR models may be motivated by specific research questions, by computational

considerations, by greater familiarity with DBR models among researchers, or possibly

by misconceptions about the differences between the two approaches. For example, it is

5To the best of our knowledge little comparative analysis has been conducted of these alternative
approaches. Exceptions include Jenkins (1995) and Barmby (1998), Cappellari et al. (2007) who compare
a duration and Markov model for employment transitions, and Bhuller et al. (2014) who analyze the
adequacy of first-order state dependence dynamic panel data models against more general models that
allow for duration and occurrence dependence.

6In the appendix we show that the data can also be equivalently represented by the initial outcome
and a sequence of either transition times or the durations between transition times.
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perhaps natural to think that DBR models should be used if one is mainly interested

in modeling state occupancy and MSD models if one is interested in transitions, because

these models focus directly on the parameters of interest. One might also think that DBR

models are more capable of fitting and predicting state occupancy and MSD models are

better at fitting and predicting transitions, since their main purpose is to model those

aspects of the data. However, these conceptions are false, as we show in this paper.

Another potential misconception is that if levels of covariates affect state occupancy then

changes in covariates affect transitions. Conversely, if levels of covariates affect transitions

then cumulative sums of covariates affect transitions. We also show this to be false in

general.

The paper is organized as follows. Section 2 begins with some preliminary discussion to

motivate the analysis that follows. We then outline a general framework for longitudinal

binary outcome data that includes the DBR and MSD approaches as special cases. In

particular, we show that, in general, the data representations of these approaches are

equivalent, and the approaches are nonparametrically equivalent. In this section, we

also discuss including covariates and unobserved heterogeneity, and how the approaches

diverge in their respective parameterizations which affects how left-censored data are

handled.

In Section 3, we use an empirical case study to compare and contrast the properties

of alternative DBR and MSD models. For this purpose, we apply alternative specifica-

tions to estimation of the duration of poverty spells and poverty persistence (see Stevens,

1999). The estimation results show the MSD model dominates the more restrictive DBR

models: both the DBR model’s implied symmetric effects of covariates and unobserved

heterogeneity on poverty entry and exit, as well as the Markovian state dependence, is

rejected. Furthermore, the MSD model’s within-sample predictions provides a better fit

to the actual observations than the DBR model predictions.

The paper concludes with a discussion in Section 4. The appendix provides a link

between the representation given in the main text and continuous-time duration analysis.
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2 Modeling two-state panel data

In this section we present a general framework for handling longitudinal binary outcomes,

that encompass the DBR and MSD models commonly used in analysis. The section

begins with some preliminary comments, and a stylized example to help motivate the

analysis. Then subsection 2.2 shows that the data representations for the DBR and MSD

approaches are equivalent. Consequently, in subsection 2.3 we show that, when there is

no observed or unobserved heterogeneity, the models are nonparametrically equivalent.

In subsequent subsections we consider the effects of adding covariates and unobserved

heterogeneity. The inclusion of covariates does not change the nonparametric equivalence

results. However, equivalence is essentially lost when unobserved heterogeneity is impor-

tant, because identification requires parametric assumptions and the two approaches favor

different parameterizations.

2.1 Preliminaries

We begin with some preliminary comments. First, at least conceptually, some longitudinal

binary outcome processes are inherently continuous time processes, such as the time to

next heart attack, while others are more naturally discrete time processes, such as welfare

participation where eligibility is typically determined over a period (e.g. a month or week).

In this paper, we do not consider continuous time processes, although in practice such

processes may be measured in discrete time.

Second, in practice, longitudinal binary outcomes may be measured either at a point

in time, such as whether or not a person is employed on the 1st day of the month, or over a

period, such as whether or not a person is employed (at all) during the month. The choice

may be optional, as in the employment example, or context specific: e.g., measurement

of welfare participation and/or income-based poverty would more naturally be period

outcomes because of the welfare eligibility criteria and income measurement respectively;

in contrast, wealth-based poverty may, at least conceptually, be point-in-time outcomes.

Irrespective of how the outcomes are measured, we will refer to the outcomes, equivalently,

as occurring at time t or in period t; and transitions will be assumed to occur between
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the times when the state changes.

Third, relevant measurements of a process may not be complete, and data may be

missing at the beginning, during, or at the end of the process. For simplicity, the general

framework we outline below explicitly allows only for left- and right-censoring. Middle-

censoring can be handled using similar methods. In the following we shall refer to potential

measurements, whether they are actually carried out or not, as the (data-generating)

“process”, and reserve the word “measurements” for the actual measurements available

for analysis, the difference being missing measurements.

Before we discuss the general framework for handling longitudinal binary outcome

data, we briefly discuss a stylized example to help motivate the analyses. Consider an

analysis of individuals’ poverty experiences over time, which has been studied by Stevens

(1999). In such a study, we may have data on individuals (indexed by i), measured in

years (indexed by t), and observe whether or not they are in poverty in each year (denoted

by Yit = 1 or Yit = 0 respectively). The analysis might focus on a variety of aspects of

poverty experience, such as the probability of being in poverty in one year conditional

on being in poverty in the previous year (Markovian state dependence), the probability

that a poverty spell ends after d years (duration dependence), the number of years and/or

spells in poverty over some period, etc.

There are two common approaches taken to such analyses. The DBR approach focuses

on modeling the probability that an individual is in poverty in year t, and typically

conditions on relevant observable covariates (Xit), the poverty states experienced in the

recent past (Yit−1, Yit−2, etc.), and time-constant unobservable factors (Vi). A typically

specified DBR model assumes a low-order (e.g. first-order) Markovian state dependence in

which only outcomes in the recent past affect the current state, and additionally assumes

that the effects of covariates are symmetric on the probability of a transition between

the states.7 For example, the probability statement of interest for the simplest first-order

7Symmetric covariate effects can be relaxed, although this is usually done within a single-equation
context (e.g. Card and Hyslop, 2009; Browning and Carro, 2010).
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DBR model, would be:

P(Yit = 1|Yit−1 = yit−1, Xit = xit, Vi = v) = GDBR(γyit−1 + x′itβ + v), (1)

for some function GDBR. (A practically useful parameterization of the influence of unob-

served heterogeneity is discussed in Sections 2.5 and 2.7.) The first measurement requires

special consideration, and we return to this so-called initial conditions problem later.

With regards to the dynamic properties of poverty experience, the principal focus in the

application of these models is the Markovian state dependence. While the focus is on the

probability that an individual is poor in a given period, the estimated models can also be

used to predict poverty spell durations and poverty experiences over longer periods, etc.

The MSD approach focuses on modeling the probability that an individual’s poverty, or

non-poverty, spell ends in year t: that is, whether or not a transition occurs between years t

and t+ 1 (denoted by Cit+1 = 1 or Cit+1 = 0 respectively). This approach again typically

conditions on relevant observable covariates (Xit) and time-constant unobservable factors

(Vi), but focuses on the elapsed duration d in the spell at year t rather than the individual’s

recent poverty experience per se. For example, the probability statement of interest for a

transition out of a state y spell in a simple MSD model with linear duration dependence,

would be:

P(Cit = 1|Yit−1 = yit−1, Dit−1 = dit−1, Xit = xit, Vi = v)

= GMSD(λyit−1
dit−1 + x′itβyit−1

+ v), (2)

for some function GMSD . (Parameterization of unobserved heterogeneity is discussed in

Sections 2.5 and 2.9.) Note that this approach typically uses separate equations for the

duration of poverty and non-poverty spells, to allow the transition probabilities into and

out of poverty to vary. As well as the initial conditions problem, the MSD approach also

needs to deal with initial left-censored spells. We return to these issues later. With regards

to the dynamic properties of poverty experience, the principal focus in the application of

these models is the duration dependence in the transition probabilities. This is in contrast
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to the DBR models. While the focus is on the probability that an individual makes a

transition in a given period, like the DBR models, the estimated models can be used to

predict poverty status in a given period and poverty experiences over longer periods, etc.

Stevens (1999) adopts an MSD analysis of poverty. In the empirical example below,

we use this same context to compare and contrast the two approaches. But we emphasize

that our intention is neither to replicate nor critique Stevens (1999) analysis. Rather,

our intent is to use it as an example to illustrate and draw attention to similarities and

differences in the approaches.

2.2 Equivalent data representations

The different modeling approaches require different organization of the data. In this

subsection, we show that the different representations are equivalent (one-to-one) and it

is possible to convert data indented for DBR modeling to MSD data and vice versa. This

subsection also presents our main notation.

Suppose the data can be represented as an ordered sequence of binary measurements

for each individual (or “subject”) in a random sample. For convenience, we refer to the

measurements as ordered with respect to time, denoted by t, and we refer to the binary

values as the state occupied by the individual, labeled 0 and 1. The times are evenly

spaced and may refer to points in time or periods in time. The individual are indexed by

i = 1, . . . , N , and the times are indexed by t = 1, . . . , T . In the following, we consider a

given individual and generally omit the identifier i = 1, . . . , N . For simplicity, we assume

the data constitute a balanced panel.

As mentioned, the data may be incomplete. If the process begins and the individual

first occupies one of the states before the first measurement takes place, then the data are

said to be left-censored. We assume that the time origin is not known if the data are left-

censored. Although measurement ends at T , we make no assumption that the process has

ended at time T . Therefore, we assume that the data are always right-censored at time T .

Throughout the paper we assume that right-censoring is independent of the underlying

process.
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The data can be represented in different ways. The most obvious representation

consists of indicators, Yit for t = 1, . . . , T with Yit ∈ {0, 1}, of the state occupied by

individual i at time t. Another representation of the data focuses on transitions between

states. Let Cit for t = 2, . . . , T be indicators of whether or not individual i makes a

transition between times t − 1 and t. (We subscript by t since information at time t is

required to determine whether a transition has occurred or not.) Transition measurements

are available only for t = 2, . . . , T .

The data representations (Yi1, Yi2, . . . , YiT ) and (Yi1, Ci2, . . . , CiT ) are equivalent in the

sense the one can be recovered from the other. Specifically, the Yits and Cits are related

by

Cit = 1(Yit−1 6= Yit), t = 1, . . . , T, (3)

and

Yit =

(
Yi1 +

t∑
k=2

Cik

)
mod 2, t = 2, . . . , T. (4)

Therefore, from a data perspective focusing on the sequence of states occupied or on the

transitions between states is equivalent.

In duration analysis, the data are often represented as transition times or spells in-

stead of a sequence of state indicators. (A spell is a period between consecutive transitions

during which the individual stays in the same state.) We focus here on time-based rep-

resentations, since they are most convenient if covariates are time-varying. However, in

Appendix A, we show that spell-based and time-based representations are equivalent.

2.3 Equivalent parameterizations

In this subsection, we discuss the different parameters of interest emphasized in the DBR

and MSD approaches, and compare the corresponding likelihood functions. We show that

in a nonparametric framework, the two approaches are equivalent in the sense that they

are simply different (one-to-one) parameterizations of the same likelihood. The number
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of parameters is finite and can be nonparametrically estimated. Indeed, the maximum

likelihood estimates are simply the sample analogues.

Random sampling of individuals identifies the distribution of (Yi1, Yi2, . . . , YiT ) and

the distribution of (Yi1, Ci2, . . . , CiT ). Since these distributions are discrete, they can be

characterized by a finite number of probabilities, 2T to be precise. These probabilities

can be nonparametrically estimated provided N ≥ 2T − 1. However, the parameters of

interest in most applications are not the probabilities associated with these unconditional

joint distributions, but rather conditional probabilities of current outcomes given past

outcomes.

The DBR approach focuses on the conditional probabilities of being in one of the states

given the sequence of states previously occupied. For individual i and for t = 1, . . . , T ,

let Yit denote the random outcome history up to (and including) time t; that is, Yit =

(Yi1, . . . , Yit) for 1 ≤ t ≤ T . Let yit = (yi1, . . . , yit) denote the observed history. At time t,

for t = 1, . . . , T , the space of possible histories is Yt = {0, 1}t. Let yt with no subscript i

denote a generic element of Yt. Then the conditional probability of being in state 1 at

time t given the outcome history prior to time t is

χ = P(Yi1 = 1),

ζt(yt−1) = P(Yit = 1|Yit−1 = yt−1), yt−1 ∈ Yt−1, t = 2, . . . , T.

(5)

Note that there is the initial probability, and 2, 4, . . . , 2T−1 conditional probabilities in

the equations in (5), depending on the conditioning set; adding them up yields 2T − 1

total probabilities.

Assuming there is no left-censoring and that right-censoring is independent of out-

comes, then the probabilities in (5) are fundamental parameters of interest. With left-

censoring, they may or may not be, depending on whether there is interest in the effect of

past outcomes which happen not to be measured. We return to this issue in Section 2.6.

In any case, treating each of the probabilities in (5) as a parameter to be estimated,
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the likelihood contribution for individual i is8

LY
i = χyi1(1− χ)1−yi1

T∏
t=2

ζt(yit−1)
yit(1− ζt(yit−1))

1−yit . (6)

Combining the contributions of all N individuals yields a likelihood function which is

valid for inference under the assumptions stated above. In particular, conditioning on

right-censoring at T is feasible under the assumption of independent right-censoring.

In contrast to the DBR approach, the MSD approach focuses on the conditional prob-

abilities of changing state at time t given the prior history; that is, on the hazard rates.

In addition, there is the probability distribution of the initial state. The conditional prob-

ability of beginning in state 1 given the outcome history prior to time t and the hazard

rates are defined as9

χ = P(Yi1 = 1),

ξt(yt−1) = P(Cit = 1|Yit−1 = yt−1), yt−1 ∈ Yt−1, t = 2, . . . , T.

(7)

Again, there is 1 initial probability, and 2, 4, . . . , 2T−1 conditional probabilities in the

equations in (7), giving 2T − 1 distinct probabilities in this representation.

Treating each of the probabilities in (7) as a parameter to be estimated, the likelihood

contribution for individual i is10

LC
i = χyi1(1− χ)1−yi1

T∏
t=2

ξt(yit−1)
cit(1− ξt(yit−1))

1−cit . (8)

The comments following (6) apply here as well. In the absence of left-censoring, the

probabilities in (7) are fundamental parameters of interest. However, the question of

whether the probabilities are parameters of interest with left-censored data is complicated.

We return to this issue in Section 2.8.

8Obviously, the likelihood can be equivalently parameterized in terms of being in state 0 rather than
state 1 (i.e. Yit = 0 versus Yit = 1).

9It is possible to define Cit = (Yi1, Ci2, Ci2, . . . , Cit) for t ≥ 1, but since Yit and Cit are equivalent
we do not need Cit.

10Obviously, the likelihood can be equivalently parameterized in terms of the absence rather than the
presence of a transition (i.e. Cit = 0 versus Cit = 1).
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To emphasize that (6) and (8) are simply reparameterizations of the same likelihood,

note that

ζt(yt−1) = ξt(yt−1)
1−yt−1(1− ξt(yt−1))

yt−1

= 1− ξt(yt−1)
yt−1(1− ξt(yt−1))

1−yt−1 , yt−1 ∈ Yt−1, t = 2, . . . , T,

(9)

and

ξt(yt−1) = ζt(yt−1)
1−yt−1(1− ζt(yt−1))

yt−1

= 1− ζt(yt−1)
yt−1(1− ζt(yt−1))

1−yt−1 , yt−1 ∈ Yt−1, t = 2, . . . , T,

(10)

where yt−1 denotes the final element of yt−1. Thus, the likelihood functions are equivalent,

since both the data representations and the parameters are in one-to-one relationships.11

A comparison of spell-based and time-based parameterizations of the likelihood func-

tion is given in Appendix A.

2.4 Covariates

In this subsection, we discuss general issues related to including (predetermined) covari-

ates in the analysis. In the absence of left-censoring and unobserved heterogeneity, the

likelihood functions for the DBR and MSD approaches remain equivalent and the pa-

rameters of interest remain nonparametrically identified and estimable using standard

smoothing techniques.

In an empirical analysis, there are two practical issues regarding the time reference

for covariates. First, surveys often collect retrospective information relating to different

periods, so the time of measurement may not be the same as the logical time reference

for the information. (This is of course true for the outcome variable as well.) Second,

some covariates which logically relate to time t are inappropriate conditioning variables

11Substituting (10) into (8) gives (6) since, for given t, we have

ξt(yt−1)ct(1− ξt(yt−1))1−ct = ζt(yt−1)(1−yt−1)ct+yt−1(1−ct)(1− ζt(yt−1))yt−1ct+(1−yt−1)(1−ct)

= ζt(yt−1)ct+yt−1−2ctyt−1(1− ζt(yt−1))1−ct−yt−1+2ctyt−1 = ζt(yt−1)yt(1− ζt(yt−1))1−yt .

The final step follows because yt = ct + yt−1 − 2ctyt−1. Similarly, plugging (9) into (6) gives (8).
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because of simultaneity issues. For example, it is probably not interesting to condition a

person’s employment status in a given month on wage income earned in that month. In

the discussion here, we simply assume that covariates are lagged or led so that it is sensible

to condition outcomes at t on covariates with (notational) time reference t. In addition, in

practice there is an issue of whether covariate effects are appropriately specified in levels

or changes (or cumulative sums). We initially bypass this issue by conditioning on the

entire prior covariate path. At the end of this subsection, we discuss levels and changes

in terms of simple examples.

In preparation for the statement of the general likelihood functions later, we briefly

present the conditional likelihood contributions for individual i given their covariate his-

tory. To keep the expressions simple and compact, the likelihood functions are stated in

terms of probabilities rather than Greek-letter parameters.12 As in the previous subsec-

tion, the likelihood functions associated with the different approaches represent equivalent

parameterizations.

Let Xit denote a vector of covariates measured for individual i with reference to

time t. For t = 1, . . . , T , let Xit denote the covariate history at time t; that is, Xit =

(Xi1, . . . , Xit). Let xit = (xi1, . . . , xit) denote the observed history. Subscripting by t

is not intended to preclude time-invariant covariates; for example, gender and ethnicity

could be components of each Xit. Similarly, relevant information that pre-dates the time

origin, such as school grades in a study of post-school labor market outcomes, can also

be included as time-invariant elements of each Xit.

For the DBR approach, the likelihood contribution for individual i, conditional on

right-censoring at T and conditional on the covariate history, is

LY
i = P(Yi1 = yi1|Xi1 = xi1)

T∏
t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit). (11)

As before, the total likelihood function is the product of the contributions for all the N

individuals. Inference conditional on right-censoring at T is valid under the assumption

of independent right-censoring.

12For example, we write P(Yi1 = yi1) instead of χyi1(1− χ)1−yi1 .
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Similarly, for the MSD approach, the likelihood contribution for individual i, condi-

tional on right-censoring at T , in the time form is

LC
i = P(Yi1 = yi1|Xi1 = xi1)

T∏
t=2

P(Cit = cit|Yit−1 = yit−1,Xit = xit). (12)

The comments following (11) apply. Analogous expressions to (9) and (10) exist here,

implying that (11) and (12) are reparametrizations of the same likelihood function.

If all covariates are discrete, so that Xit can take only a finite, say k, number of values,

then there are (2k)T−1 unknown probabilities in the likelihood contributions. Since this

is also a finite number, the probabilities are in principle nonparametrically identified.

If some covariates are continuous, the probabilities may be nonparametrically identified

and estimable using nonparametric regression methods such as kernel regression, series

estimation, or maximum penalized likelihood.

We now return to the issue of whether covariates should be included in levels or

changes. A potential misconception is that if the state occupied depends on the level of

a covariate, then transitions between states must depend on changes in that covariate.

Conversely, if transitions depend on the level of the covariate, then the state occupied

must depend on the cumulative sum of that covariate. This intuition is false. To make

the relationships clearer, we discuss some simple examples in the remainder of this section.

Suppose first that changes in (but not the level of) a given covariate affects the prob-

ability of a transition. For example, suppose two cities have the same poverty rate, but

moving between cities is disruptive and increases the likelihood of falling under the poverty

threshold. This means the probability of a transition is lower for movers who are initially

poor, and higher for those not in poverty. Let Xit be a scalar indicator of city. A simple

model is

P(Cit = 1|Yit−1 = y,Xit = xt, Xit−1 = xt−1) =


δy if xt = xt−1,

δy + ηy if xt 6= xt−1,

(13)

where δ0 < δ1 if poverty is a small risk and η1 < 0 < η0 if moving increases the risk.
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The important feature of (13) is that the state-specific transition probabilities remain the

same if there is no change in the covariate. Now, similarly to (9) we have

P(Yit = 1|Yit−1 = y,Xit = xt, Xit−1 = xt−1)

=


δ1−yy (1− δy)y if xt = xt−1,

(δy + ηy)
1−y(1− δy − ηy)y if xt 6= xt−1.

(14)

It follows immediately that if changes in a covariate affect the transition probability, then

the probability of state occupancy is also affected by changes in (and not levels of) that

covariate.

Conversely, consider a simple model where the probability of being poor is different

in the two cities but moving is costless,

P(Yit = 1|Yit−1 = y,Xit = xt, Xit−1 = xt−1) =


αA if xt = A,

αB if xt = B.

(15)

Similarly to (10), the corresponding transition probability is

P(Cit = 1|Yit−1 = y,Xit = xt, Xit−1 = xt−1) =


α1−y
A (1− αA)y if xt = A,

α1−y
B (1− αB)y if xt = B,

(16)

so the conditional transition probability given Yit−1 does not depend on Xit−1. In this

model, the value of Xit−1 influences Yit only indirectly through Yit−1.

In sum, whether the level of a covariate or changes over time matters is an issue distinct

from whether we focus on the probability of state occupancy or transitions between states.

If changes in covariates matter, then both probabilities depends on the changes. If levels

matter, both probabilities depends on the levels of the covariate.
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2.5 Unobserved heterogeneity

The next topic which we discuss is unobserved heterogeneity. While the data may be an

iid random sample, the concern is that the average probabilities may not represent the

outcomes for specific individuals, even conditional on Xit. For example, a population may

contain some people with strong immune systems and others who easily get sick. The

average hazard of coming down with the flu in a particular week given that a person is not

already sick may reflect a near-zero probability for the former and near-one probability

for the latter group. The parameters of interest are the individual-specific probabilities

of becoming sick, rather than the average probability. If characteristics of a person’s

immune system were measured and available in the data, they could simply be included

as covariates and there would be no problem. However, if data are not available, there is

important unobserved heterogeneity in the population.

It is important to be aware that unobserved heterogeneity is a “structural” con-

cept in the sense that it precludes nonparametric identification of parameters of interest.

Untestable assumptions such as parametric functional-form specifications are necessary

if the data are to be used for inference. In the literature, unobserved heterogeneity is

treated as equivalent to an omitted covariate. Usually it is assumed to be predetermined

for each individual, independent of covariates (past and future), and independent of the

measurement scheme. While these assumptions are strong and perhaps implausible in

most applications, they are still not sufficient to ensure identification. We proceed in

this subsection by presenting the general form of the likelihood contributions in the pres-

ence of (independent) unobserved heterogeneity, without being explicit about identifying

assumptions. Specific cases are discussed in detail later.

Let Vi denote a random variable (or vector) representing unobserved heterogeneity for

individual i. Let V denote the support of Vi, and let Ψ denote the distribution function
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of Vi. In the DBR framework, the likelihood contribution for individual i becomes

LY
i =

∫
V
P(Yi1 = yi1|Xi1 = xi1, Vi = v)

×
( T∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = v)

)
dΨ(v). (17)

Similarly, in the MSD framework we have

LC
i =

∫
V
P(Yi1 = yi1|Xi1 = xi1, Vi = v)

×
( T∏

t=2

P(Cit = cit|Yit−1 = yit−1,Xit = xit, Vi = v)

)
dΨ(v). (18)

An important implication is that the likelihood contributions are no longer separable

across time. As we have seen, the likelihood contributions can be broken into multiplica-

tive time-specific components when there is no unobserved heterogeneity. If unobserved

heterogeneity needs to be integrated out, this is no longer the case.

In practice, there are different ways of incorporating unobserved heterogeneity in the

literature. A common approach is to specify Vi as a normally distributed random variable

and include Vi as a regressor with a loading similar to the covariates (e.g. Hyslop, 1999;

Chay and Hyslop, 2014). Following Heckman and Singer (1984), an alternative which

we adopt here is to assume that unobserved heterogeneity has a discrete distribution

in a multidimensional space. The discrete distribution can be thought of either as an

approximation to a true underlying continuous distribution or as a distribution of a finite

number of “types”. If a model has a number, say Q, of “equations” each representing a

different aspect, then we assume each type is characterized by a Q-vector of constants,

one for each equation. Formally, we assume that Vi is a discrete random Q-vector with

support ν1, . . . , νK , where νk = (νk1, νk2, . . . , νkQ) ∈ RQ for k = 1, . . . , K, and probability

distribution π1, . . . , πK with
∑K

k=1 πk = 1.
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2.6 The DBR approach

In the DBR approach, the model focuses on low-order Markovian state dependence and

assumes that the conditional probabilities of being in a given state depend only on the

most recent p previous outcomes and covariates. It is also assumed that only contempo-

raneous covariates matter. In practice, the latter is not serious limitation since covariates

which logically refer to different times (leads and lags) can be included among the con-

temporaneous covariates. Thus, for some fixed p ≥ 1 it is assumed that

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = v)

= P(Yit = yit|Yp
it−1 = yp

it−1, Xit = xit, Vi = v), t = p + 1, . . . , T, (19)

where Yp
it = (Yit−p+1, . . . , Yit) and yp

it = (yit−p+1, . . . , yit). We refer to equation (19) as

the DBR model’s “structural equation” of interest. This equation does not restrict the

probabilities for the p initial outcomes, (Yi1 = yi1, . . . , Yip = yip), referred to as the “initial

conditions” of the process. In applications, there is typically less substantive interest in

the probabilities associated with the initial conditions, but it is important they are dealt

with unless they can be considered to be exogenous (Heckman, 1981b).

Under Assumption (19) and imposing our discrete distribution of unobserved hetero-

geneity, the likelihood contribution (17) can be written

LY
i =

K∑
k=1

πk

[
AY (yip,xip, νk)

×
( T∏

t=p+1

P(Yit = yit|Yp
it−1 = yp

it−1, Xit = xit, Vi = νk)

)]
, (20)

where the term AY (yip,xip, v) represents the probability contribution of the initial condi-
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tions, which can be expressed as

AY (yip,xip, v) = P(Yi1 = yi1|Xi1 = xi1, Vi = v)

×
( p∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = v)

)
. (21)

If the process is ongoing prior to the observation period, so the data are left-censored,

then the probabilities in (21) are simply necessary nuisance parameters. However, if the

process is observed from the beginning, so the data are not left-censored, in general the

initial conditions will be relevant unless all individuals have the same states for the first

p periods. In this case, the probabilities in (21) may be of substantive interest in terms

of the structural process.

If there is no unobserved heterogeneity, say P(Vi = ν1) = 1, then the sum over K-types

in (20) effectively disappears. In this case, the term AY (yip,xip, ν1) represents the likeli-

hood contribution of the first p observed outcomes for individual i.13 The remaining part

of the likelihood contribution in (20) involve only observed variables, and these probabili-

ties are nonparametrically identified. (They can be estimated by their sample analogues.)

This means that the term AY (yip,xip, ν1) in (20) can be ignored when maximizing the

likelihood or, in other words, valid inference can be obtained conditional on Yip and Xip.

2.7 Parametric DBR models

Adapting the ideas of Heckman (1981b), we shall model AY (yip,xip, v) using p “approx-

imate reduced form” equations while the probabilities in the product in (20) are repre-

sented by a single common equation.14 The p equations for AY (yip,xip, v) represent the

probabilities of the first p outcomes as functions of previous outcomes, contemporaneous

covariates, and unobserved heterogeneity. The final common equation is similar, except

that previous outcomes are truncated at lag p. We refer to this as the DBR(p) model. The

13Note that AY (yip,xip, v) is defined in (21) using the most general specification for the probabilities
(given covariates are assumed to be predetermined). In general AY (yip,xip, v) 6= P(Yip = yip|Xip =
xip, Vi = v).

14An alternative approach is to condition on the initial conditions (Wooldridge, 2005), resulting in a
single-equation model.
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most common DBR model used empirically adopts p = 1, although p = 2 is sometimes

used in cases of either higher-frequency and/or longer-period data (e.g. Card and Hyslop,

2005, 2009). In the empirical case study in Section (3) we will consider both DBR(1) and

DBR(2) models.

For the DBR(1) model, we have Q = 2. With Greek letters representing unknown

parameters to be estimated, and G being the logistic function, the model specification is

P(Yit = 1|Xit = xit, Vi = νk) = G(νk1 + β′1xit) ≡ G11
it (νk1, β1), t = 1, (22)

and

P(Yit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

= G(νk2 + β′2xit + γ2yit−1) ≡ G12
it (νk2, β2, γ2), t = 2, . . . , T. (23)

The corresponding likelihood contribution, cf. (20), for individual i is

L
DBR(1 )
i (ν1, . . . , νK , π1, . . . , πK , β1, β2, γ2)

=
K∑
k=1

πk

[
G11

it (νk1, β1)
yit
(
1−G11

it (νk1, β1)
)1−yit

×
( T∏

t=2

G12
it (νk2, β2, γ2)

yit
(
1−G12

it (νk2, β2, γ2)
)1−yit)].

(24)

The dimension of the parameters are as follows: βq ∈ Rdim(x) for q = 1, 2; and γ2 ∈ R.

In our DBR(2) model we relax the assumption of first-order Markovian state depen-

dence and consider second-order Markovian state dependence. The second-order model

naturally extends the first-order model above to include two equations corresponding to

the first two outcomes. In the main equation, we include not only two lagged dependent

variables but also an interaction term. With Q = 3, the model is

P(Yit = 1|Xit = xit, Vi = νk) = G(νk1 + β′1xit) ≡ G21
it (νk1, β1), t = 1, (25)
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P(Yit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

= G(νk2 + β′2xit + γ2yi1) ≡ G22
it (νk2, β2, γ2), t = 2, (26)

and

P(Yit = 1|Yit−1 = yit−1,Xit = xit, Vi = νk)

= G(νk3 + β′3xit + γ31yit−1 + γ32yit−2 + γ33yit−1yit−2) ≡ G23
it (νk3, β3, γ3),

t = 3, . . . , T. (27)

The corresponding likelihood contribution, c.f. (20), for individual i is

L
DBR(2 )
i (ν1, . . . , νK , π1, . . . , πK , β1, β2, β3, γ2, γ3)

=
K∑
k=1

πk

[
G21

it (νk1, β1)
yit
(
1−G21

it (νk1, β1)
)1−yit

×G22
it (νk2, β2, γ2)

yit
(
1−G22

it (νk2, β2, γ2)
)1−yit

×
( T∏

t=3

G23
it (νk3, β3, γ3)

yit
(
1−G23

it (νk3, β3, γ3)
)1−yit)].

(28)

The dimension of the parameters are as follows: βq ∈ Rdim(x) for q = 1, 2, 3; γ2 =∈ R; and

γ3 = (γ31, γ32, γ33) ∈ R3.

Several points are in order. First, in general G could be any known real function with

range [0, 1], while in practice, G is either the logistic or the standard normal distribution

function.

Second, it is implicitly assumed that the parameters are the same in both states. That

is, the covariate effects on the probability of being in state 1 at time t is assumed to be the

same whether or not the individual is in state 0 or state 1 at time t−1. Several authors have

pointed out the possibility of interacting covariates with the lagged dependent variables

(e.g. Barmby, 1998, p263; Beck et al., 2002). However, few researchers have pursued this

idea (one exception is Browning and Carro, 2010).

Third, the model with no unobserved heterogeneity is captured by K = 1, in which
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case the support points of Vi simply become constant terms. In the absence of unobserved

heterogeneity the likelihood contribution is time-separable, and ν1Q, βQ and γQ can be

consistently estimated from the last term in large parentheses.

Fourth, these specifications may also be appropriate in the absence of left-censoring.

It is fair to say that the DBR literature has focused on modeling processes already in

progress, and the initial conditions problem has been considered largely as an obstacle

to inference (e.g. Heckman, 1981b). However, if the application has a clear time origin,

there is no lagged dependent variable to condition on in the first period. Hence, even

if the data are not left-censored, unless all individuals have the same initial outcomes,

a different equation is still needed for the first measurement (as shown in Section 2.3).

Thus, if there is no left-censoring and the specifications given in this subsection are used,

then the parameters of the equations other than the last may have substantive structural

interpretations as opposed to simply being flexible parameterizations of AY .

Fifth, it is instructive to consider the hazard rates implied by low-order DBR models.

These are shown in Table 1 and Figure 1 for p = 1, 2, 3 in the simple case with no covari-

ates, no unobserved heterogeneity, and without interactions between lagged outcomes.

Table 1 shows the hazard rates out of state 0 and state 1 for relevant histories for each of

these processes. Figure 1 graphs the time profiles of these state 0 and state 1 hazards for

each case for the situation where a spell begins in period t.15

2.8 The MSD approach

The main interest in the MSD approach is usually the dependence of the transition prob-

abilities on the elapsed time spent in the current state, i.e. duration dependence. For

simplicity we ignore other forms of state dependence in the two MSD models discussed

here. To present the models, let Bit denote the start-time of the spell ongoing at time t.

Also, let Fi denote the time of the first observed transition and define Fi = ∞ if no

transitions are observed for individual i.16

15Note that, in the p = 3 case, there are two possible hazard rates for each state shown in period (t+1),
depending on the state in period (t− 2) — i.e., whether the previous spell lasted more than one period
or not.

16Formally, Bit = inf{s : Yik = Yit for k = s, . . . , t} and Fi = inf{t : Yit−1 6= Yit and 1 ≤ t ≤ T}.
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The first specification is based on the assumption that outcomes prior to entering

the current spell do not influence the transition probabilities. We also assume that only

contemporaneous covariates matter. Formally, the assumption is that17

P(Cit = cit|Yit−1 = yit−1,Xit = xit, Vi = v)

= P(Cit = cit|Bit−1 = bit−1, Yit−1 = yit−1, Xit = xit, Vi = v),

t = fi + 1, . . . , T. (29)

In general, equation (29) specifies separate equations for the transition probabilities out

of each state, for non-left-censored “fresh spells” that are observed to start during the ob-

servation period. We refer to equation (29) as the MSD model’s “structural equations” of

interest. Equation (29) leaves the transition probabilities associated with the left-censored

“initial spells” that are ongoing at the beginning of the observation period unrestricted

(i.e. those for t = 1, . . . , fi).

Under Assumption (29) and imposing our discrete distribution of unobserved hetero-

geneity, the likelihood contribution (18) can be written

LC
i =

K∑
k=1

πk

[
AC(fi, yi1,xifi , νk)

×
( T∏

t=fi+1

P(Cit = cit|Bit−1 = bit−1, Yit−1 = yit−1, Xit = xit, Vi = νk)

)]
, (30)

where18

AC(fi, yi1,xifi , v) = P(Yi1 = yi1|Xi1 = xi1, Vi = v)

×
( fi∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = v)

)
. (31)

If Fi = ∞, then substitute T for fi in (30) and (31). If the data are not left-censored,

17Note that YiBit−1 6= YiBit
and YiBit

= Yik for k = Bit, . . . , t, so conditioning on Yit−1 = yit−1 is here
the same as conditioning on YiBit−1 = yibit−1 .

18Note that yit = yi1 for t = 1, . . . , fi − 1 and yifi 6= yi1, so it is not necessary to include yi2, . . . , yifi
as separate arguments in AC .
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then the probabilities in (31) may be of interest; otherwise, they are simply necessary

nuisance parameters.

Again, if there is no unobserved heterogeneity, the integration in (30) effectively dis-

appears. In this case, the term AC(fi, yi1,xifi , v) represents the contribution of the state

occupied when first observed and the duration of the left-censored spell in progress at

that time, while the probabilities in the big parentheses in (30) represent the contribution

of the complete spells and the right-censored spell. The latter are obviously nonparamet-

rically identified, and the probabilities can be estimated by sample analogues. Maximum

likelihood estimation based on the non-left-censored spells is therefore consistent for those

parameters.

The usefulness of Assumption (29), if satisfied, depends on the number of new spells

that begin within the observation period. In applications with a lot of persistence, the

number of transitions may be small relative to the number of measurements, and As-

sumption (29) may allow only few observations to be used for estimation. A stronger

assumption combines (19) and (29). Specifically, in addition to (29) it is assumed that

the effect of elapsed duration is constant after p periods in the spell so that, everything

else equal, the hazard rate after p times is the same as the hazard rate at time p. To

write this compactly, define bpit−1 = max(bit−1, t − p). Formally then, given p ≥ 1, the

assumption is that

P(Cit = cit|Yit−1 = yit−1,Xit = xit, Vi = v)

= P(Cit = cit|Bit−1 ≤ bpit−1, Yit−1 = yit−1, Xit = xit, Vi = v),

t = fi + 1, . . . , T. (32)

The power of Assumption (32) is that only parameters for times 1, . . . , p depend on

unmeasured variables. In other words, the assumption implies that all data after the first

observed transition Fi or after time p, whichever is earlier, can contribute to identifying
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and estimating the parameters of interest. Collecting terms gives

LC
i =

K∑
k=1

πk

[
AD(fi, yi1,ximin(fi,p), νk)

( T∏
t=min(fi+1,p+1)

P(Cit = cit|Bit−1 ≤ bpit−1, Yit−1 = yit−1, Xit = xit, Vi = νk)

)]
. (33)

where

AD(fi, yi1,ximin(fi,p), v) = P(Yi1 = yi1|Xi1 = xi1, Vi = v)

×
(min(fi,p)∏

t=2

P(Yit = yit|Yit−1 = yit−1,Xit = xit, Vi = v)

)
. (34)

Again, if the data are not left-censored, then the probabilities in (34) may be of interest;

otherwise, they are simply necessary nuisance parameters.

2.9 Parametric MSD models

As discussed above, the standard MSD approach assumes that the transition probability

at time t depends on the current state and the elapsed time in the current spell, but not on

the history prior to entering that state. In the terminology of Heckman and Borjas (1980)

this means that we allow for duration dependence, but not lagged duration dependence

or occurrence dependence.19

We also assume that duration dependence only varies up to p periods of elapsed dura-

tion and then is constant, and refer to such models as the MSD(p) model. In particular,

to capture duration dependence, we adopt a flexible specification with separate parame-

ters for the first p-possible transition times in each state. A commonly used alternative

is to specify a quadratic relationship for duration dependence (e.g. Ham and LaLonde,

1996; Beck et al., 1998, 2002).20 In the case study in Section 3 we adopt p = 6. Within

this framework, we consider both a five-equation model, MSD(6a), that uses all the data

19By specifying separate transition probability equations for exiting each state, the MSD approach also
allows for Markovian state dependence.

20Note that, Brown (1975) and Heckman and Borjas (1980) made the point that one can interact
covariates with elapsed time in duration models, however this is rarely done.



25

available, and also a three-equation model, MSD(6b), that does not model spell-hazard

during the first 6 years of the sample period (details below).

Again we use Heckman’s (1981b) ideas in modeling the AD component. A fully flexible

specification of the approximate reduced form for AD would involve separate equations

for each year a left-censored observation is in progress. Depending on the amount of

left-censoring, this may or may not be feasible in practice. As a compromise between

flexibility and feasibility, we model AD using three equations representing the transition

probabilities for the initial spells associated with each of the states, as well as the proba-

bility associated with the initial conditions. In other words, the largest model we consider

has five equations: a reduced form equation for the initial state; two separate reduced

form equations for modeling transitions from the initial spells; and two separate structural

equations for modeling the probabilities of exiting state 1 versus state 0 spells.21

For the MSD(6a) model, we have Q = 5. Thus each of the K types is represented by

a 5-vector νk = (νk1, . . . , νk5) ∈ R5 for k = 1, . . . , K. In this model, the AD component

in (34) is captured using three equations which represent the probability distribution of

the initial state and, for each of the two states, the initial spell transition probabilities.

The main probabilities in (33) are captured by two equations representing the transition

probabilities out of subsequent spells, by state. In the MSD(6a) specification, we allow the

parameters representing duration dependence and the effects of covariates to vary freely

across equations, and hence do not fully exploit Assumption (32). The model specification

is

P(Yit = 1|Xit = xit, Vi = νk) = G(νk1 + β′1xit) ≡ G11
it (νk1, β1), t = 1, (35)

21Even with these restrictions imposed, a five-equation specification can be difficult to estimate, and
in practice MSD models are rarely fully specified in this way. In particular, to our knowledge, the initial
conditions problem is rarely considered in MSD models, and initial spells are often either dropped from
the analysis or modeled using the same specifications as fresh spells. For example, Biewen (2006) and
Devicienti (2011) ignore initial spells and condition on the initial state. Exceptions include Lacroix and
Brouillette (2011), Ham and LaLonde (1996), and Eberwein et al. (1997), who model initial and fresh
spells separately and have no initial conditions problem to deal with. Also, although Stevens (1999) does
not model the initial conditions, she carefully considers the duration dependence associated with fresh
spells, and this enables her to include initial spells within the two-equation specification for fresh spells.
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P(Cit = 1|Bit−1 ≤ bpit−1, Yit−1 = 0, Xit = xit, Vi = νk)

= G(νk2 + β′2xit +
∑p

r=2 λ2r 1(t− bit−1 ≥ r)) ≡ G12
it (νk2, β2, λ2),

t = 2, . . . , fi (36)

P(Cit = 1|Bit−1 ≤ bpit−1, Yit−1 = 1, Xit = xit, Vi = νk)

= G(νk3 + β′3xit +
∑p

r=2 λ3r 1(t− bit−1 ≥ r)) ≡ G13
it (νk3, β3, λ3),

t = 2, . . . , fi (37)

P(Cit = 1|Bit−1 ≤ bpit−1, Yit−1 = 0, Xit = xit, Vi = νk)

= G(νk4 + β′4xit +
∑p

r=2 λ4r 1(t− bit−1 ≥ r)) ≡ G14
it (νk4, β4, λ4),

t = fi + 1, . . . , T, (38)

P(Cit = 1|Bit−1 ≤ bpit−1, Yit−1 = 1, Xit = xit, Vi = νk)

= G(νk5 + β′5xit +
∑p

r=2 λ5r 1(t− bit−1 ≥ r)) ≡ G15
it (νk5, β5, λ5),

t = fi + 1, . . . , T. (39)
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The corresponding likelihood contribution for individual i is (c.f. (30))

L
MSD(6a)
i (ν1, . . . , νK , π1, . . . , πK , β1, . . . , β5, λ2, . . . , λ5)

=
K∑
k=1

πk

[
G11

i1 (νk1, β1)
yi1
(
1−G11

i1 (νk1, β1)
)1−yi1

×
( fi∏

t=2

G12
it (νk2, β2, λ2)

cit
(
1−G12

it (νk2, β2, λ2)
cit
)1−cit)1−yit−1

×
( fi∏

t=2

G13
it (νk3, β3, λ3)

cit
(
1−G13

it (νk3, β3, λ3)
cit
)1−cit)yit−1

×
( T∏

t=fi+1

G14
it (νk4, β4, λ4)

cit
(
1−G14

it (νk4, β4, λ4)
cit
)1−cit)1−yit−1

×
( T∏

t=fi+1

G15
it (νk5, β5, λ5)

cit
(
1−G15

it (νk5, β5, λ5)
cit
)1−cit)yit−1

]
. (40)

The dimensions of the parameters are as follows: βq ∈ Rdim(x) and λq = (λq2, . . . , λq6) ∈ R5

for q = 1, . . . , 5. The MSD(6a) model is relatively flexible and utilizes all available data,

but this comes at the cost of having to estimate five equations and a large number of

parameters.

In contrast, the MSD(6b) model is more parsimonious, involving only three equations

and hence fewer parameters, but at the cost that some data are ignored. For the MSD(6b)

model, we explicitly utilize Assumption (32) and assume that if t ≥ p + bit−1 then the

parameters in equations (36) and (38) are the same and the parameters in equations (37)

and (39) are the same. Furthermore, we ignore all data prior to period 5. This allows us

to estimate a three-equation model (Q = 3), which represent the probability distribution

of the initial state and the transition probabilities out of the state-specific spells. Thus,
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the likelihood contribution for individual i is

L
MSD(6a)
i (ν1, . . . , νK , π1, . . . , πK , β1, . . . , β5, λ2, . . . , λ5)

=
K∑
k=1

πk

[
G11

i7 (νk1, β1)
yi7
(
1−G11

i7 (νk1, β1)
)1−yi7

×
( T∏

t=8

G14
it (νk4, β4, λ4)

cit
(
1−G14

it (νk4, β4, λ4)
cit
)1−cit)1−yit−1

×
( T∏

t=8

G15
it (νk5, β5, λ5)

cit
(
1−G15

it (νk5, β5, λ5)
cit
)1−cit)yit−1

]
, (41)

where G11
it is defined as in (35) but with t = 7, and G14

it and G15
it are defined as in (38)

and (39) but with t = 8, . . . , T .

Finally, in the absence of duration dependence, we note that the MSD models sim-

plify. First, equations (36) and (38), and equations (37) and (39), are the same, so that

the MSD(6a) and MSD(6b) models are equivalent. Second, and more importantly, the

DBR(1) model is nested within the MSD model. More specifically, if the DBR(1) model

is correct, then the effects of the covariates and unobserved heterogeneity in equations

(38) and (39) will be symmetric (and there will be no duration terms). To see this, first

note that (38) implies

P(Yit = 1|Bit−1 ≤ bpit−1, Yit−1 = 0, Xit = xit, Vi = νk) = G(νk4 + β′4xit), (42)

and comparing this expression with the corresponding DBR(1) model probability expres-

sion given by equation (23) implies νk4+β4 = νk2+β2. Similarly, exploiting the symmetry

of G, (39) implies

P(Yit = 1|Bit−1 ≤ bpit−1, Yit−1 = 1, Xit = xit, Vi = νk) = G(−νk5 − β′5xit), (43)

and comparing this expression with the corresponding DBR(1) model probability expres-

sion implies −νk5− β5 = νk2 + β2 + γ2 or that −νk5− β5− γ2 = νk2 + β2. Then these two

restrictions are satisfied if β4 = −β5, and νk4 = −νk5, allowing for an intercept difference
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between the MSD equations (which corresponds to the state dependence parameter γ2).

3 Case study

We now apply each of the methods above to an empirical context, that of poverty per-

sistence analyzed using duration models by Stevens (1999). Our focus in this example

is to use this case study as an empirical setting to compare the results obtained from

reasonably standard prototypical DBR and MSD models, and illustrate the differences

associated with them, rather than to replicate or critique Stevens’ original analysis. So,

for example, we select a different analytical extract from the data provided to us than

that used by Stevens (1999).

3.1 Data

Our analysis data consists of an extract of 5,248 individuals over the 20 years 1970–89

from the Panel Study of Income Dynamics (PSID).22 Each individual’s poverty status is

determined by whether their family’s annual income is below or above a needs threshold

which depends on family size and composition, so that all individuals in a family have

the same poverty status in that year.23 The main selection criteria we apply to the

sample is that all individuals experience at least one year in poverty over the extended

period 1968–89 (PSID survey years), and are observed and have no missing outcome

or covariate information over the analysis period 1970–89 (PSID survey years).24 The

covariates include dummy variables for age groups 0–5, 6–17, 18–24, and 55+, and dummy

variables for whether the household head is female and/or black.

Tables 2 and 3 present descriptive statistics of the sample, summarized along three

dimensions: first, at the person-year level; second, at the person-level, and third, at the

person-spell level. The first panel of Table 2 shows the means of the covariates used in the

22The data we use come from the PSID survey years 1970–89, with the income and poverty measure-
ments corresponding to calendar years 1969–88.

23See Stevens (1999) for more details of this and other data issues.
24The first criteria is used as a proxy to identify the poverty at-risk population, and follows Stevens

(1999).
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models for the full sample of observations and, in columns (2) and (3), for the subsamples

defined by individuals’ initial poverty state: i.e. in poverty (state 1) or not (state 0). This

panel also shows that, on average, individuals were in poverty 35 percent of the time and

had about a one-sixth (18 percent) chance of a poverty transition occurring in any year.

However, if they were in poverty in the first year, they experienced poverty about 52

percent of the time, compared to 21 percent for individuals not initially in poverty.

The second panel of Table 2 shows that, on average, individuals experienced 3.35

poverty transitions over the sample period; equivalently, this implies they had 4.35 spells

(poverty and non-poverty) on average. In Table 3, we briefly summarize the numbers of

poverty and non-poverty spells (both separately and in total), and the average durations of

these spells. The first rows show that there are more non-poverty than poverty spells and,

on average, the non-poverty spells are longer (5.6 years compared to 3.4). The subsequent

rows show these relative patterns hold for both initial (left-censored) and fresh (including

right-censored) spells. The average observed durations of initial spells are roughly twice

that of fresh spells (7.1 years compared to 3.8 years for poverty and non-poverty spells).

3.2 Estimation results

We present the estimates of the DBR and MSD models in Tables 4 and 5. Table 4

contains estimates for three DBR models: a first-order DBR model without unobserved

heterogeneity, DBR(1a); and the first- and second-order DBR models with two discrete

points of unobserved heterogeneity, DBR(1b) and DBR(2). Table 5 contains the estimates

of the five-equation MSD model with two random effects mass points, MSD(6a), and the

three-equation MSD model estimates which exploits the assumption of constant hazards

after 6-years to estimate common equations for initial and fresh spells using data from

1970–89, MSD(6b).

We briefly discuss the DBR model results in Table 4. First, the estimates of the

coefficients in the structural equations are consistent across the models: there is strong

evidence of positive state dependence associated with poverty status; and non-prime aged

(25–54) individuals, and those in female and black headed households, are more likely to
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be in poverty than other households. Second, although the approximate reduced form

equations for the initial conditions do not have obvious interpretation, the coefficients on

the covariates in these equations are generally of the same signs as those in the structural

equations. (The only exceptions being some of the age-variables coefficients, but these are

statistically insignificant in all cases.) Third, the results for the DBR models in Table 4

show, statistically, both unobserved heterogeneity and the more flexible second-order state

dependence are important extensions in these models. (The likelihood ratio statistic for

the models with versus without random effects is LR = 2, 919.8 with 3 degrees of freedom

(df ), and the likelihood ratio statistic for the model with second-order versus first-order

state dependence is LR = 1, 899.0 with 9df .)

We next discuss the MSD(6a) model results, presented in Table 5. The main (struc-

tural) estimates of interest are those in the fresh-spell equations for poverty entry and

exit, and these indicate some substantive differences with the DBR models. The para-

meter estimates for the MSD(6b) model are broadly similar to those for the MSD(6a)

estimates.25 Our subsequent discussion of the MSD models will focus on the MSD(6a)

specification.

The MSD models relax restrictions implied by the DBR model in two important

respects, that we focus on here. First, one implication of the DBR model specification is

that covariate coefficient magnitudes should be equal and opposite in sign in the entry

and exit equations. In contrast, we find that, although the coefficients on the covariates

are predominantly positive in the entry equation and negative in the exit equation (in

line with the DBR estimates), there are some exceptions with the signs of the young and

old age coefficients. In addition, there is also significant differences in magnitudes of the

coefficients in these equations.

The second important restriction in the DBR model is that the order of state depen-

dence implies that, for spell-durations longer than that order, the impact on the prob-

ability of a transition occurring should be zero; and furthermore, that the lower-order

25Eyeballing the estimates across the two specifications, the coefficients on 6+ years duration, for being
aged 18–24, and for having a black head of household in the poverty entry equations, and the coefficients
on being aged 0–5 in the exit equations are noticeably different. The difference in the 6+ years duration
coefficients suggests the assumption of constant hazard beyond 6 years may be too strong.
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elapsed-duration coefficients should be equal in the entry and exit transition equations.

That the estimates of the elapsed-duration variables in both the entry and exit equa-

tions are statistically significant up to 6-plus years, strongly rejects both the first- and

second-order state dependence specifications in the estimated DBR models. Also, all of

the coefficients are negative, which implies that the hazard of a transition either into or

out of poverty occurring is decreasing in the duration of the current spell. However, the

coefficient magnitudes vary across the entry and exit equations.

Thus, perhaps not surprisingly, the MSD model provides a substantially better fit to

the data than the DBR models. This is true in terms of the overall fit of the model; and

also in terms of the more specific symmetry and duration-dependence restrictions implied

by the DBR models.26

To explore the respective contributions of relaxing the DBR models’ strict state de-

pendence and symmetry effects of covariates and unobserved heterogeneity restrictions,

we estimated a variety of model specifications between the DBR(1b) and MSD(6a) mod-

els. Table 6 presents a summary of these results. First, as discussed above, the DBR(1b)

model is equivalent to an MSD model in which there is no duration dependence, and the

effects of both the observed covariates and unobserved heterogeneity are symmetric on

poverty entry and exit. This is the first model described in Table 6.

We next relax the symmetry restriction on both the covariates and unobserved het-

erogeneity, but maintain the constant-hazard rate restriction. This is the second model

summarized in Table 6, and essentially introduces a third equation to allow separate spec-

ifications for the entry and exit transitions. The LR-statistic for the hypothesis that these

symmetry restrictions are valid (183.6, 7df ) clearly rejects that hypothesis.27

The third model summarized in Table 6, relaxes the constant-hazard assumption but

26The LR-statistic of the difference between the MSD(6a) model and the nested DBR(1b) model is
3, 231.4 (43df ). The DBR(2) model is not strictly nested within the MSD(6a) model, but the difference
in the log-likelihood values, 666.2, is still large. The Vuong (1989) test statistic is 32.1 in favor of the
MSD(6a) model. (The null is that both models are misspecified but fit equally well, and the statistic is
asymptotically standard normally distributed.)

27Browning and Carro (2010) similarly reject the symmetry of effects in a first-order dynamic panel
data model, although their focus is on showing heterogeneous state dependence effects that vary with the
observable characteristics.
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(re-)imposes the entry and exit symmetry restrictions.28 In allowing for duration depen-

dence, we include separate equations for the initial and fresh spells in this model. The

LR-statistic for the hypothesis implied by the DBR(1b) model against this model is much

greater (1, 187.4, 19df ) than that associated with the DBR(1b) versus model 2, implying

the assumption of constant hazards is a severe restriction.

The final intermediate specification we consider, relaxes the model 3 restriction of

symmetric duration dependence effects on poverty entry and exit, while maintaining the

symmetry of both the covariate and unobserved heterogeneity effects. Again the LR-

statistic (1, 638.4, 10df ) comparing models 3 and 4 is huge, implying that as well as

duration dependence being important in poverty dynamics, the dependence on poverty

entry and exit transitions are not symmetric. Finally, comparing model 4 with the full

MSD(6a) model, summarized as the final model in Table 6, again shows that the hypoth-

esis that the covariate and unobserved heterogeneity effects on poverty entry and exit are

symmetric is easily rejected.

In summary, the estimation results presented here clearly show that the DBR models

are too restrictive relative to the MSD alternatives. First, the Markovian state dependence

implied by the DBR models is too strong against the MSD model’s duration dependence

alternative. Second, the implied symmetry of effects into and out of poverty transitions

in the standard DBR(1) model is also strongly rejected. These conclusions are consistent

with the results by Bhuller et al. (2014).

3.3 Prediction results

As well as comparing the estimates of the models, we also compare how they fit the data

in the sense of their respective within-sample predictions. For example, it may be that,

although the DBR models are rejected in favor of the MSD alternative, the predictive

fit of the models may be substantially similar. For this purpose, we compare summary

statistics of the actual data and model predictions, presented in Tables 7, 8, and 9.

In Table 7, we present summaries using two-way frequency tables of the number of

28We also impose symmetry of the duration dependence effects in this specification.
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years that a person is poor and the number of transitions that occur between poverty and

non-poverty, for each of the actual data and the predictions based on the first- and second-

order DBR models with unobserved heterogeneity and the five-equation MSD model.29

The first panel of Table 7 summarizes the actual poverty experience of individuals over

the sample period. This shows that there is substantial variation in poverty experience

around the 7-year average: about 5 percent of the sample had no spells of poverty,30 18

percent had a single year poor, while at the other extreme, 3 percent of individuals were

always in poverty, and the remaining three-quarters experienced between 2 and 19 years

of poverty. Similarly, there was substantial heterogeneity in poverty transitions around

the 3.35 average: corresponding to those who were either never or always poor, about 8

percent experience no transitions, while over 40 percent had at least 4 transitions.

The next three panels in Table 7 present analogous summaries of the predictions from

the first- and second-order DBR models, and the MSD model respectively. First, the

average incidence of poverty, or equivalently the number of years poor, is predicted well

by each of the models: compared to the actual average of 0.353 (7.06 years over the

20 year sample), the DBR(1b) model average prediction is 0.350 (7.00 years), while the

DBR(2) model’s average is 0.351 (7.03 years) and the MSD(6a) model’s average is 0.350

(7.01 years). The frequency distribution of the MSD model’s predicted years poor is

noticeably closer to the actual distribution than those of the DBR models. However,

the models all substantially overpredict the number of individuals who have no poverty

experience, and underpredict the number with a single year; in addition, the DBR models

also substantially underpredict the number of individuals who are always in poverty.

Second, the models also accurately predict the average number of transitions: the

DBR(1b), DBR(2) and MSD(6a) model average predicted transitions are 3.36, 3.41 and

29In order to obtain manageable summaries and limit the extent of small cell frequencies, we group the
number of years poor as 0, 1, 2–5, 6–10, 11–15, 16–19, and 20 years, and the number of transitions 0, 1,
2, 3, 4+ even (so the initial and final states are the same), and 5+ odd (so the initial and final states
are different). In this two-way tabulation, some cells are necessarily null (e.g. if a person is either never
or always poor, they will experience no transitions); and similarly, if a person is poor in only 1 year,
they must experience either 1 or 2 transitions. The predictions from each of the models are based on 20
simulations per individual taking the covariates as given.

30Recall this is among those individuals were experienced some poverty between survey years 1968 and
1989.



35

3.36 respectively, compared to 3.35 actual transitions. However, associated with over-

predicting the zero poverty incidence, the models overpredict the number of cases with

zero transitions and dramatically underpredict the incidence of 1–3 transition cases. For

indicative purposes, we have constructed Pearson goodness-of-fit statistics for each of the

models based on the tables of actual and predicted frequencies in Table 7. The MSD

model’s goodness-of-fit statistic (98.9, 23df ) is substantially lower than those of the two

DBR models. Thus, although this implies the MSD model does not provide an adequate

statistical fit to the data using conventional significance levels, the relative magnitudes

are consistent with the MSD model fitting substantially better than the two DBR models,

and second-order DBR model fitting better than the first-order model.

In Table 8 we present a different summary of the actual and predicted poverty ex-

periences from the DBR(1b) and MSD(6a) models.31 The table shows the frequency

distribution of the number of distinct spells experienced over the sample period sepa-

rately by the initial state. The actual experiences include up to 15 separate spells, while

the maximum number of spells predicted by the DBR(1b) and the MSD(6a) models is 17.

Note that the total number of transitions given in Table 7 equals the sum of the number

of spells for those initially not poor and those in poverty minus one. Table 8 shows that

the tendency for the models to overpredict the frequency of single spells and underpredict

the frequencies of 2 and 3 poverty spells is especially strong for those whose initial state

is not-in-poverty. On the other hand, the models fit a little better for those who are poor

initially; this is particularly true for the MSD(6a) model.

In Table 9 we present the average durations of the actual and predicted spells. The

averages of the MSD(6a) model predictions are again closer to the actual spell average

durations than those of the DBR(1b) model. Thus, these prediction results are consistent

with the estimation results indicating the MSD model fits better than the DBR models.

31We exclude the DBR(2) model predictions here as these are comparatively similar to those of the
first-order model.
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4 Concluding remarks

This paper shows that the commonly used alternative dynamic panel data and spell

duration approaches to modeling longitudinal binary outcomes can be viewed as special

cases of a general analytical framework. Each of these approaches typically focus on and

emphasize different aspects of the state dependence properties of the data. In addition, the

dynamic panel data models are generally much more tightly specified than the multi-spell

duration model alternatives.

The case study analysis of poverty experiences provided some clear conclusions regard-

ing the relative efficacy of the models. The MSD model fits the data better than the first-

and second-order DBR models. That this is the case in terms of the model estimates

is perhaps not surprising given the MSD model is substantially more flexibly specified

than the parsimonious DBR models, and especially the DBR(1) is strictly nested within

the MSD model specification. However, this conclusion also holds in terms of the model

predictions: i.e. the MSD model predictions were substantially better than the predictions

from the DBR model.

Finally, the analysis of intermediate models between the parsimonious DBR(1) model

and general MSD model implies that the DBR(1) is overly restrictive both in terms of the

state dependence, and also in terms of the symmetric effects of covariates and unobserved

heterogeneity on transitions into and out of poverty, that it imposes.
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Appendix A Spell-based representations

As mentioned, in duration analysis and event history approaches, the data are often

represented as transition times or spells instead of a sequence of state indicators. In this

literature, the data are often considered as measurement in continuous time, in which

case the spell-based representations are the only ones practical. In discrete time, spell-

based representations may be computationally efficient if covariates are constant within

each spell. Time-based representations may be more convenient if the covariates are

time-varying rather than spell-varying.

In this appendix, we show that spell-based and time-based data representations are

equivalent. The nonparametrically likelihood functions are also equivalent in the sense

that there is a one-to-one relationship between the different parameter sets. The final

subsection discusses covariates.

A.1 Data representation

Let Ji denote the number of transitions observed between time 1 and time T ; that is,

Ji =
T∑
t=2

Cit. (44)

Let Zij for j = 1, . . . , Ji denote the measured times of change of state (spell endings).

Then (Yi1, Zi1, . . . , ZiJi , T ) is an equivalent complete representation of the data. To see

this, note that the transition times can be defined recursively (assuming Ji > 0) by32

Zi1 = inf{t ∈ N : 1 ≤ t < T, Yi1 6= Yit+1},

Zij = inf{t ∈ N : Zj−1 + 1 ≤ t < T, YiZj−1+1 6= Yit+1}, j = 2, . . . , Ji.

(45)

32Note that for j = 1, . . . , Ji we have Zij = t ⇒ Cit+1 = 1, and similarly for t = 2, . . . , T , we have
Cit = 1⇒ ∃j ∈ N : 1 ≤ j ≤ Ji, Zij = t− 1.
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Conversely, the state indicators can be recovered from the transition times by

Yit =


1− Yit−1 if ∃j ∈ N : 1 ≤ j ≤ Ji, Zij = t− 1,

Yit−1 otherwise,

t = 2, . . . , T, (46)

or by

Yit =

(
Yi1 +

Ji∑
j=1

1(Zij < t)

)
mod 2, t = 2, . . . , T. (47)

For simplicity, in this paper we have assume all histories are right-censored at time T .

Since we do not know the state at time T + 1, we therefore do not know whether or not

there is a transition at time T .

The data can also be represented as a panel of durations. Let Dij for j = 1, . . . , Ji

denote the duration of the jth spell. Formally,

Dij = Zij − Zij−1, j = 2, . . . , Ji. (48)

If Ji > 0, we may also define the (possibly left-censored) duration at the beginning of

the measurement period by Di1 = Zi1 and the (possibly right-censored) duration at the

end of the observation period by DiJi+1 = T − ZiJi . If Ji = 0, define Di1 = T . Then

(Yi1, Di1, . . . , DiJi , DiJi+1) is an equivalent representation of the data.

Example Suppose T = 4 and the state occupancy indicators are Yi1 = 0, Yi2 = 0,

Yi3 = 1, and Yi4 = 1. Then there is one transition and two spells, which can be represented

in four different ways: the first representation is (Yi1, Yi2, Yi3, Yi4) = (0, 0, 1, 1), the second

is (Yi1, Ci2, Ci3, Ci4) = (0, 0, 1, 0), the third is (Yi1, Zi1, Zi2) = (0, 2, 4), and the fourth

representation is (Yi1, Di1, Di2) = (0, 2, 2).
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A.2 Parameterization

The likelihood contribution in the MSD approach can also be written in a spell-based

form instead of the time-based form given in (8).33 The notation becomes slightly more

involved, since the number of spells may vary across individuals. First, let Zij denote

the random outcome history at the time of the jth transition (the end of the jth spell)

for individual i; that is, define Zi0 = (Yi1) and Zij = (Yi1, Zi1, . . . , Zij) for j = 1, . . . , Ji.

Let zi0 = (yi1) and zij = (yi1, zi1, . . . , zij) denote the observed history. Second, let Zj−1
t−1

denote the space of possible prior histories when spell j is in progress at time t. If

there has been no transitions before time t, we have Z0
t−1 = {0, 1} for t = 1, . . . , T − 1,

and if there has been one previous transition, then Z1
t−1 = {0, 1} × {1, . . . , t − 1} for

t = 2, . . . , T − 1. For j = 2, . . . , t − 1 and t = 2, . . . , T − 1, the space of possible prior

histories is Zj−1
t−1 = {0, 1} × {1, . . . , t − j} × · · · × {j − 1, . . . , t − 1}. Let zj−1 with no

subscript i denote a generic element of Zj−1
t−1 . Then the conditional probability of beginning

in state 1 given the history and the hazard rates at each time t are defined as34

χ = P(Yi1 = 1),

ϕt(zj−1) = P(Zij = t|Zij ≥ t,Zij−1 = zj−1),

zj−1 ∈ Zj−1
t−1 , j = 1, . . . , t, t = 1, . . . , T − 1.

(49)

Of course, there are also 2T − 1 distinct probabilities in this representation. This can be

verified as follows: given T and j with 0 ≤ j ≤ T − 1, there is T − 1 choose j possible

transition times; by the binomial formula there are then a total of
∑T−1

j=0

(
T−1
j

)
= 2T−1

possible transition times; each of which can begin in either of the two states, so 2T

possible outcomes; and one probability is determined by the adding-up constraint, so

2T − 1 probabilities.

33The time-based form is standard in the continuous-time literature, see e.g. Honoré (1993) and
Horowitz and Lee (2004).

34Allison (1982, p92) defined the discrete-time hazard rate for repeated events, but did not provide the
likelihood function.



43

Example For τ = 3, there are 7 parameters depending on time t and the history prior

to t; namely,

χ = P(Yi1 = 1),

ϕ1(0) = P(Zi1 = 1|Zi1 ≥ 1, (Yi1) = (0)) with z0 = (0) ∈ Z0
0,

ϕ1(1) = P(Zi1 = 1|Zi1 ≥ 1, (Yi1) = (1)) with z0 = (1) ∈ Z0
0,

ϕ2(0) = P(Zi1 = 2|Zi1 ≥ 2, (Yi1) = (0)) with z0 = (0) ∈ Z0
1,

ϕ2(1) = P(Zi1 = 2|Zi1 ≥ 2, (Yi1) = (1)) with z0 = (1) ∈ Z0
1,

ϕ2(0, 1) = P(Zi2 = 2|Zi2 ≥ 2, (Yi1, Zi1) = (0, 1)) with z1 = (0, 1) ∈ Z1
1,

ϕ2(1, 1) = P(Zi2 = 2|Zi2 ≥ 2, (Yi1, Zi1) = (1, 1)) with z1 = (1, 1) ∈ Z1
1.

For τ = 4, there are additionally 8 parameters; namely,

ϕ3(0) = P(Zi1 = 3|Zi1 ≥ 3, (Yi1) = (0)) with z0 = (0) ∈ Z0
2,

ϕ3(1) = P(Zi1 = 3|Zi1 ≥ 3, (Yi1) = (1)) with z0 = (1) ∈ Z0
2,

ϕ3(0, 1) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (0, 1)) with z1 = (0, 1) ∈ Z1
2,

ϕ3(1, 1) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (1, 1)) with z1 = (1, 1) ∈ Z1
2,

ϕ3(0, 2) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (0, 2)) with z1 = (0, 2) ∈ Z1
2,

ϕ3(1, 2) = P(Zi2 = 3|Zi2 ≥ 3, (Yi1, Zi1) = (1, 2)) with z1 = (1, 2) ∈ Z1
2,

ϕ3(0, 1, 2) = P(Zi3 = 3|Zi3 ≥ 3, (Yi1, Zi1, Zi2) = (0, 1, 2)) with z2 = (0, 1, 2) ∈ Z2
2,

ϕ3(1, 1, 2) = P(Zi3 = 3|Zi3 ≥ 3, (Yi1, Zi1, Zi2) = (1, 1, 2)) with z2 = (1, 1, 2) ∈ Z2
2.

The likelihood contribution of individual i can be built up by considering the initial

state and each subsequent transition separately. To simplify the notation, it is customary

to state the likelihood using a “latent” variable, ZiJi+1, which represents an (Ji + 1)th

transition. It is imagined that this transition would have been observed, were it not for



44

right-censoring. We then have35

LZ
i = χyi1(1− χ)1−yi1

( ji∏
j=1

P(Zij = zij|Zij−1 = zij−1)

)
P(Ziji+1 ≥ T |Ziji = ziji), (50)

where

P(Zij = zij|Zij−1 = zij−1) = ϕzij(zij−1)

zij−1∏
t=zij−1+1

(1− ϕt(zij−1)), j = 1, . . . , ji, (51)

and

P(Ziji+1 ≥ T |Ziji = ziji) =
T−1∏

t=ziji+1

(1− ϕt(ziji)). (52)

In (50), the first term on the right-hand side is the contribution of the initial state, the

term in large parentheses is the contribution of the ji observed transitions, and the last

term is the contribution of the fact that no event took place between ziji and T .

The two representations of the MSD likelihood contributions (8) and (50) are of course

equivalent. In particular, the parameters are one-to-one and the likelihood values are

identical. To verify the first claim, given t and yt ∈ Yt arguments similar to those given

in Section 2.2 can be used to deduce zj−1 ∈ Zj−1
t−1 , where either j = 1 and 0 < t ≤ z1

or j > 1 and zj−1 < t ≤ zj. Conversely, given t and zj−1 ∈ Zj−1
t−1 , it is straightforward

to deduce yt ∈ Yt. Therefore, given t and j and compatible histories yt ∈ Yt and

zj−1 ∈ Zj−1
t−1 , we have the one-to-one relationship between parameters

zj−1 < t ≤ zj ⇒ ϕt(zj−1) = ξt+1(yt). (53)

Intuitively, the conditional probability of spell j ending at t given prior history is the

same as the conditional probability of a transition between t and t+ 1; or in other words

the hazard rates can be expressed in terms of Cits or Zijs.

35It is possible to state the likelihood without the use of a latent variable, by noting that the probability
of no events taking place between ziji and T is the same as P(Ji = ji|Ziji = ziji , T = T ).
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To verify that the likelihood values are identical, LC
i = LZ

i , note that (assuming ji > 0)

LZ
i = χyi1(1− χ)1−yi1

( ji∏
j=1

zij∏
t=zij−1+1

ϕt(zij−1)
1(t=zij)(1− ϕt(zij−1))

1(t6=zij)

)

×
( T−1∏

t=ziji+1

1− ϕt(ziji)

)
= χyi1(1− χ)1−yi1

×
( ji∏

j=1

T−1∏
t=1

1(zij−1 < t ≤ zij)ϕt(zij−1)
1(t=zij)(1− ϕt(zij−1))

1(t6=zij)

)

×
(T−1∏

t=1

1(ziji < t ≤ T − 1)(1− ϕt(ziji))

)

= χyi1(1− χ)1−yi1
(T−1∏

t=1

ji∏
j=1

1(zij−1 < t ≤ zij)ξt+1(yit)
1(t=zij)(1− ξt+1(yit))

1(t6=zij)

)

×
(T−1∏

t=1

1(ziji < t ≤ T − 1)(1− ξt+1(yit))

)

= χyi1(1− χ)1−yi1
T−1∏
t=1

ξt+1(yit)
cit+1(1− ξt+1(yit))

1−cit+1

= LC
i . (54)

This shows that the likelihood contribution in the multi-spell duration approach can be

expressed equivalently either in a j- or a t-dimension.

Example Suppose Yi1 = 0, Yi2 = 0, Yi3 = 1, and Yi4 = 1 with T = 4. Then

LY
i = P(Yi1 = 0)P(Yi2 = 0|Yi1 = (0))

× P(Yi3 = 1|Yi2 = (0, 0))P(Yi4 = 1|Yi3 = (0, 0, 1)), (55)

while

LZ
i = P(Yi1 = 0)

(
1− P(Zi1 = 1|Zi1 ≥ 1,Zi0 = (0))

)
× P(Zi1 = 2|Zij ≥ 2,Zi0 = (0))

(
1− P(Zi2 = 3|Zi2 ≥ 3,Zi1 = (0, 1))

)
. (56)
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Note that

P(Yi2 = 0|Yi1 = (0)) = 1− P(Zi1 = 1|Zi1 ≥ 1,Zi0 = (0)), (57)

P(Yi3 = 1|Yi2 = (0, 0)) = P(Zi1 = 2|Zij ≥ 2,Zi0 = (0)), (58)

P(Yi4 = 1|Yi3 = (0, 0, 1)) = 1− P(Zi2 = 3|Zi2 ≥ 3,Zi1 = (0, 1)). (59)

The two nonparametric likelihood representations are therefore equivalent.

A.3 Likelihood contribution with covariates

Suppose the covariates are constant within each spell and only vary between spells. For

j = 0, . . . , ji + 1, let X∗ij denote the vector of spell-constant covariates, and let X∗ij and

x∗ij denote the random and observed covariate histories up to (and including) spell j.36

Then the likelihood contribution for individual i in the spell-based form becomes

LZ
i = χyi1(1− χ)1−yi1

( ji∏
j=1

P(Zij = zij|Zij−1 = zij−1,X
∗
ij−1 = x∗ij−1)

)
× P(Ziji+1 ≥ T |Ziji = ziji ,X

∗
iji

= x∗iji), (60)

It can be shown that this is equivalent to (11) and (12).

Conceptually, it makes no difference if the covariates are not spell-constant, but time-

varying; however, the expression for the likelihood contribution is more complicated. With

time-varying covariates, the likelihood contribution for individual i becomes

LZ
i = P(Yi1 = yi1|Xi1 = xi1)

×
( ji∏

j=1

P(Zij = zij|Zij ≥ zij,Zij−1 = zij−1,Xizij = xizij)

×
zij−1∏

t=zij−1+1

(
1− P(Zij = t|Zij ≥ t,Zij−1 = zij−1,Xit = xit)

))

×
( T−1∏

t=ziji+1

(
1− P(Ziji+1 = t|Ziji+1 ≥ t,Ziji = ziji ,Xit = xit)

))
.

(61)

36Endogenous spell-varying covariates is beyond the scope of this paper.
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In general, it is not possible to simplify further. If the covariates remain constant within

each spell, then (61) simplifies to (60). In terms of computing time and memory require-

ments, (60) is likely to be more efficient than (61).



48

Table 1: Hazard rates for DBR models
Hazard out of state 0 at time t Hazard out of state 1 at time t

History Hazard History Hazard
t− 3 t− 2 t− 1 t t− 3 t− 2 t− 1 t

DBR(1): P(Yit = 1|Yit−1 = yit−1) = G(γ0 + γ1yit−1)
0 G(γ0) 1 1−G(γ0 + γ1)

DBR(2): P(Yit = 1|Yit−1 = yit−1) = G(γ0 + γ1yit−1 + γ2yit−2)
1 0 G(γ0 + γ2) 0 1 1−G(γ0 + γ1)
0 0 G(γ0) 1 1 1−G(γ0 + γ1 + γ2)

DBR(3): P(Yit = 1|Yit−1 = yit−1) = G(γ0 + γ1yit−1 + γ2yit−2 + γ2yit−3)
1 1 0 G(γ0 + γ2 + γ3) 0 0 1 1−G(γ0 + γ1)
0 1 0 G(γ0 + γ2) 1 0 1 1−G(γ0 + γ3)
1 0 0 G(γ0 + γ3) 0 1 1 1−G(γ0 + γ1 + γ2)
0 0 0 G(γ0) 1 1 1 1−G(γ0 + γ1 + γ2 + γ3)



49

Figure 1: Hazard rates for DBR models
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Table 2: Descriptive statistics by initial state
Full sample Initial state

Not poor In-poverty
Person-years: means and standard deviations
Aged 0–5 0.025 0.026 0.025

(.0005) (.0005) (.0005)
Aged 6–17 0.225 0.213 0.239

(.001) (.002) (.002)
Aged 18–24 0.204 0.188 0.223

(.001) (.002) (.002)
Aged 25–54 0.420 0.432 0.406

(.002) (.002) (.002)
Aged 55+ 0.126 0.143 0.107

(.001) (.001) (.001)
Female head 0.336 0.270 0.411

(.001) (.002) (.002)
Black head 0.582 0.411 0.775

(.002) (.002) (.002)
Poor (Yit) 0.353 0.208 0.517

(.001) (.002) (.002)
Transition (Cit) 0.177 0.168 0.186

(.001) (.002) (.002)

No. person-years 104,960 55,700 49,260

Persons: means and standard deviations
Transitions 3.35 3.20 3.53

(.032) (.043) (.048)

No. persons 5,248 2,785 2,463
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Table 3: Descriptive statistics by poverty status
Full sample Poverty status

Not poor In-poverty
All spells: means and standard deviations
Duration 4.59 5.63 3.44

(.033) (.050) (.038)

No. spells 22,849 12,062 10,787

Initial spells: means and standard deviations
Duration 7.11 8.23 5.86

(.084) (.121) (.111)

No. spells 5,248 2,785 2,463

Fresh spells: means and standard deviations
Duration 3.84 4.85 2.72

(.032) (.051) (.032)

No. spells 17,601 9,277 8,324

No adjustments for censoring.
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Table 4: Dynamic binary response model estimates
DBR(1a) DBR(1b) DBR(2)
IC Strl IC Strl IC1 IC2 Strl

Variables
yit−1 2.708 2.191 2.426 1.859

0.017 0.019 (.077) (.030)
yit−2 0.942

(.031)
yit−1yit−2 0.039

(.042)
Aged 0–5 0.183 0.357 0.253 0.549 0.218 0.163 0.328

(.097) (.064) (.106) (.072) (.104) (.130) (.089)
Aged 6–17 0.463 0.395 0.601 0.560 0.558 0.165 0.449

(.077) (.023) (.083) (.029) (.083) (.093) (.030)
Aged 18–24 0.220 0.070 0.397 0.186 0.349 –0.13 0.109

(.102) (.023) (.110) (.027) (.109) (.119) (.027)
Aged 55+ 0.020 0.314 –0.131 0.272 –0.105 –0.236 0.288

(.150) (.027) (.159) (.034) (.158) (.175) (.035)
Female head 0.957 0.717 1.076 0.935 1.085 0.744 0.874

(.068) (.018) (.074) (.024) (.074) (.083) (.024)
Black head 1.446 0.607 1.429 0.620 1.480 0.855 0.527

(.064) (.018) (.071) (.029) (.070) (.081) (.028)

Random effects (mass points and probabilities)
ν1 –1.519 –2.599 –2.178 –3.186 –2.121 –2.686 –3.206

(.075) (.020) (.093) (.033) (.096) (.108) (.036)
ν2 –0.654 –1.604 –0.767 –1.607 –1.926

(.091) (.036) (.095) (.109) (.041)
π1 0.638 0.640

(.012) (.017)

Statistics
No. persons 5248 5248 5248
No. years 20 20 20
Log L –46520.1 –45060.2 –44110.7

LR 2,919.8 1,899.0
(df ) (3) (11)

yit indicates poverty in year t; IC: initial conditions equation; Strl: structural equation; LR:
likelihood ratio statistics; df : degrees of freedom. For DBR(1b), the null hypothesis for the LR
statistic is DBR(1a). For DBR(2), the null hypothesis for the LR statistic is DBR(1b).
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Table 5: Multi-spell duration model estimates
MSD(6a) MSD(6b)

IC Initial spells Fresh spells IC Fresh spells
Entry Exit Entry Exit Entry Exit

Variables
1(dit ≥ 2) –0.070 –0.425 –0.507 –0.562 –0.509 –0.544

(.082) (.083) (.044) (.044) (.047) (.047)
1(dit ≥ 3) –0.490 0.234 –0.365 –0.188 –0.373 –0.163

(.101) (.095) (.059) (.060) (.061) (.063)
1(dit ≥ 4) 0.007 –0.046 –0.186 –0.290 –0.228 –0.321

(.116) (.104) (.074) (.078) (.075) (.079)
1(dit ≥ 5) 0.003 –0.028 –0.051 –0.169 –0.068 –0.258

(.121) (.118) (.087) (.098) (.078) (.085)
1(dit ≥ 6) 0.257 –0.051 –0.309 –0.056 0.029 –0.055

(.093) (.099) (.076) (.090) (.059) (.066)
Aged 0–5 0.156 0.332 –0.068 –0.340 –0.049 0.036 –0.206 –1.124

(.103) (.113) (.121) (.205) (.187) (.184) (.450) (.639)
Aged 6–17 0.512 –0.098 –0.440 0.511 –0.188 0.497 0.431 –0.272

(.082) (.059) (.066) (.051) (.049) (.083) (.045) (.047)
Aged 18–24 0.314 0.513 0.401 0.111 0.169 0.073 0.310 0.197

(.108) (.059) (.068) (.043) (.043) (.099) (.038) (.041)
Aged 55+ –0.078 0.047 –0.289 0.366 –0.287 0.150 0.327 –0.289

(.157) (.074) (.108) (.054) (.051) (.137) (.047) (.050)
Female head 1.086 0.906 –0.732 0.881 –0.817 1.195 0.838 –0.802

(.075) (.050) (.054) (.040) (.040) (.073) (.036) (.038)
Black head 1.529 0.246 –0.871 0.713 –0.498 1.379 0.407 –0.493

(.071) (.048) (.069) (.044) (.039) (.077) (.036) (.040)

Random effects (mass points and probabilities)
ν1 –2.148 –2.403 0.332 –2.610 1.161 –2.592 –2.154 1.003

(.107) (.082) (.111) (.071) (.063) (.110) (.069) (.069)
ν2 –0.901 –1.678 –0.615 –1.143 0.121 –1.180 –0.870 0.029

(.094) (.092) (.088) (.059) (.047) (.112) (.081) (.055)
π1 0.590 0.677

(.024) (.030)

Statistics
No. persons 5,248 5,248
No. years 20 16

Log L –43,444.5 –34,621.8

dit: elapsed duration in current spell at the end of year t; IC: initial conditions equation; Entry:
structural equation for entering poverty; Exit: structural equation for exiting poverty.
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Table 6: Differences between the DBR(1b) and MSD(6a) models
Model description Pars Log L LR (df )

1 DBR(1b) model, same as a MSD model with no
duration dependence, and symmetric entry and
exit effects

18 –45,060.2

2 MSD model with no duration dependence, and
flexible entry and exit effects (test 1 against 2)

25 –44,968.7 183.6 (7)

3 MSD model with duration dependence, and
symmetric duration dependence, covariate and
unobserved heterogeneity effects on entry and
exit (test 1 against 3)

37 –44,466.5 1,187.4 (19)

4 MSD model with duration dependence, and
symmetric covariate and unobserved
heterogeneity effects on entry and exit (test 3
against 4)

47 –43,647.3 1,638.4 (10)

5 MSD(6a) model, i.e. with duration dependence,
and flexible effects on entry and exit (test 4
against 5)

61 –43,444.5 405.6 (14)

Pars: number of parameters; LR: likelihood ratio statistics; df : degrees of freedom.
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Table 7: Predictions of years in poverty and transitions
No. years poor No. transitions

4+ 5+
0 1 2 3 Even Odd Total

Actual data
0 255 0 0 0 0 0 255
1 0 201 735 0 0 0 936
2–5 0 232 315 291 526 168 1,532
6–10 0 88 68 209 325 322 1,012
11–15 0 55 38 95 299 290 777
16–19 0 88 155 92 190 62 587
20 149 0 0 0 0 0 149

Total 404 664 1,311 687 1,340 842 5,248

DBR(1b) predictions
0 473.2 0 0 0 0 0 473.2
1 0 123.3 388.6 0 0 0 511.8
2–5 0 131.4 320.1 369.0 580.0 205.1 1,605.5
6–10 0 31.0 62.4 194.6 475.5 458.6 1,221.9
11–15 0 23.0 53.7 131.8 365.8 274.0 848.2
16–19 0 49.9 179.2 79.1 172.2 37.4 517.7
20 69.9 0 0 0 0 0 69.9

Total 543.0 358.5 1,003.8 774.4 1,593.4 975.0 5,248.0
Pearson GOF-statistic = 973.5 (23df )

DBR(2) predictions
0 527.5 0 0 0 0 0 527.5
1 0 113.8 440.7 0 0 0 554.5
2–5 0 166.8 228.2 334.0 588.0 212.9 1,529.9
6–10 0 68.0 84.0 208.0 406.1 402.6 1,168.6
11–15 0 44.4 72.8 136.4 315.5 265.0 834.1
16–19 0 58.6 179.1 76.7 179.6 45.1 539.0
20 94.6 0 0 0 0 0 94.6

Total 622.1 451.5 1,004.7 755.0 1,489.1 925.6 5,248.0
Pearson GOF-statistic = 613.6 (23df )

MSD(6a) predictions
0 336.4 0 0 0 0 0 336.4
1 0.0 156.4 625.0 0 0 0 781.4
2–5 0.0 217.0 318.9 306.5 582.9 167.3 1,592.5
6–10 0.0 105.2 73.4 187.8 341.6 350.5 1,058.4
11–15 0.0 68.5 54.4 121.5 288.2 262.0 794.5
16–19 0.0 67.6 175.0 75.2 188.1 43.1 548.9
20 136.1 0 0 0 0 0 136.1

Total 472.5 614.5 1,246.6 690.9 1,400.8 822.8 5,248.0
Pearson GOF-statistic = 98.9 (23df )

GOF: goodness of fit; df : degrees of freedom. Poverty rates and incidence rates can be
computed by taking the number of years in poverty and the number of transitions and
divide by the number of years under observation.
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Table 8: Predictions of spells by initial state
No. Actual data DBR(1b) predictions MSD(6a) predictions
spells Initial state Initial state Initial state

Not poor In-poverty Not poor In-poverty Not poor In-poverty
1 255 149 473.2 69.9 336.4 136.1
2 159 505 99.2 259.3 132.7 481.8
3 1,089 222 739.0 264.8 989.7 257.0
4 214 473 230.4 544.0 203.0 487.9
5 455 271 600.0 370.8 518.5 265.3
6 129 398 211.2 458.3 158.7 323.3
7 219 155 261.8 225.5 227.4 175.4
8 81 139 84.4 174.2 79.3 155.6
9 119 73 60.9 61.1 81.8 79.5
10 31 47 14.9 28.5 31.9 51.0
11 21 16 6.2 6.2 21.2 22.2
12 6 10 1.2 2.5 8.2 11.7
13 7 3 0.5 0.5 3.5 4.8
14 0 1 0.0 0.0 1.1 1.9
15 0 1 0.0 0.0 0.4 0.8
16 0 0 0.0 0.0 0.1 0.2
17 0 0 0.0 0.0 0.0 0.1

Total 2785 2463 2,782.7 2,465.4 2,793.7 2,454.3

GOF 564.6 481.9 66.1 32.6
(df ) (11) (11) (11) (11)

GOF: Pearson goodness-of-fit statistic conditional on the initial state, with cells 12–17 combined.
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Table 9: Predictions spell type and poverty status
Actual data DBR(1b) prd MSD(6a) prd

Initial Fresh Initial Fresh Initial Fresh
spells spells spells spells spells spells

Status: not poor
Avg spell duration 8.23 4.85 8.43 4.70 8.10 4.92
No. spells 2,785 9,277 2,783 9,510 2,794 9,266

Status: in-poverty
Avg spell duration 5.86 2.72 4.48 2.96 5.88 2.67
No. spells 2,463 8,324 2,465 8,684 2,454 8,368

Prd: predictions; avg: average.


