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Abstract

Previous papers (Avery [2], Daniel and Hirshleifer [8]) conclude that seller’s rev-

enue decreases when jump-bidding occurs, which is in sharp contrast to the fact that

jump-bidding is allowed rather than forbidden by sellers in real-life auctions (e.g.,

Sotheby’s auctions, the FCC spectrum auctions). In our study, we conduct experi-

ments of private value auctions and find that sellers’ revenue actually increases sig-

nificantly when jump-bidding occurs. We provide a theory regarding jump-bidding

in which the revenue in jump-bidding equilibria dominates that in the no-jump equi-

librium, when bidders are risk-averse. The experimental outcomes are consistent with

our theory.
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“A collective gasp swept the ballroom as the first round of results was announced:

Bidding had started at $20 million each for two licenses and $10 million for five others.

That was several times the sum that the experts had projected for the first round.” The

Washington Post, July 26, 1994, p. D1, on the Nationwide Narrowbank PCS auction

in July 1994

1 Introduction

A fundamental question in economics is how prices are formed in markets. Auctions

provide an excellent framework to study this question. To sell an object in an auction,

sellers choose the optimal auction rule to maximize profits, and buyers choose the optimal

strategies to compete to win the object. That is, the price of the object sold is a result of

the interaction between sellers and buyers.

In an ascending-price auction, the price gradually increases in fixed increments.

During the auction, however, any bidder may call out a price that is much higher than

the current price plus the increment. This “jump-bidding is an endemic feature of real-world

ascending auctions, including not only FCC wireless spectrum auctions but also online (eBay)

auctions and conventional art and antiques auctions run by Sotheby’s and Christie’s for hundreds

of years” (Grether, Porter, and Shum [12]). For example, Cramton [6] documents that in an

FCC radio spectrum auction, forty-nine percent of the new bids are jump bids.1

Why do bidders raise their prices voluntarily? An answer may be found in one of

the most famous examples of jump-bidding, as described below by Avery [2].

An infamous recent example occurred in 1988 when Ross Johnson, the CEO of RJR

Nabisco, made a bid of $75 for the shares of his own company when the stock was

trading at $55. In further competition. . . Kohlberg, Kravis and Roberts (KKR) raised

Johnson’s bid to $90. KKR won the bidding at a final price of $106 after only a few

more rounds of bidding. Later, George Roberts admitted that his company would not

have competed if Johnson had started with a higher opening bid of $90 or more.
1Avery [2], Cramton [5], [6], Daniel and Hirshleifer [8] offer numerous real-life jump-bidding examples.
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By jump-bidding to a high price, a bidder may have to bear the cost of paying more

than necessary; however, the bidder may receive the benefit of driving his opponents

to quit earlier in the bidding than they otherwise would have. When the latter force

dominates the former one, jump-bidding occurs. Daniel and Hirshleifer [8] suggest that

bidding is costly, and bidders jump bid and quit early to reduce costs2; Avery [2] suggests

that the phenomenon known as winner’s curse drives jump-bidding.3 Until recently, re-

searchers have had a fairly good understanding of jump-bidding, albeit on the buyers’

side; however, the situation is much less clear on the sellers’ side. In particular, current

theories (e.g., the two papers cited above) suggest that jump-bidding reduces sellers’ rev-

enue, a suggestion that is in sharp contrast to the fact that jump-bidding continues to be

encouraged rather than forbidden by auctioneers worldwide. This issue therefore begs

the question:

Does jump-bidding increase sellers’ revenue? (‹)

If the answer to this question is no, then all auctioneers should forbid jump-bidding; if the

answer is yes, then something is clearly missing in our understanding of jump-bidding.

Thus, the objective of this paper is to answer the question in (‹). To the best of our

knowledge, little empirical and experimental research has been undertaken on this ques-

tion, and we are the first to design lab experiments to answer this question.4 Compared

to other methodologies (e.g., empirical analysis, field experiments), lab experiments are

able to fully control all other economic factors except jump-bidding and to distill the pure

revenue effect of jump-bidding.5

We focus on an independent-private-value (hereafter, IPV) setup, and our experi-
2Daniel and Hirshleifer [8] consider an auction with sequential bids and construct an equilibrium in

which the first bidder uses a monotonic bidding strategy that fully reveals his/her value to the second
bidder. After observing a bid from the first bidder, the second bidder may understand that there is no
chance to win and thus want to quit early to reduce the bidding costs.

3By jump-bidding, a bidder signals his intent to follow a more aggressive strategy. As a result, his
competitors choose a less aggressive strategy and quit early because of winner’s curse.

4Isaac, Salmon, and Zillante [16] are the first researchers to use laboratory experiments to test various
jump-bidding models. Their study, which focuses on jump-bidding on the bidders’ side, indicates that the
jump-bidding observed in field auctions is likely linked to bidders’ impatience. Recently, Grether, Porter,
and Shum [12] adopt the field experiment approach and manipulate the price grid, the possible amounts
that bidders can bid above the current price, in online auction sites that sell used automobiles via ascend-
ing auctions. These researchers find peculiar patterns of bidding that suggest that they are “cyber-shills”
working on behalf of sellers.

5Another potential difficulty in other methodologies is regarding how to estimate value distribution
from the jump prices, which is necessary to determine the revenue effect of jump-bidding.
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mental data show that jump-bidding significantly increases sellers’ revenue. More pre-

cisely, at the 2% significance level, the Mann-Whitney test rejects the null hypothesis

that jump-bidding does not affect sellers’ revenue, in favor of the alternative that jump-

bidding increases sellers’ revenue, i.e., with probability 0.98, we are certain that the effect

of jump-bidding on revenue is positive. Section 2 provides a detailed summary of our

experimental results, followed by a full description of our experimental design in Section

4 and findings in Section 5 and 6.

To understand the positive revenue effect of jump-bidding, we elicit bidders’ risk

attitudes in our experiments. We find the following two stylized facts: (1) the majority

of bidders are risk-averse, and (2) bidders who jump substantially more than others tend

to exhibit increasing or constant absolute risk aversion (IARA/CARA).6 Based on these

observations, we propose a novel theory by associating jump-bidding with risk attitudes.

To illustrate this idea, consider the following example of an English auction with

the uniform prior. Consider the possibility that jumping from the current price of $0 to

$700 can signal that one’s value is greater than or equal to $1,000. Suppose my value of

the object for sale is $1, 000. By viewing such a signal, all of my competitors with values

of less than $1, 000 would quit immediately, because they expect to have no chance to

win. By paying a price of $700, I receive a benefit by deterring my competitors with

values up to $1, 000; therefore, I prefer jump-bidding. To make the above example an

equilibrium, the signaling must be credible (i.e., I prefer not to jump bid if my value is less

than $1, 000), which can be supported by certain particular risk attitudes. For example, the

non-decreasing absolute risk aversion introduced in McAfee and Vincent [22] is sufficient

to support the equilibrium described above. Furthermore, suppose I am risk-averse. In

that case, jump-bidding serves as insurance: for both jumping and not jumping, I win the

same group of opponents (i.e., bidders with value less than $1, 000), but I pay a fixed price

of $700 for jumping rather than a random winning price between $0 and $1, 000 (with the

expected value $500) for not jumping. Hence, by jump-bidding, I take the insurance and

surrender some risk premium ($200 = $700´ $500) to the seller. As a result, the seller’s

revenue increases.
6More precisely, our experimental data show that, among the bidders whose risk attitudes are identi-

fied, 89% are weakly risk-averse and 67% of them are either CARA or IARA.
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Methodologically, we make one contribution in experimental design. Note that a

well-documented phenomenon in IPV auction experiments is overbidding, i.e., bidders

stay in an auction even if the prices exceed their values (Kagel, Harstad, and Leven [19],

Kagel and Levin [18], Harstad [14]). However, as shown in Kagel, Harstad, and Levin

[19] and Garratt, Walker and Wooders [10], overbidding is common only among inexpe-

rienced bidders and tends to be a short-term phenomenon.7 Hence, to understand the

revenue impact of jump-bidding, we must eliminate overbidding. Previous papers (An-

dreoni, Che and Kim [1], Cooper and Fang [4]) suggest that overbidding is primarily

driven by bidders’ spitefulness, i.e., bidders want to hurt the interests of their opponents

(even if they may incur a loss themselves).8 We aim to eliminate overbidding by design-

ing an amended random payment scheme: 10 rounds of English auctions are conducted,

and only one round is randomly and independently chosen to be the payment round for

each bidder, i.e., each bidder’s final payoff depends only on the outcome of the auction

in his payment round.9 Furthermore, none of the bidders knows his payment round, and

hence, in every round, every bidder attempts to maximize profit. However, we amended

the standard random payment scheme by allowing every bidder to know whether each

round is a payment round of his opponent. As a result, in every non-payment round of

the opponent, the spitefulness concern is fully eliminated for every bidder. Our experi-

ment data show that such an amended random payment scheme eliminates 76% of the

overbidding.

The remainder of the paper proceeds as follows. Section 2 provides a summary of

the experimental results. In Section 3, we present the model of jump-bidding with risk

aversion. In Section 4 and 5, we discuss the experimental design and findings, respec-

tively. Section 6 presents our new experimental design to control for the overbidding

7Malmendier and Lee [20] empirically identify overbidding in eBay auctions by comparing online auc-
tion prices to fixed prices for the same item on the same website. Although only a small fraction of bidders
are identified as overbidders, these bidders generate a large fraction of auctions with overbidding. The
results are explained by limited attention.

8Section 5 presents data from three treatments with no experimental control for overbidding and shows
that actual revenues from the treatments with and without jump-bidding are not significantly different.
Our exit-survey results reveal that overbidding is indeed primarily induced by spitefulness.

9This “random lottery incentive system” is widely used in experimental economics to motivate subjects.
Cubitt, Starmer and Sugden [7] provide evidence for the validity of the incentive system. Azrieli, Chambers
and Healy [3] show that under a mild assumption imposed on subjects’ preference, the random lottery
incentive system is the only incentive-compatible mechanism.
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behavior and discusses its results. Section 7 concludes. A review of the related literature

is presented in the reminder of this section.

1.1 Related Literature

This section is devoted to the review of the related literature. In particular, we discuss sev-

eral theoretical and experimental papers that attempt to explain why buyers participate

in jump-bidding.

Easley and Tenorio [9] study internet auctions and explain jump-bidding by en-

try costs and uncertainty about future entries. Gunderson and Wang [13], Hörner and

Sahuguet [15] and Zheng [25] also construct jump-bidding equilibria in private-value

models. Gunderson and Wang [13] assume a disconnected support of bidders’ values and

suggest that jump-bidding is a signal of high value. Instead of focusing on why people

engage in jump-bidding, Hörner and Sahuguet [15] examine how bluffing and sandbag-

ging (i.e., non-monotone bidding strategies) are implemented in jump-bidding. Zheng

[25] considers multi-unit auctions and studies jump-bidding as a signaling device across

auctions. In all of these papers, jump-bidding is regarded as the bidder’s signal. The dif-

ference among them is what makes the signaling credible. We relate jump-bidding to risk

attitudes and offer a novel explanation.

In an interesting paper, Goeree [11] studies a modified English auction followed by

aftermarket competition.10 Bidders signal high values in the English auction to gain an

advantage in the aftermarket, and sellers’ revenue increases as a result. Signaling occurs

only when all bidders but one have dropped out of the auction, with the final bidder

remaining in the auction until the price reaches the optimal signaling value. However,

under the traditional English auction rule that we consider, such signaling is excluded

because the auction ends immediately when only one bidder remains.

Other authors explain jump-bidding using behavioral reasons. Rothkopf and Harstad

[24] attribute jump-bidding partially to bidders’ irrationality. Although Isaac, Salmon,

10The main objective of Goeree [11] is to compare signaling effects in first-price, second-price and English
auctions when aftermarket competition exists.
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and Zillante [17] model jump-bidding as a strategic dynamic game, information updat-

ing in this game is non-strategic.11 Malmendier and Lee [20] propose that people may

bid above their true values for behavioral reasons: limited memory, limited attention, joy

of winning, etc. Isaac et al. [16] use experiments to test various jump-bidding models,

finding that the jump-bidding observed in field auctions is likely the result of bidders’

impatience.

2 Summary of Experimental Results

In this section, we summarize our experimental findings, including four noteworthy

points.

Finding 1. Jump-bidding increases revenue.
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Figure 1: Revenue Comparison

In a standard IPV English auction (without jump-bidding), bidding one’s true value

is a weakly dominant strategy. As a result, the auction outcome is that the highest-valued

bidder wins at the price of the second-highest value, which is called the hypothetical price.

Usually (e.g., in Daniel and Hirshleifer [8] and Hörner and Sahuguet [15]), the hypothet-

ical price is used as a benchmark to compare the revenue for allowing jump-bidding.

11In the model of Isaac et al. [17], after seeing a jump bid of p from bidder´i, bidder i forms a naive belief
of [v´i ě p], although only bidders ´i with v´i ě v ą p make such a jump in equilibrium, i.e., bidders do
not use Bayesian update information according to equilibrium strategy profile and all prior information.
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That is, jump-bidding increases (decreases) the revenue if and only if the expected price

induced by a jump-bidding equilibrium is larger (smaller) than the hypothetical price.

In our first two treatments (Baseline and Binary), we conducted a clock auction that

allowed jump-bidding in two different conditions.12 Figure 1(a) compares the jump-

bidding revenue and the hypothetical revenue. Clearly, jump-bidding increases the rev-

enue. However, as a robustness check, we also conducted a standard clock auction with-

out jump-bidding (No-jump treatment). Figure 1(a) also compares the revenues for jump-

bidding, no jump-bidding, and the hypothetical price.

Note that the revenue for no-jump is also significantly higher than the hypothetical

price, and there is no statistically meaningful difference between jump-bidding (Baseline

and Binary) and No-jump. Overbidding evidently exists, and as a result, our data are not

able to show the pure revenue effect of jump-bidding. This observation leads us to design

two new treatments (Binary-II and No-jump-II) with an additional experimental control

implemented by the Amended Random Payment (ARP) design discussed in the introduc-

tion to eliminate the overbidding, which eliminates 76% of the overbidding. Figure 1(b)

compares the resulting revenues for jump-bidding, no-jump, and the hypothetical price

in the new design. The results clearly show

Revenue for Jump-bidding ą Revenue for No-jump « Hypothetical Revenue.

Finding 2. Jump-bidding signals high values.

Figure 2 presents a scatter diagram between bidder values and jump bids in our

Baseline treatment, in which any integer number between 0 and 60 is allowed for a jump

bid. It is clear that jump-bidding at 5 or below is not informative. There appear to be three

clusters of informative jump-bidding. First, jump-bidding at 10 (˘5) primarily comes

from the value range between 10 and 60 (Region A). Second, jump-bidding at 20 (˘2) is

primarily from the value range between 20 and 50 (Region B). Third, jump-bidding at

30 (˘5) is primarily from the value range between 35 and 60 (Region C). That is, jump-

bidding is informative, albeit not fully.

12Section 4 presents a full description of our experimental design.
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Figure 2: Jump-bidding and Values
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In our Binary treatment in which either 0 or 20 is allowed for a jump bid, we also

find that jump-bidding is informative, as we have

E [Value | Jump] ą E [Value] ą E [Value | No-jump] .

Finding 3. Bidders who jump substantially more than others tend to exhibit increasing or con-

stant absolute risk aversion (IARA/CARA).

Figure 3 reports the individual level total amount of jump-bidding in the three treat-

ments with jump-bidding. For individuals who jump substantially more than others, the

elicited risk attitude is also presented. These bidders tend to exhibit increasing or con-

stant absolute risk aversion (highlighted by dark bars in Figure 3), with the exception of

only a few cases (highlighted by checked bars in Figure 3).13

Finding 4. Jump-bidding significantly increases revenue for risk-averse bidders.

Figure 4 reports the (average) normalized actual revenue (= Actual Revenue - Hy-

pothetical Revenue) aggregated across all rounds for all individuals with the same elicited

13At the end of each session, we elicited the risk attitude of each individual according to Table 10 (Small
Stake: Y = 10 and h = 4 / Large Stake: Y = 30 and h = 4) in Appendix A. Appendix D presents the
experimental instructions and screen shot. Note that when subjects make decisions in the auction game,
we do not inform them that they will have additional tasks. The risk attitudes of 87% of the subjects are
identified. Among the identified subjects, 67% of them are classified as risk-averse with CARA or IARA.
Figure 11 and Table 11 in Appendix A report elicited risk attitudes at the aggregate level and the individual
level, respectively.
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Figure 3: Jump-bidding and risk attitude
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risk attitude. The first column presents the normalized actual revenue for risk-averse bid-

ders and the second column for all the other bidders. The dark bar and the light bar repre-

sent data from the treatments using the standard design (Baseline and Binary treatments)

and the ARP design (Binary-II treatment), respectively.

Clearly, the normalized actual revenue for risk-averse bidders is significantly larger

than 0 in both designs. More precisely, we can reject the null hypothesis that the actual

revenue for risk-averse bidders is the same as the hypothetical revenue in favor of the

alternative that the actual revenue for risk-averse bidders is larger than the hypothetical
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Figure 4: Revenue and risk attitude
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revenue (one-sided Mann-Whitney test, p = 0.08575).

Furthermore, the normalized actual revenue for risk-averse bidders is higher than

that of non-risk-averse bidders. Although the difference is not statistically significant in

the standard design (two-sided Mann-Whitney test, p = 0.8218), the difference becomes

significantly larger in the ARP design: the one-sided Mann-Whitney test reveals that the

normalized actual revenue for risk-averse bidders is significantly larger than that of non-

risk-averse bidders with p = 0.0826.

3 A Theory of Jump Bidding

We present a theory which is consistent with the findings described in Section 2. For

simplicity, we consider a 2-bidder IPV model.14 One indivisible object is for sale, with

bidders 1 and 2 having values v1, v2, respectively. The values have an i.i.d. distribution

on the support [0, 1] with cdf F(¨). Let bidder ´i denote bidder i’s opponent. The two

bidders are expected utility maximizers with the same differentiable and strictly increas-

ing Bernoulli utility function u(¨). We normalize u(0) to 0. Suppose u3(t) exists. We list a

14The model, as well as all the analytical results, can be straightforwardly extended to the case with more
than two bidders.
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few assumptions on risk attitudes as follows.

risk-neutral bidders: u2(t) = 0; risk-averse bidders: u2(t) ă 0,

CARA bidders:
d
(
´

u2(t)
u1(t)

)
dt = 0; IARA bidders:

d
(
´

u2(t)
u1(t)

)
dt ą 0.

Following Avery [2], we model the auction by a 2-stage game: the jump stage (i.e.,

stage 1), followed by a standard clock auction (i.e., stage 2).15 In stage 1, each bidder i

chooses βi P [0, 1]; in stage 2, an English auction with the starting price max tβi, β´iu is

conducted, and each bidder i chooses the price bi (βi, β´i, vi) ě max tβi, β´iu to exit. A

winner gets utility u [vi ´ b´i (βi, β´i, v´i)], and his opponent (i.e., the loser) gets 0. Bidder

i wins if bi (βi, β´i, vi) ą b´i (βi, β´i, v´i). A tie occurs if and only if bi (βi, β´i, vi) =

b´i (βi, β´i, v´i). If bi (βi, β´i, vi) = b´i (βi, β´i, v´i) = βi ą β´i, bidder i wins. For all

other cases of tie, a fair coin determines the winner.

Throughout the paper, we adopt the solution concept of perfect Bayesian equilib-

rium (PBE). As a benchmark, the usual no-jump equilibrium is defined as follows.

pσi :

 stage 1: βi = 0;

stage 2: bi (βi, β´i, vi) = max tβi, β´i, viu .


Following (pσ1, pσ2), no one jumps in stage 1, and each bidder stays in the auction in stage

2 until the price reaches her true value. The usual argument shows that (pσ1, pσ2) is a PBE.

Proposition 1 (no-jump PBE). (pσ1, pσ2) is a PBE.

We now define a class of jump-bidding equilibria. For any v P [0, 1], define k(v) P

[0, 1] to be the unique number satisfying16

F(v)u(v´ k(v)) =
ż v

0
u(v´ v1)dF(v1). (1)

15Looking at the two-stage game of jump-bidding is one of the simplest possible ways to understand the
role of jump-bidding in the seller’s revenue. However, it is straightforward that the model can be extended
to the version with multiple rounds of jump-bidding with all the analytical results and the intuition being
preserved.

16F(v)u(v´ y) is strictly decreasing in y. Since F(v)u(v´ 0) ě
şv

0 u(v´ v1)dF(v1) ě F(v)u(v´ v), there
exists a unique k(v) for each v P [0, 1] such that equation (1) is satisfied.
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Fix any (v˚, k(v˚)) P (0, 1)ˆ (0, 1), we construct a jump-bidding equilibrium (σ˚1 , σ˚2 ) as

follows.

σ˚i :


stage 1: βi =

$

&

%

0, if vi ă v˚;

k(v˚), if vi ě v˚.

stage 2: bi (βi, β´i, vi) =

$

&

%

max tβi, β´iu , if β´i = k(v˚) and vi ă v˚;

max tβi, β´i, viu , otherwise.



By following σ˚i , the high types of bidder i (i.e., vi ě v˚) jump to k(v˚) in stage 1, and

the low types of bidder i (i.e., vi ă v˚) do not jump. I.e., bidder i uses the jump bid k(v˚) to

signal his high values. In the case that β´i = k(v˚) and vi ă v˚, bidder i infers that v´i ě

v˚ and expects no chance to win, and hence, bidder i quits immediately. For any other

cases, bidder i follows the weakly dominant strategy bi (βi, β´i, vi) = max tβi, β´i, viu in

the clock auction in stage 2.

Proposition 2. (σ˚1 , σ˚2 ) is a PBE for risk-neutral, CARA and IARA bidders.

Proposition 2 is consistent with Findings 2 and 3. We provide an intuition of the

proof here. To make (σ˚1 , σ˚2 ) a PBE, the jump bid must be credible, i.e., the high types

prefer ”jumping to k(v˚)” to ”no jump,” and the low types prefer ”no jump” to ”jumping

to k(v˚). First, consider the threshold type v˚, and for both options, she wins the auc-

tion if and only if v´i ď v˚. And, the only difference is that she wins at the fixed price

k(v˚) for ”jumping to k(v˚),” while she wins at a random price v´i „ [0, v˚] with cdf
F(v´i)
F(v˚) for ”no jump.” By (1), k(v˚) is defined to make type v˚ indifferent between the two

options. Second, consider a high-type bidder i (i.e., vi ą v˚), and she is facing exactly

the same dilemma as type v˚: conditional on v´i ď v˚, she wins at the fixed price k(v˚)

for ”jumping to k(v˚),” while she wins at a random price v´i „ [0, v˚] with cdf F(v´i)
F(v˚)

for ”no jump.”17 Given CARA/IARA, this high type is weakly/strictly more risk-averse

than type v˚, i.e., she is willing to sacrifice weakly/strictly more to eliminate the same

risk. Hence, this high type weakly/strictly prefers ”jumping to k(v˚)” (i.e., the fixed price

k(v˚)) to ”no jump” (i.e., the random price v´i „ [0, v˚] with cdf F(v´i)
F(v˚) ). Similarly, a

17Conditional on v´i ą v˚, the two options induce the same outcome.

13



CARA/IARA low type (i.e., vi ă v˚) weakly/strictly prefers ”no jump” to ”jumping to

k(v˚).”

The following theorem explains why jump bidding increases revenue, and it is con-

sistent with Findings 1 and 4.

Theorem 1 (seller’s revenue). Given risk-averse bidders, the seller has more expected revenue

in (σ˚1 , σ˚2 ) than in (pσ1, pσ2).

The intuition of Theorem 1 is straightforward: jump-bidding serves as insurance. By

jump bidding, high types (of bidder i) pay the fixed price k(v˚) to insure themselves

against random winning price v´i(ď v˚). If the bidders are risk-averse, they surrenders

risk premium to the seller.

Furthermore, both bidders are weakly better-off in the jump-bidding equilibrium.

Let Eui(vi|εi, ε´i) denote the expected utility of bidder i with value vi, when the strategy

profile (εi, ε´i) is chosen by the two bidders.

Theorem 2 (bidder’s welfare). For a PBE (σ˚1 , σ˚2 ), Eui
(
vi|σ

˚
i , σ˚

´i
)
ě Eui (vi|pσi, pσ´i) for

every i P t1, 2u and every vi P [0, 1].

Theorems 1 and 2 suggest that the jump-bidding equilibrium (σ˚1 , σ˚2 ) is (ex-ante

and interim) weakly Pareto superior to the no-jump equilibrium (pσ1, pσ2).18 Therefore, it

is theoretically more appealing to select the jump-bidding equilibrium, which is indeed

consistent with our experimental data showing the prevalence of jump-bidding.

4 Experimental Design

For our experimental implementation, we consider a 2-bidder IPV model. One indivisible

object is for sale, with bidders 1 and 2 having values. We model the auction by a 2-stage
18As will be clear in Section 5.1, we observed in our data that subjects overbid due to a spite concern. Our

jump-bidding equilibrium
(
σ˚1 , σ˚2

)
with the following slight modification predicts the observed behavior

pretty well: First, high value bidders (vi ě v˚) jump to k(v˚)´ δ with δ ą 0; low value bidders do not jump.
Second, all bidders stay after observing the jump k(v˚)´ δ. Third, low value bidders quit at price k(v˚);
high value bidders stay after price k(v˚). Thus, when vi P [0, k(v˚)), a spiteful behaviour is expected.
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game: the jump stage (Stage 1), followed by the bidding stage (Stage 2). In Stage 1, each

bidder simultaneously chooses the initial bid; in Stage 2, a standard English auction with

the starting price at the maximum of the initial bids is conducted, and each bidder chooses

the price to exit.

We design our experiments to capture the standard model of jump-bidding in the

literature. There are in total three treatments as summarized in Table 1.

Table 1: Experimental Treatments

Baseline Binary No-Jump

Jump Bidding Any integer in [0, 60] 0 or 20 Not Allowed

For our experimental implementation, we used the uniform value distribution over

the support t0, 1, ..., 60u. The three treatments differ only with respect to what has been

allowed in Stage 1. In the baseline treatment, individuals are allowed to make an initial

bid, any integer in [0, 60] inclusively. In Binary treatment, the initial bid is a binary choice

between 0 and 20.19 In the No-Jump treatment, the initial jump-bid is not allowed, i.e. the

initial bid must be 0.

4.1 Experimental Procedure

The experiment was conducted in English using z-tree (Fischbacher, 2007) at the Hong

Kong University of Science and Technology Experimental Laboratory. Two sessions each

for Baseline and Binary treatments and three sessions for No-jump treatment were con-

ducted using a between-subject design. Each session involved two independent matching

groups, each of which has five pairs of two individuals. In total, 140 subjects participated

19There are two reasons to have Binary treatment in our design although having the binary options for
the initial bid does not look very natural. First, it is standard in the literature (e.g. Avery, 1998) to model the
jump-bidding by having an initial-bid stage with only binary options. Second, the more natural setup with
multiple options in the initial-bid stage as in our Baseline treatment may suffer from the multiple equilibria
problem due to the fact that we are free to choose the out-of-equilibrium belief for any initial bid never
made in equilibrium. By having the binary options only, we would like to get rid of the multiple equilibria
problem and make a certain initial bid more focal.
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in 7 sessions.20 Subjects had no prior experience in our experiments and were recruited

from the undergraduate / graduate population of the university.

Upon arrival at the lab, subjects were instructed to sit at separate computer termi-

nals. Each was given a copy of the experimental instructions (see Appendix B). Instruc-

tions were read aloud and supplemented by slide illustrations. In each session, subjects

first participated in one practice round and then 10 official rounds. A random matching

protocol was used.

We illustrate the instructions for Baseline treatment. The full instructions are at-

tached in Appendix B. At the beginning of each round, the computer randomly drew

a value for each individual with equal probabilities in the range between 0 and 60.21 Each

subject is privately informed about his/her own value but not others. In each round,

each subject is endowed with 60 tokens and is asked to make a bid to win an auction that

consist of the following two stages: Initial Bidding Stage (Stage 1) and Price Clock Stage

(Stage 2).22

In the initial bidding stage, subjects are asked to place an initial bid, any integer

number between 0 and 60 inclusively.23 The maximum of initial bids in a pair will become

the initial price in the second stage. After all subjects submit their initial bids, the initial

price will be announced for each pair and they are asked to stay with the screen for a

number of seconds, randomly determined between 5 seconds and 15 seconds, to think

about what to do in the next stage. The waiting time is independent upon the initial bids.

If one’s submitted initial bid is strictly lower than his/her opponent’s initial bid, he/she is

asked to decide whether to continue or to opt out. If one opts out, his/her opponent wins

the auction with the initial price. Otherwise, Stage 2 will be proceeded. If one submits

an initial bid higher than or equal to one’s opponent’s initial bid, he/she will be asked to

20In section 6, we will present data from two additional treatments, each of which has two sessions.
Including these four sessions with 80 additional subjects, we had 220 subjects participated in 11 sessions.

21Prior to the real experiment, we randomly and independently drew the set of values for each indi-
vidual and for each round and used it for all sessions (and all matching groups) in order to have a tight
revenue comparison among different treatments.

22Using an ascending clock procedure whereby the price of an item increased at small fixed increments
has been one of the standard ways to implement an English auction in the laboratory since Kagel, Harstad
and Levin (1987).

23In Binary treatment, however, only two options, 0 and 20, are given for the initial bid. No such stage
exists in No-jump treatment.
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click the continue button to proceed to Stage 2.

In the second stage, a price clock is presented in the decision screen that has three

pieces of information: (1) initial price, (2) current price, and (3) your value. The price

clock starts with the initial price determined in the initial bidding stage. The current price

is displayed at the centre of the clock and in every two seconds, the clock goes and the

current price increases in 1 unit. The value is highlighted in the clock with blue colour.

Under the price clock a button “Not Interested Anymore” is in place. When one of the

individuals in each pair clicks the button, the price clock stops and the auction ends. The

individual who stays in the auction is declared the winner and pays the price showing on

the clock. If no one drops out until the current price becomes 60, the auction ends and the

final price becomes 60. In this case each individual has equal chance to win the auction. If

one does not win the auction, the earning becomes the endowment 60 and otherwise the

earning becomes endowment plus the value minus final price. At the end of each round,

information feedback will be provided such as one’s value, opponent’s value, initial bid,

opponent’s initial bid, final price, auction outcome and final earning.

We randomly selected one round for real payment. A subject was paid the amount

of token he or she earned in the selected round (1 token = 1 HKD) plus a HKD 30 show-

up fee. Subjects earned on average HKD 140 (« USD 18), ranging from HKD 126 to HKD

175.24

5 Experimental Findings

5.1 Bidding Behavior

We begin this section by drawing the reader’s attention to Figures 5 and 6 below, which

present subjects’ bidding behaviors in Baseline and Binary treatments, respectively. Both

Figures contain four panels with each panel referencing a different matching group. The

horizontal axis of each panel consists of five blocks, each of which refers to each pair. On

24Under the Hong Kong’s currency board system, the HK dollar is pegged to the US dollar at the rate of
1 USD = 7.8 HKD.
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each block is the period ranging from 1 to 10. On the vertical axis are three different prices

for a given pair in a given period. The three prices are Initial Price (IP) represented by the

dark bar, Final Price (FP) represented by the thin dashed line, and Hypothetical Price (HP)

represented by the solid line, where the initial price is the maximum of initial bids in a

pair, the final price is the price at which the price clock stops, and the hypothetical price

is the second highest value in each pair.25 Note that the solid hypothetical price lines in

all panels in all figures look the same because we used a common value distribution for

all sessions and treatments.

Figure 5: Bidding Behaviors - Baseline Treatment
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Four features of the data clearly emerge from both treatments. First, jump-biddings

are prevailing. 85.5% of pairs in Baseline treatment and 28% of pairs in Binary treatment

had a strictly positive initial price.26 Second, most of the cases, 72% in Baseline treatment

and 66% in Binary treatment, the final price is in the neighborhood (˘1) of the hypothetical

price. Third, there are a few instances in which overbidding is observed, i.e. the final price

is strictly higher than the hypothetical price. Fourth, there are a few instances in which

underbidding is observed, i.e. the final price is strictly lower than the hypothetical price.27

25We call the second highest value in each pair the hypothetical price because if everyone hypothetically
follows the weakly dominant strategy to wait until the price reaches one’s value then the final price should
be the second highest value in the pair.

26Paying attention to the jump-bidding significantly bigger than 0, we report that 32% of subjects in
Baseline treatment made an initial bid weakly greater than 5.

27Precisely, we define overbidding (underbidding) as the case where the final price is strictly higher
(lower) than the hypothetical price +1 (´1). This definition allows a small degree of mistake in the bidding
behavior. More importantly, all findings of this paper are robust against the way we categorize different
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Figure 6: Bidding Behaviors - Binary Treatment
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Table 2 provides a summary of the bidding behaviors in all three treatments.

Looking at Figures 5 and 6 more carefully, three different types of overbidding and

underbidding are observed. First, there are a few instances in which over/underbidding

is directly driven by jump-bidding, i.e. the initial price is the same as the final price which

is strictly positive (e.g. Round 9 in Pair 1 of Matching Group 3, Baseline for overbid-

ding / Round 1 in Pair 2 of Matching Group 3, Baseline for underbidding). Second,

over/underbidding is sometimes indirectly driven by jump-bidding, i.e. the initial price

is positive but the final price is strictly higher than the initial price (e.g. Round 3 in Pair 3

of Matching Group 2, Baseline for overbidding / Round 3 in Pair 2 of Matching Group 2,

Baseline for underbidding). Third, over/underbidding occurs even when the initial price

is 0 (e.g. Round 1 in Pair 2 of Matching Group 1, Binary for overbidding / Round 5 in

Pair 2 of Matching Group 1, Binary for underbidding). Table 2 reports the frequencies of

different types of overbidding and underbidding for each treatment. In both Baseline and

Binary treatments, overbidding is more frequently observed than underbidding.

The bidding behaviors in Baseline and Binary treatments are qualitatively the same.

The Kolmogorov-Smirnov test (KS test, hereafter) reveals that we cannot rejects the null

hypothesis that the frequencies of overbidding not driven by jump-bidding in the two

treatments are not significantly different (two-sided, p = 0.699).28 The same test for all

bidding behaviors.
28This is due to the high variances in both frequencies, although the average frequency 8.25 from Binary
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Table 2: Bidding Frequencies

Baseline Binary No-jump

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean 1 2 3 4 5 6 Mean

FP= HP (˘1) 44 39 31 34 37 35 26 43 28 33 24 33 24 36 26 34 29.5

OB
JB Direct 2 2 2 2 2 5 5 4 1 3.75 N/A

JB Indirect 2 3 10 1 4 2 6 0 5 3.25
No-jump 0 1 5 7 3.25 5 12 2 14 8.25 21 12 25 13 24 16 18.5

UB JB Direct 2 1 1 2 2.5 2 0 0 0 0.5 N/A
JB Indirect 0 2 1 4 1.75 1 0 0 0 0.25
No-jump 0 2 0 0 0.5 0 1 1 2 1 5 5 1 1 0 0 2

Note: FP and HP refer to Final Price and Hypothetical Price, respectively. Similarly, OB, UB, and JB refer to Overbidding, Under-
bidding, and Jump-bidding, respectively. The same abbreviations apply to all other figures and tables hereafter.

other pairwise comparisons for the frequency of overbidding indirectly driven by jump-

bidding, the frequency of underbidding indirectly driven by jump-bidding, and the fre-

quency of underbidding not driven by jump-bidding gives us the same result with p-

value at least 0.699. But the frequency of overbidding directly driven by jump-bidding

looks slight higher and underbidding directly driven by jump-bidding looks slight lower

in Binary treatment than in Baseline treatment, although the difference is not statistically

significant (with p = 0.105 for both tests).

Result 1. In Baseline and Binary treatments, jump-bidding directly and indirectly induces not

only overbidding but also underbidding with a higher frequency of overbidding induced than un-

derbidding.

Table 3: Average Values Conditional on Initial Bids

Baseline Initial Bid Frequency Average Value
0 128 27.80

1´ 4 145 30.06
5´ 9 60 36.65

10´ 14 28 35.68
15´ 19 18 39.17
20´ 29 10 41.90
30´ 39 7 47.14

40 4 13
Binary Initial Bid Frequency Average Value

0 341 30.40
20 59 38.19

Unconditional 31.55

treatment seems to be a lot larger than 3.25 from Baseline treatment.
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Figure 7: Bidding Behaviors - No-jump Treatment
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Our data reveals that jump-bidding plays an informational role. Table 3 reports the

average value of the opponent (v´i) conditional on the initial bid being made for different

ranges of it. In Baseline treatment, E(v´i|IB ă 5) ă E(v´i) = 31.55 ă E(v´i|IB ą 5)

and the average values are almost monotonically increasing in the initial bid except that

the average value of players who made initial bid 40 turns out to be 13 only. In Binary

treatment, E(v´i|IB = 0) ă E(v´i) = 31.55 ă E(v´i|IB = 20).

We now present data from No-jump treatment in Figure 7. The figure contains six

panels with each panel referencing a different matching group. There is no dark bar for

the initial price because a positive initial bid is not allowed to be made in the treatment.

A main feature emerging from the data is that a substantial degree of overbidding is

observed (111 out of 300 observations) while some but very few underbidding is also

observed (12 out of 300).29 Table 2 also provides a summary of the bidding behaviors in

No-jump treatment.

29The overbidding observed in the first two sessions (four matching groups) of No-jump treatment was
an unexpected surprise to us and we had one more session (two matching groups) for a robustness check.
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It is evident that overbidding is more prevailing in No-jump treatment than in the

other two treatments.30 The KS test reveals that the frequency of overbidding in No-jump

treatment is significantly higher than the frequency of overbidding not driven by jump-

bidding from Baseline treatment (one-sided, p = 0.08) and insignificantly higher than that

from Binary treatment (one-sided, p = 0.118). However, there is no statistical difference

(two-sided, p ą 0.699; for all tests for pairwise comparisons) in the three treatments in

terms of the frequency of underbidding (not driven by jump-bidding).

Result 2. In all three treatments, a substantial degree of overbidding not driven by jump-bidding

is observed with a significantly higher degree of overbidding observed in No-jump treatment than

in the other two treatments.

5.2 Revenue Analysis

Table 4 reports the result from a decomposition of the difference between the hypothet-

ical and the actual revenues into the contributions from different types of bidding be-

haviors including over/underbidding directly/indirectly/not driven by jump-bidding.

The hypothetical revenue is simply the sum of the hypothetical prices from all pairs and

all rounds. There are a few findings emerging from the analysis of Baseline and Binary

treatments. First, the actual revenue is significantly (one-sided KS test, p ă 0.01) higher

than the hypothetical revenue. Second, the revenue increase is partly due to the positive

contributions from the overbidding directly and indirectly induced by jump-biddings.

At the same time, there is non-negligible amount of revenue increased by overbidding

not driven by jump-biddings. Third, underbidding has a negative but minor (relative to

the overbidding) effect on the revenue. The actual revenues from the two treatments are

statistically the same (two-sided KS test, p = 0.699).
30It is possible that the higher frequency of overbidding observed in No-jump treatment than in the

other two treatments may be a consequence of the simplicity of the game the subjects played in No-jump.
Without having the initial bidding stage, there is no concern about information transmission and the game
remaining has the truthfully revealing weakly dominant strategy equilibrium. The equilibrium is quite
intuitive and easy to understand, but does not allow a room for strategic interaction. As a result, subjects
may feel bored easily and/or those who have a lower value (and realize that there is nothing they can do
to win) may feel unfair, which may provoke some non-equilibrium behavior affected by other-regarding
preferences. Note, however, that it is not our primary concern to understand why we have the asymmetric
overbidding outcomes. In the next section, we shall instead propose a new experimental design to control
for the overbidding and present experimental data from the design.
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Table 4: Revenue Decomposition

Overbidding Underbidding

Baseline Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 1,163 +21 +11 +1 -3 -5 -3 1,185
Matching Group 2 1,163 +36 +26 +27 -1 -44 -3 1,204
Matching Group 3 1,163 +3 +236 +72 -4 -4 -1 1,465
Matching Group 4 1,163 +11 +4 +87 0 -25 -7 1,233

Mean 1,163 +17.75 +69.25 +46.75 -2 -19.5 -3.5 1,271.75

Overbidding Underbidding

Binary Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 1,163 +34 +65 +55 -32 -6 0 1,279
Matching Group 2 1,163 +51 +38 +95 -1 0 -7 1,339
Matching Group 3 1,163 +22 +33 +21 0 0 -22 1,217
Matching Group 4 1,163 +8 +68 +93 0 -1 -11 1,320

Mean 1,163 +28.75 +51 +66 -8.25 -1.75 -10 1,288.75

No-jump Hypothetical Overbidding Underbidding Actual

Matching Group 1 1,163 +109 -55 1,217
Matching Group 2 1,163 +69 -23 1,209
Matching Group 3 1,163 +173 -10 1,326
Matching Group 4 1,163 +110 -34 1,239
Matching Group 5 1,163 +188 0 1,351
Matching Group 6 1,163 +163 0 1,326

Mean 1,163 +135.34 -20.34 1,278

The bottom panel of Table 4 shows that the effect of overbidding on the revenue in

No-jump treatment is positive and substantial. More importantly, the revenue increased

by overbidding in No-jump treatment is significantly bigger than the revenue increased by

overbidding not driven by jump-bidding in the other two treatments. Consequently, two-

sided KS test indicates that we cannot reject the null hypothesis that the actual revenue

from No-jump treatment is the same as that from Baseline treatment (two-sided, p = 0.586)

and that from Binary treatment (two-sided, p = 0.998).

Result 3. The actual revenue from No-jump treatment is not different from the actual revenue

from Baseline and Binary treatments.

On the one hand, our result from the revenue comparison already suggests that any

existing theory may not be able to successfully organize our data since all existing papers

predict that jump-bidding decreases the seller’s revenue. On the other hand, there is a

possibility that the revenue ranking becomes vague due to the overbidding behavior that

may have heterogenous effects on the revenues for different treatments. Thus, it would
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be necessary to discuss the overbidding behavior more carefully and see if we can isolate

the effect of jump-bidding on the seller’s revenue from that of overbidding not driven by

the jump-bidding.

6 How to Control Overbidding? New Experimental De-

sign and Its Results

Overbiddings in the second-price auctions and English auctions are well documented

in the literature (Kagel, Harstad, and Leven, 1987; Kagel and Levin, 1993, Harstad, 2000).

Why do people overbid? There are two competing hypotheses: Joy of winning hypothesis

and Spite hypothesis (Andreoni, Che and Kim, 2007; Cooper and Fang, 2008). Joy of

winning hypothesis claims that subjects may be willing to bid above their value to enjoy

a positive utility gain from winning. Spite hypothesis proposes that subjects may want

to increase the price above their value to spite the winner. Cooper and Fang (2008) study

the relationship between bidders’ perception of their opponent and overbidding, and

found a positive correlation between the degree of overbids and the bidders’ belief about

opponent’s value, consistent with the spite hypothesis. Andreoni, Che and Kim (2007)

consider bidders who are partitioned into groups such that bidders’ values are common

knowledge within the group, and found evidence of the role of spite in overbidding. Our

exit-survey result also indicates that the overbidding not driven by jump-bidding in our

treatments is mainly induced by the spite incentive.31

A few papers in the literature investigate whether the overbidding observed in the

lab is persistent. Kagel, Harstad, and Levin (1987) found that overbidding in English auc-

31Here are a few selected responses to the question “Suppose that your value is 10. Briefly describe your
behavior in the auction” in our exit-survey.
“Wait until the price go[es] higher, maybe this is to prevent others [from] earn[ing] more.”
“Since my value is quite small, I would want to have some risk. I should stay in the auction even the current
value [price] exceed my value. I would quit the auction when the current value [price] reaches 15. As 15 is
still a small number, I would assume that the opponent is having a value bigger than 15. But as I quit after
the current value [price] exceed my value, the opponent is going to earn less.”
“10 is small number, which almost has no chance to win the auction, so what I am going to do is to minimize
my opponent’s gain. Usually I will wait until the clock reaches about 18-20 and opt out the auction because
in this case there is over 80% chance that my opponent will have a larger value, so I will bet he/she has a
value not smaller than 25.”
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Figure 8: Z-tree Screen Shot - Binary-II Treatment

tions is a short-term phenomenon that subjects quickly learn not to undertake.32 With the

subjects who are MBA / senior undergraduate students, overbidding disappeared after

a few (6-7) rounds out of 30 rounds. More recently, Garratt, Walker and Wooders (2012)

study the bidding behavior of highly experienced participants in eBay auctions. They

found that subjects with substantial prior experience exhibited no greater tendency to

overbid than to underbid and, as a result, auction revenue was not significantly different

from the hypothetical revenue.

We design two new treatments, Binary-II and No-jump-II parallel to Binary and No-

jump treatments, with an additional experimental control. Two sessions for each treat-

ment with 20 subjects for each session were conducted. Recall that in our treatments we

randomly selected one round (out of 10) to calculate the final payment for each subject.

In the new design, which we name as the Amended Random Payment (ARP) design, we

inform each individual if the current round is the payment round for his/her opponent

or not (See Figure 8). Throughout the auction, however, each individual never knows

if the current round is the payment round for him/herself. This new design aims at

fully controlling or discarding any kind of other-regarding preferences that may affect

subjects’ bidding behaviors.33 We also revised the experimental instructions carefully, re-

32Note that our way to implement the English auction relying on the “clock” implementation was in-
spired by the experimental design in Kagel, Harstad, and Levin (1987).

33There are a few other possible ways to control the other-regarding preferences in the literature. As
implied by Kagel, Harstad, and Levin (1987) and Garratt, Walker and Wooders (2012), one can consider a
longer time horizon or inviting more experienced subjects. Or one can design a game such that a subject
plays against a fictitious player such as a robot playing a particular strategy or against prior human players

25



placing any words that potentially provoke joy of winning and/or spitefulness (such as

win/lose, and opponent) with more neutral terms.

6.1 Bidding Behavior

Figures 9 and 10 present the experimental data from the two treatments. Tables 5, 6, and

7 report summaries of bidding frequencies from all data, data from the opponent’s pay-

ment rounds, and data from opponent’s no-payment rounds. Overall, the outcome from

the new treatments is qualitatively the same as the outcome from the treatments in the

previous section. One noticeable difference is that overbidding is observed significantly

less frequently in No-jump-II treatment than in No-jump treatment (8.25 vs. 18.5 on aver-

age, one-sided KS test, p = 0.008).

Figure 9: Bidding Behaviors - Binary-II Treatment
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Note: The solid ovals indicate that overbidding is observed when the current round is the opponent’s payment round.

It would be useful to focus on the data from the opponent’s payment rounds pre-

sented in Table 6 to understand the relationship between the overbidding and the spite

(e.g. Johnson, Camerer, Sen, and Rymon, 2002; Cason and Sharma, 2007). We believe that our CUP method
may have some advantages. First, it provides a way to get rid of other-regarding preferences of human
subjects without relying on the fictitious player. Second, it allows us to make a direct comparison between
data with and without the concerns of other-regarding preferences for the same set of human subjects.
Third, our method is very simple to implement and can be applied to a broader range of games. Fourth,
our method is less restrictive to some practical issues such as inviting human subjects who fulfil certain
conditions (e.g. experiences) and keeping the length of a session reasonablly short.
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Figure 10: Bidding Behaviors - No-jump-II Treatment
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Note: The solid ovals indicate that overbidding is observed when the current round is the opponent’s payment round.

Table 5: Bidding Frequencies - All Data

Binary-II No-jump-II

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean

FP = HP (˘1) 27 36 26 26 28.75 (33) 31 42 41 31 36.25 (29.5)

OB
JB Direct 6 2 6 5 4.75 (3.75) N/A

JB Indirect 7 4 3 6 5 (3.25)
No-Jump 3 5 5 7 5 (8.25) 8 7 8 10 8.25 (18.5)

UB JB Direct 0 2 2 1 1.25 (0.5) N/A
JB Indirect 4 1 2 2 2.25 (0.25)
No-Jump 3 0 6 3 3 (1) 11 1 1 9 5.5 (2)

Note: Numbers inside brackets are corresponding values from Binary and No-jump Treatments.

Table 6: Bidding Frequencies - Payment Rounds

Binary-II No-jump-II

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean

FP = HP (˘1) 4 6 4 4 4.5 4 8 5 3 5

OB JB Direct 1 0 2 0 0.75 N/A
Else (Spite) 4 4 2 4 3.5 3 2 4 5 3.5

UB JB Direct 0 0 0 0 0 N/A
Else (Spite) 1 0 2 2 1.25 3 0 1 2 1.5

Total 10 10 10 10 10 10 10 10 10 10
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Table 7: Bidding Frequencies - No-payment Rounds

Binary-II No-jump-II

Matching Group 1 2 3 4 Mean 1 2 3 4 Mean

FP = HP (˘1) 23 30 22 22 24.25 27 34 36 28 31.25

OB
JB Direct 5 2 4 5 4 N/A

JB Indirect 5 2 1 5 3.25
Else 1 3 5 4 3.25 5 5 4 5 4.75

UB
JB Direct 0 2 2 1 1.25 N/A

JB Indirect 4 1 2 1 2
Else 2 0 4 2 2 8 1 0 7 4

Total 40 40 40 40 40 40 40 40 40 40

incentive. Two features are emerging from the data. First, a significant degree of overbid-

ding has been observed in both treatments. For each matching group, there are 8 rounds

in which a spite opportunity exists where the subject with a lower value is informed that

the current round is the payment round of the opponent, and subjects indeed executed it

(3.5 times on average in both treatments). The same information can be found in Figures

9 and 10 where the solid ovals highlight the instances in which the final price is strictly

higher than the hypothetical price when the current round is the payment round of the

opponent.34 Second, there is no statistical difference in the bidding behaviors conditional

on the current round being the payment round of the opponent in the two treatments.

Two-sided KS test reveals that the frequency of overbidding not driven by jump-bidding

in Binary-II is statistically not different from the frequency of overbidding in No-jump-II

treatment (with p = 1.00). Similarly, the frequency of underbidding not driven by jump-

bidding in Binary-II is statistically not different from the frequency of underbidding in

No-jump-II treatment (with p = 1.00). This observation suggests that our ARP design al-

lows us to identify the spite-driven overbidding and to successfully separate it from the

jump-driven overbidding.

Now focus on the data from the opponent’s no-payment rounds presented in Table

7. Admittedly, overbidding and underbidding led by mistakes and misunderstanding

34In total, there are 18 and 17 solid ovals respectively in Figures 9 and 10 indicating that the average
frequency of overbidding induced by the spite incentive is 4.5 and 4.25 in the two treatments. 4 such
observations in Binary-II and 3 in No-jump-II treatment have the final price just one unit higher than the
hypothetical price and thus are not included in the overbidding category so that the reported average
frequencies in Table 6 turn out to be 3.5 for both treatment.
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are still unavoidable.35 However, such over/underbidding behaviors seem to be well-

controlled as no significant difference in the frequency of over/underbidding exists (two-

sided KS test, p = 0.368) between the two treatments. Hence, the only qualitative differ-

ence between the two treatments in terms of the bidding behaviors conditional on the cur-

rent round being one of the no-payment rounds of the opponent is the presence/absence

of the over/underbidding directly and indirectly induced by jump-bidding.

Result 4. 1) In Binary-II treatment, jump-bidding directly and indirectly induces not only over-

bidding but also underbidding with a higher frequency of overbidding induced than underbidding.

2) A non-negligible degree of overbidding not driven by jump-bidding is observed in both Binary-II

and No-jump-II treatments with no statistical difference.

6.2 Revenue Analysis

Table 8: Revenue Decomposition - All Data

Overbidding Underbidding

Binary-II Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 1,163 +48 +70 +31 -1 -16 -24 1,271

Matching Group 2 1,163 +27 +60 +40 0 -25 -12 1,253

Matching Group 3 1,163 +54 +43 +32 0 -33 -39 1,220

Matching Group 4 1,163 +52 +83 +34 0 -25 -12 1,306

Mean 1,163 +45.25 +64 +34.25 -0.25 -24.75 -21.75 1,262.5

No-jump-II Hypothetical Overbidding Underbidding Actual

Matching Group 1 1,163 +48 -151 1,060

Matching Group 2 1,163 +99 -25 1,237

Matching Group 3 1,163 +69 -4 1,228

Matching Group 4 1,163 +85 -90 1,158

Mean 1,163 +75.25 -67.5 1,170.75

Tables 8 and 9 report the revenue decomposition result based on all data and based

35Our exit-survey result reveals that overbidding was made by mistake or by misunderstanding of some
subjects who believed that they can still spite their opponent even in the no-payment round. Regarding
underbidding, there were three individuals who reported that they gave up (and bid 0) whenever their
value is smaller than a certain level.
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Table 9: Revenue Decomposition - No-payment Rounds

Overbidding Underbidding

Binary-II Hypothetical JB Direct JB Indirect No-jump JB Direct JB Indirect No-jump Actual

Matching Group 1 929 +35 +41 +9 0 -16 -7 991

Matching Group 2 929 +27 +48 +23 0 -25 -12 990

Matching Group 3 926 +26 +20 +32 0 -33 -25 946

Matching Group 4 926 +52 +63 +10 0 -6 -13 1,032

Mean 927.5 +35 +43 +18.5 0 -20 -14.25 989.75

No-jump-II Hypothetical Overbidding Underbidding Actual

Matching Group 1 926 +21 -86 861

Matching Group 2 926 +48 -25 949

Matching Group 3 926 +23 0 949

Matching Group 4 926 +38 -51 913

Mean 926 +32.5 -40.5 918

Note: Because of a programming mistake in the first session of Binary-II treatment, we had the payment round of one subject

in each matching group different from that of other sessions. As a result, the hypothetical revenue in the matching group 1

and 2 of Binary-II treatment is 929, slightly higher than 926 in other sessions.

on the data from the opponent’s no-payment rounds, respectively. Table 8 shows that

jump-bidding contributes to the revenue significantly and positively. Consequently, the

actual revenue from Binary-II treatment is bigger than that from No-jump-II treatment al-

though the difference is not significant (one-sided KS test, p = 0.105). The amount of

revenue increased by overbidding not driven by jump-bidding is larger in No-jump-II

treatment than in Binary-II treatment (one-sided KS test, p = 0.018). At the same time, the

amount of revenue decreased by underbidding not driven by jump-bidding is also larger

in No-jump-II treatment than in Binary-II treatment although the difference is not statisti-

cally significant (one-sided KS test, p = 0.105) due to the high variance of the frequency

particularly in No-jump treatment.

The result from the no-payment round data presented in Table 9 confirms and re-

inforces the main finding from the all data. Mann-Whitney U test reveals that the actual

revenue from Binary-II treatment is significantly higher than the hypothetical revenue

(one-sided, p = 0.019) and than the actual revenue from No-jump-II treatment (one-sided
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p = 0.081). In the meantime, we cannot reject the null hypothesis that the actual rev-

enue from No-jump-II treatment is not significantly different from the hypothetical rev-

enue (two-sided, p = 1.000).

Result 5. With the additional experimental control for the spite-driven overbidding, the actual

revenue from No-jump-II treatment is not different from the hypothetical revenue while the actual

revenue from Binary-II treatment is significantly higher not only than the hypothetical revenue

but also than the actual revenue from No-jump-II treatment.

7 Conclusion

Jump-bidding is frequently observed in real-life auctions. Although several papers (e.g.,

Avery [2] and Daniel and Hirshleifer [8]) have provided convincing analyses on this phe-

nomenon, the previous researchers suggest that sellers’ revenue decreases when jump-

bidding occurs, a finding in sharp contrast to the fact that jump-bidding is allowed in

real-life auctions (e.g., Sotheby’s auctions and FCC spectrum auctions). In this paper, our

auction experiments demonstrate that sellers’ revenue increases significantly when jump-

bidding occurs. Furthermore, our data show that bidding behavior and sellers’ revenue

are closely related to bidders’ risk attitudes. We thus provide a theory of jump-bidding

that is consistent with our experimental outcomes.

Finally, because we consider different settings than other researchers, we wish to

emphasize that our results do not imply that the previous papers are incorrect.36 Rather,

the complete picture of jump-bidding has yet to be seen. Thus, this paper complements

the previous studies by using experiments and a particular theory to identify the positive

revenue effect of jump-bidding.

36For example, we adopt the IPV setup, whereas Avery [2] adopts the common-value setup; we consider
risk-averse bidders, whereas Daniel and Hirshleifer [8] and Avery [2] consider risk-neutral bidders.
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Appendix A – Figures and Tables

Table 10: Eliciting Risk Attitudes

Row Option A Option BNo. Outcome A1 = $Y + h Outcome A2 = $Y´ h
1 Prob 35/100 Prob 65/100

Certain Outcome $Y

2 Prob 40/100 Prob 60/100
3 Prob 45/100 Prob 55/100
4 Prob 50/100 Prob 50/100
5 Prob 55/100 Prob 45/100
6 Prob 60/100 Prob 40/100
7 Prob 65/100 Prob 35/100
8 Prob 70/100 Prob 30/100
9 Prob 75/100 Prob 25/100

10 Prob 80/100 Prob 20/100
11 Prob 85/100 Prob 15/100
12 Prob 90/100 Prob 10/100

Figure 11: Average Frequency of Safe Choices (Option B)
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Table 11: Elicited risk attitudes - Individual Level

risk aversion Risk-loving UnclassifiedCARA IARA DARA

Baseline Session 1 5 4 5 3 3
Session 2 11 4 2 1 2

Binary Session 1 7 5 5 3 0
Session 2 9 3 4 0 4

No-jump
Session 1 9 4 3 1 3
Session 2 12 1 3 2 2
Session 3 5 2 6 3 4

Binary-II Session 1 10 4 5 0 1
Session 2 5 5 4 2 4

No-jump-II Session 1 9 2 1 5 3
Session 2 8 3 5 1 3

Total 90 37 43 21 29
Note: CARA risk aversion includes the weak risk aversion, i.e. risk neutral.
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Appendix B – Proofs

Proof of Proposition 2

By following (σ˚1 , σ˚2 ), the high types (i.e., vi, v´i ě v˚) jump to k(v˚) in stage 1, and the

low types (i.e., vi, v´i ă v˚) do not jump. I.e., bidders use the jump bid k(v˚) to signal

their high values. In the case that β´i = k(v˚) and vi ă v˚, bidder i infers that v´i ě v˚

and expects no chance to win, and hence bidder i quits immediately. For all other cases,

bidder i follows the weakly dominant strategy bi (βi, β´i, vi) = max tβi, β´i, viu in the

clock auction in stage 2. Thus, (σ˚1 , σ˚2 ) is a PBE if and only if the bidders’ signalling

is credible, i.e., the high types prefer ”jumping to k(v˚)” and the low types prefer ”no

jump.”37 Define

N (vi) :=
ż vi

0
u(vi ´ v´i)dF(v´i); (2)

J (vi) := F(v˚)u(vi ´ k(v˚)) +
ż maxtv˚, viu

v˚
u(vi ´ v´i)dF(v´i); (3)

where N (vi) and J (vi) are the expected utility of type vi for ”no jump” and ”jumping to

k(v˚),” respectively, given σ˚
´i chosen by bidder ´i.

Lemma 1. (σ˚1 , σ˚2 ) is a PBE if and only if

J (vi)´ N (vi)

$

&

%

ď 0 if vi ă v˚;

ě 0 if vi ě v˚.

Proof of Proposition 2. Define

g (vi) := u(vi ´ k(v˚));

h (vi) := E
v´i„[0,v˚] with cdf

F(v´i)
F(v˚)

[u(vi ´ v´i)] =

ż v˚

0
u(vi ´ v´i)d

F(v´i)

F(v˚)
.

37 According to σ˚´i, if bidder i jumps to any off-equilibrium price in stage 1, bidder ´i stays in the
auction in stage 2 until the price reaches his true value. As a result, jump bidding is useless for bidder i and
he prefers no jump to any off-equilibrium jump in stage 1.
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By (2) and (3), we have

J (vi)´ N (vi) =

$

&

%

F(v˚)ˆ [g(vi)´ h(vi)]´
şvi

v˚ u(vi ´ v´i)dF(v´i) if vi ă v˚;

F(v˚)ˆ [g(vi)´ h(vi)] if vi ě v˚,

which implies

J (vi)´ N (vi)

$

&

%

ď F(v˚)ˆ [g(vi)´ h(vi)] if vi ă v˚;

= F(v˚)ˆ [g(vi)´ h(vi)] if vi ě v˚,
(4)

because
şvi

v˚ u(vi ´ v´i)dF(v´i) ě 0 for every vi ă v˚.

The properties of IARA and CARA (see Matthews [21], p. 638) imply

IARA : g (vi) = h (vi) ùñ g1 (vi) ą h1 (vi) ; (5)

CARA : g (vi) = h (vi) ùñ g1 (vi) = h1 (vi) . (6)

Note that (5) implies g(¨) and h(¨) cross at most once. In particular, g(v˚) = h(v˚). Hence,

given IARA : g (vi)´ h (vi)

$

’

’

&

’

’

%

ă 0, if vi ă v˚;

= 0, if vi = v˚;

ą 0, if vi ą v˚.

; (7)

given CARA : g (vi)´ h (vi) = 0, @vi P [0, 1] . (8)

(4), (7) and (8) imply

given IARA or CARA : J (vi)´ N (vi)

$

&

%

ď 0 if vi ă v˚;

ě 0 if vi ě v˚.

Therefore, (σ˚1 , σ˚2 ) is a PBE by Lemma 1.�
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Proof of Theorem 1

There are possible three events: i) [vi ă v˚ ď v´i with i P t1, 2u], ii) [max tv1, v2u ă v˚]

and iii) [v˚ ď min tv1, v2u]. In event ii) or iii), the seller gets the same revenue in both

(σ˚1 , σ˚2 ) and (pσ1, pσ2). Conditional on event i), the expected revenues in (σ˚1 , σ˚2 ) and (pσ1, pσ2)

are k(v˚) and
şv˚

0 vid
F(vi)
F(v˚) , respectively. Given risk-averse bidders, u (¨) is strictly concave

and

u

[
v˚ ´

ż v˚

0
vid

F(vi)

F(v˚)

]
= u

[
ż v˚

0
(v˚ ´ vi) d

F(vi)

F(v˚)

]
ą

[
ż v˚

0
u (v˚ ´ vi) d

F(vi)

F(v˚)

]
= u(v˚´ k(v˚)),

(9)

where the first equality follows from
şv˚

0 d F(vi)
F(v˚) = 1; the inequality follows from Jensen’s

inequality; the last equality follows from the definition of k(v˚) (see (1)). Thus, (9) implies

k(v˚) ą
ż v˚

0
vid

F(vi)

F(v˚)
.

That is, the seller has more expected revenue in (σ˚1 , σ˚2 ) than in (pσ1, pσ2).�

Proof of Theorem 2

First, since (σ˚1 , σ˚2 ) is a PBE, we have

Eui
(
vi|σ

˚
i , σ˚´i

)
ě Eui

(
vi|pσi, σ˚´i

)
, @vi P [0, 1] . (10)

Furthermore,
(
pσi, σ˚

´i
)

and (pσi, pσ´i) induce different outcomes if and only if vi ď v˚ ď v´i

for some i. In particular, in such a case, bidder i loses in both
(
pσi, σ˚

´i
)

and (pσ1, pσ2), i.e.,

ui
(
vi|pσ´i, σ˚

´i
)
= ui (vi|pσ1, pσ2) = 0 if vi ď v˚ ď v´i. Hence,

Eui
(
vi|pσ´i, σ˚´i

)
= Eui (vi|pσi, pσ´i) @vi P [0, 1] . (11)

(10) and (11) imply Eui
(
vi|σ

˚
i , σ˚

´i
)
ě Eui (vi|pσi, pσ´i) for every vi P [0, 1].�
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Appendix C – Experimental Instructions: Baseline

INSTRUCTION

Welcome to the experiment. This experiment studies decision making between two individ-

uals. In the following hour or so, you will participate in 10 rounds of decision making. Please read

the instructions below carefully; the cash payment you will receive at the end of the experiment

depends on how you make your decisions according to these instructions. Communication of any

kinds with any other participants will not be allowed.

Your Group

There are 20 participants in today’s session. Prior to the first round, 20 people are equally

and anonymously divided into 2 classes. Your class will remain fixed throughout the experiment.

In each round you will be matched with another participant in your class to form a group of

two. Participants will be randomly rematched after each round to form new groups, and each

participant in your class have an equal chance to be matched with you. You will not be told the

identity of the participant you are matched with, nor will that participant be told your identity—

even after the end of the experiment.

Your Decision in Each Round

In your group, there are two individuals, yourself and your opponent. In each round and

for each individual, the computer randomly and independently selects Your Value from 1 to 60.

Each integer number between 1 and 60 has equal chance to be selected. At the beginning of each

round, you will be informed about your value. You will not be told the value of the participant

you are matched with, nor will that participant be told your value.

In each round, you are endowed with 60 tokens and are asked to make a bid to win an

auction that consists of the following two stages: Initial Bidding Stage (Stage 1) and Price Clock

Stage (Stag 2).

Stage 1: Initial Bidding Stage
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Figure 12: Stage 1 – Initial Bidding Stage

You will be informed about your value and be asked to place your Initial Bid (see Figure

12). The initial bid can be any integer number between 0 and 60, inclusively. Once you input

your initial bid, you click the submit button. Note that the maximum of your initial bid and your

opponent’s initial bid will become the Initial Price in the next stage, which will be explained

further below.

After you and your opponent click the submit button, you will be informed about the initial

price as you see in Figure 13(a). You will be asked to think for a number of seconds on what to

do next. The number of seconds you stay with the screen will be randomly determined between 5

seconds and 15 seconds. The waiting time is also independent upon your initial bids.

(a) Waiting Screen (b) Continue or Opt-out

Figure 13: Initial Price and Opt-out Decision

If you submit an initial bid strictly lower than your opponent’s initial bid (which is equal

to the initial price), you will be asked to decide whether to continue (by clicking the CONTINUE

button) or to opt out (by clicking the NOT INTERESTED ANYMORE button). (See Figure 13(b) for
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the details). If you opt out, your opponent wins the auction with the initial price; if you continue,

you will proceed to Stage 2.

If you submit an initial bid higher than or equal to your opponent’s initial bid, you will be

asked to click the CONTINUE button to proceed to Stage 2.

Stage 2: Price Clock Stage

Figure 14: Stage 2 – Price Clock Stage

Figure 14 demonstrates an example of your decision screen in Stage 2. On the left-hand side

of your screen, a Price Clock will be presented with three pieces of information on it: (1) Initial

Price, (2) Current Price, and (3) Your Value.

(1) Initial Price: The price clock starts with the Initial Price determined in the Initial Bid Stage

(= the maximum of the initial bids).

(2) Current Price: the current price is displayed at the center of the Clock (highlighted in Red

colour). In every two seconds, the clock goes and the current price increases in 1 unit.

(3) Your Value: Your value is highlighted in the clock with Blue colour.

Under the price clock, a button “NOT INTERESTED ANYMORE” is in place. Whenever

one of the individuals in your group clicks the button, the price clock stops and the auction ends.
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The individual who stays in the auction is declared the winner, and pays the price showing on

the clock. Once an individual has opted out, he/she cannot re-enter. If no one drops out until

the current price becomes 60, the auction ends and the final price becomes 60. In this case, each

individual has equal chance to win the auction.

Your Earning in Each Round

• If you do not win the auction, your earning becomes your endowment 60.

• If you win the auction, your earning becomes

Endowment + Your Value ´ Final Price.

For example, when you win the auction with your value 28 and the final price 19, your

earning in the round becomes 60 + 28´ 19 = 69.

Information Feedback

At the end of each round, you will be informed about Your Value, Your Opponent’s Value,

Your Initial Bid, Your Opponent’s Initial Bid, Final Price, Auction Outcome (win or lose) and Your

Earning.

Your Cash Payment

The experimenter randomly selects 1 round to calculate your cash payment. (So it is in your

best interest to take each round seriously). Your total cash payment at the end of the experiment

will be the number of tokens you earned in the selected round (translated into HKD with the

exchange rate of 1 Token = 1 HKD) plus a 30 HKD show-up fee.

Practice Rounds

To ensure your comprehension of the instructions, we will provide you with a practice

round. Once the practice round is over, the computer will tell you “The official rounds begin

now!”

39



Adminstration

Your decisions as well as your monetary payment will be kept confidential. Remember that

you have to make your decisions entirely on your own; please do not discuss your decisions with

any other participants.

Upon finishing the experiment, you will receive your cash payment. You will be asked to

sign your name to acknowledge your receipt of the payment. You are then free to leave.

If you have any question, please raise your hand now. We will answer your question indi-

vidually.

Appendix D – Instructions for Eliciting risk attitudes

INSTRUCTION- Bonus I

Please read the instructions carefully and make decisions. In the table below, there are 12

decisions to be made. Each row presents each decision. In each row, you need to choose one of

two options, Option A and Option B.

• If you choose Option A, you will get either HKD 14 (Outcome A1) or HKD 6 (Outcome A2)

depending on the realization of X on the Orange Card.

• X will be randomly drawn in the range between [1,100] inclusively. Each integer number in

this range has an equal chance to be selected.

• If you choose Option B, you will get HKD 10 regardless of the realization of X on the Orange

Card.

• Please make your decisions for all 12 rows and click SUBMIT / OPEN THE CARD button.

Then, one row will be randomly selected and the selected row number will be presented on

the Green Card. Each row has equal chance to be selected.

• Your earning in this bonus round will be determined by your decision for the selected row

and the realization of X.
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Please raise your hand if you have any questions.

Otherwise, please make your decision.

Figure 15: Z-tree Screen Shot - Bonus I

INSTRUCTION- Bonus II

In the table below, there are twelve decisions to be made.38 Each row presents each decision.

Everything is the same as before except the followings:

• If you choose Option A, you will get either HKD 34 (Outcome A1) or HKD 26 (Outcome A2)

depending on the realization of X on the Orange Card.

• If you choose Option B, you will get HKD 30 regardless of the realization of X on the Orange

Card.

Please raise your hand if you have any questions.

Otherwise, please make your decision.

38Screen shot omitted. Note that the Bonus-II stage is unexpected for the subjects when they make
decisions in the Bonus-I stage.
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