THE NETWORK VALUE OF DISTRIBUTED GENERATION

UTS

Scott Kelly, Jay Rutovitz, Edward Langham Lawrence Mclintosh

13th October 2016

AGENDA

PART 1: ISF RESEARCH PROJECT

- The research project
- Background and introduction to problem
- Update on AEMC rule change process

PART 2: ECONOMIC MODEL

- Research questions
- Introduction to representative agent model
- Assumptions and limitations of model
- Results
- Conclusions

PART 1 RESEARCH PROJECT

Coalition for Community Energy

THE RESEARCH PROJECT

Objective: To facilitate the introduction of local network charges* & Local Electricity Trading**

➢ Five case studies, or "virtual trials"

> A recommended methodology for Local Network Credits

> An assessment of requirements & costs for Local Electricity Trading

Economic modelling of benefits & impacts

Increase stakeholder understanding and support for Local Network Credit rule change

> ** implemented as Local Network Credits paid to the generator ** also called Virtual Net Metering or VNM

THE DECENTRALISED ENERGY REVOLUTION HAS ONLY JUST BEGUN

135

NETWORK CHARGES: WHAT HAPPENS NOW

Local Energy

HISTORICAL NEM NETWORK COSTS

60% of increase in prices between 2008 and 2013 is from network investment

Source: CSIRO, Change and Choice (2013)

TIME OF TRANSFORMATION: GRID CONSUMPTION CLOSE TO FLAT

POTENTIAL BENEFITS OF LGNC

Local Network Credits

- Reduce future network costs and consumer costs
- Reduce load defection and maintain network
 utilisation
- Unlock new local energy projects
- Unlock new product offerings e.g. neighbourhood energy storage, LET

LGNC RULE CHANGE PROPOSAL

- Submitted July 2015 by City of Sydney, Total Environment Centre, and the Property Council of Australia
- Local network charges achieved via a CREDIT TO GENERATOR
- 22ND September AEMC publish draft determination not in favour of LGNC rule change proposal.

PART 2 ECONOMIC MODEL

RESEARCH QUESTIONS

WHAT ARE THE LONG TERM COSTS AND BENEFITS OF AN LGNC?

- 1. At a macro level what is the Total Economic Cost over the long term?
- 2. At a consumer level what is the effect on consumers electricity bills?

ECONOMIC AND SCENARIO MODELLING

- 1. How might peak network demand (MW) grow under different scenarios?
- 2. How might net imports and net exports change over time?
- 3. What are the economic costs and benefits of an LGNC and avoided network augmentation?

EFFICIENTLY PRICING ELECTRICITY INFRASTRUCTURE

- Allocative efficiency resources are allocated to the most productive use. This implies cost-reflectivity to send the correct price signals about the costs of different investments.
- Productive efficiency requires the production of goods and services at lowest possible cost
- **Dynamic efficiency** requires efficient allocation and production of goods over time. Implies that the the right investments are made at the right time.
- Cost recovery requires the cost of infrastructure to be recovered
- Prices must be set to encourage optimal use of existing infrastructure, whilst simultaneously signaling the cost of an additional unit to the system.

Setting electricity prices to marginal costs will promote the most efficient use and production of goods and service.

BASIC TERMINOLOGY

Representative agent: is a consumer, producer or prosumer on the electricity network. They represent the average characteristics of all consumers belonging to that agent category.

Customer class: residential, small commercial, large commercial and standalone distributed generation

Network expansion: The investment in additional infrastructure on the electricity network in order to meet future demand (augex, opex, repex)

Gross generation: total amount of electricity produced by an agent

Gross consumption: total amount of electricity consumed by an agent

Net exports: is the electricity exported back to the grid (kWh)

Net imports: is the electricity import requirements from the grid to satisfy demand (kWh)

DATA SOURCES

Data source	Date
AEMO National Electricity & Gas Forecasting http://forecasting.aemo.com.au/	2015 and 2016
CSIRO Electricity Profiles http://doi.org/10.4225/08/5631B1DF6F1A0	2015
Energy Supply Association of Australia (ESAA) Annual Reports http://www.esaa.com.au/	2015
Department of Industry and Science – Australian Energy Statistics <u>http://www.industry.gov.au/Office-of-the-Chief-Economist/Publications/Pages/</u> <u>Australian-energy-statistics.aspx</u>	2015
Australian PV Institute www.apvi.org.au	2015
Clean Energy Regulator (RET) <u>http://www.cleanenergyregulator.gov.au/RET/Forms-and-resources/Postcode-data-for-small-scale-installations#SGUWind-Deemed</u>	2015
NEM-Review Database http://v6.nem-review.info/use/enjoy/data/datasets/datasets.aspx	2015

MODELLING FRAMEWORK

Distribution network

NETWORK HEIRARCHY

REPRESENTATIVE AGENTS

REPRESENTATIVE AGENT MODEL

MODEL LIMITATIONS

- Long time horizons and uncertainty in rapidly changing market
- Deterministic model with two exogenous scenarios
- Approximates each customer category as an average representative 'agent'
- Does not include costs of upgrading network to handle increased distributed generation
- Does not include savings associated with replacement expenditure savings associated with downsizing
- Data for one state only looking to expand!

SCENARIO ASSUMPTIONS

- Customer numbers, capacity and generation are for NSW
- LGNC payments are NOT made to existing generation
- LGNC payments are NOT made to generation under <10kW
- Networks have sufficient capacity to avoid investment until 2025 (~600MW)
- 80/20 benefit share (80% benefit goes to generators / 20% to Networks)
- Growth projections are modelled from AEMO projections
- LRMC values independently estimated from Energeia work
- Costs (augmentation and LGNC payments) allocated to customers on a volumetric basis

AGENT DATA: INITIAL CONDITIONS

	No. Agents¹	Gross consumption per agent ²	Net import consumption per agent ^a	Gross generation per agent ⁴	Net export generation per agent ⁶
	2015	kWh / year	kWh / year	kWh / year	kWh / year
A - Residential	2,849,461	4,447	4,450	-	-
B - Residential with PV	339,633	4,447	2,911	3,641	2,102
C - Residential with PV + Battery	100	4,447	919	3,641	-
D - Small Commercial	397,954	92,290	92,290	-	-
E - Small Commercial with PV	9,276	92,290	63,107	29,183	-
F - Small Commercial with PV + export	100	92,290	53,206	42,921	3,837
G - Large Commercial	49,347	296,780	296,780	-	-
H - Large Commercial with cogen	105	1,666,667	719,256	1,000,772	53,362
I - Large Commercial with cogen + export	10	1,666,667	546,403	1,215,902	95,638

1. Numbers of agents are from ESAA annual report 2015

- 2. Gross consumption per agent is calculated by dividing total consumption by the number of agents in each category
- 3. Net import consumption is estimated from the net energy profiles where half-hourly demand is greater than own generation

- 4. Gross generation is calculated from solar generation data from APVI data and the number of installations
- 5. Net export generation is estimated from net energy profiles where half-hourly generation is greater than demand.

AGGREGATE CONSUMPTION

	2015	2030	2015	2030 (BAU)	2030 (LGNC)
Representative agent type	Gross Consumption	Gross Consumption	Net Import Consumption	Net Import Consumptin	Net Imports
	GWh	GWh	GWh	GWh	GWh
A - Residential	12,681	12,459	12,681	12,459	12,459
B - Residential + PV	1,512	2,676	989	1,750	1,750
C - Residential + PV + Battery	0	1,589	0	328	328
Total Residential	14,193	16,724	13,670	14,538	14,538
D - Small Commercial	36,727	38,305	36,727	38,305	35,658
E - Small Commercial + PV	856	5,980	585	4,089	4,089
F - Small Commercial + Exports	9	11	5	6	1,532
Total Small Commercial Customers	37,592	44,296	37,318	42,400	41,279
G - Large Commercial	14,645	15,699	14,645	15,699	14,757
H - Large Commercial + cogen	174	275	75	119	119
I - Large Commercial + cogen + Exports	16	18	5	6	315
Total Large Commercial	14,836	15,992	14,726	15,823	15,190
Total Demand	66,622	77,011	65,714	72,762	71,008

AGGREGATE GENERATION

	2015	2030	2015	2030 (BAU)	2030 (LGNC)
Representative agent type	Gross Generation	Gross Generation	Net Export Generation	Net Export Generation	Net Export Generation
	GWh	GWh	GWh	GWh	GWh
A - Residential	-	-	-	-	-
B - Residential + PV	1,219	2,158	714	1,264	1,264
C - Residential + PV + Battery	0	1,281	-	-	-
Total Residential	1,219	3,440	714	1,264	1,264
D - Small Commercial	-	-	-	-	-
E - Small Commercial + PV	267	1,864	-	-	-
F - Small Commercial + Exports	4	5	0	0	110
Total Small Commercial Customers	271	1,869	0	0	110
G - Large Commercial	-	-	-	-	-
H - Large Commercial + cogen	105	165	6	9	9
I - Large Commercial + cogen + Exports	12	13	1	1	55
Total Large Commercial	117	178	7	10	64
J - Wind Power	28	45	28	45	56
K - Solar Farm	31	48	31	48	60
L - GenSet	370	584	370	584	731
Total Local Generation	428	677	428	677	847
Total Generation	2,036	6,164	1,149	1,951	2,285

LGNC PROPOSED RULE CHANGE: CONSUMER OUTCOMES -MODELLING RESULTS

GROSS GENERATION

- B Residential + PV
- E Small Commercial + PV
- H Large Commercial + cogen
- J Wind Power
- L GenSet

- F Small Commercial + Exports
- I Large Commercial + cogen + Exports
- K Solar Farm

25,000

isf.uts.edu.au

LGNC - gross generation by representative agent

CONSUMPTION

Ξ 100.000 GWh/ Anr 84.4 TWh 90,000 79.0 TWh 80,000 65.6 TWh 70,000 60,000 50.000 40.000 30,000 20,000 10,000 2015 BAU - 2050 LGNC - 2050 B - Residential + PV A - Residential C - Residential + PV + Battery D - Small Commercial E - Small Commercial + PV F - Small Commercial + Exports G - Large Commercial H - Large Commercial + cogen I - Large Commercial + cogen + Exports

Gross Consumption

Net (Import) Consumption

GROWTH IN PEAK DEMAND

		BAU	LGNC	BAU	LGNC	Peak Savings
NETWORK	2015 (MW)	2050	(MW)	% Inc	rease	MW (∆%)
Transmission	11,354	13,883	12,284	22%	8%	1,599 (63%)
High Voltage	11,426	14,093	12,661	23%	11%	1,432 (54%)
Low Voltage	8,299	10,412	9,676	25%	17%	736 (35%)

CHANGE IN PEAK PROFILE IN 2050

ECONOMIC COSTS AND BENEFITS

The headline result from the economic analysis is that over the long term, an LGNC scenario incurs costs that are \$1.18 billion lower than BAU, that is 59% lower than the cost of normal network expansion.

INCREMENTAL COSTS

ECONOMIC COSTS AND BENEFITS

Cumulative economic cost by scenario (NPV of augmentation and NPV of LGNC payments)

	2020	2030	2040	2050
BAU				
Network investment	-	\$172 m	\$939 m	\$2,012 m
LGNC payments	-	-	-	-
Total	-	\$172 m	\$939 m	\$2,012 m
LGNC scenario				
Network investment	-	\$16 m	\$239 m	\$598 m
LGNC payments	\$6 m	\$52 m	\$132 m	\$233 m
Total	\$6 m	\$69 m	\$371 m	\$832 m
Net Economic Benefit	-\$6 m	\$104	\$567 m	\$1,181 m

Network: weighted average of Ausgrid and essential parameters (66%, 34% Essential)

IMPACT ON CONSUMER BILLS

\$ per year	Average		2020		2030		2050	
Residential	-\$9	▼	\$0		-\$7	▼	-\$20	▼
Residential with PV	-\$6	▼	\$0		-\$4	▼	-\$13	▼
Residential with PV + battery	-\$2	▼	\$0		-\$1	▼	-\$4	▼
Total Residential Customers	-\$7	▼	\$0		-\$6	▼	-\$15	▼
Small Commercial	-\$185	▼	\$4		-\$139	▼	-\$422	▼
Small Commercial with PV	-\$127	▼	\$3		-\$95	▼	-\$289	▼
Small Commercial with PV (includes export)	-\$211	▼	-\$102	▼	-\$184	▼	-\$348	▼
Total Small Commercial Customers	-\$191		\$2		-\$140	▼	-\$438	▼
Large Commercial	-\$367	▼	\$14		-\$276	▼	-\$843	▼
Large Commercial with cogen	-\$1,239	▼	-\$335	▼	-\$1,019	▼	-\$2,374	▼
Large Commercial with cogen (includes export)	-\$3,050		-\$2,414	▼	-\$2,889	▼	-\$3,869	▼
Total Large Commercial	-\$2,341	▼	\$25		-\$1,693	▼	-\$5,440	▼

All consumers see decreases in their average annual electricity bills

NETWORK UTILISATION

Network Utilisation= Actual Load (MWh)/8760 × Peak Load (MW)

isf.uts.edu.au

AVOIDED AUGMENTATION FROM SYSTEM LOSSES

Electricity losses from GWh avoided	2015	2020	2030	2040	2050
Transmission / System	\$0.0 m	\$0.3 m	\$6.0 m	\$15.8 m	\$28.1 m

LGNC PROPOSED RULE CHANGE: SENSITIVITY TESTING

LGNC PAID TO SMALL SYSTEMS? (<10 KW)

 Recommend excluding systems < 10kW as economic benefit increases by \$113m to 2030 (from \$-9m to \$104).

WHAT HAPPENS IF DEMAND GROWTH IS FLAT?

- Sensitivity testing for range of demand growth rates
- Net economic benefit highly asymmetric because costs are capped at LGNC payments and benefits of avoided augmentation far outweigh these costs.

SENSITIVITY TESTING – YEAR OF

YEAR 1st NETWORK AUGMENTATION REQUIRED IN BAU

Net economic benefit of LGNC at								
Investement first required under BAU		2020	2030	2040	2050			
	2020	\$6 m	\$411 m	\$1,045 m	\$1,816 m			
	2022	-\$8 m	\$305 m	\$897 m	\$1,624 m			
	2024	-\$8 m	\$186 m	\$724 m	\$1,397 m			
	2026	-\$8 m	\$74 m	\$550 m	\$1,162 m			
	2028	-\$8 m	-\$17 m	\$372 m	\$913 m			
	2030	-\$8 m	-\$64 m	\$217 m	\$690 m			

OTHER SENSITIVITY

> The year network augmentation is first required

RESULT: benefit is reduced for later years; all cases tested had long term benefit

Rate of growth of local generation in the LGNC scenario compared to BAU

RESULT: in general, more local generation increased the benefit

Including non-locational transmission costs in the LGNC payments.

RESULT: no significant effect

IS AN LGNC A CROSS SUBSIDY?

- LGNC payments are estimated from avoided future network expansion costs (i.e. using LRMC).
- The overall costs in an LGNC scenario are lower than in BAU
- The LGNC represents a system-wide saving to all consumers it is therefore **NOT** a cross-subsidy between consumers.
 - The majority benefit from LGNC is received by those who interact with the grid.
 - Those who generate behind the meter receive the least benefit.
 - Standard residential consumers receive the largest bill reductions.

CONCLUSION

• The LGNC scenario has network costs that are 60% lower than the costs of BAU

Total Economic Costs and Benefits						
	2020	2030	2050			
(Cost) Benefit	(\$6 m)	\$104 m	\$1,180 m			

- All customer categories will see reductions in electricity bills between 2025 and 2030
- Our conclusions are robust to a range of sensitivity tests
 - Growth in distributed generation (-50%/+50% -> \$213m/\$1,442m)
 - Change in growth of underlying peak demand (below 0.2% growth is a dis-benefit)

isf.uts.edu.au

- Available spare capacity on the network (2030 -> \$655m)
- Through this modelling we are able to make the following recommendations:
 - Exclude distributed generators below 10kW and above 30MW
 - Exclude all existing distributed generators*

*Revisit the potential for including existing dispatchable generators

FUTURE RESEARCH

- Model economic impacts for each network area and state
- Incorporate dynamic feedback effects in modelling LGNC payment effects on the uptake of increased DG
- Model the effects of electric vehicles and battery uptake
- Incorporate repex savings in a declining growth environment
- Incorporate a probabilistic model representing the distribution of agents for demand and supply

WEAKNESSES OF DETERMINATION

- LGNC payments are made existing generation
- Only considers PV as distributed generation technology
- Includes small systems under 10kW
- Does not include savings to transmission or distribution levels

