

ISF PRELIMINARY RESEARCH RESULTS: LOCAL NETWORK CHARGES & VIRTUAL NET METERING

AEMC LGNC CONSULTATION WORKSHOP ED LANGHAM, LAWRENCE MCINTOSH SYDNEY, 15 MARCH 2016

NOTE: INCLUDES MINOR AMENDMENTS FROM WORKSHOP VERSION

ISF:UTS

PRESENTATION OVERVIEW

- ☐ The ISF/ARENA project
- □ Network charges what happens now
- ☐ LNC calculation methodology
 - Development process
 - Principles
 - Components
 - Precedents
 - Value calculation
 - Tariff calculation
- □ Preliminary trial results:
 - LNC values
 - Financial impacts for customers and NSPs
- **☐** Preliminary Conclusions

THE PROJECT: FACILITATING LOCAL NETWORK CHARGES* AND LOCAL ELECTRICITY TRADING**

* ~LOCAL GENERATION NETWORK CREDIT ** aka VIRTUAL NET METERING (VNM)

THE PROJECT IS THE FIRST QUANTITATIVE TESTING OF AN LGNC IN THE AUSTRALIAN MARKET

THE PROBLEM WE'RE TRYING TO ADDRESS

- Full network charges are paid by customers irrespective of where the electricity was sourced (across the street or 250km away)
 - DG sell at wholesale and buy back at retail prices (incl. full network and retail/energy charges)
 - Lower use of system costs not recognised for locally consumed DG
 - In context of Rule Change: "The value of (esp. smaller) DG exports to the local network is not currently recognised"
- Strong incentive for customers (and product developers) to focus on "behind the meter" solutions & reduce grid consumption
- Perverse incentive to duplicate infrastructure (private wires)
- Sub-optimal generator sizing & operation in terms of avoiding future network costs
- > Status quo will increase costs for consumers left using *only* grid electricity, as infrastructure costs are recouped from smaller sales volumes

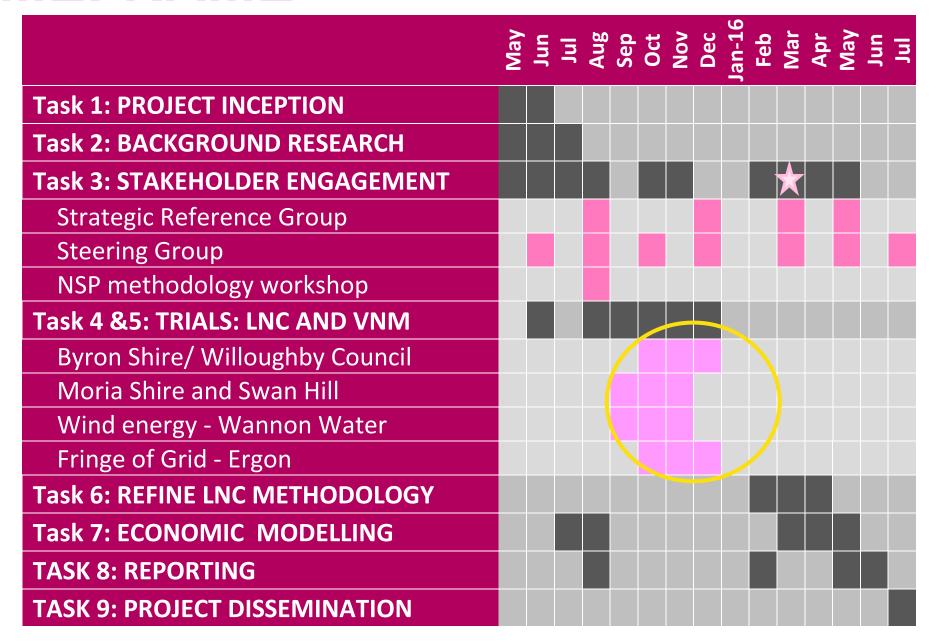
WHAT WE'RE DOING

Objective: to facilitate local network charges & local electricity trading

- > Five case studies, or "virtual trials", of LNC and LET
- > A recommended methodology for calculating LNCs
- An assessment of the technical requirements and indicative costs for the introduction of LET
- Economic modelling of the benefits & impacts of LNCs and LET
- Increased industry understanding of LNCs and LET
- Specific consultation and support for rule change proposal(s)

WHO'S INVOLVED

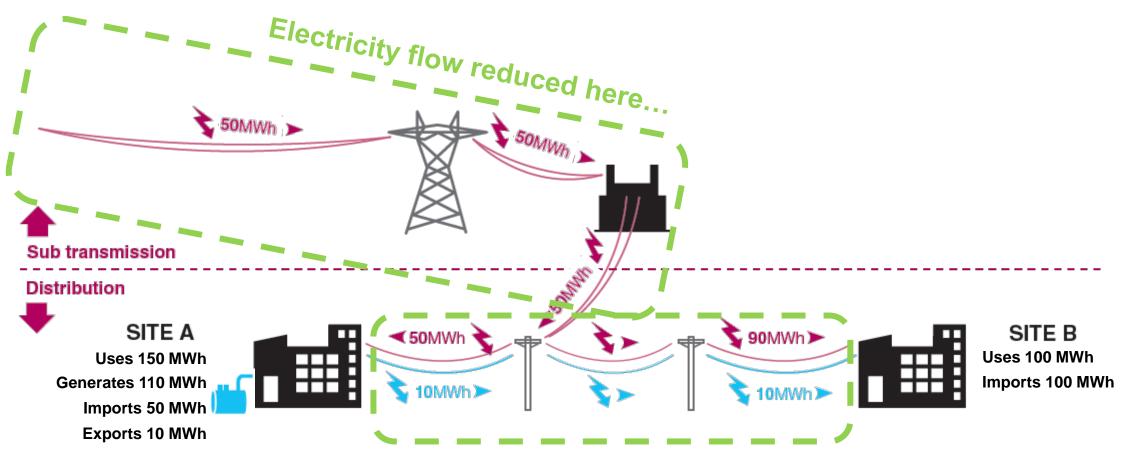
CITY OF SYDNEY



Networks NSW
Energy Australia
Origin Energy
Australian Energy Council
Electricity Networks Association
Clean Energy Council
Coalition for Community Energy

TIMEFRAME

ISF:UTS


NETWORK CHARGES – WHAT HAPPENS NOW

NETWORK CHARGES - WHAT HAPPENS NOW

Local Energy HV Distribution LV Distribution **Transmission** Sub-Transmission

Current network charges for local energy

PHYSICAL ELECTRICITY FLOWS

.. but maintained here

MONETARY FLOWS WITH AND WITHOUT LGNC

MONETARY FLOWS

CURRENT NETWORK CHARGES

Uses 150 MWh Imports 50 MWh Generates 110 MWh Exports 10 MWh

Uses 100 MWh Imports 100 MWh

100 × full network charge

Retailer

Network service provider

MONETARY FLOWS

LOCAL NETWORK CHARGES

Local Generator Network Credit

Uses 150 MWh Imports 50 MWh Generates 110 MWh

Exports 10 MWh

SITE B

Uses 100 MWh Imports 100 MWh

Retailer

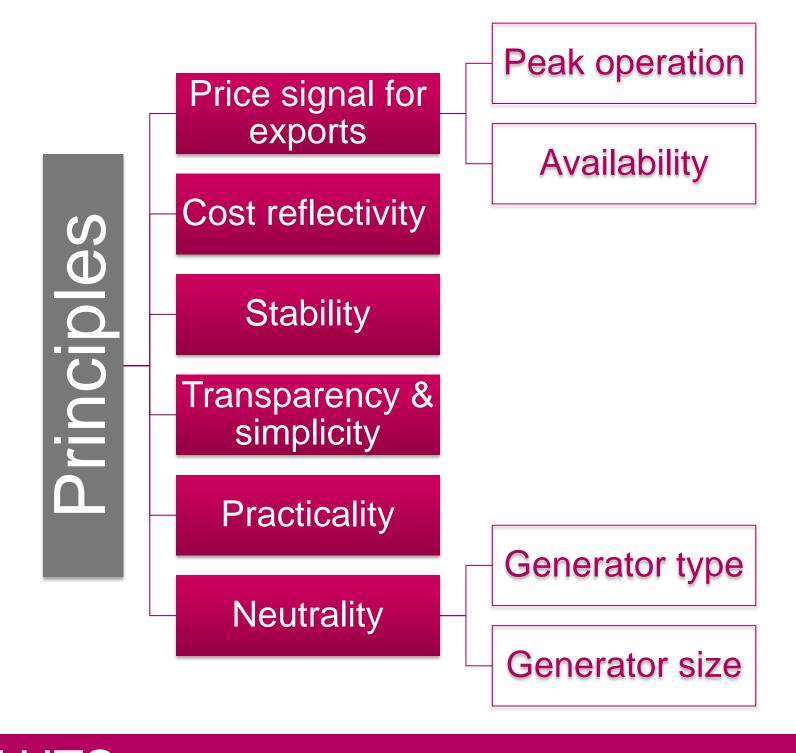
Network service provider

LNC CALCULATION METHODOLOGY

HOW WE'VE DEVELOPED IT

Background research

Briefing paper


Consultation workshop

Method working groups

Trials

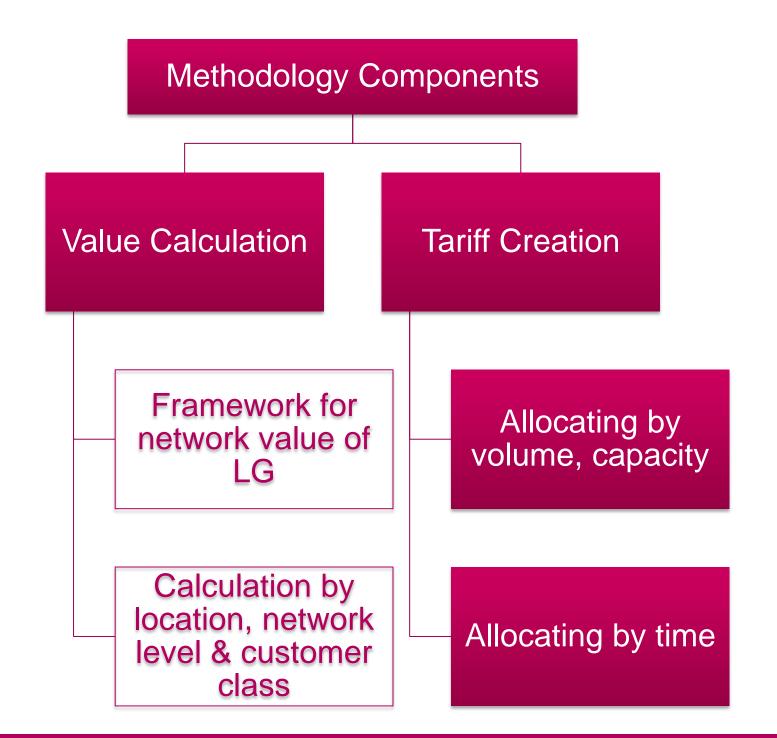
ISF's Recommended methodology

i.e. ISF-Driven, guided by advice from NSP and DG proponent partners

ISF:UTS

www.isf.uts.edu.au

PRECEDENTS


METHODOLOGIES INVESTIGATED

Methodology	Value calculation	Location	Time	Payment structure [Additional values]	Operation	Availability	Cost Reflectivity	Stability	Transparency	Implementation	Neutrality
UK CDCM	Marginal Cost based on 500MW increments	By voltage level	Probabilistic: based on peak periods and estimated generation	Volumetric [Losses]	1	X	✓ X	✓	✓ X	✓	У Х
Connecticut	Declining percentage of DUOS and TUOS	Generator and consumer in same distribution territory	Applies to exports not consumed by customers other sites within billing period	Volumetric	X	X	X	√	√	1	X
Minnesota	NPV of value of generator over its lifetime. Load and generation data for 12 months (hourly basis)	Assumed low voltage (LV) (Solar only)	All	Volumetric, [avoided generation, capacity, ancillary services and environmental benefits]	X	X	J	s	✓ ×	X	X
ActewAGL	Estimate avoided TUOS	Assume LV (Solar only)	All	Volumetric	Х	X	X	✓	X	✓	X
Ausnet	Unknown	Assume LV (Solar only)	Summer generation only	Volumetric	✓ X	X	?	✓	X	✓	X
Reference service approach ¹	Lowest avoided cost	Very location specific, requires user to be identified			X	×	1	✓	×	×	✓ X

¹ Both Western Australia in the WA Wheeling Method and Transmission pricing guidelines include a methodology based on this approach

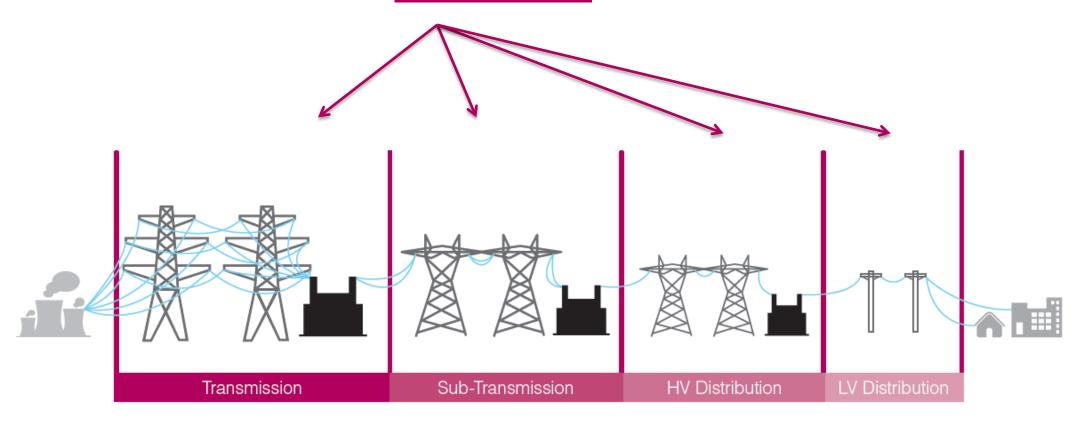
METHODOLOGY COMPONENTS

VALUE CALCULATION: LRMC

FRAMEWORK FOR NETWORK VALUE OF LOCAL GEN

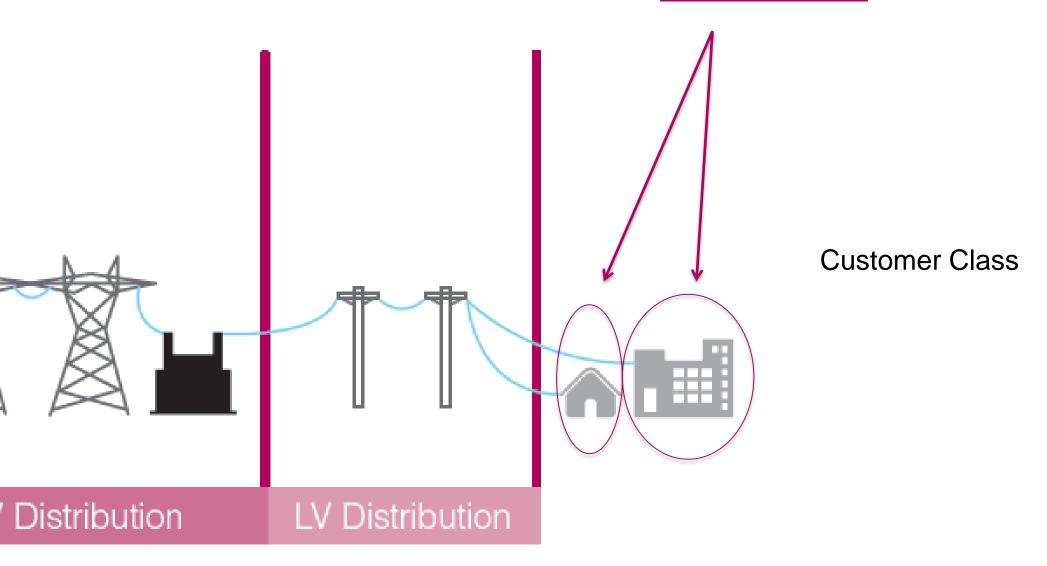
➤ Reference Service Approach: Cost a private wire to connect generator with demand, which can be used for network to offer 'prudent discount' on cost of services.

- ➤ LRMC of Network Services Approach: Quantify avoided costs, including:
 - Growth-related augmentation (capex)
 - Replacement costs (capex)
 - Associated operating costs (opex)
 - (All *long term* costs: 15-20+ years)


LRMC CALCULATION METHOD

- NSPs to apply same method they already apply for consumption tariffs
 - Pros: easy for NSPs to implement; potentially equitable; reflects cost-reflective network pricing reform process
 - Cons: if current LRMC calculation ignores replacement or opex, or takes short term (5-10yr) horizon, credit value may be too low

LRMC CALCULATION BY LOCATION, LEVEL, CLASS


 Locational only to the extent that Network Businesses use different pricing zones for consumption tariffs

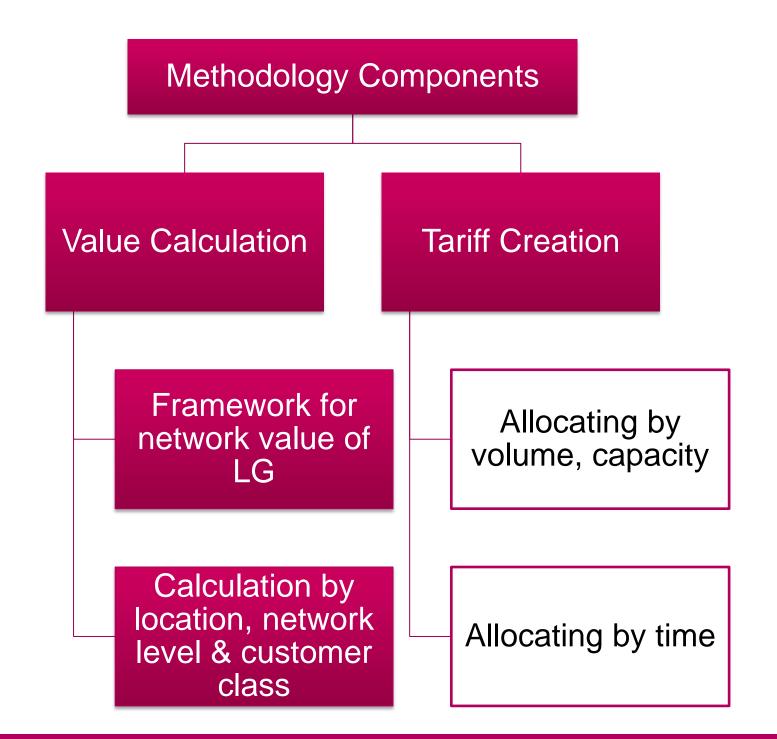
LRMC CALCULATION BY LOCATION, <u>LEVEL</u>, CLASS

Level of Generator Connection

LRMC CALCULATION BY LOCATION, LEVEL, <u>CLASS</u>

LRMC CALCULATION: THE END RESULT

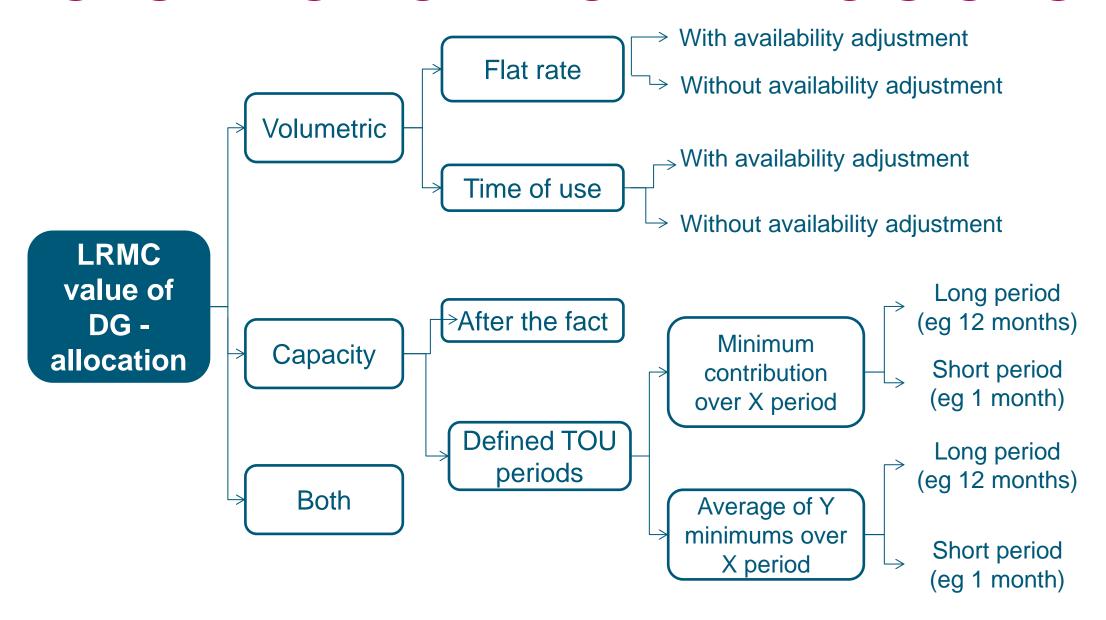
Table 3: Sample table for LRMC by network level & customer class (dummy data)


LRMC (\$/kVA/yr)	Residential customers	Small commercial customers	Large commercial customers	
Transmission	50	50	50	
Subtransmission	24	24	25	
HV Substation (Zone Substation)	33	33	27	
HV Feeder	60	69	57	
Distribution Sub	57	48	33	
LV	104	93	0	
TOTAL	328	307	192	

LRMC CALCULATION BY LOCATION, LEVEL, CLASS

 Calculate by same location, level, class as NSPs do now then allocate levels by:

Table 4 Components of LRMC forming LG local network credit, according to the level of generator connection location (credited components marked with a tick)


	Cost Category								
Generator Situation	Transmission (TransGrid)	Sub-transmission line	HV Substation	HV System	LV Substation	LV System	System-Fixed	Non-System fixed	
Co-Located (Same site)	✓	✓	✓	✓	✓	✓	X	X	
LV System Connected	✓	✓	✓	✓	✓	X	X	X	
LV Substation Connected	✓	✓	✓	✓	X	X	X	X	
HV System Connected	✓	✓	✓	×	X	X	X	×	
HV Substation Connected	✓	✓	Х	X	X	X	X	X	
Sub-Transmission Connected	✓	×	×	×	×	×	X	X	

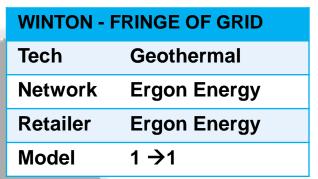
TARIFF CALCULATION CONSIDERATIONS

VOLUME OR CAPACITY: DECISIONS

ISF:UTS

LGNC TARIFFS INCLUDED IN TRIALS

- 1. Volumetric only (Method 1)
- 2. Combined volume-capacity (Method 2)


BECAUSE:

- International precedents = volumetric
- Volume-capacity more aligned with CRNP direction
- Allows comparison between volumetric and volumecapacity

WHAT THE TRIALS ARE TELLING US – PRELIMINARY LNC VALUES

virtual THE TRIALS

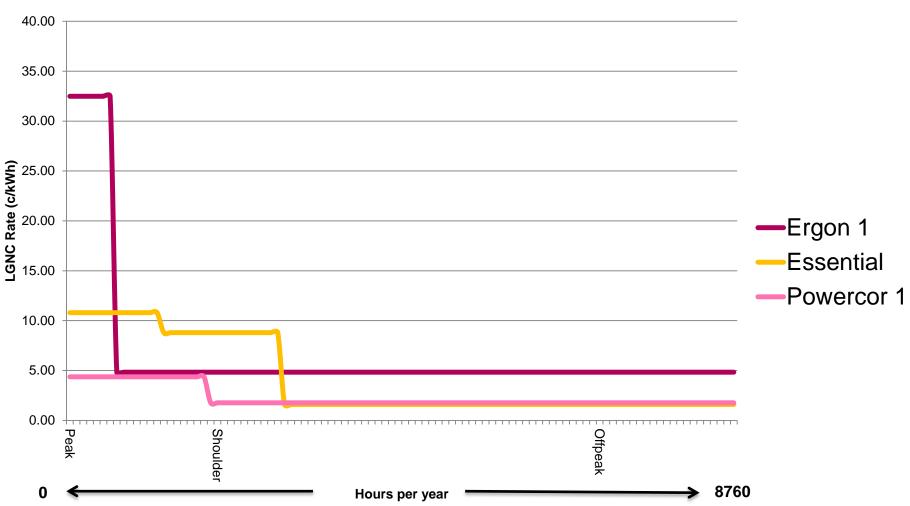
MOIRA/SWAN HILL

Tech	PV
Network	Powercor
Retailer	AGL
Model	1 → Many

Tech	Wind
Network	Powercor
Retailer	AGL
Model	$1 \rightarrow 1 \& 1 \rightarrow 2$

BYRON	
Tech	PV
Network	Essential
Retailer	Origin Energy
Model	Council 1 → 1

WILLOUGHBY		
Tech	Cogen + PV	
Network	Ausgrid	
Retailer	Energy Australia	
Model	Council 1 → 1	



TRIAL RESULTS - CAVEATS

- These results are **preliminary**, as our trial partners have not had time to review thoroughly. We expect final results at the end of April.
- ➤ Ergon, Powercor and Essential have made a very valuable contribution to these results and the development of the LNC methodology, but do not necessarily endorse the methodology, or the proposed rule change
- LNC values will **vary considerably** by NSP, geographic location and network level, and these results are specific to the situation of each trial.
- The analysis doesn't factor in the impact to local energy flows in terms of capacity, voltage and protection, whether adverse or beneficial.

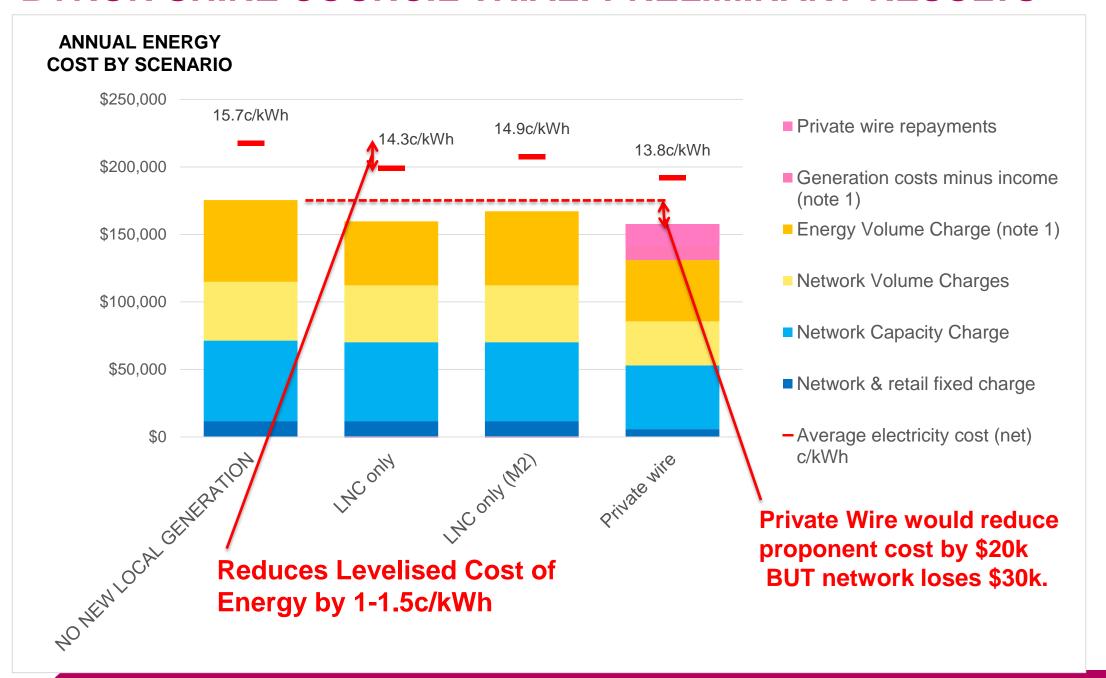
LGNC VALUES ACROSS THE TRIALS – VOLUMETRIC ONLY METHOD (PRELIMINARY RESULTS)

LNC VALUES ACROSS THE TRIALS – VOLUMETRIC ONLY METHOD (PRELIMINARY RESULTS)

	ERGON		POWERCOR			ESSENTIAL			
Connection level	LVL	LVD	ZS	LVL	LVD	ZS	LVL	LVD	ZS
	c/kWh		c/kWh			c/kWh			
Peak	32.5	28.3	15.4	4.4	4.3	3.0	10.8	8.5	6.5
Shoulder							8.8	6.9	5.3
Off-peak	4.8	4.2	2.3	1.8	1.7	1.2	1.6	1.3	1.0

LNC VALUES ACROSS THE TRIALS – COMBINED METHOD (PRELIMINARY RESULTS)

	ERGON		POWERCOR			ESSENTIAL			
Connection level	LVL	LVD	HV	LVL	LVD	HV	LVL	LVD	HV
VOLUMETRIC PORTION	c/kWh		c/kWh			c/kWh			
Peak	16.2	14.2	7.7	5.6	5.5	3.8	4.9	3.8	2.9
Shoulder							4.0	3.1	2.4
Off-Peak	2.4	2.1	1.1	0.1	0.1	0.1	0.7	0.6	0.4
CAPACITY PAYMENT	\$/kW/day		\$/kW/day		\$/kW/day				
Based on minimum generation in defined period	3.35	2.92	1.59	0.46	0.45	0.31	0.71	0.55	0.42

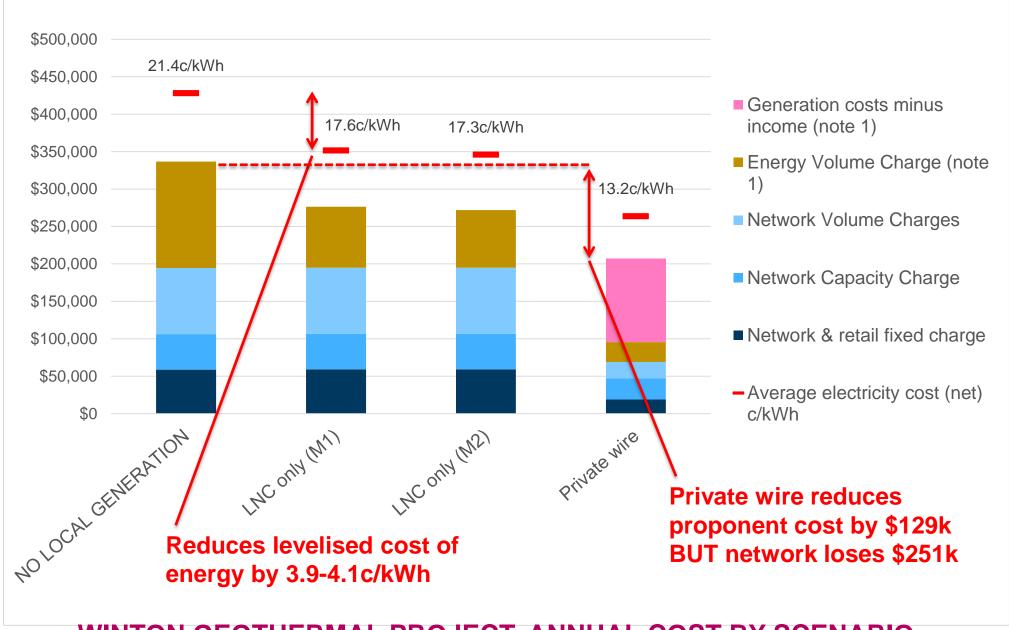

ISF:UTS

LNC OUTCOMES FOR THE TRIALS (PRELIMINARY RESULTS)

	Winton		Wannon		Byron	
Network	Ergon		Powercor		Essential	
Technology type	Geothermal		Wind		Solar	
Size	310 kW		800 kW		150 kW	
Connection level	High Voltage		LV Distribution Tx		LV Line	
	Method 1	Method 2	Method 1	Method 2	Method 1	Method 2
Annual value (trial)	\$65,700	\$70,100	\$46,700	\$23,000	\$13,600	\$6,100
Value per kW (100% CF)	\$286	\$286	\$192	\$192	\$469	\$469
Value per kW (trial)	\$212	\$226	\$151	\$74	\$91	\$41
Notional availability	74%	79%	30%	15%	19%	9%

WHAT THE TRIALS ARE TELLING US – PRELIMINARY SCENARIO RESULTS

BYRON SHIRE COUNCIL TRIAL: PRELIMINARY RESULTS

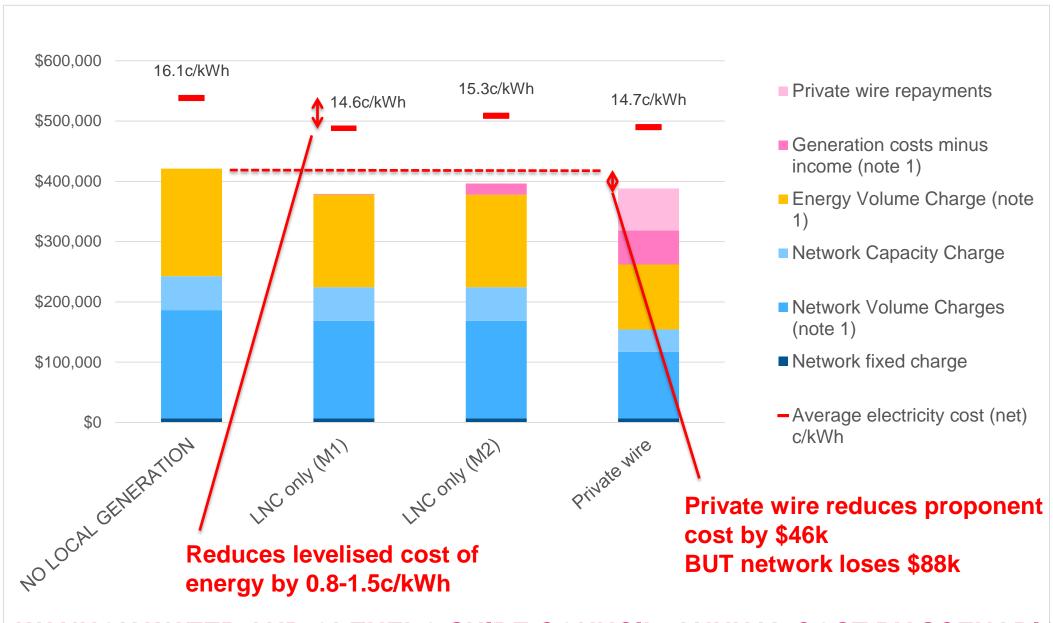


SCENARIO OUTCOMES - BYRON SHIRE COUNCIL

	Current market	LNC only (M1)	LNC only (M2)	Private wire
Customer – annual savings compared to BAU	\$2,600	\$16,200	\$8,700	\$22,500
LGNC value	-	-\$13,600	-\$6,100	-
Network business – impact on local charges*	-\$2,700	-\$16,300	-\$8,800	-\$29,400

^{*} BAU network charges ~ \$115,000

WINTON SHIRE COUNCIL TRIAL: PRELIMINARY RESULTS


WINTON GEOTHERMAL PROJECT: ANNUAL COST BY SCENARIO

SCENARIO OUTCOMES – WINTON SHIRE COUNCIL

	Current market	LNC only (M1)	LNC only (M2)	Private wire
Customer – annual savings compared to BAU	-\$5,500	\$60,300	\$64,600	\$129,300
LGNC value	-	-\$65,700	-\$70,100	-
Network business impact (local charges) *	\$400	-\$65,400	-\$69,700	-125,485 (charges only) -\$251,200 (inc CSO effect)

^{*} BAU network charges ~ \$195,000

WANNON WATER TRIAL: PRELIMINARY RESULTS

WANNON WATER AND GLENELG SHIRE COUNCIL: ANNUAL COST BY SCENARIO

SCENARIO OUTCOMES – WANNON WATER TRIAL

	Current market	LNC only (M1)	LNC only (M2)	Private wire
Customer – annual savings compared to BAU	\$1,700	\$48,300	\$24,600	\$46,600
LGNC value	-	-\$46,700	-\$23,000	-
Network business – impact on local charges*	-\$18,500	-\$65,200	-\$41,500	-\$88,500

^{*} BAU network charges ~ \$224,000

PRELIMINARY CONCLUSIONS

PRELIMINARY CONCLUSIONS

- Incentives to duplicate infrastructure (private wires) are real.
- Private wires lead to worse financial outcome for both the NSP and all consumers.
- Absence of LGNC (network export credit) impedes efficient investment and operational decisions by DG proponents.
- LGNCs tentatively appear to make modest but meaningful contribution to:
 - Dispatchable generator operational strategy
 - DG proponent initial investment decision

PRELIMINARY CONCLUSIONS

- End result of offering LGNC would be to keep kWh on the grid (maintain utilisation in increasingly locally derived supply).
- ➤ The volume-capacity method (#2) benefits variable DG less than volumetric only method (#1) due to current 'deterministic' application.
- ➤ Local Electricity Trading would be a **voluntary** offering for retailers (no further Rule Change), potentially unlocked by margin granted by LGNC.

THANK YOU!

Project website

http://bit.do/Local-Energy