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There is a substantial literature analyzing the design of institutions, or “mechanisms,” for

achieving efficient allocations in the presence of public goods. The pioneering paper by Groves and

Ledyard (1977) introduced the first public goods mechanism with Pareto efficient Nash equilibria.

Subsequently, Hurwicz (1979) and Walker (1981), building on the ideas in Groves & Ledyard,

defined mechanisms that attain Lindahl allocations — allocations that are individually rational

as well as Pareto efficient. Subsequent theoretical research has focused on developing mechanisms

with additional desirable properties, or mechanisms that can be applied to economies with other

kinds of externalities.1

A number of the mechanisms developed in this theoretical research have been the subject of ex-

perimental studies.2 The experimental results have been mixed at best. The mechanisms have

variously failed to converge to equilibrium, or have exhibited slow convergence, or while out of equi-

librium have suffered failures of individual rationality, failures of collective feasibility, or severely

inefficient outcomes. These results are serious red flags for practical implementation. They sug-

gest that in the case of public goods there remains a gap between implementation in theory and

implementation in practice, and that perhaps a different approach might be fruitful.

The failures when out of equilibrium are especially troubling. Even for mechanisms that have good

stability properties, we can’t realistically expect to be in equilibrium very often (if ever!). And

the failures when out of equilibrium are often unacceptable: outcomes that make some (or all) the

participants far worse off than they would have been had they been simply left alone, or outcomes

that are not well-defined, because they are not feasible for some individuals or for the economy as

a whole. This suggests that a focus on just the equilibrium properties of mechanisms — asking

whether the equilibria are Pareto efficient, or Lindahl allocations, etc. — and even expanding the

focus to the mechanisms’ stability properties as well, is too narrow. It suggests that we also need

to take into account some desiderata for mechanisms’ out-of-equilibrium properties.

In this paper we take a very limited, preliminary step in that direction. Our objective is to

devise a mechanism for public goods that always, whether in equilibrium or not, produces feasible

and “acceptable” outcomes and still produces Lindahl allocations as equilibria. Along the way, we

introduce a notion of acceptability that, as far as we know, has not appeared before. We’re partially

successful in attaining this objective: the mechanism we introduce always produces feasible and

acceptable outcomes, and does produce Lindahl allocations as Nash equilibria. Communication

among the participants is via natural, market-like proposals involving quantities and Lindahl-like

1For example, Bagnoli and Lipman (1989), de Trenqualye (1989, 1994), Kim (1993), Varian (1996), Peleg (1996),

Corchon and Wilkie (1996), Tian (2000), Chen (2002), Healy and Mathevet (2013), and Van Essen (2013, 2015).
2For example, see Chen and Plott (1996), Chen and Tang (1998), Chen and Gazzale (2004), Healy (2006), Van

Essen (2012), and especially Van Essen, Lazzati, and Walker (2012).
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prices, which are turned into outcomes according to a transparent and simple outcome function.

There are many other, non-Lindahl Nash equilibria as well, however the Lindahl equilibrium is the

only strong equilibrium, and the mechanism always yields (weak) Pareto improvements, whether

in or out of equilibrium. In the two-person case we also identify the coalition-proof Nash equilibria.

We begin by making two observations. The first is that for the problem of allocating or exchanging

purely private goods, simple market institutions such as the double auction have enjoyed remark-

able success in the laboratory, beginning with the landmark paper by Smith (1962). The second

observation is that when there are only two traders, the public-goods allocation problem and the

private-goods allocation problem are essentially identical.

Building on these two observations, we first define a simple market-like mechanism for imple-

menting Walrasian allocations when there are only two consumers and two goods. In the spirit

of the market games introduced by Shapley and Shubik (1977), Dubey (1982), and others,3 the

actions the mechanism makes available to the players are natural, economically meaningful price-

and-quantity proposals, and the proposals lead to outcomes in a natural and intuitive way. The

mechanism’s outcomes are always feasible, both for individuals and in the aggregate, whether the

mechanism is in equilibrium or not, and the outcomes are always individually rational.

We then show that a straightforward reinterpretation of quantities and prices converts the mecha-

nism into one for allocating a public good. And it’s then straightforward to extend the mechanism

to an arbitrary number of participants, preserving all the properties of the two-person private-goods

and public-good versions of the mechanism.

We make liberal use of the Edgeworth Box to depict the arguments and the intuition for the private-

goods exchange mechanism and the Kölm Triangle to provide intuition for the public-goods version

of the mechanism.

The Pure Exchange Allocation Problem

There are two goods and two traders. Trader S wishes to sell good X in exchange for good Y,

and Trader B wishes to purchase good X in exchange for good Y. It’s convenient to think of Y as

money.

The number of units of X the traders exchange will be denoted by q; the price at which the

units are exchanged is denoted by p; and we write m = pq for the amount of money exchanged.

Thus, B pays m = pq dollars to S in exchange for q units of X. Each trader i ∈ {B, S} has a

strictly quasiconcave utility function ui(·) over trades (q,m) ∈ R2
+. We assume that uS is strictly

3For example, Wilson (1978), Schmeidler (1980), and Binmore (1987).
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Figure 1: Preferences, endowments, and a trade (q,m)

decreasing in q and strictly increasing in m, and that uB is strictly increasing in q and strictly

decreasing in m. See Figure 1.

While we define the mechanism and carry out the analysis in terms of trades (q,m) and the

associated prices p, these can of course be related to allocations and preferences in the usual way:

Each trader i ∈ {B, S} owns an endowment bundle (̊xi, ẙi) ∈ R2
+, with x̊S > 0 and ẙB > 0, and

the mechanism’s outcome (q,m) yields the allocation ((xB, yB), (xS, yS)) defined by

xB = x̊B + q, yB = ẙB −m, xS = x̊S − q, yS = ẙS +m. (1)

We assume that each trader has a strictly quasiconcave utility function Ui over bundles (xi, yi) ∈
R2

+, from which the functions ui above are defined in the obvious way (see Figure 1):

uB(q,m) = UB (̊xB + q, ẙB −m) and uS(q,m) = US (̊xS − q, ẙS +m).

For any price p > 0, let q̂i(p) denote Trader i’s utility-maximizing quantity qi — i.e., the trade

(q̂i, pq̂i) maximizes ui(qi, pqi) for the given price p. Thus, q̂B(·) is Trader B’s demand function and

q̂S(·) is Trader S’s supply function. Note that we use q̂i to denote both the function q̂i(·) and also

the quantity q̂i(p), when it’s clear what the relevant price p is.

We restrict our attention to allocation problems in which there is a unique Walrasian allocation,

which we assume is interior: the Walrasian outcome, denoted (qW , pW ), is the unique pair (q, p)

that satisfies q = q̂B(p) = q̂S(p), and we assume that 0 < qW < x̊S and 0 < pW qW < ẙB.
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The Pure Exchange Mechanism

Each trader makes a proposal ξi = (qi, pi) ∈ R2
+. We place the following restrictions on the

traders’ proposals, to prevent a trader from offering more than he owns:

qS 5 x̊S and pBqB 5 ẙB. (2)

The proposal (qi, pi) can be interpreted as “I will buy/sell any amount up to qi units of X (but no

more) at the price pi for each unit.” When the profile of proposals is ξ =
(
(qB, pB), (qS, pS)

)
, the

outcome (q,m) ∈ R2
+ is given by

q =

{
min{qB, qS}, if pS 5 pB

0, if pS > pB

p = 1
2
(pB + pS)

m = pq

See Figures 2 and 3. We’ll sometimes abuse this terminology a bit by referring to (q, p) as an

outcome.

Figure 2: The outcome (q,m) if pS 5 pB
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Figure 3: The outcome (q,m) if pS > pB.

Feasibility and Acceptability

It follows from (2) that each trader’s strategy space, or message space, which we denote by Ψi,

depends on his own endowment of one of the goods:

ΨB(ẙB) = { (qB, pB) ∈ R2
+ | pBqB 5 ẙB } and ΨS (̊xS) = { (qS, pS) ∈ R2

+ | qS 5 x̊S }.

By restricting the traders’ proposals in this way, we’ve built into the mechanism that for any

admissible profile of proposals ξ = (ξB, ξS) — whether the profile is an equilibrium or not — the

outcome is individually feasible,

xi, yi = 0, i ∈ {B, S},

and satisfies the aggregate feasibility condition,

xB + xS 5 x̊B + x̊S and yB + yS 5 ẙB + ẙS,

and is in fact always non-wasteful, and therefore balanced for every profile of proposals (not

merely the equilibrium proposals):

xB + xS = x̊B + x̊S and yB + yS = ẙB + ẙS.

We denote the outcome function defined in (3) as ϕ∗ : ΨB(ẙB)×ΨS (̊xS)→ R2
+.

The outcome function ϕ∗ has the following acceptability property, which as far as we know has not

previously appeared in the literature. For this definition let (M, ϕ) be an arbitrary mechanism, or
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game form, for n players, with message space, or action space, M = ×n
1Mi and outcome function

ϕ : M→ Z, where Z is the set of possible outcomes. For each i and each ξi ∈Mi, let ϕi(ξi) denote

the set of all outcomes that can occur if i chooses the message ξi:

ϕi(ξi) := {z ∈ Z | z = ϕ(ξ̃) for some ξ̃ s.t. ξ̃i = ξi }.

Definition: For each player i, designate some outcome ẑi ∈ Z as a status-quo outcome for i.

An outcome z ∈ Z is acceptable for the utility function ui if ui(z) = ui(ẑi). A message ξi ∈Mi is

uniformly acceptable for ui if every outcome in ϕi(ξi) is acceptable for ui. An outcome function

ϕ has the acceptability property for (u1, . . . , un) if there is a uniformly acceptable message ξi

for each i = 1, . . . , n.

The outcome function ϕ∗ has the acceptability property, but also the much stronger property

described in the following remark:4

Remark: If preferences are quasiconcave, then under the outcome function ϕ∗ every proposal

ξi = (qi, pi) that satisfies ui(qi, piqi) = ui(0, 0) is uniformly acceptable to player i. In other words,

any proposal that’s acceptable to i is uniformly acceptable to i. Therefore, if i makes only proposals

that are acceptable to him, then the outcome under ϕ∗ (whether in equilibrium or not) will always

be acceptable to him.

The outcomes we’ve defined as acceptable for i are the ones that are often called individually

rational for i. But the notion of individual rationality is typically applied to a mechanism’s

equilibrium outcomes. An important feature of the outcome function ϕ∗, on the other hand, is the

property described in the above Remark: an acceptable proposal by i can yield only acceptable

outcomes for i, whether in or out of equilibrium, whatever proposal the other trader makes. We

therefore have the following result:

Remark: If preferences are quasiconcave and each trader i’s proposal ξi = (qi, pi) is acceptable

for ui, then the outcome under ϕ∗ is weakly a Pareto improvement on the no-trade outcome, i.e.,

ui(qi, piqi) = ui(0, 0) for i ∈ {B, S}, whether (ξB, ξS) is an equilibrium or not.

In the public good setting the acceptability property and both the individual and aggregate feasi-

bility properties of the outcome function ϕ∗ are important features that distinguish it from other

mechanisms, which, when out of equilibrium, can produce outcomes that are far from feasible

4The property described in this remark is well-defined only for mechanisms in which individuals’ messages ξi are

the arguments of their utility functions ui (or map to those arguments, as here). This could perhaps serve as one

possible definition of the notion that a mechanism uses “natural” messages. In that case we can say that a message

(or proposal) ξi is acceptable if ui(ξi) = ui(ẑi).
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or far from acceptable. We’ll have more to say about feasibility, acceptability, and the players’

strategy spaces when we turn to the public-goods version of the mechanism.

Equilibrium

The following proposition is obvious:

Proposition 1.1: If (q, p) is a Walrasian outcome, and if qB = qS = q and pB = pS = p, then(
(qB, pB), (qS, pS)

)
is a Nash equilibrium.

It’s also obvious that there are many Nash equilibria — indeed, any profile
(
(qB, p), (qS, p)

)
that

satisfies qB = qS 5 min{q̂B(p), q̂S(p)} is a Nash equilibrium. We proceed to develop some condi-

tions that a Nash equilibrium must satisfy.

Since each player i can unilaterally guarantee zero trade by proposing qi = 0, the following propo-

sition is immediate:

Proposition 1.2: Every Nash equilibrium is individually rational.

There are many Nash equilibria in which no trade takes place: for example, if qB = qS = 0, then(
(qB, pB), (qS, pS)

)
is an equilibrium for any pB and pS. There are also equilibria in which pS > pB,

so that q = 0. Any equilibrium in which q = 0 will be called a no-trade equilibrium, and an

equilibrium in which q > 0 will be called an equilibrium with trade.

Proposition 1.3: If
(
(qB, pB), (qS, pS)

)
is a NE with trade, then qB > 0, qS > 0, and pB = pS.

Proof: If qB = 0 or qS = 0 or pS > pB, then q = 0; therefore a NE with trade must have qB > 0,

qS > 0, and pS 5 pB. Suppose pS < pB; then neither player is maximizing his utility, as follows:

if B, for example, proposes (q′B, p
′
B), where p′B = pS and q′B = qB, then the outcome will be q′ = q

(i.e., q is unchanged) and p′ = pS < p < pB. Therefore p′q′ < pq, and uB(q′, p′q′) > uB(q, pq).

(Alternatively, we could have applied this argument to S instead of B.) �

Proposition 1.4: If
(
(qB, pB), (qS, pS)

)
is a NE with trade, then the outcome (q, p) satisfies

q 5 q̂B(p) and q 5 q̂S(p).

Proof: Suppose by way of contradiction that q > q̂B(p). Let p′B = pB and q′B = q̂B(p). Then

the outcome (q′, p′) satisfies p′ = p; and since q > q̂B(p), we have q′ = min{q′B, qS} = q̂B(p).

Therefore
uB(q′, p′q′) = uB

(
q̂B(p), pq̂B(p)

)
> uB(q, pq).

The same argument establishes that if q > q̂S(p), then S’s utility is increased by proposing

(q′S, p
′
S) = (q̂S(p), pS) instead of (qS, pS). �
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Proposition 1.5: If
(
(qB, pB), (qS, pS)

)
is a NE with trade and qB 6= qS, then q = min{q̂B(p), q̂S(p)}.

Proof: Let qB < qS; then we have q = qB, and Proposition 1.4 therefore guarantees that

qB 5 min{q̂S(p), q̂B(p)}. We will show that qB = q̂B(p). Suppose by way of contradiction that

qB < q̂B(p); we show that the proposal (q′B, p
′
B) = (q̂B(p), pB) yields an outcome with greater utility

for B than the outcome from the proposal (qB, pB). There are two cases to consider: qS = q̂B(p)

and qS < q̂B(p). In both cases the outcome (q′, p′) will satisfy p′ = p (i.e., p will not change),

because p′B = pB. In the first case, where qS = q̂B(p), we have q′ = q′B = q̂B(p). B clearly

prefers this outcome (q′, p′) to (q, p). In the second case, where qS < q̂B(p), we have q′ = qS, and

therefore (q′, p′) = (qS, p). This gives us q < q′ < q̂B(p), and since uB is strictly quasiconcave

and uB(q, pq) < uB
(
q̂B(p), pq̂B(p)

)
, we have uB(q, pq) < uB(qS, pqS) — i.e., the proposal (q′B, p

′
B)

does indeed yield B a higher utility than (qB, pB), contradicting that
(
(qS, pS), (qB, pB)

)
is a NE.

Therefore we must have qB = q̂B(p). The same argument establishes that if qS < qB, then we have

q = q̂S(p). �

Summarizing Propositions 1.2 - 1.5, every NE with trade
(
(qB, pB), (qS, pS)

)
satisfies the following

necessary conditions:

(E1)
(
(qB, pB), (qS, pS)

)
is individually rational.

(E2) pB = pS, qB > 0, qS > 0.

(E3) Exactly one of the following is true:

(E3.1) q = qB = qS 5 min{q̂B(p), q̂S(p)}, or

(E3.2) q = qS = q̂S(p) < min{qB, q̂B(p)}, or

(E3.3) q = qB = q̂B(p) < min{qS, q̂S(p)}.

In fact, the conditions (E1) - (E3) are also sufficient to ensure that a profile
(
(qB, pB), (qS, pS)

)
is

a NE with Trade, as the following proposition establishes.

Proposition 1.6: If
(
(qB, pB), (qS, pS)

)
satisfies (E1) - (E3) then it is a NE with trade.

Proof: Suppose that
(
(qB, pB), (qS, pS)

)
satisfies (E1) - (E3) and (q, p) is the outcome. Consider

first whether the Buyer B can obtain a better outcome by deviating to a proposal (q′B, p
′
B). (E2)

guarantees that the outcome satisfies q > 0, and (E1) therefore guarantees that uB will not be

increased by either q′B = 0 or p′B < pB = pS, either one of which produces the outcome q′ = 0.

Consequently the outcome (q′, p′) must satisfy q′ > 0 and p′ = pB, and therefore uB is greatest if

p′ = pB.

It remains to establish that uB will not be increased by any q′B 6= qB. First suppose that q′B > qB.

If either (E3.1) or (E3.2) holds, then this will not change the outcome: q′ = q. If (E3.3) holds,
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so that q = qB = q̂B(p), then clearly uB will not be increased by any q′B 6= qS. Now suppose that

q′B < qB. If either (E3.1) or (E3.3) holds, this will reduce q and therefore reduce uB; if (E3.2)

holds it will reduce uB if q′B < qS (because it will reduce q), and it will leave q and therefore uB

unchanged if q′B = qS. Thus, there is no q′B 6= qB that will increase uB, establishing that there is

no profitable deviation from (qB, pB) for the Buyer. The parallel argument establishes that there

is no profitable deviation from (qS, pS) for the Seller. �

Together, Propositions 1.2 to 1.6 provide the following characterization of the Nash equilibria with

trade:

Theorem 1.1: The proposal profile
(
(qB, pB), (qS, pS)

)
is a NE with trade if and only if it satisfies

(E1) - (E3).

Figure 4 depicts all the outcomes (q,m) at the NE profiles ξ =
(
(qB, pB), (qS, pS)

)
. The curves ZS

and ZB in Figure 4 are the Seller’s and the Buyer’s offer curves (in the quadrant in which S and B

are indeed the seller and the buyer, rather than the reverse). The set ZSB is the region bounded

by ZS and ZB — i.e.,

ZSB = {(q,m) | ∃ q′, q′′ : (q′,m) ∈ ZB, (q′′,m) ∈ ZS, q
′ 5 q 5 q′′ }.

From the characterization conditions (E1) - (E3) one can easily see that the NE with trade yield

exactly the outcomes (q,m) that lie in the region ZSB, with the exception of the no-trade outcome

(q,m) = (0, 0), which is clearly the outcome of any no-trade NE. Therefore ZSB is the set of NE

outcomes.

Pareto Efficiency and Refinements

The following result, which is clear from Figure 4, is an immediate consequence of the assumption

that the utility functions are strictly increasing and strictly quasiconcave.

Theorem 1.2: The unique Pareto efficient Nash equilibrium outcome is the Walrasian outcome.

Consequently the Walrasian outcome is the only strong Nash equilibrium (SNE) outcome: A Nash

equilibrium is strong5 if no coalition can unilaterally improve upon it; therefore when there are

only two players a Nash equilibrium is strong if and only if it is Pareto efficient.

Theorem 1.3: The unique strong Nash equilibrium outcome is the Walrasian outcome.

5Aumann (1959) introduced the concept of a strong Nash equilibrium.
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Figure 4: ZSB, the set of Nash equilibrium outcomes

This seems like an attractive result. However, it may be overly optimistic, for the same reason that

strong Nash equilibrium is in many cases too pessimistic: the notion of strong Nash equilibrium

assumes that a coalition can successfully deviate from an equilibrium if the deviation is preferred

by all its members. In many games this leaves no SNE (thus the pessimism), while here it leaves

us with the unique Walrasian equilibrium (optimism). But perhaps we should not regard such

coalitional deviations as viable unless they’re immune to further deviations by subcoalitions. This

is the substance of coalition-proof Nash equilibrium (CPNE), introduced by Bernheim, Peleg,

and Whinston (1987). When there are only two players, as we have here, the coalition-proof Nash

equilibria are the Nash equilibria that are not Pareto-dominated by any other Nash equilibrium.

So the question we have to answer to determine the CPNE of our mechanism is which NE are

Pareto-dominated by some other NE? It’s easy to see that any allocation in the interior of the

region ZSB is Pareto-dominated by other allocations in ZSB — i.e., by other NE. The following

result, which is depicted in Figure 5, establishes that indeed these allocations, as well as certain

segments of the offer curves ZS and ZB, are not CPNE outcomes, but that other segments of the

offer curves are CPNE outcomes.

Theorem 1.4: The set of coalition-proof Nash equilibrium outcomes is

{(q,m) ∈ ZS | q∗B 5 q 5 qW} ∪ {(q,m) ∈ ZB | q∗S 5 q 5 qW},

where (q∗B,m
∗
B) maximizes uB on S’s offer curve ZS and (q∗S,m

∗
S) maximizes uS on B’s offer curve

ZB.

Proof: Let ξ =
(
(qB, pB), (qS, pS)

)
be a NE, with outcome (q, p). If q = 0 then any NE that
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Figure 5: The coalition-proof Nash equilibria

yields the Walrasian outcome Pareto dominates ξ, so ξ is not a CPNE. If 0 < q < min{q̂B(p), q̂S(p)},
let q′ = min{q̂B(p), q̂S(p)}; the profile ξ′ =

(
(q′, p), (q′, p)

)
yields the outcome (q′, p) and is a NE;

and the outcome (q′, p) Pareto dominates (q, p) — the player i for whom q = q̂i(p) is clearly better

off, and the other player is better off as well, due to the strict quasiconcavity of each uj — so again

ξ is not a CPNE. This leaves us with just those NE for which the outcome is a nonzero allocation

on one of the offer curves, ZS or ZB — i.e., q = min{q̂B(p), q̂S(p)}. We complete the proof for ZS

— i.e., q = q̂S(p); the proof for ZB is identical.

There are two quite different cases to consider: (1) q < q∗S, for which the NE is not a CPNE; and

(2) q = q∗S, for which the NE is a CPNE.

(1) Suppose that (q, pq) ∈ ZS and q < q∗S. Let p∗ be the price at which (q∗S, p
∗q∗S) ∈ ZS. This is

the buyer’s most-preferred NE outcome, so he prefers it to (q, pq); and it is on the seller’s offer

curve ZS, with p∗ > p, so the seller prefers it to (q, pq) as well. Therefore ξ is not a CPNE.

(2) Suppose that (q, pq) ∈ ZS and q∗S 5 q < qW , and let (q′,m′) be an allocation that Pareto

dominates (q,m) = (q, pq). We will show that (q′,m′) lies outside the region ZSB and is therefore

not a NE outcome. Because (q,m) = (q, pq) ∈ ZS, we have MRSS = p at (q, pq). From (E.3) we

have q 5 q̂B(p), and since (q,m) is not Walrasian, we have q < q̂B(p), from which it follows that

MRSB > p at (q,m). Thus, MRSS < MRSB at (q,m), and therefore the Pareto improvement

(q′,m′) must satisfy q′ > q. Let σ be the slope of the offer curve ZS at (q,m), and note that

MRSB(q,m) < σ: if instead MRSB(q,m) = σ, then uB(q,m) > uB(q∗,m∗), contradicting that
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(q∗,m∗) maximizes uB on ZS. Now we have q′ > q, uB(q′,m′) > uB(q,m), and MRSB(q,m) < σ;

therefore (q′,m′) /∈ ZSB. Therefore there is no NE strategy profile ξ′ that yields the outcome

(q′,m′), and since (q′,m′) is an arbitrary Pareto improvement on (q,m), there is no NE that

dominates ξ =
(
(qB, pB), (qS, pS)

)
— i.e., ξ is a CPNE. �

The Public Good Allocation Problem

Now we assume that the good X is a public good. We continue to think of the good Y as

money, and we assume that it costs cq dollars to provide q units of the public good. The two-

person allocation problem is to decide on the level q at which the public good will be provided,

and how the cost of providing the q units, say cq, will be divided between two persons A and B.

Allocations, or outcomes, are therefore triples (q, tA, tB) that satisfy the equation tA + tB = cq; the

amounts tA and tB are in effect taxes paid by A and B. Figure 6 depicts the allocations/outcomes

in a Kölm Triangle diagram.6

Each person has a positive amount ẙi of the Y-good and has a strictly quasiconcave utility function

ui over pairs (q, ti); we assume that each ui is strictly increasing in q and strictly decreasing in

ti. As in the private good case, we denote the players’ demand functions by q̂i(·) — i.e., for each

p > 0, q̂i(p) is the public-good level q that maximizes ui(q, pq).

Figure 6: An allocation (q, tA, tB) depicted in the Kolm Triangle

6Expositions of the Kölm Triangle can be found in Thomson (1999) and Schlesinger (1989).
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Definition: A Lindahl outcome is a triple (q, tA, tB) that satisfies q = q̂A(pA) = q̂B(pB) and

pA + pB = c, where pA = tA/q and pB = tB/q are Lindahl prices.

A typical Lindahl allocation/outcome is depicted in Figure 7. The slope of the “price line” is given

by the Lindahl prices pA and pB. We assume there is a unique Lindahl outcome, (qL, tLA, t
L
B), which

is interior: qL > 0 and 0 < tLi < ẙi for i = A,B.

Figure 7: A Lindahl allocation and price-line

The Public Good Mechanism

Each person makes a proposal ξi = (qi, πi) ∈ R2
+, which, as we’ll see below, can be interpreted

as “I will agree to any public good level up to qi units (but no more) if the cost to me is no more

than πi for each unit.” As in the private-goods version of the mechanism, we require that each

proposal satisfy the constraint πiqi 5 ẙi.

When the profile of proposals is ξ =
(
(qA, πA), (qB, πB)

)
, the mechanism’s outcome (q, tA, tB) is

given by

q =

{
min{qA, qB}, if πA + πB = c

0, if πA + πB < c

tA = pAq and tB = pBq, where

pA = 1
2
c+ 1

2
(πA − πB) and pB = 1

2
c+ 1

2
(πB − πA).

Note that pA +pB is identically equal to c, so for any pair of proposals ξ = (ξA, ξB) the budget will

13



Figure 8: The outcome if pA + pB = c

Figure 9: The outcome if pA + pB < c

be balanced. Moreover, if q > 0 then πA + πB = c, so each price pi cannot be larger than Player

i’s proposed price πi — he pays no more than πi per unit for the public good.

Note too the similarity of the mechanism’s equations, above, to the ones for the exchange mech-

anism. Comparing Figures 8 and 9 with Figures 2 and 3 suggests that indeed the mechanism for

the public-good problem is the same as the mechanism we’ve already introduced for the exchange

problem. We verify that as follows.

We first show that given any proposal ξA = (qA, πA) by Player A, the decision problem for Player

B here is the same as the decision problem for the Buyer in the exchange mechanism:

14



Let p′B = πB and p′A = c− πA. Then we have p′B = p′A if and only if πA + πB = c. Therefore

q =

 min{qA, qB}, if p′B = p′A

0, if p′B < p′A.

Furthermore, let p′ = 1
2
(p′A +p′B); then we have p′ = 1

2
(c+πB−πA) = pB. And finally, let m′ = tB,

so that we have m′ = p′q. Now if we substitute p′A, p
′
B, p

′, and m′ for pS, pB, p, and m in the earlier

analysis of the exchange mechanism, we see that Player B’s decision problem here is precisely the

Buyer’s decision problem in the exchange mechanism. Symmetrically, Player A’s decision problem

here is also the same as the Buyer’s (not the Seller’s) decision problem in the exchange mechanism.

Because each player’s decision problem is the same as the Buyer’s problem in the exchange mecha-

nism, and neither one’s is the same as the Seller’s problem, we can’t simply apply the propositions

we’ve already established. But each proof of the exchange-mechanism propositions consisted of

establishing an identical property of both the Buyer’s and the Seller’s decisions. Therefore, while

we can’t appeal directly to the propositions themselves, for each proposition we can directly re-

produce the proof of the Buyer’s behavior to establish the corresponding result for both players in

the public good mechanism.

Now it’s straightforward to simply enumerate the results for the public good mechanism that cor-

respond to those for the exchange mechanism. We omit the proofs, which, as we’ve just described,

are identical to the proofs for the exchange mechanism except for changes in notation. We also

omit the intermediate results, the analogues of Propositions 1.3 to 1.6.

Proposition 2.1: If (q, tA, tB) is a Lindahl outcome, and if qA = qB = q and πiq = ti for each

i ∈ {A,B}, then
(
(qA, πA), (qB, πB)

)
is a Nash equilibrium for which the outcome is (q, tA, tB).

Proposition 2.2: Every Nash equilibrium is individually rational.

Theorem 2.1: The profile
(
(qA, πA), (qB, πB)

)
of proposals is a NE with q > 0 if and only if it

satisfies the following conditions:

(E′1)
(
(qA, πA), (qB, πB)

)
is individually rational.

(E′2) πA + πB = c, qS > 0, qB > 0.

(E′3) Exactly one of the following is true:

(E′3.1) q = qA = qB 5 min{q̂A(pA), q̂B(pB)}, or

(E′3.2) q = qA = q̂A(pA) < min{qB, q̂B(pB)}, or

(E′3.3) q = qB = q̂B(pB) < min{qA, q̂A(pA)}.

The equilibrium outcomes are depicted in Figure 10.
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Figure 10: The Nash equilibrium outcomes

Figure 11: The coalition-proof Nash equilibria

Theorem 2.2: The unique Pareto efficient Nash equilibrium outcome is the Lindahl outcome.

Theorem 2.3: The unique strong Nash equilibrium outcome is the Lindahl outcome.

Theorem 2.4: The set of coalition-proof Nash equilibrium outcomes is

{(q, t) ∈ ZA | q∗B 5 q 5 qL} ∪ {(q, t) ∈ ZB | q∗A 5 q 5 qL},

where (q∗A, t
∗
A) maximizes uA on B’s offer curve ZB and (q∗B, t

∗
B) maximizes uB on A’s offer curve

ZA.

The CPNE outcomes are depicted in Figure 11.
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The Mechanism with More Than Two Participants

So far, we’ve exploited the fact that the private-goods and public-goods allocation problems are

identical in the two-person case to establish that a natural trading mechanism for private goods

can be exactly duplicated when one of the goods is a public good, and that the mechanism has the

same properties in both the private- and public-good problems. Here we extend the public-good

version of the mechanism to an arbitrary number of participants.7

As in the two-person mechanism, each person makes a proposal ξi = (qi, πi) ∈ R2
+ which is

interpreted in the same way as before: “I will agree to any public good level up to qi units (but

no more) if the cost to me is no more than πi for each unit.” We continue to require that each

proposal satisfy the constraint πiqi 5 ẙi.

When the profile of proposals is ξ =
(
(q1, π1), . . . , (qn, πn)

)
, the mechanism’s outcome (q, t1, . . . , tn)

is given by the outcome function ϕ∗ : ×n
i=1Ψi(ẙi)→ Rn+1

+ defined as follows:

q =

{
min{q1, . . . , qn}, if

∑n
i=1 πi = c

0, otherwise ;

ti = piq, where pi =
1

n
c+ πi − π and π =

1

n

n∑
j=1

πj (i = 1, . . . , n).

Note that when n = 2 this is the mechanism we introduced above for two persons.

For every profile ξ =
(
(q1, π1), . . . , (qn, πn)

)
— whether ξ is an equilibrium or not — the mecha-

nism’s outcome ϕ∗(ξ) has the following properties:

(i)
∑

i pi ≡ c, so the budget is always balanced.

(ii) The outcome is always both collectively and individually feasible.

(iii) Player i never pays more than his proposed price πi per unit of the public good.

Therefore the mechanism’s outcome can always be implemented, whether the mechanism is in

equilibrium or not. Furthermore, if any of the public good is produced, no player’s tax ti will be

more than he has proposed or more than the amount of the Y good he owns (ti 5 ẙi), and the

quantity of the public good will not exceed what any player has proposed. As in the private-goods

version of the mechanism, the outcome function ϕ∗ has the property that every acceptable proposal

is uniformly acceptable:

7Extensions of the private-goods version of the mechanism to more than two traders is possible as well, but not

in the same way, reflecting the fact that when n > 2 the private- and public-good allocation problems are no longer

identical. Dubey (1984), for example, presents a “strategic market game” for any number of traders that is similar

to the private-goods version of the mechanism presented here; see Giraud (2003) for a survey of such strategic

market games.
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Remark: If preferences are quasiconcave, then under the outcome function ϕ∗ every proposal

ξi = (πi, qi) that satisfies ui(qi, πiqi) = ui(0, 0) is uniformly acceptable to player i; therefore, if

i makes only proposals that are acceptable to him, then the outcome under ϕ∗ will always be

acceptable to him. If each proposal ξi is acceptable for ui, then the outcome ϕ∗(ξ1, . . . , ξn) is a

weak Pareto improvement on the zero-provision allocation (q, t1, . . . , tn) = (0, 0, . . . , 0), whether

(ξ1, . . . , ξn) is an equilibrium or not.

As with the two-person public-good mechanism, we can show that each player’s decision problem is

the same as the Buyer’s problem in the private-goods exchange mechanism, where now the aggregate

of all the n− 1 other players plays the role of the Seller: For each player i let q̌−i = minj 6=i qj, let

p′−i = c−
∑

j 6=i πj, and let p′i = πi. Then we have p′i = p′−i if and only if
∑

i πi = c. Therefore, as

in the exchange mechanism,

q =

{
min{qi, q̌−i} if p′i ≥ p′−i

0 otherwise

Furthermore, let p′ = (n−1)
n
p′i+

1
n
p′−i; then p′ = pi. This is again precisely the Buyer’s problem in the

two-player private-good mechanism (with the average price 1
2
pB+ 1

2
pS generalized to (n−1)

n
p′i+

1
n
p′−i).

Moreover, we can continue to depict the best response problem for each consumer in the Kölm

triangle, as in Figure 7.

As before, it is straightforward to recover the equilibrium results for the n-player public-good

mechanism that correspond to those in the exchange mechanism:

Proposition 3.1: If (q, t1, . . . , tn) is a Lindahl outcome, and if for all i, qi = q and πiq = ti, then

the profile ξ =
(
(qi, πi)

)n
i=1

is a Nash Equilibrium at which the outcome is (q, t1, ..., tn).

Proposition 3.2: Every Nash equilibrium is individually rational.

Theorem 3.1: The profile ξ =
(
(qi, πi)

)n
i=1

is a NE with q > 0 if and only if it satisfies the

following conditions:

(E′′1) ξ is individually rational.

(E′′2)
∑

i πi = c and qi > 0 for all i.

(E′′3) We have q 5 min{q̂1(p1), ..., q̂n(pn)}, and for each i, if qi < q̌−i, then qi = q̂i(pi).

Theorem 3.2: The unique Pareto efficient Nash equilibrium outcome is the Lindahl outcome.

Theorem 3.3: The unique strong Nash equilibrium outcome is the Lindahl outcome.
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Discussion

We set out to devise a mechanism for allocating public goods in which the mechanism’s partici-

pants would communicate via natural, market-like proposals involving quantities and Lindahl-like

prices, and in which a transparent and natural outcome function would always turn the price-

quantity proposals into balanced and acceptable outcomes that would be Lindahl allocations when

in equilibrium. The necessary insights were provided by focusing first on the problem when there

are only two parties involved, where we could exploit the fact that in the two-person case the

allocation problem for one public good and one private good is identical to the familiar Edgeworth

Box two-person exchange problem with two private goods. We first devised a natural prices-and-

quantities mechanism for the two-person private-goods problem, then performed a straightforward

conversion of the mechanism to the two-person public good setting, and then generalized this

public-good version of the mechanism so that it could be applied to an arbitrary number of par-

ticipants. Here we point out some of the desirable features of the mechanism, and some of the

trade-offs these features entail.

Clearly an attractive feature of the mechanism is that its outcomes are well-defined, feasible, and

non-wasteful, no matter what proposals are made, whether the proposals are in equilibrium or

not. Moreover, whether in equilibrium or not, the mechanism’s outcome will be both feasible

and acceptable for each participant: while both the public good level q and a player’s tax ti

depend on all participants’ proposals, the feasibility and acceptability of the outcome to Player i

depend only upon his own proposal (qi, πi). Consequently, the mechanism’s outcomes can always

be implemented — the public good can be produced, and taxes collected to finance it — without

waiting until we arrive at an equilibrium. In this respect the mechanism operates in much the

same way as exchange of private goods.8

Note that in the public-goods mechanisms devised by Groves & Ledyard (1977), Hurwicz (1979),

and Walker (1981), as well as many others, the outcome functions yield out-of-equilibrium alloca-

tions that can be far from feasible, both individually and in the aggregate, and far from acceptable

individually to the participants. Indeed, in Van Essen, et al. (2012), when the mechanisms of Kim

(1993), Chen (2002), and Walker (1981), all of which attain Lindahl outcomes in equilibrium, were

subjected to experimental tests, the mechanisms were rarely in equilibrium, and they all attained

out-of-equilibrium outcomes that badly failed these feasibility and acceptability criteria.

Of course, this “always feasible, always acceptable” character of the mechanism comes at a cost.

First is the restriction we impose on each player that he’s not allowed to propose more than he can

deliver: piqi 5 ẙi in the private-goods version of the mechanism, and πiqi 5 ẙi in the public good

8See Buchanan (1968, p. 88 ff.) for an informal but interesting foreshadowing of this idea.
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mechanism. Each player’s action set, or message space, which we denoted by Ψi, therefore depends

on one of the dimensions of the environment, ẙi, so the mechanism is not “totally decentralized”

in the terminology of Schmeidler [1980]. However, we don’t regard this as a shortcoming of the

mechanism: it’s a commonplace in actual trading that one is required to be able to “carry out

his end of the bargain” in any trade he proposes, a requirement that has particular cogency when

proposals can always be implemented. Note that this dependence of Ψi on ẙi does not require

any player to have any information about any other player’s part of the environment; this is what

Hurwicz (1972) calls “privacy-preserving” and therefore “informationally decentralized.”

The reader is referred to Schmeidler [1980, Section 3] for a discussion and references concerning

aggregate and individual feasibility in allocation mechanisms, as well as alternative notions of

decentralization.

While the Lindahl allocation is always an equilibrium outcome and is the only Pareto efficient

equilibrium, there are also many equilibria that are not Pareto efficient. In particular, the mech-

anism provides each player with a veto over provision of any of the public good: the outcome

function ϕ∗ produces the public-good provision level q = min{q1, . . . , qn}, so by choosing qi = 0 a

player ensures that the public good is not produced. Moreover, non-provision of the public good

is an equilibrium outcome when as few as two players propose qi = 0. The mechanism thus has a

somewhat Wicksellian character.9

Both the veto-power property and the multiplicity of non-Pareto equilibria must be weighed against

the advantages of a mechanism that always, in or out of equilibrium, yields feasible, non-wasteful,

and acceptable outcomes, outcomes that are therefore (weakly) Pareto improving, and that can

produce Lindahl allocations in equilibrium (and in the unique strong equilibrium). The Van

Essen et al. paper (2012) strongly suggests that these properties are important, and perhaps even

essential, for a satisfactory public-goods allocation mechanism.

9Wicksell (1896); see also Buchanan (1968) and Ledyard (2014).
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