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Abstract

We investigate equilibrium in the buyer’s bid double auction (BBDA) in a model with correlated

signals and either private or interdependent values. Using a combination of theorems and numer-

ical experiments, we demonstrate that simple equilibria exist even in small markets. Moreover,

we bound traders’ strategic behavior as a function of market size and derive rates of convergence

to zero of (i) inefficiency in the allocation caused by strategic behavior and (ii) the error in the

market price as an estimate of the rational expectations price. These rates together with numerical

experiments suggest that strategic behavior is inconsequential even in small markets in its effect on

allocational efficiency and information aggregation. The BBDA thus simultaneously accomplishes

both the informational and allocational goals that markets ideally fulfill; it does this perfectly in

large markets and approximately in small markets, with the error attributable mainly to the small-

ness itself and not the strategic behavior of traders.

1 Introduction

A market can have both allocational and informational purposes. The allocational purpose is to

redistribute goods among traders so as to achieve gains from trade. The informational purpose is

to aggregate the private information of traders into a meaningful price that individuals both inside

and outside the market can use to make better consumption and investment decisions. In markets

with a limited number of traders—a small market for short—difficulties that may interfere with

the market generating an efficient allocation and an informative price include both traders’ efforts

to influence the market price in their favor and the randomness of who participates in the market

at any given moment.
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We investigate here how a market’s smallness affects its performance with respect to both of

these purposes. Specifically, we evaluate the performance of a double auction, which is a simple

model of a call market.1 Three issues guide our inquiry. First, we characterize equilibrium in

markets of arbitrary size. Second, we calculate equilibria in small markets and gain insight into

their properties. Third, we measure the impact of strategic behavior upon the allocative efficiency

of the market and the meaningfulness of its price. With respect to this last issue, we evaluate the

properties of the strategically determined market price as an estimate of the rational expectations

equilibrium (REE) price, as defined by Radner (1979).

The Model. There are m buyers, each of whom wishes to buy at most one item, and n sellers,

each of whom has a single item to sell. The call market that we analyze is the buyer’s bid double

auction (BBDA).2 After collecting bids from buyers and asks from sellers, the BBDA sorts them

from lowest to highest and selects as the price the upper endpoint of the interval of possible market-

clearing prices. Trade occurs at this price between buyers whose bids are at or above the price and

sellers whose offers are below the price. We study this price-setting rule because it simplifies the

behavior of traders on one side of the market. Specifically, it implies that if a seller’s ask results in

the sale of his item, then it did not set the market price. A seller thus cannot affect the terms at

which he trades; he therefore sets his ask equal to an estimate of his cost in a way that protects him

from a winner’s curse. We call this his price-taking ask. A buyer calculates his price-taking bid in

a way similar to sellers. A buyer, however, does not submit it as his bid because his bid may set

the price. This gives him an incentive to bid less than his price-taking bid so that in expectation it

nudges the terms of trade in his favor. He therefore computes a strategic term that is the amount

by which he shades his bid below his price-taking bid.

Each trader’s utility is quasilinear in his value/cost and money. We import from Bayesian

statistical decision theory a simple process for generating traders’ signals and values/costs. The

market’s state µ ∈ R is drawn from the uniform improper prior, which may be thought of infor-

mally as the “uniform distribution over the entire real line”.3 For each trader, an idiosyncratic

preference term is independently drawn from a proper distribution on R and then added to the

state to determine his value/cost. If each trader observes his value/cost, then the environment is

correlated private values (CPV). Alternatively, suppose each trader observes a noisy signal of his

value/cost that is generated by adding to it an independent draw from a second proper distribution

1Traders submit bids and asks in a call market until a pre-announced closing time whereupon trades are consum-
mated at a market-clearing price. Most stock and futures markets (e.g., the NYSE) open their trading sessions with
call markets. These markets also use these procedures to restart trading following a halt. Some national treasuries
use call markets to sell their bills. For further discussion see O’Hara (1997, p. 10), Harris (2002, p. 90-92 and
120-132), and Biais, Glosten, and Spatt (2005, sec. 3.1.3).

2The name for this particular double auction originates in the bilateral case where the buyer’s bid is the price
when trade occurs. However, this need not be the case in the multilateral BBDA.

3Improper prior distributions have played an important role in statistical decision theory. See DeGroot (1970,
secs. 10.1–10.4) and Pratt, Raiffa, and Schlaifer (1995, secs. 10.3.4, 11.4.4, and 16.3.2). The uniform improper prior
(also referred to in the literature as the “uninformative” or “diffuse” prior) has previously been used in the case of
one-sided auctions by Wilson (1998) and Klemperer (1999) and in the theory of global games by Morris and Shin
(2003).
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on R. The environment is then correlated interdependent values (CIV). Interdependence exists

because each trader i’s signal carries information concerning the state µ; if a trader’s signal were

observable to other traders, that information would help them to estimate their own values/costs.

The state µ creates correlation among traders’ values/costs and signals despite the independence

of the preference and noise terms.

The uniform improper prior is a limiting representation of extreme ex ante uncertainty about

the state µ. DeGroot (1980, p. 190) motivates it as a model of a decision maker who has little

information ex ante concerning future random events but who will receive a valuable signal at the

interim stage on which he can update his probabilistic beliefs. It may not be worthwhile for the

decision maker to spend time and effort in properly specifying his ex ante beliefs if he takes an

action at the interim stage conditional on his informative signal. There is an additional motivation

for its use in our paper. The uniform improper prior models a situation in which no trader ex

ante has any idea of what the market price will be. Call markets are commonly used to discover

a price when none currently exists (e.g., at the start of a trading session or following a trading

halt). The uniform improper prior is thus an appropriate test case for a call market. It can be

seen as maximally challenging the market with respect to the twin issues of allocating the items

and discovering a meaningful price.

The main value of the uniform improper prior in our paper, however, is that it makes our

analysis tractable while allowing the important features of correlation and interdependence. The

tractability stems from an invariance property : with a uniform improper prior, every draw of a

trader’s signal provides him with identical information as to where other traders’ signals are likely

to be relative to his own draw. Thus the fundamentals of trader i’s decision problem are invariant

with respect to his signal. Invariance is used throughout the paper to reduce a trader’s decision

problem at any possible value of his signal to the decision problem at a specific value of his signal.

We study such a simple trading environment because it provides insights into trading that are

not found within richer models such as general equilibrium theory or the theory of large markets.

A goal of the double auction literature is to understand strategic behavior in explicit models of

price formation, with smallness of the market a necessary component in creating opportunities for

strategic behavior. It is not enough to consider double auctions with arbitrarily large numbers of

traders, for economic theory already has rich models of large markets; a necessary complement to

asymptotic results on double auctions is to determine whether or not they actually describe smaller,

finite markets, or alternatively, how large a number of traders are required for the results to be

observed. As part of our investigation of small markets, the simplicity of our model facilitates the

computation of equilibrium in both the CPV and CIV cases. This is new to the double auction

literature for to our knowledge no examples of double auction equilibria have previously been

computed for these cases. Solving numerically for equilibria is important both for demonstrating

that results and theorems actually describe small markets but also for the purpose of experimental

and empirical testing of the theory.
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Theorems and Numerical Results. Our solution concept is Bayesian Nash equilibrium. A

trader chooses his bid/ask as a function of his privately observed signal. Conceivably, the difference

between a trader’s signal and his bid/ask may vary with his signal. This seems implausible, however,

because a trader’ beliefs about the signals of others remains invariant as described above. It is

therefore reasonable to conjecture that this difference is a constant rather than a function of the

signal. This extends the invariance with respect to signals to bids/asks. Consequently, we study

symmetric offset equilibria in which each trader on a side of the market adds the same constant to

each of his possible signals to determine his bid/ask. Computational evidence we present suggests

that restricting attention to offset equilibria is without loss of generality in the sense that no other

increasing, differentiable symmetric equilibrium exists.

Our informational structure permits us to obtain a sequence of theorems and numerical results.

A theorem, of course, is a statement that follows by the rules of logic from the assumptions of

the model. The difficulty that this paper confronts is that theorists have been unable to address

important conjectures about small double auction markets with correlated or interdependent values.

A numerical result in this paper is a statement that we have been unable to prove but for which

we are able to provide convincing numerical evidence. For example, within the context of our

model, graphing a trader’s marginal expected utility and checking that the computed offset is the

maximizer is not a proof of optimality but is nevertheless good evidence. A theorem is certainly

better than a result, but a result is much better than either simple ignorance or informally argued

conjecture. For the most part, numerical results are stated in the general CIV case with additional

restrictions then specified to enable the proofs of theorems in the simpler CPV case.

For fixed m and n, we consider sequences of markets with ηm buyers and ηn sellers, where η ∈ N
is the size of the market. Our theorems/results concerning strategic behavior and the inefficiency

that it causes are summarized as follows:

• Offset equilibria exist in each size of market, are uniquely determined, and are straightforward

to compute. They are the only increasing and differentiable strategies that define symmetric

equilibrium in the BBDA. The strategic term of a buyer (i.e., the difference between his

equilibrium offset bid and his price-taking bid) is O(1/η).4

• The expected gains from trade that are lost to the traders due to the strategic efforts of

buyers to influence price in their favor as a fraction of the ex ante potential gains from trade

when traders act as price takers is O(1/η2).

We turn next to the impact of strategic behavior upon the market price as an estimate of the

REE price in state µ. The REE price is defined by its two properties of (i) revealing the state

µ and (ii) clearing the limiting continuum market determined by m, n and the distributions of

preference and signal noise terms. Identifying µ in both the CPV and CIV cases is valuable to

anyone planning to trade in the future. In the CIV case it is also useful for current participants in

4For functions u1(η), u2(η) : N→ R+, u1(η) = O (u2(η)) means that there exist constants k ∈ R+ and η0 ∈ N such
that u1(η) < ku2(η), for all η > η0. The notation u1(η) = Θ (u2(η)) means that there exist constants k1, k2 ∈ R+

and η0 ∈ N such that k1u2(η) < u1(η) < k2u2(η), for all η > η0.
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the market as it allows them to better estimate their ex post gains from trading after the market

closes. We find that:

• The error in the equilibrium price as an estimate of the REE price that is attributable to

the strategic behavior of buyers is O(1/η). The expected error in the equilibrium price as an

estimate that is attributable to the finite size of the market and the noise in trader signals

is Θ(1/
√
η); consequently, the impact of strategic behavior on average is of lower order and,

except in small markets, is inconsequential in its effect on the market price as an estimate of

the REE price.

This last point supports the view that the strategic use by traders of their private information does

not impede a market’s ability to meaningfully aggregate dispersed information in its market price.

Moreover, expected sampling error of order Θ(1/
√
η) is inherent in the estimation of the REE price

by any market mechanism, whether incentive compatible or not; the rate of convergence to zero at

which the expected total error in the BBDA’s price as an estimate of the rational expectations price

is thus the fastest rate that is possible. Trade at a market-clearing price in the BBDA is in this

sense asymptotically optimal as an algorithm for estimating the REE price, which it accomplishes

while respecting the privacy of information and the strategic behavior that privacy permits.5

We present numerical experiments as follows:

• In the CIV case in which preference and noise terms are normally distributed, section 4.2

explores how the traders’ equilibrium offsets depend upon the numbers of traders m and n

and the variances of these two distributions. Three of these four variables are held constant

while the fourth is varied in a comparative statics analysis. The results in an intuitive fashion

demonstrate the interplay between the incentive for a buyer to influence price in his favor

together with the necessity for every trader of protecting himself from a winner’s curse. This

is the first work in the double auction literature that explores the relationship between the

beliefs of traders and the bidding behavior of traders.

• All numerical results and theorems discussed above are illustrated in section 5.4 with com-

puted examples of equilibrium in a range of small market sizes (m = n = 2, 4, 8, 16) and

preference and noise terms that are standard normal. All of these examples are replicated for

the Cauchy and Laplace distributions in online Appendices L and M. The rates of convergence

are thus shown to describe the smallest of markets and not just large markets.

Finally, our paper presents in Appendices K and L two robustness checks on our model:

• To investigate the robustness of our use of the uniform improper prior, we consider in online

Appendix K the CIV case in which preference and noise terms are standard normal and

5As shown by Satterthwaite and Williams (2002) in an independent private values model, the BBDA is also worst
case asymptotically optimal among all plausible market mechanisms as an algorithm for maximizing the expected
gains from trading.
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the state is drawn from a proper normal distribution whose variance is now treated as a

variable. The uniform improper prior is interpreted as the limit of the proper normal as its

variance goes to infinity. Calculations suggest that: (i) equilibria for these proper priors exist

and (ii) the equilibria for moderate values of the proper prior’s standard deviation (e.g., as

small as 1.732) are virtually indistinguishable from the offset equilibrium of the limiting case.

This suggests that our results are representative of what is true in a model with a proper

distribution of the state; the tractability obtained by using the uniform improper prior does

not come at the cost of misleading results.6

• The Cauchy distribution does not satisfy the regularity conditions that we impose on the

distribution of preference terms in the CPV case to prove our convergence theorems. It is

commonly used to test the robustness of results in statistics because its density resembles

that of a normal distribution. It has “fat tails”, however, which implies that moments of

all orders fail to exist for this distribution. The importance of fat tails in the field of finance

suggests testing our model with the Cauchy distribution. In online Appendix L we first show

that the fat downward tail implies nonexistence of equilibrium in the bilateral case, as the

expected benefit to the buyer from lowering his bid and the price that he pays when he trades

always exceeds the expected loss of a profitable trade. Nevertheless in the multilateral case

(m,n ≥ 2) equilibria exist and have all the good properties stated in our theorems. The

effectiveness of the BBDA as a market mechanism is thus more robust than our theorems

indicate.

Related Work. This paper contributes to the development of an explicit theory of how trading

among rational, noncooperative traders with private information can, as their numbers increase,

lead to increasingly efficient allocations at a price that more accurately reveals the market’s underly-

ing fundamentals. This is a rich topic of research; we thus limit our discussion here to investigations

of these issues using double auction models. Wilson (1985) and Gresik and Satterthwaite (1989)

initiated the theoretical study of multilateral double auctions. Within an independent private

values (IPV) environment Satterthwaite and Williams (1989b), Williams (1991), and Rustichini,

Satterthwaite, and Williams (1994) established the linear rate of convergence to price-taking be-

havior and the quadratic rate of convergence to efficiency in the k-double auction. Experimental

tests of these results include Kagel and Vogt (1993) and Cason and Friedman (1997). Relying on

Jackson and Swinkels (2005) for existence of equilibrium, Cripps and Swinkels (2006) studied the

efficiency of large double auctions and show within a general CPV environment that efficiency is

approached at the same quadratic rate as in the IPV environment. Notably, however, Cripps and

Swinkels (2006) includes no examples of equilibrium and thus fails to demonstrate either that this

rate is descriptive of small markets or how many traders are required for the rate to emerge.

6Note also that a nonzero mean for the state’s distribution linearly translates equilibria and does not change their
properties. Choosing a large mean for the state’s proper distribution can make the likelihood of negative values/costs
arbitrarily small; if they are troubling for reasons of modeling, then they can in this way be made inconsequential.
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Reny and Perry (2006) investigated the existence and efficiency of double auction equilibria in

a multilateral CIV environment that is more general than the CIV environment we study. They

prove that if the number of traders is sufficiently large, then an equilibrium in which each trader’s

strategy is increasing with respect to his private signal exists, the resulting allocation is nearly

efficient and the realized market price closely identifies the REE price. They, however, did not

investigate small markets, did not establish the rates at which equilibria converge to efficiency

and the REE price, and did not provide insight as to what equilibrium strategies look like. Our

numerical results for CIV environments, albeit in a less general model, speak to these limitations

by showing: offset equilibria exist; convergence to efficiency is quadratic; convergence to the REE

price is Θ(1/
√
η) and is driven by sampling error, not strategic behavior; all of these properties are

exhibited in even the smallest of markets.

2 Model

2.1 Values, Costs, and Signals

A state µ is drawn from the uniform improper prior on R. Given µ, an idiosyncratic preference

term εi ∼ Gε is independently drawn for each trader i to determine his value/cost zi = µ + εi,

which he observes in the CPV case. In the CIV case, a trader observes a noisy signal σi = zi + δi

of his value/cost, where δi ∼ Gδ. We assume:

A1: Gε and Gδ are absolutely continuous with finite first moments and positive densities gε and

gδ on R that are symmetric about 0.

Symmetry implies that the mean and the median of each distribution equal zero. It also implies

that a trader’s signal σ is an unbiased estimator of his value/cost z and also of the market’s state:

E [µ|σ] = E [z|σ] = σ.

In the CIV case, the presence of noise in each trader’s signal implies that values/costs and signals

are interdependent, i.e., E [z|σ, σj ] varies with another trader’s signal σj as well as his own signal

σ because knowledge of σj enables the focal trader to update his estimate of µ, which in turn

enables him to revise his expectation of his own value/cost z.

If a buyer with value v trades at price p, then his ex post utility is v − p, and if a seller with

cost c trades at price p, then his ex post utility is p− c. Those who do not trade receive zero utility.

2.2 Trading Mechanism

We now formalize the BBDA in terms of order statistics. Buyers and sellers simultaneously an-

nounce their bids and asks that are then sorted in increasing order:7

s(1) ≤ s(2) ≤ · · · ≤ s(m) ≤ s(m+1) ≤ · · · ≤ s(m+n).

7We denote with s(k) the kth order statistic in a specified sample of bids and asks.
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The BBDA selects s(m+1) as the market price, with buyers whose bids are at least this price

acquiring units from sellers whose asks are strictly less than this price.8 Those buyers who acquire

units pay the price p = s(m+1) and those sellers who give up units receive this price. At the time

traders submit their bids/asks, each only knows his own signal. A strategy for buyer i is therefore

a function Bi : R → R from his signal σi to his bid bi and a strategy for seller j is a function

Sj : R→ R from his signal σj to his ask aj .

All traders share common knowledge both of the stochastic structure by which signals and

values/costs are generated and of the strategies Bi and Sj that each trader is playing. We restrict

strategies as follows:

A2: Each buyer i uses the same strategy B and each seller j uses the same strategy S, where B

and S are strictly increasing and differentiable.

Given A2, ties between two or more traders’ bids/asks are measure zero events that we ignore.

The literature on auctions with interdependent values, starting with Milgrom and Weber (1982),

proves that equilibrium strategies are increasing by assuming affiliation between values/costs and

signals. This approach, however, is ineffective in the context of double auctions, which is why we

assume increasing strategies in A2. Affiliation guarantees this property if all traders play identical

strategies using a mechanism that treats each of them symmetrically. This is clearly not the case

in a double auction where different allocation and transfer rules along with different utilities cause

buyers and sellers to behave differently.9

2.3 Posterior Beliefs

In this section we introduce some basic formulas that concern how a trader updates his probabilistic

beliefs upon learning his signal. Consider first the CPV case in which a trader’s signal equals his

value/cost. Select a focal trader with value/cost z = µ + ε. The pdf of z conditional on µ is

fz|µ(z|µ) = gε (z − µ) .10 Less obviously, Bayes’ Rule and µ’s uniform improper density gµ imply

fµ|z (µ|z) =
fz|µ (z|µ) gµ (µ)∫
fz|µ(z|µ)gµ (µ) dµ

= gε (z − µ) = fz|µ (z|µ) (1)

8As shown in Satterthwaite and Williams (1989b, p. 480–81), if s(m+1) > s(m), then the number of bids at or
above s(m+1) equals the numbers of asks that are strictly below this value and so the market clears at the price s(m+1).
If s(m+1) = s(m), then there may be excess demand at the price s(m+1). Priority in receiving units is assigned in this
case first to buyers whose bids strictly exceed s(m+1), with any remaining supply then allocated using a fair lottery
among buyers who bid s(m+1).

9Examples of the failure of affiliation in double auctions can be found in Reny and Perry (2006, p. 1246–48) and
our online Appendix F. Reny and Zamir (2004, sec. 3) also provide two revealing examples concerning this difficulty
in a first price auction with asymmetric buyers.

10This formula illustrates how we denote conditional pdfs throughout the paper, e.g., fµ|z denotes the conditional
pdf of µ given the the focal trader’s value/cost z. Subscripted g denotes a primative density of our model and
subscripted f denotes a conditional density.
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is the posterior pdf of µ given z.11 Due to the symmetry of gε about 0, each trader’s posterior of µ is

centered on his value/cost, which reflects the invariance property of our model that is fundamental

in our analysis. This formula can be derived by assuming that µ is distributed uniformly on the

interval (−r, r) for r > 0 and letting r →∞ so as to approach the uniform improper prior.

In the CIV case, a trader observes a noisy signal σ = z + δ = µ + ε + δ. Let gε+δ denote the

density of the sum ε+ δ and Gε+δ its distribution. Because ε and δ are independent, gε+δ is given

by the convolution

gε+δ(t) =

∫
gε (s) gδ(t− s)ds. (2)

Because gε and gδ are symmetric about 0, it is straightforward to verify that gε+δ is also symmetric

about 0. Conditional on µ, a trader’s signal σ has pdf

fσ|µ (σ|µ) =

∫
fσ|z (σ|z) fz|µ (z|µ) dz =

∫
gδ (σ − z) gε (z − µ) dz = gε+δ (σ − µ) . (3)

As with z and µ, fσ|µ (σ|µ) = fµ|σ (µ|σ) and the trader’s posterior of µ is centered on his signal σ.

The focal trader’s posterior on the signal σj of some other trader j given his signal σ is

fσj |σ (σj |σ) =

∫
fσj |µ (σj |µ) fµ|σ (µ|σ) dµ =

∫
gε+δ (σj − µ) gε+δ (σ − µ) dµ.

Since gε+δ is symmetric about 0, fσj |σ (σj |σ) is also symmetric about 0 so that trader j’s posterior

on signal σj is centered around his signal σ. Hence, fσj |σ is a function only of |σj −σ|. This implies

Pr[σj ∈ [σ′ + k1, σ
′ + k2]|σ′] = Pr[σj ∈ [σ′′ + k1, σ

′′ + k2]|σ′′]

for all constants k1 < k2 and any pair of signals σ′, σ′′, again reflecting the invariance of our model.

Finally, we assume:

A3: E [z|µ, σ] is strictly increasing in σ.

This is a strict version of first order stochastic dominance. It is satisfied by the normal, Laplace,

and Cauchy distributions. Our demonstration in section 5.3.1 that a REE price exists depends on

this plausible assumption.

3 A First Order Approach

A necessary condition for strategies B, S satisfying A2 to define an equilibrium is that they solve

the linked differential equations that the buyers’ and sellers’ first order conditions (FOCs) imply. In

this section we derive these FOCs, which are the foundation for both our formal and computational

analysis of equilibrium. We then resolve a buyer’s FOC into a strategic term and a price-taking

term. The strategic term captures the incentive of a buyer to influence the price in his favor while

11In the interest of notational simplicity, we omit the limits of integration whenever the integral is defined over the
entire real line.
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the price-taking term reflects his effort to protect himself from a winner’s curse. A seller’s FOC

consists only of a price-taking term because he cannot influence the price at which he trades. These

terms are essential for our analysis of convergence to price-taking behavior in section 5.

We begin with the FOC derived from a buyer’s decision problem. Pick a focal buyer. Fix the

m−1 nonfocal buyers’ strategies at B and the n sellers’ strategies at S. These strategies determine

an ordered random (n + m − 1)-vector of bids/asks against which the focal buyer with signal σ

chooses his bid b to maximize his expected utility. Let x denote s(m) and y denote s(m+1) in this

ordered vector. Given the focal buyer’s signal σ and his choice of bid b, one of three events occurs:

E1: If x < y < b, then the price is p = y, the buyer trades, and his utility is E[v|σ, p = y]− y.

E2: If x < b < y, then the price is p = b, the buyer trades, and his utility is E[v|σ, p = b]− b.

E3: If b < x < y, then the price is p = x, the buyer does not trade, and his utility is 0.

The random variables x and y are thus critical to the focal buyer’s choice of his bid. Conditional

on the focal buyer’s signal σ, the strategy S of the n sellers, and the strategy B of the other m− 1

buyers, let fBx|σ(x|σ) be the pdf of x.

Suppose the buyer decides to increase his bid from b to b+ ∆b where ∆b > 0 is small. This can

have two effects on his utility. First, if his bid b places him in E2, then (for ∆b sufficiently small)

x < b < b + ∆b < y, he continues to trade, but the price he pays increases by ∆b. This decreases

his utility by ∆b. Second, if the bid b places him in E3 and if, in addition, b < x < b + ∆b < y,

then he jumps over x, his new bid b+ ∆b becomes the (m+ 1)st smallest value in the entire sample

of m + n bids/asks, and he trades at the price b + ∆b. His utility therefore increases from 0 to

E[v|σ, b < x < b+ ∆b]− (b+ ∆b) .

Given the small ∆b > 0, the probability of the first event is Pr [x < b < y|σ] and the probability

of the second is approximately fBx|σ(b|σ)∆b. Therefore, the change in the focal buyer’s expected

utility from increasing his bid by ∆b is

πBb (b|σ) ∆b ≈
{

(E[v|σ, b < x < b+ ∆b]− (b+ ∆b)) fBx|σ (b|σ)− Pr [x < b < y|σ]
}

∆b,

where πBb (b|σ) is the focal buyer’s marginal utility conditional on his signal σ and bid b. Taking

the limit as ∆b→ 0 his FOC is therefore

πb (b|σB) = (E[v|σ, x = b]− b) fBx|σ (b|σ)− Pr [x < b < y|σ] = 0 (4)

or

b = E[v|σ, x = b]− Pr [x < b < y|σ]

fBx|σ (b|σ)
. (5)

The negative term in (5) captures from the first order perspective the focal buyer’s ability to

influence the price at which he trades. We refer to it as the strategic term. The other term,

E[v|σ, x = b], is the price-taking term. In the CPV case, it simply equals the buyer’s value v
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because σ = v. In the CIV case, generally E[v|σ, x = b] 6= σ; examples of equilibria in Section 4.4

show how this term adjusts the signal to protect the buyer from a winner’s curse.

We next turn to the first order condition derived from a seller’s decision problem. Select a focal

seller and let x denote the mth order statistic and y the (m+ 1)st order statistic in the ordered

vector of bids and asks from the m buyers and the n− 1 other sellers. Given a realization of other

traders’ signals, the focal seller’s signal σ and his ask a, one of three events occurs:

E1′: If x < y < a, then the price is p = y, the seller does not trade, and his utility is 0.

E2′: If x < a < y, then the price is p = a, the seller does not trade, and his utility is 0.

E3′: If a < x < y, then the price is p = x, the seller trades, and his utility is x− E[c|σ, x = p].

Observe that even though the focal seller sets the price in event E2′, he never simultaneously sets

the price and trades. Consequently he has no incentive to influence the price.

Suppose the seller decides to increase his ask from a to a + ∆a where ∆a > 0 is small. This

only affects his utility if the ask a is in E3′ and increasing it to a+ ∆a jumps him over x and places

him in E2′, thereby going from trading to not trading. His utility then decreases by x− E[c|σ, a <
x < a + ∆a]. The probability of jumping over x is approximately fSx|σ (a|σ) ∆a, where fSx|σ (·|σ) 6=
fBx|σ (·|σ) because the order statistic x faced by a focal seller is defined for a different ordered vector

of bids/asks than the order statistic x faced by a focal buyer. The focal seller’s marginal utility

from increasing his ask by ∆a is approximately

πSa (a|σ) ∆a ≈ − (a− E[c|σS , a < x < a+ ∆a]) fSx|σ (a|σS) ∆a.

As ∆a→ 0, this implies the FOC

πSa (a|σS) = a− E[c|σS , x = a] = 0 (6)

or

a = E[c|σS , x = a] (7)

because fSx|σ has full support on R. The focal seller’s FOC thus consists only of a price-taking term.

Its interpretation parallels that of the buyer’s: in the CPV case, c = E[c|σ, x = a] because σ = c;

in the CIV case, generally E[c|σS , x = a] 6= c as the seller protects himself from a winner’s curse.

Finally, (5) and (7) are intuitive and are therefore useful for the text of our paper. Appendix

A derives expanded versions of the FOCs, (22) and (29), that use the conditional independence of

signals and values/costs upon the state µ to produce formulas that are useful for computation and

in some proofs. These alternative formulas are used in all numerical experiments in the paper.
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4 Existence and Uniqueness of Offset Equilibria

An offset strategy has the form B(σB) = σB +λB for buyers and S (σS) = σS +λS for sellers, where

λB, λS ∈ R. We establish the following numerical result that, as with all of our numerical results,

holds in both the CIV and CPV cases:

Numerical Result I Consider either the CPV or the CIV case. There exists a unique pair of offset

strategies that solve the FOCS (5) and (7). This pair of offset strategies defines an equilibrium. No

other pair of strategies satisfying A2 (either offset or not) exists that defines an equilibrium.

For the CPV case Theorem 1 proves the existence part of Numerical Result I. Its proof is in

Appendix C.

Theorem 1 Consider the CPV case. If sellers play their dominant strategy S (c) = c, then a

negative constant λ (Gε, n,m) exists such that the strategy B(v) = v + λ (Gε, n,m) satisfies the

FOC (5) at all v ∈ R.

We begin this section by discussing how equilibrium is computed in the paper. Next we present

numerical examples in the CPV and CIV cases that typify what we have found to hold in general.

These examples are used to explain the observations and reasoning behind Numerical Result I. We

then discuss the sufficiency of the first order approach, addressing first its numerical demonstra-

tion and then the difficulties specific to double auctions that thwart a formal proof of sufficiency.

Finally, we conclude with a comparative statics exercise that explores the dependence of the offset

equilibrium upon m, n and the variances of Gε and Gδ when each is a normal distribution.

4.1 Computation of Equilibrium

Expansion of FOCs (5) and (7) reveals that each is a differential equation in B−1 and S−1. We

follow a methodology developed in Satterthwaite and Williams (1989a) in the case of independent

private values to solve these equations. For β ∈ R, let σB (β) and σS (β) denote the signals of

a buyer and a seller at which they bid/ask β, i.e., σB (β) ≡ B−1 (β) and σS (β) ≡ S−1 (β). The

FOCs can be represented as a linear system of equations whose solution is a vector field

−→
V (σB, β, σS) ≡

(
σ̇B,

dβ

dβ
= 1, σ̇S

)
in R3. A standard result in differential equations (e.g., Arnold (1973, Thm. 7.1)) states that

a solution to the FOCs (5) and (7) can be traced out by following the vector field
−→
V using any

(σB, β, σS) ∈ R3 at which σ̇B and σ̇S are finite as an initial point. The projection of such a solution

curve into the (σB, β)-plane produces a graph of the strategy B while its projection into the (σS , β)-

plane produces a graph of the strategy S. As discussed in section 4.2 below, the representation of

the FOCs as a vector field is important because the geometric properties of this vector field underlie

the uniqueness conclusions of Numerical Result I.
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The computation of equilibrium is further simplified by a property of this vector field that arises

from the invariance of the model, namely,
−→
V is invariant with respect to translations along the 45◦

diagonal of R3. The property both formally and intuitively guarantees equilibria in offset strategies.

Lemma 1 Consider the CIV case. For any (σB, β, σS) ∈ R3 and any ρ ∈ R, the vector field
−→
V

satisfies
−→
V (σB, β, σS) =

−→
V (σB + ρ, β + ρ, σS + ρ).

The lemma is proven in Appendix B by showing that the coefficients of the linear system that

defines
−→
V are constant to translations along the 45◦ diagonal of R3.

Lemma 1 implies that if a point ω∗ = (σ∗B, β
∗, σ∗S) can be found at which

−→
V (ω∗) = (1, 1, 1),

then the line (σ
∗
B + ρ, β

∗
+ ρ, σ∗S + ρ)ρ∈R is a solution curve for the vector field. The solution

curve defines the pair of offset strategies B(σB) = σB + λB and S(σS) = σS + λS that solve the

FOCs for equilibrium for the constants λB = β∗ − σ∗B and λS = β∗ − σ∗S . This suggests a method

of computing equilibrium: fixing σ∗B=0 without loss of generality, we solve for (β∗, σ∗S) at which

σ̇B = σ̇S = 1. The problem of solving a differential equation for a solution curve in R3 is in this

way replaced by the simpler problem of solving two equations in two real variables.

4.2 Numerical Example: The Vector Field
−→
V

We explore numerically in this section the properties of the vector field
−→
V . We begin in the CPV

case wherein the normalized vector field can be depicted in R2 due to the dominant strategy of

each seller of setting his ask equal to his cost. Figure 1 depicts
−→
V in the case of m = n = 4

and Gε standard normal. The light 45◦ line in the figure is v = b, i.e., bidding one’s value, while

the heavier line below it is an offset solution to the buyers’ FOC. We note two properties of this

figure. First, there exists a unique offset solution to the buyers’ FOC. Second, any other solution

curve to the buyers’ FOC fails to define a strategy that is increasing and differentiable on the

entire real line: tracing in the direction of decreasing v, a solution curve through a point above

the offset solution terminates at the line v = b, while a solution curve through a point below the

offset solution curls back on itself. These graphical properties underlie our claim of existence and

uniqueness of equilibrium satisfying A2. These properties of
−→
V carry over to the three dimensional

CIV case. Suppose now that the preference term ε and noise term δ of each trader are each drawn

from the standard normal distribution. The two panels of Figure 2 show projections of the vector

field when m = n = 4. With foresight as to what the equilibrium is, assume that the sellers play

the offset strategy S (σS) = σS + 0.2172. The left-hand panel depicts the vector field (σ̇B, 1) in the

plane (σB, β, β − 0.2172) parameterized by (σB, β) ∈ R2 within the space (σB, β, σS) ∈ R3, where

σS = β − 0.2172 is a seller’s signal at which he asks β. The invariance of the vector field with

respect to translations in the β = σB direction is apparent in the figure. Inspection of the graph

shows that along the line σB = β + 0.7036 the slope is unity, σ̇B (β + 0.7036, β, β − 0.2172) = 1.

The right-hand panel repeats this construction from the viewpoint of a seller, assuming that the

buyers play the offset strategy B(σB) = σB−0.7036. Inspection of the figure shows that the inverse

offset strategy that solves the seller’s FOC is the σS = β − 0.2172.
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Figure 1: The normalized vector field
−→
V for buyers in the CPV case (m = n = 4, Gε standard

normal). The thick line signifies the solution to the buyer’s FOC (5). The thin line is the 45◦

diagonal.

We make three observations concerning Figure 2. Consider first the 45◦ line (the thin black

line) that corresponds to traders submitting bids/asks equal to their signals. It can be shown in

the case of m = n that if buyers are not strategic and use only their price-taking terms in selecting

their bids (as sellers do), then the unique offset solution is λB = λS = 0, i.e., traders bid/ask

their signals. The gap between the 45◦ line and the offset solution for m = n = 4 in Figure 2

(thick black line) is therefore a measure of buyers’ strategic behavior (which of course also affects a

seller’s calculation of his ask). Second, in both panels there are 45◦ lines across which the relevant

σ̇ changes from positive to negative. This appears as an “empty region” in the buyer’s panel just

below the line σB = b and it lies just below the offset solution in the seller’s figure. Consider

a point below this “line of singularity” σ̇B = 0 in the buyer’s panel and increase the value of b.

As derived in Appendix B, the singularity is the point at which the marginal expected gain from

trading at the price b changes from positive to negative when conditioned on the following event:

b equals the mth smallest bid/ask x of the other traders when it is the bid of some other buyer. As

depicted in Figure 1, this singularity occurs in the CPV case on the 45◦ line v− b = 0 on which the

buyer’s value v equals his bid b; as b increases, his marginal gain v − b from trading at the price b

changes from positive to negative along this line. It occurs in the CIV case along a different line

from the one that equates a buyer’s signal with his bid because his marginal expected gain from

trading is conditioned on the event specified above. Unlike the CPV case, the line of singularity in
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Figure 2: The normalized vector field
−→
V defined by the FOCs (m = n = 4, Gε, Gδ standard

normal). The thick line in each figure is the offset solution to the FOCs (5) and (7) for each side
of the market. The thin line is the 45◦ diagonal.
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the CIV case thus varies with m, n and the choice of the distributions. A similar analysis applies

to the seller’s figure.

Third, while a solution curve exists through every point in the plane (σB, β) in the top panel at

which σ̇B is nonzero, the offset solution is the only solution curve that defines an increasing strategy

for all σB ∈ R. As in the CPV case, solution curves above the offset solution line terminate along the

line σ̇B = 0 while solution curves below the offset solution turn back on themselves and fail to define

increasing strategies. It is this observation that leads to the statement in Numerical Result I that

offset solutions to the FOCs are unique and determine the only solutions to the FOCs satisfying A2

that can define equilibrium. In summary, if the sellers play the offset strategy S (σS) = σS+0.2172,

then the unique solution to a buyer’s FOC that defines an increasing strategy for all σB ∈ R is given

by the offset strategy B(σB) = β = σB − 0.7036. Similarly, given the buyers’ use of this strategy,

the offset solution for sellers σS = β − 0.2172 in the right panel is the only solution to the seller’s

FOC that defines an increasing strategy for all σS ∈ R. The pair (λB, λS) = (−0.7036, 0.2172)

thus simultaneously solves the FOCs and is therefore a candidate for equilibrium.

These figures typify all of our calculations of the vector field in both the CPV and the CIV

cases for various Gε, Gδ and sizes of market in the following three respects: (i) there exists a unique

pair of constants (λB, λS) that define offset strategies forming a solution curve to the vector field;

(ii) this offset pair is straightforward to calculate using the method discussed above; (iii) all other

solution curves fail to define increasing and differentiable strategies across the entire real line. Only

the issue of sufficiency of the first order approach remains to be addressed in support of Numerical

Result I.

4.3 Sufficiency of the First Order Approach

Graphing marginal expected utility is effective for verifying that offset strategies that satisfy the

FOCs define an equilibrium. Suppose offsets (λB, λS) solve the FOCs (5) and (7). Pick a focal

buyer and let his signal be σB = 0. Graph his marginal expected utility as he deviates from bidding

λB. If this graph transitions from positive to negative at λB, then λB is a best response. Invariance

and the use of offset strategies imply that if λB is a best response at σB = 0, then σB +λB is a best

response for any σB ∈ R. For a focal seller check, in the same way, that λS is a best response at

σS = 0. If the model did not possess invariance, verification by graphing would be harder because

it would be necessary to check that the offset pair (λB, λS) is a best response at a sufficiently fine

grid of points (σB, σS) ∈ R2.

All offsets solutions to the FOCs throughout this paper are shown to define equilibria by graph-

ing marginal expected utility of the focal trader as a function of his bid/ask. Figure 3 in the case of

m = n = 4 and Gε, Gδ standard normal is representative of these graphs. The focal trader’s signal

is fixed at 0 in these calculations. Figure 3 (a) depicts a focal buyer’s marginal expected utility

while (b) depicts a focal seller’s, both under the assumption that the other traders are using the

offset solutions (λB, λS) = (−0.7036, 0.2172) from the CIV example in section 4.2. Both (a) and

(b) depict the appropriate change in sign of marginal expected utility at the offset value, which ver-
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Figure 3: Marginal expected utility for focal traders (m = n = 4, Gε, Gδ standard normal)). The
vertical dashed line indicates the offset solution to the focal trader’s FOC.

ifies sufficiency. It is worth noting, however, that neither marginal utility is monotone decreasing,

as each converges to zero as the bid/ask becomes large in magnitude and its impact upon expected

utility becomes neglible. Unlike other problems in mechanism design, restricting the distributions

to insure decreasing marginal utility is thus not a promising approach in this setting.

We next discuss the difficulties of finding a useful analytical condition for guaranteeing the

sufficiency of the first order approach. A candidate is provided by Theorem 2.

Theorem 2 Consider the CIV case. Suppose that for all (σB, σS) ∈ R2 the strategies 〈B,S〉 solve

the buyers’ and sellers’ FOCs (5) and (7) and satisfy assumption A2. The following are sufficient

conditions for 〈B,S〉 to be an equilibrium:

1. for all b ∈ R, the function

E[v|σB, x = b]− Pr [x < b < y|σB]

fBx|σ (b|σB)
(8)

is increasing in σB where the order statistics x and y are from the perspective of a focal buyer;

2. for all a ∈ R, the function

E[c|σS , x = a] (9)

is increasing in σS where the order statistic x is from the perspective of a focal seller.

The proof follows an argument of Milgrom and Weber (1982, Thm. 14) and is in online Appendix

H. The monotonicity requirement in (8) serves the same purpose for the sufficiency of the first

order approach in the multilateral BBDA in the CIV case as the condition that Kadan (2007, A.2)

uses to prove existence of equilibrium in the bilateral BBDA in the CPV case. As in Milgrom and

Weber (1982), our condition (8) for the multilateral CIV case as well as the condition of Kadan
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Figure 4: The terms (8) and (9) for focal traders (m = n = 4, F, G standard normal). The vertical
dashed line indicates the offset solution to the focal trader’s FOC.

(2007) for the bilateral CPV case all involve the valuation of the marginal buyer conditional on

trading minus a fraction. The numerator in the fraction is the marginal expected cost to a buyer

from increasing his bid and thereby driving up the price that he pays and the denominator is the

marginal probability of acquiring an item by increasing his bid.

The difficulty of conditions (8) and (9) in the multilateral CIV case is that they state sufficient

conditions on complicated functions of the distributions Gε and Gδ and the strategies B and S,

not directly on the distributions that are the fundamentals of our model. The complexity has two

aspects. First, the fact that buyers and sellers behave differently creates asymmetry in the sample

of bids/asks, which complicates the distributions of the order statistics x and y. This complexity

is typically avoided in symmetric auction models. Second, the focus in the BBDA is upon the

“interior” order statistics x = s(m) and y = s(m+1) in a sample of n + m − 1 bids/asks. Except

for cases in which there is a single trader on one side of the market, these order statistics are

considerably more complicated to work with than the extremal order statistics that are focal in the

theory of auctions.

Numerically, Theorem 2 works in establishing sufficiency equally as well as graphing expected

marginal utility. Figure 4 graphs the terms (8) and (9) in Theorem 2 for the pair of offset solutions

(λB, λS) = (−0.7036, 0.2172) from the CIV example in section 4.2. It shows that these terms

are increasing with respect to the trader’s signal and therefore establishes that the offsets are an

equilibrium. Even though we cannot prove that our testbed distributions satisfy (8) and (9) for all

m and n, our numerical work suggests that these terms behave similarly to the analogous terms

from auction theory.
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m\n 2 4 8 16

2 −1.3404, 0.4124 −0.8372, 0.4912 −0.3642, 0.6508 0.0361, 0.8546
4 −1.2189, 0.1332 −0.7036, 0.2172 −0.2657, 0.3948 0.1128, 0.6192
8 −1.2084,−0.1712 −0.7431,−0.0787 −0.3417, 0.1091 0.0212, 0.3494
16 −1.3011,−0.4677 −0.8853,−0.3756 −0.5175,−0.1886 −0.1754, 0.0614

Table 1: Equilibrium offsets λB, λS for different values of m and n in the case of Gε, Gδ standard
normal.

τδ λB, λS

2 −0.5135, 0.0959
4 −0.4246, 0.0443
8 −0.3817, 0.0211
16 −0.3606, 0.0103
∞ −0.3398, 0.

τε λB, λS

2 −0.8017, 0.3673
4 −1.1058, 0.6694
8 −1.8134, 1.3536
16 −2.6416, 2.3328
∞ −∞,∞

k λB, λS

2 −0.4976, 0.1536
8 −0.2488, 0.0768
32 −0.1244, 0.0384
128 −0.0622, 0.0192
512 −0.0311, 0.0096

(a) τε = 1 (b) τδ = 1 (c) τε = τδ = k

Table 2: Results for buyers’ and sellers’ offsets λB, λS for m = n = 4 and different values of τε and
τδ (Gε, Gδ normal).

4.4 Numerical Example: A Comparative Statics Exercise in m, n, Gε, and Gδ

This example concerns the CIV case in which Gε and Gδ are both normal. We explore here the

dependence of the offset solutions on the numbers of traders m and n and the variances of these

two distributions. Turning first to the number of traders, Table 1 presents the offset solutions for

values of m and n between 2 and 16 when both Gε and Gδ are standard normal. Recall that a

focal buyer weighs two effects in choosing his offset: (i) the possibility of affecting price in his favor

(strategic); (ii) the estimation of his value given his signal and the event that his bid sets the price

(price-taking). Holding n constant and increasing the number m of buyers, effect (i) diminishes as

the likelihood that a buyer influences price goes to zero. Effect (ii), however, increases because a

buyer who trades and sets the price knows that an increasing number m of bids/asks are below

his. As strategies are increasing, this means that the focal buyer receives increasing evidence as

m increases that his signal is relatively high in the sample. As we go down any column in Table

1 we therefore observe a buyer’s offset first increases due to effect (i) and then decreases as effect

(ii) dominates. This later effect is the classic response of the focal buyer protecting himself from a

winner’s curse. On the other side of the market, a seller’s offset increases monotonically for fixed

m as n increases due purely to effect (ii), as there is no strategic term in his FOC.

To avoid confusion with our notation for signals, we now use τε, τδ to denote the respective

precisions of Gε and Gδ, i.e., τε, τδ are the reciprocals of their variances. Table 2 explores the

dependence of the offset solutions on τε and τδ for m = n = 4. In Panel (a) we fix τε = 1 and vary

the noisiness of a trader’s signal by changing τδ. For τδ = ∞, a trader’s signal equals his value

and hence this is the CPV case. Sellers in this case report their true costs/signals and so their
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offset is zero while buyers underbid strategically. As τδ decreases, both buyers’ and sellers’ offsets

increase in magnitude because the more unsure a trader is of his value/cost, the more aggressively

he acts to protect himself from a winner’s curse. In Panel (b) we explore the dependence of the

offset solutions as we vary τε, holding τδ = 1. For τε = ∞ a trader’s value equals µ; this is a

common value environment with no gains from trade and so the offsets tend to infinity. The more

gains from trade there are (i.e., as τε decreases), the more the offsets decrease as the winner’s

curse is mitigated. Finally in Panel (c) we scale both noises by the same amount and, as expected,

this scales the offsets proportionally. Doubling the standard deviation results in a doubling of the

offsets; this is simply a rescaling of the problem. Because precision is the reciprocal of variance,

multiplying both precisions by 4 therefore causes the offsets to fall by half.

5 Convergence

We investigate in this section the convergence properties of the BBDA as the market increases

in size and a buyer’s ability to influence price diminishes. The three topics explored are: (i) the

amount by which a buyer strategically underbids in order to influence price in his favor; (ii) the

inefficiency in the market allocation this underbidding causes; (iii) the error in the realized market

price as an estimate of pREE, the REE price in the limit market, for each value of the state µ.

5.1 Convergence to Price-Taking Behavior

The offset solutions (λB, λS) to the FOCs (5) and (7) satisfy the equations

σB + λB = E[v|σB, x = σB + λB]︸ ︷︷ ︸
price-taking term

− Pr[x < σB + λB < y|σB]

fBx (σB + λB|σB)︸ ︷︷ ︸
strategic term

, (10)

σS + λS = E[c|σS , x = σS + λS ]︸ ︷︷ ︸
price-taking term

, (11)

where, as in section 2, x and y are the mth and (m+ 1)st order statistics of other traders’ bids

and asks from the perspective of the focal trader. Terms in (10) and (11) are labeled as in section

3; when (λB, λS) satisfies (10) and (11) in equilibrium, we refer to these terms respectively as the

equilibrium price-taking and strategic terms. As demonstrated in the example of section 4.4, the

equilibrium price-taking term of each side of the market may or may not converge to zero as the

market size η increases; depending upon the relative sizes of m and n of the two sides of the market,

the necessity of protecting oneself from a winner’s curse can grow or decrease for a particular side

of the market as η increases. The likelihood that a buyer can influence price in his favor, however,

diminishes as η increases. Convergence to price-taking behavior thus means convergence to zero

of the buyers’ equilibrium strategic term as the market size η increases. We have the following

numerical result:

Numerical Result II Consider the CIV case for distributions Gε and Gδ, fixed values of m and
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n, and market size η ∈ N. A buyer’s equilibrium strategic term is O(1/η) in the market with ηm

buyers and ηn sellers, i.e., there exists a constant K1(m,n,Gε, Gδ) such that, for the equilibrium

offsets (λB, λS) and all values σB of a buyer’s signal,

Pr[x < σB + λB < y|σB]

fBx (σB + λB|σB)
≤ K1(m,n,Gε, Gδ)

min(m,n)
.

In the CPV case a buyer’s equilibrium strategic term is λB, the equilibrium offset. The equi-

librium price-taking term is zero for both buyers and sellers. Numerical Result II can be proven in

the CPV case with a rather weak restriction on Gε:

Theorem 3 Numerical Result II holds as a theorem in the CPV case if the distribution of prefer-

ence terms Gε satisfies

lim
x→−∞

sup
Gε (x)

gε (x)
<∞. (12)

The proof is in Appendix D. Condition (12) is strictly weaker than the assumption that the hazard

rate gε(x)/Gε(x) is strictly decreasing, which is a common assumption in mechanism design. Of our

testbed distributions, the normal and Laplace distributions satisfy (12) but the Cauchy distribution

does not.

5.2 Convergence to Allocative Efficiency

We next address the diminishing impact of strategic behavior on allocative efficiency as the market

size increases. The allocative performance of the BBDA is measured by its realized gains from

trade. For a sample of signals in the market with m buyers and n sellers, let (s1, ..., sm+n) be the

equilibrium bids/asks where si is the equilibrium bid of buyer i for i ∈ {1, ..,m} and sj is the

equilibrium ask of seller j −m for j ∈ {m+ 1, ...,m+ n} . The order statistic s(m+1) is the price.

The equilibrium gains from trade are then

GFT eq =
∑

si≥s(m+1)

i∈{1,...,m}

vi −
∑

sj<s(m+1)

j∈{m+1,...,m+n}

cj .

Let GFT
eq

denote the ex ante equilibrium gains from trade conditional on the state µ:

GFT
eq

= E [GFT eq |µ ] .

Invariance and the use of offset strategies implies that this quantity does not vary with the state µ.

Our benchmark for evaluating the BBDA’s equilibrium performance is its realized gains from

trade if buyers were not to act strategically. In this way we isolate the cost of strategic behavior

on the performance of the mechanism. Suppose each buyer decides to ignore the expected gains

from shading his bid downwards but continues to protect himself from a winner’s curse. This
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decision to not act strategically makes his decision problem identical to a seller’s decision problem.

Consequently the FOC for all buyers and sellers are

σB + λB = E[v|σB, x = σB + λB], (13)

σS + λS = E[c|σS , x = σS + λS ], (14)

which are identical as equations and hence reduce to the single equation in the price-taking offset

λpt,

σ + λpt = E[z|σ, x = σ + λpt]. (15)

Let (t1, ..., tm+n) denote a vector of price-taking bids/asks when all traders offset their signals by

λpt in choosing their bids/asks, where i ∈ {1, ..,m} and j − m for j ∈ {m+ 1, ...,m+ n} again

identify buyers and sellers, respectively. The BBDA’s price is t(m+1) and the ex post gains from

trade from these price-taking bids and asks equals

GFT pt =
∑

ti≥t(m+1)

i∈{1,...,m}

vi −
∑

tj<t(m+1)

j∈{m+1,...,m+n}

cj .

Let GFT
pt

denote the ex ante potential gains from trade conditional on µ:

GFT
pt

= E
[
GFT pt |µ

]
.

Again because of invariance and the fact that the price-taking bids/asks are all constant offsets,

GFT
pt

has the same value in all states µ.

The measure of allocative efficiency we use is relative inefficiency, which calculates the fraction

of the ex ante potential gains from trade that are not achieved in the market due to the strategic

behavior of buyers:

GFT
pt −GFT eq

GFT
pt . (16)

We have the following numerical result.

Numerical Result III Consider the CIV case for distributions Gε and Gδ, fixed values of m

and n, and market size η ∈ N. Relative inefficiency is O(1/η2), i.e., there exists a constant

K2(m,n,Gε, Gδ) such that

GFT
pt −GFT eq

GFT
pt ≤ K2(m,n,Gε, Gδ)

η2

in each state µ.

In the CPV case, the price-taking offset λpt equals zero, each trader’s price-taking bid/ask is

simply his value/cost, and the benchmark GFT pt is the ex post potential gains from trade. We

have:
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Theorem 4 Numerical Result III holds as a theorem in the CPV case if the distribution of pref-

erence terms Gε satisfies (12).

The tail condition (12) is assumed here so that Theorem 3 can be applied to bound strategic

behavior by buyers. The proof adapts an argument of Rustichini, Satterthwaite, and Williams

(1994, Thm. 3.2) to the model of this paper and can be found in online Appendix I.

5.3 Convergence to Rational Expectations Equilibrium

This section contrasts two theoretical approaches to market equilibrium. In a REE approach,

traders are assumed to see a state-revealing, market-clearing price and then make decisions to buy

or sell that confirms that price as market clearing. In the approach of this paper, traders submit bids

and asks into the BBDA based upon what they know at that moment and then a market-clearing

price is calculated based upon these bids/asks. Theorem 5 below develops for our model a result

of Reny and Perry (2006) that in the limit market the two approaches determine the same price.

Our contribution is to demonstrate how this result extends to small markets by (i) establishing

the rate at which the BBDA price converges to the REE price as the market becomes large and

(ii) numerically showing that the BBDA’s price is a meaningful estimate of the REE price in small

markets. In this way we show how well the BBDA discovers the REE price in small markets and

how fast that estimate improves as the market becomes larger.

5.3.1 The Limit Market and REE

Consider the CIV case. The limit market is the market in each state µ with m times a unit mass

of buyers and n times a unit mass of sellers with values/costs and signals generated using the

distributions Gε, Gδ as in our finite model. Let V (σ) ≡ E [z|0, σ] be the expected value/cost of a

trader conditional on the state µ = 0 and his signal σ. Assumption A3 implies that V is strictly

increasing and so invertible: given µ = 0, V −1 (·) maps the trader’s expected value/cost back to

the signal that generates it.

The REE function PREE : R → R determines the REE price in the limit market for each

state µ. It is defined by two properties. First, it is invertible. Let Λ denote the function that

recovers the state µ from the REE price, Λ
(
pREE

)
= µ. A REE price pREE is thus fully revealing

in the sense that a trader who observes pREE can infer the state µ. Second, PREE(µ) = pREE

clears the limit market in the state µ. Specifically, each trader learns his private signal σ, observes

pREE, and calculates his expected value/cost E
[
z|Λ

(
pREE

)
, σ
]
. If he is a buyer, he buys one

unit if and only if E
[
z|Λ

(
pREE

)
, σ
]
≥ pREE. If he is a seller, he sells his one unit if and only if

E
[
z|Λ

(
pREE

)
, σ
]
≤ pREE. At price pREE supply equals demand.

Part (i) of the following theorem solves for the REE price function PREE(·) for the limit market.

The BBDA also equates supply with demand in the limit market but with each trader determining

his demand/supply based on his private signal, the market fundamentals, and the event in which

his bid/ask equals the price. Part (ii) characterizes the offset equilibrium of the BBDA in the limit

market and shows that its equilibrium price is the REE price.
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Let

q ≡ m

m+ n

denote the proportion of all traders who are buyers, and let ξε+δq ≡ G−1
ε+δ (q) denote the qth popu-

lation quantile of Gε+δ.

Theorem 5 Consider the CIV case. For fixed m and n, consider the limit market. Then:

(i) The unique REE price in state µ is

pREE ≡ µ+ V
(
ξε+δq

)
. (17)

The one-to-one mapping from the REE price to the state is Λ
(
pREE

)
= pREE − V

(
ξε+δq

)
.

(ii) In the BBDA, all traders play the equilibrium offset λB = λS = V
(
ξε+δq

)
− ξε+δq . This results

in the equilibrium price being µ+ V
(
ξε+δq

)
, i.e., the equilibrium price is the REE price.

The proof is in online Appendix J and follows an argument of Reny and Perry (2006, sec. 3).

Finally, the proof is easily specialized to the CPV case: (i) V
(
ξε+δq

)
in (17) is replaced by ξεq , the qth

population quantile of Gε, as V (z) = z in this case; (ii) in the limit market, a trader’s equilibrium

strategy in the BBDA is to report his value/cost.

5.3.2 The Market Price as an Estimator of the REE Price

For fixed m, n, we again consider sequences of markets with ηm buyers and ηn sellers. Given the

state µ, we evaluate in this section the error with which the BBDA’s price estimates the REE price

PREE(µ) = pREE for the limit market. We bound above the absolute error in this estimation by

∣∣s(ηm+1) − pREE
∣∣ ≤ ∣∣s(ηm+1) − t(ηm+1)

∣∣+
∣∣t(ηm+1) − pREE

∣∣ ,
where s(ηm+1) is the BBDA’s equilibrium price and t(ηm+1) is the price-taking price as defined in

section 5.2. The term
∣∣s(ηm+1) − t(ηm+1)

∣∣ is the strategic error, which captures the effect of strategic

underbidding by buyers upon the estimation of pREE. The term
∣∣t(ηm+1) − pREE

∣∣ is attributable to

the fact that a sample of m+n values/costs does not perfectly reflect the population together with

the error that is attributable to the noise in trader signals. We refer to this term simply as sampling

error. Numerical Result II implies that strategic error is O (1/η). Sampling error in contrast is

a random variable distributed on the half line [0,∞); it can be arbitrarily small or large. The

following numerical result, states that the expected value of the sampling error is of strictly larger

order than strategic error. Asymptotically, then, the effect of strategic error upon the estimation

of pREE vanishes completely because of the dominating effect of the sampling error.

Numerical Result IV Consider the CIV case for distributions Gε and Gδ, fixed values of m

and n, and market size η ∈ N. The strategic error in the BBDA’s price s(ηm+1) as an estimate of
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the REE price is ∣∣s(ηm+1) − t(ηm+1)

∣∣ = O(1/η).

In any state µ, the expected sampling error is

E
[∣∣t(ηm+1) − pREE

∣∣∣∣µ] = Θ(1/η),

and the expected total error is therefore

E
[∣∣s(ηm+1) − pREE

∣∣∣∣µ] = Θ(1/η).

If Gε satisfies condition (12) in Theorem 3 and, in addition, satisfies the tail condition,

lim
x→∞

inf
− log(1−Gε(x))

log x
> 0, (18)

then Numerical Result IV can be proven in the CPV case. The normal, Laplace, and Cauchy

distributions all satisfy (18).12

Theorem 6 Numerical Result IV holds as a theorem in the CPV case if Gε satisfies (12) and (18).

The proof is in Appendix E.

5.4 Numerical Examples: Convergence

5.4.1 The CPV Case

We illustrate our convergence results in the CPV case with m = n = 1 and Gε standard normal.

In this case q = 1/2, ξεq = 0 and pREE = µ. Recall that each trader’s price-taking bid/ask t in

the CPV case is identical to his true value/cost z. Convergence to price-taking behavior and to

allocative efficiency are illustrated in Panel A of Table 3.13 Column 1 lists the number η of traders

on each side of the market. Column 2 contains the equilibrium offsets of buyers. As Theorem 3

states, the offsets decrease at the rate of O(1/η), i.e., as η doubles the offset is cut in half. The

ex ante potential gains from trade GFT
pt

and the ex ante equilibrium gains from trade GFT
eq

in any state µ are presented in columns 3 and 4. Relative inefficiency is tabulated in column 5.

Consistent with Theorem 4, it vanishes at a rate of O
(
1/η2

)
, i.e., as η doubles relative inefficiency

drops by a factor of 4.

12It is straightforward to verify that each of these distributions satisfies

lim
x→∞

xg′ε(x)

−gε(x)
> 1.

Two applications of L’Hôpital’s Rule reduce (18) to a form in which it is clear that this bound is sufficient to insure
that (18) holds.

13The numbers in column 2 of Panel A in Table 3 and column 2 of Panel A in Table 4 are computed using numerical
integration. All other numbers in these tables are calculated using Monte Carlo simulations.
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Table 3: Convergence in the CPV case (m = n = 1, Gε standard normal). In all panels, the size of
market η is reported in column 1. Panel A: Column 2 is the equilibrium offset; columns 3 and 4
are respectively (i) the expected gains from trade when traders act as price takers and (ii) in the
equilibrium of column 2 ; column 5 is the relative inefficiency (16). Panel B: Columns 2 and 3 are
the variances of the errors in the price-taking price and the equilibrium price as estimates of the
REE price; column 4 is the variance of their common asymptotic limit. Panel C: Columns 2 and
3 are the expected absolute errors in the price-taking price and the equilibrium price as estimates
of the REE price; column 4 is the expected absolute difference between the price-taking price and
the equilibrium price.

Panel A

η λB GFT
pt

GFT
eq

(GFT
pt −GFT eq

)/GFT
pt

2 −0.6896 1.3265 1.2221 0.0795
4 −0.3398 2.9008 2.8535 0.0163
8 −0.1639 6.0812 6.0653 0.0026
16 −0.0805 12.4604 12.4516 0.0007

Panel B

η VAR
(
t(ηm+1) − pREE|µ

)
VAR

(
s(ηm+1) − pREE|µ

)
1

8ηφ2(0)

2 0.3646 0.3834 0.3927
4 0.1887 0.1901 0.1963
8 0.0954 0.0958 0.0981
16 0.0482 0.0483 0.0491

Panel C

η
Exp. Sampling Error
E
[∣∣t(ηm+1) − pREE

∣∣ |µ] Exp. Total Error
E
[∣∣s(ηm+1) − pREE

∣∣ |µ] Exp. Strategic Error
E
[∣∣s(ηm+1) − t(ηm+1)

∣∣ |µ]
2 0.5329 0.4926 0.3198
4 0.3644 0.3457 0.1679
8 0.2549 0.2474 0.0819
16 0.1782 0.1756 0.0381

Panels B and C of Table 3 concern the BBDA’s market price as an estimate of the REE

price. Recall that t(ηm+1) is the price in the BBDA when buyers use their price-taking bids while

s(ηm+1) is the price when buyers play their equilibrium offset strategy. Satterthwaite, Williams, and

Zachariadis (2014, Thm. 2) establishes that t(ηm+1)− pREE and s(ηm+1)− pREE are asymptotically

normal with mean zero and variance
(
8ηφ2 (0)

)−1
, where φ is the density of the standard normal

distribution. Panel B of Table 3 compares the variances of t(ηm+1) − pREE and s(ηm+1) − pREE

with this asymptotic variance. It is notable how close the values of the variances are to their

asymptotic limiting value even for these small values of η. This suggests that the asymptotic limit

is meaningful for approximations involving t(ηm+1) or s(ηm+1) even in very small markets.

Panel C of Table 3 presents the expected values of total error, sampling error and strategic error
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Table 4: Convergence in the CIV case (m = n = 1, Gε, Gδ standard normal). In all panels, the size
of market η is reported in column 1. Panel A: Column 2 is the buyer’s strategic term computed
at the equilibrium offsets; column 3 is the expected gains from trade GFT

eq
in equilibrium and

column 4 is the expected gains from trade GFT
pt

when traders submit their price-taking bids/asks;
column 5 is the relative inefficiency. Panel B: Columns 2 and 3 are the variances of the errors in
the price-taking price and the equilibrium price as estimates of the REE price. Panel C: Columns
2 and 3 are the expected absolute errors of the price-taking price and the equilibrium price as
estimates of the REE price; column 4 is the expected absolute difference between these two prices.

Panel A

η Pr[x<λB<y|σB ]
fBx (λB |σB)

GFT
pt

GFT
eq

(GFT
pt −GFT eq

)/GFT
pt

2 0.9279 0.9395 0.7151 0.2389
4 0.4864 2.075 1.9354 0.0594
8 0.2326 4.3011 4.2434 0.0134
16 0.1139 8.8093 8.776 0.0037

Panel B

η VAR
(
t(ηm+1) − pREE|µ

)
VAR

(
s(ηm+1) − pREE|µ

)
2 0.7216 0.8421
4 0.3741 0.3884
8 0.1915 0.1936
16 0.0972 0.0974

Panel C

η
Exp. Sampling Error
E
[∣∣t(ηm+1) − pREE

∣∣ |µ] Exp. Total Error
E
[∣∣s(ηm+1) − pREE

∣∣ |µ] Exp. Strategic Error
E
[∣∣s(ηm+1) − t(ηm+1)

∣∣ |µ]
2 0.7546 0.7327 0.5895
4 0.5174 0.4968 0.3354
8 0.3597 0.3509 0.1682
16 0.2526 0.2491 0.0871

for different values of η. As η doubles, the expected total and sampling errors decrease by a factor

of approximately
√

2 while the expected strategic error decreases by a factor of approximately 2,

which reflects their respective rates of convergence. As Theorem 6 suggests, Panel C shows that

expected strategic error rapidly becomes small relative to expected sampling error as the market

becomes larger.

5.4.2 The CIV Case

Consider the case in which Gε and Gδ are standard normal and m = n = 1, so that q = 1/2,

ξε+δq = 0 = V
(
ξε+δq

)
and pREE = µ. Panel A in Table 4 concerns the strategic term of buyers and

allocational efficiency of the BBDA. The second column presents the strategic term for different

sizes of market η. Consistent with Numerical Result II, it falls by 1/2 as η doubles, reflecting
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its O(1/η) rate of convergence. Turning next to allocative efficiency, columns 3 and 4 present

GFT
e
and GFT

pt
, which are then used to calculate relative inefficiency in the final column. Relative

inefficiency defined in this way falls by 1/4 as η doubles, reflecting its O(1/η2) rate of convergence

that is stated in Numerical Result III.

Panels B and C concern the price-taking price t(ηm+1) and the equilibrium price s(ηm+1) as

estimates of pREE in the CIV case. For m = n, both prices t(ηm+1) and s(ηm+1) share the same

asymptotic limit pREE = µ. The variances of the errors t(ηm+1)−pREE and s(ηm+1)−pREE for these

estimates are presented in Panel B. The variances diminish at the rate O(1/η) and are virtually

indistinguishable except in the η = 2 case, which again illustrates the relative insignificance of

strategic behavior upon information aggregation by the market. Panel C presents the expected total

error in the equilibrium price, the expected sampling error compounded with signal noise and the

expected strategic error. Consistent with Numerical Result III, expected sampling error is Θ(1/
√
η)

and expected strategic error is O(1/η), which causes expected total error to be O(1/
√
η). Notice

that expected total error is marginally less than expected sampling error, which is attributable to

the fact that strategic behavior can cancel some sampling error in determining total error.

6 Conclusion

This paper develops an informational environment for a uniform price double auction that is simple

enough to permit formal analysis, computational work, and the display of equilibrium while rich

enough to include the correlated private and interdependent value cases. Previous work in these

cases has mainly focused on the asymptotic properties of large markets. Our model is not as general

as the models in this earlier work but its restrictiveness allows both formal and computational

analysis of finite markets, thus demonstrating that the asymptotic results are meaningful in a finite

world. We trade generality for a more thorough understanding of finite markets, which we believe

is a worthwhile exchange. The main conclusion of our analysis is that private information and the

strategic behavior that it generates only marginally affects the market’s performance relative to

price formation, allocative efficiency, and the estimation of the REE price. Except in the smallest

of markets, the BBDA discovers price extremely well.

References

Anderson, K. M. (1982): “Moment Expansions for Robust Statistics,” Technical Report No. 7,

Department of Statistics, Stanford University.

Arnold, B. C., N. Balakrishnan, and H. N. Nagaraja (1992): A First Course in Order

Statistics. John Wiley and Sons, New York.

Arnold, V. I. (1973): Ordinary Differential Equations. MIT Press, Boston.

Biais, B., L. Glosten, and C. Spatt (2005): “Market Microstructure: A Survey of Microfoun-

dations, Empirical Results, and Policy Implications,” Journal of Financial Markets, 8, 217–264.

28



Cason, T. N., and D. Friedman (1997): “Price Formation in Single Call Markets,” Economet-

rica, 65(2), 311–345.

Cripps, M., and J. Swinkels (2006): “Efficiency of Large Double Auctions,” Econometrica, 74,

47–92.

David, H. A., and H. N. Nagaraja (2003): Order Statistics. John Wiley and Sons, Hoboken,

New Jersey.

DeGroot, M. H. (1970): Optimal Statistical Decisions. John Wiley and Sons, Hoboken, New

Jersey.

Gresik, T., and M. A. Satterthwaite (1989): “The Rate at Which a Simple Market Converges

to Efficiency as the Number of Traders Increases: An Asymptotic Result for Optimal Trading

Mechanisms,” Journal of Economic Theory, 48, 304–32.

Harris, L. (2002): Trading and Exchanges: Market Microstructure for Practitioners. Oxford

University Press, New York, New York.

Jackson, M., and J. Swinkels (2005): “Existence of Equilibrium in Single and Double Private

Values Auctions,” Econometrica, 73, 93–140.

Kadan, O. (2007): “Equilibrium in the Two Player, k–Double Auction with Affiliated Private

Values,” Journal of Economic Theory, 135, 495–513.

Kagel, J., and W. Vogt (1993): “The Buyer’s Bid Double Auction: Preliminary Experimental

Results,” in The Double Auction Market: Institutions, Theories, and Evidence, D. Friedman and

J. Rust, eds., Addison Wesley: Redwood City, CA, 285–305.

Klemperer, P. (1999): “Auction Theory: A Guide to the Literature,” Journal of Economic

Surveys, 13(3), 227–286.

Milgrom, P. R., and R. Weber (1982): “A Theory of Auctions and Competitive Bidding,”

Econometrica, 50(5), 1089–1122.

Morris, S., and H. Shin (2003): “Global Games: Theory and Applications,” in Advances in Eco-

nomics and Econometrics, Eighth World Congress, Matthias Dewatripont, Lars Peter Hansen,

and Stephen J. Turnovsky, eds., Cambridge University Press: Cambridge, MA.

O’Hara, M. (1997): Market Microstructure Theory. Blackwell, Cambridge, Massachusetts.

Pratt, J. W., H. Raiffa, and R. Schlaifer (1995): Introduction to Statistical Decision Theory.

Massachusetts Institute of Technology, Cambridge, MA.

Radner, R. (1979): “Rational Expectations Equilibrium: Generic Existence and Information

Revealed by Prices,” Econometrica, 47, 655–678.

29



Reny, P. J., and M. Perry (2006): “Toward a Strategic Foundation for Rational Expectations

Equilibrium,” Econometrica, 74(5), 1231–1269.

Reny, P. J., and S. Zamir (2004): “On the Existence of Pure Strategy Monotone Equilibria in

Asymmetric First–Price Auctions,” Econometrica, 72(4), 1105–1125.

Rider, P. R. (1960): “Variance of the Median of Samples from a Cauchy Distribution,” Journal

of the American Statistical Association, 55(290), 322–323.

Rothenberg, T. J., F. M. Franklin, and C. B. Tilanus (1964): “A Note on Estimation from

a Cauchy Sample,” J. Amer. Statist. Assoc, 59, 460–463.

Rustichini, A., M. A. Satterthwaite, and S. R. Williams (1994): “Convergence to Efficiency

in a Simple Market with Incomplete Information,” Econometrica, 62, 1041–63.

Satterthwaite, M. A., and S. R. Williams (1989a): “Bilateral Trade with the Sealed Bid

k–Double Auction: Existence and Efficiency,” Journal of Economic Theory, 48(1), 107–133.

Satterthwaite, M. A., and S. R. Williams (1989b): “The Rate of Convergence to Efficiency

in the Buyer’s Bid Double Auction as the Market Becomes Large,” Review of Economic Studies,

56, 477–498.

(2002): “The Optimality of a Simple Market Mechanism,” Econometrica, 70(5), 1841–

1863.

Satterthwaite, M. A., S. R. Williams, and K. E. Zachariadis (2014): “The Asymptotics

of Price and Strategy in the Buyer’s Bid Double Auction,” mimeo.

Shorack, G. R., and J. A. Wellner (1986): Empirical Processes with Applications to Statistics.

John Wiley and Sons, New York.

Tong, Y. (1990): The Multivariate Normal Distribution. Springer–Verlag, New York.

Williams, S. R. (1991): “Existence and Convergence of Equilibria in the Buyer’s Bid Double

Auction,” Review of Economic Studies, 58(2), 351–374.

Wilson, R. (1985): “Incentive Efficiency of Double Auctions,” Econometrica, 53(5), 1101–1115.

(1998): “Sequential Equilibria of Asymmetric Ascending Auctions: The Case of Log–

normal Distributions,” Economic Theory, 12, 433–440.

30



Appendices

A Derivation of Marginal Utilities and FOCs

We now derive expanded forms of the FOCs that are used in our computational work and in some

proofs. A proof that these FOCs are equivalent to (5) and (7) can be found in online Appendix G.

A.1 Buyer’s FOC

Pick a focal buyer who has received signal σB concerning his unknown value v. Assume the other

buyers and sellers use strategies B and S that satisfy A2. Let x, y be the mth and (m+ 1)st order

statistics of the other traders’ bids/asks. The focal buyer’s expected utility from bidding b is

πB(σB, b;B,S) =

∫ ∫ y

−∞

∫
[(v − y)I{x < y < b}+ (v − b)I{x < b ≤ y}] fBvxy|σ(v, x, y|σB)dvdxdy

(19)

where I{·} is the indicator function. The density may be rewritten as

fBvxy|σ(v, x, y|σB) =

∫
fBvxyµ|σ(v, x, y, µ|σB)dµ =

∫
fBxy|µ,v,σ(x, y|µ, v, σB)fµ|v,σ(µ|v, σB)fv|σ(v|σB)dµ

=

∫
fBxy|µ(x, y|µ)fµ|v(µ|v)fv|σ(v|σB)dµ =

∫
fBxy|µ(x, y|µ)gε(v − µ)gδ(σB − v)dµ.

The third equality follows from observing that (i), conditional on µ, the order statistics x and y are

independent of v and σB and (ii), conditional on v, σB does not add any more information about

µ since the signal σB is just a noisy version of v. In the last equality we use fµ|v(µ|v) = gε(v − µ)

as derived in section 2.3 and fv|σ(v|σB) = gδ(σB − v), which can be derived similarly.

Crucial to what follows is a formula for E[v|µ, σB]. For r > 0, let the uniform improper prior

be approximated by the uniform proper prior with density grµ = 1/2r in (−r, r) and 0 otherwise.

The joint density of v, µ, and σB is

f rµ,v,σ (µ, v, σB) = grµ(µ)fv|µ (v|µ) fσ|v (σB|v) =
gε(v − µ)gδ(σB − v)

2r
.

The marginal density of µ and σB is

f rµ,σ (µ, σB) =

∫
f rµ,v,σ (µ, v, σB) dv =

1

2r

∫
gε(v − µ)gδ(σB − v)dv.

The conditional density of µ and σB given v is

fµ,σ|v(µ, σB|v) =
f rµ,v,σ (µ, v, σB)

grv (v)
=

gε(v−µ)gδ(σB−v)
2r(
1
2r

) = gε(v − µ)gδ(σB − v)

where grv is the marginal density of v obtained by integrating out µ and σB from f rµ,v,σ (µ, v, σB).
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Therefore

fv|µ,σ (v|µ, σB) =
fµ,σ|v(µ, σB|v)grv (v)

fµ,σ (µ, σB)
=

gε(v − µ)gδ(σB − v)( 1
2r )

1
2r

∫
gε(v − µ)gδ(σB − v)dv,

=
gε(v − µ)gδ(σB − v)∫
gε(v − µ)gδ(σB − v)dv

=
gε(v − µ)gδ(σB − v)

gε+δ (σB − µ)

and

E[v|µ, σB] =

∫
vfv|µ,σ (v|µ, σB) dv =

∫
vgε(v − µ)gδ(σB − v)dv

gε+δ (σB − µ)
(20)

where from (3) we have fµ|σ (µ|σB) = fσ|µ(σB|µ) = gε+δ (σB − µ).

We rewrite the first half of (19) as∫ b

−∞

∫ y

−∞

∫
(v − y)fBvxy|σ(v, x, y|σB)dvdxdy

=

∫ b

−∞

∫ y

−∞

∫
(v − y)

[∫
fBxy|µ(x, y|µ)gε(v − µ)gδ(σB − v)dµ

]
dvdxdy

=

∫ ∫ b

−∞

∫ y

−∞
fBxy|µ(x, y|µ)

[∫
(v − y)gε(v − µ)gδ(σB − v)dv

]
dxdydµ

=

∫ ∫ b

−∞

∫ y

−∞
fBxy|µ|(x, y|µ)

[∫
vgε(v − µ)gδ(σB − v)dv − yfµ|σ(µ|σB)

]
dxdydµ

=

∫ ∫ b

−∞
[E[v|µ, σB]− y]

[∫ y

−∞
fBxy|µ(x, y|µ)dx

]
fµ|σ(µ|σB)dydµ

=

∫ ∫ b

−∞
[E[v|µ, σB]− y]

[∫
fBxy|µ(x, y|µ)dx

]
fµ|σ(µ|σB)dydµ

=

∫ ∫ b

−∞
[E[v|µ, σB]− y] fBy|µ(y|µ)fµ|σ(µ|σB)dydµ

where the fourth equality follows from factoring out fµ|σ(µ|σB) and using (20). The next-to-last

equality follows from observing that by definition x < y and therefore fBxy (x, y|µ) = 0 for all x > y.

The second half of the equation simplifies in much the same way:∫ ∞
b

∫ b

−∞

∫
(v − b)fBvxy|σ(v, x, y|σB)dvdxdy

=

∫ [∫ b

−∞

∫ y

−∞
[E[v|µ, σB]− b] fBxy|µ(x, y|µ)

]
fµ|σ(µ|σB)dxdydµ.

Combining the two parts, the focal buyer’s expected utility is

πB(b|σB, B, S) =

∫ {∫ b

−∞
(E[v|µ, σB]− y) fBy|µ(y|µ)dy

+

∫ b

−∞

∫ ∞
b

(E[v|µ, σB]− b) fBxy|µ(x, y|µ)dydx

}
fµ|σ(µ|σB)dµ ⇐⇒
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πB(b|σB, B, S) =

∫ 
∫ b

−∞
(E[v|µ, σB]− y) fBy|µ(y|µ)dy︸ ︷︷ ︸

I1

(21)

+ (E[v|µ, σB]− b)︸ ︷︷ ︸
I2

∫ b

−∞

Î3(x,b)︷ ︸︸ ︷∫ ∞
b

fBxy|µ(x, y|µ)dy dx︸ ︷︷ ︸
I3

 fµ|σ(µ|σB)dµ.

Differentiating with respect to b we have in turn:

∂I1

∂b
= (E[v|µ, σB]− b) fBy|µ(b|µ),

∂I2

∂b
= −1,

and

∂I3

∂b
= Î3(b, b) +

∫ b

−∞

∂Î3(x, b)

∂b
dx =

∫ ∞
b

fBxy|µ(b, y|µ)dy −
∫ b

−∞
fBxy|µ(x, b|µ)dx

= fBx|µ(b|µ)− fBy|µ(b|µ)

where the terms I1, I2, I3 and Î3(x, b) are defined in (21) and the last equality follows from the fact

that by definition x < y. Combining all the terms yields the buyer’s marginal utility:

πBb (b|σB, B, S) =

∫ {
(E[v|µ, σB]− b)

(
fBy|µ(b|µ) + fBx|µ(b|µ)− fBy|µ(b|µ)

)
−
∫ b

−∞

∫ ∞
b

fBxy|µ(x, y|µ)dydx

}
fµ|σ(µ|σB)dµ

=

∫ {
(E[v|µ, σB]− b) fBx|µ(b|µ)−

∫ b

−∞

∫ ∞
b

fBxy|µ(x, y|µ)dydx

}
fµ|σ(µ|σB)dµ.

Hence, the FOC for a buyer is∫ {
(E[v|µ, σB]− b) fBx|µ(b|µ)−

∫ b

−∞

∫ ∞
b

fBxy|µ(x, y|µ)dydx

}
fµ|σ(µ|σB)dµ = 0 (22)

where σB is the focal buyer’s signal, the distributions fBx|µ and fBxy|µ are generated by the strategies

B and S that the other traders employ, and
∫ b
−∞

∫∞
b fBxy|µ(x, y|µ)dydx=Pr[x < b ≤ y|µ,B, S].

In order to evaluate this FOC numerically we must have formulas for the densities fBx|µ and fBxy|µ,

where superscript B here signifies that these are the x and y order statistics from the perspective

of a buyer. The next two paragraphs develop the notation for these formulas. Fix the focal

buyer’s signal σB, his bid b, and the state µ. Given µ, every other trader’s signal σ is independently

distributed with density gε+δ(σ−µ) and corresponding distribution Gε+δ(σ−µ). Assumption A2 on

the strategies implies that B−1 (b) = σB (b) and S−1 (c) = σS (c) are well-defined and differentiable.
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Denote their derivatives by σ̇B (b) and σ̇S (c). Then

Pr[B(σ) ≤ b|µ] = Pr[σ ≤ σB (b) |µ] = Gε+δ (σB (b)− µ) ,

Pr[S(σ) ≤ b|µ] = Pr[σ ≤ σS(b)|µ] = Gε+δ (σS(b)− µ) ,

Pr[b ≤ B(σ) ≤ b+ ∆b|µ] = Gε+δ (σB (b+ ∆b)− µ)−Gε+δ (σB (b)− µ) (23)

≈ gε+δ (σB(b)− µ) [σB (b+ ∆b)− σB (b)]

≈ gε+δ (σB(b)− µ) σ̇B (b) ∆b,

Pr[b ≤ S(σ) ≤ b+ ∆b|µ] ≈ gε+δ (σS(b)− µ) σ̇S(b)∆b.

In addition to ∆b being small, derivation of the third formula depends on three observations:

(i) Gε+δ (σ + ∆x− µ) − Gε+δ (σ − µ) ≈ gε+δ (σ − µ) ∆x; (ii) B [σB(b)] = b implies that σ̇B (b) =

1/B′ [σB(b)]; (iii) σB(b+ ∆b) ≈ σB(b) + σ̇B (b) ∆b.

MB
m,n (b|B,S, µ) = Pr[x ≤ b ≤ y|µ] is the probability that the focal buyer’s bid b lies between

s(m) and s(m+1) in a sample of m− 1 buyers’ bids and n sellers’ asks:

MB
m,n =

∑
k+j=m

0≤k≤m−1
0≤j≤n

(
m− 1

k

)(
n

j

){
Gε+δ (σB (b)− µ)kGε+δ (σS(b)− µ)j

×Gε+δ (σB (b)− µ)m−1−kGε+δ (σS (b)− µ)n−j

}
.

(24)

Here k indexes buyers, j indexes sellers, and Gε+δ(·) ≡ 1 − Gε+δ (·). KB
m,n (b|B,S, µ) is the prob-

ability that the focal buyer’s bid b lies between s(m−1) and s(m) in a sample of m− 1 buyers’ bids

and n− 1 sellers’ asks:

KB
m,n =

∑
k+j=m−1
0≤k≤m−1
0≤j≤n−1

(
m− 1

k

)(
n− 1

j

){
Gε+δ (σB (b)− µ)kGε+δ (σS(b)− µ)j

×Gε+δ (σB (b)− µ)m−1−kGε+δ (σS(b)− µ)n−1−j

}
.

(25)

Finally, LBm,n (b|B,S, µ) is the probability that the focal buyer’s bid b lies between s(m−1) and s(m)

in a sample of m− 2 buyers’ bids and n sellers’ asks:

LBm,n =
∑

k+j=m−1
0≤k≤m−2

0≤j≤n

(
m− 2

k

)(
n

j

){
Gε+δ (σB (b)− µ)kGε+δ (σS (b)− µ)j

×Gε+δ (σB (b)− µ)m−2−kGε+δ (σS(b)− µ)n−j

}
. (26)

Conditional on the focal buyer’s signal being σB, his bid being b, each other buyer using B, and

each seller using S, his marginal utility is

πBb (b|σB, B, S) =

∫ {
(E(v|µ, σB)− b)fx|µ(b|µ)− Pr[x ≤ b ≤ y|µ]

}
fµ|σ(µ|σB)dµ ⇐⇒
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πBb (b|σB, B, S) =

∫
(E(v|µ, σB)− b)σ̇S (b)

AB1 (b|B,S,µ)︷ ︸︸ ︷
ngε+δ (σS(b)− µ)KB

m,n (b|B,S, µ)gε+δ (σB − µ) dµ

+

∫
(E(v|µ, σB)− b)σ̇B (b)

AB2 (b|B,S,µ)︷ ︸︸ ︷(
(m− 1)gε+δ (σB(b)− µ)

×LBm,n (b|B,S, µ)

)
gε+δ (σB − µ) dµ

−
∫
MB
m,n (b|B,S, µ) gε+δ (σB − µ) dµ. (27)

Using the definitions of AB1 , A
B
2 above,

fBx|µ(b|µ) = σ̇S (b)AB1 (b|B,S, µ) + σ̇B (b)AB2 (b|B,S, µ) (28)

and Pr[x < b ≤ y|µ,B, S] =MB
m,n (b|B,S, µ), as given by (24). We also substituted for fµ|σ(µ|σB) =

gε+δ (σB − µ) from (3).

To understand formula (27), suppose the focal buyer with signal σB increases his bid from b to

b+ ∆b. Conditional on µ, consider in order the three terms on its right side:

1. Pick a seller k with signal σk distributed with density gε+δ (σk − µ) and ask ak = S (σk). The

term σ̇S (b) gε+δ (σS(b)− µ)KB
m,n (b|B,S, µ)×∆b is the probability that the buyer’s increase

∆b in his bid causes him to jump over ak and go from not trading at b to trading at b+∆b. This

switch to trading requires that ak = s(m) in the sample of m+n−1 bids/asks the focal buyer

faces. Because the focal buyer jumps over ak, σ̇S(b)gε+δ (σS(b)− µ) ∆b is the probability

that ak ∈ (b, b+ ∆b). Since ∆b is small, ak ≈ b whenever i jumps over ak. K
B
m,n(b|B,S, µ)

therefore is the probability that, excluding both seller k and the focal buyer i, the bids/asks

of the other m− 1 buyers and n− 1 sellers are arranged so that ak is the mth order statistic

that the focal buyer must jump to trade. Finally, the probability that ak is both marginal

and jumped over is multiplied by n because there are n sellers who could be the marginal

seller k.

2. Pick a buyer k. The term σ̇B (b) gε+δ (σB(b)− µ)LBm,n (b|B,S, µ) is the probability that the

focal buyer i jumps over buyer k’s bid bk = B (σk) by increasing his bid b by ∆b in the

event that bk = s(m) in the vector of bids/asks the focal buyer faces. As a result the focal

buyer goes from not trading to trading. Derivation of this event’s probability exactly parallels

the derivation of the probability that buyer i jumps over seller k with two differences: the

probability buyer k’s bid bk is in the interval (b, b+ ∆b) is σ̇B (b) gε+δ (σB(b)− µ) ∆b and

there are m− 1 buyers who could be the marginal buyer k.

3. As observed above, MB
m,n (b|B,S, µ) is the probability that the focal buyer’s bid lies between

s(m) and s(m+1) in a sample of m−1 buyers each using B and n sellers each using S. Thus, for

the full sample of m bids (including the focal buyer’s bid of b) and n asks, MB
m,n (b|B,S, µ) is

the probability that the focal buyer’s bid b equals s(m+1) within the full sample of asks/bids
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and therefore sets the price. Consequently, increasing b by ∆b increases his expected cost of

successfully trading by MB
m,n (b|B,S, µ) ∆b.

Finally, the state µ must be integrated out of each of the three terms using the conditional density

fµ|σ (µ|σB) = gε+δ(σB − µ).

A.2 Seller’s FOC

Select a focal seller with signal σS and cost c, and let x, y be the mth and (m+ 1)st order statistics

of the other traders’ bids/asks. The seller’s ex post utility when he asks a is (x− c)I{a ≤ x < y}.
His interim expected utility is therefore

πS(σS , a;B,S) =

∫ ∫ ∫
(x− c)I{a ≤ x < y}fScxy|σ(c, x, y|σS)dcdxdy

=

∫ {∫ ∞
a

(x− E[c|µ, σS ]) fSx|µ(x|µ)dx

}
fµ|σ(µ|σS)dµ

where the second line follows the same logic as that for the focal buyer in going from (19) to (21).

Taking the derivative with respect to a gives the seller’s first order condition:

πSa (σS , a;B,S) =

∫
(E[c|µ, σS ]− a) fSx|µ(a|µ)gε+δ(σS − µ)dµ = 0 (29)

where we substituted fµ|σ(µ|σS) = gε+δ(σS − µ) from (3). Similar to (28), we have

fSx|µ(a|µ) = σ̇S(a)

AS1 (a|B,S,µ)︷ ︸︸ ︷
(n− 1)gε+δ (σS(a)− µ)KS

m,n (a|B,S, µ)

+ σ̇B (a)

AS2 (a|B,S,µ)︷ ︸︸ ︷
mgε+δ (σB(a)− µ)LSm,n (a|B,S, µ). (30)

KS
m,n (a|B,S, µ) is the probability that the focal seller’s ask a lies between s(m−1) and s(m) in a

sample of m buyers’ bids and n− 2 sellers’ asks:

KS
m,n =

∑
i+k=m−1

0≤i≤m
0≤k≤n−2

(
m

i

)(
n− 2

k

){
Gε+δ (σB (a)− µ)iGε+δ (σS(a)− µ)k

×Gε+δ (σB (a)− µ)m−iGε+δ (σS(a)− µ)n−2−k

}
. (31)

LSm,n (a|B,S, µ) is the probability that the focal seller’s bid a lies between s(m−1) and s(m) in a

sample of m− 1 buyers’ bids and n− 1 sellers’ asks:

LSm,n =
∑

i+k=m−1
0≤i≤m−1
0≤k≤n−1

(
m− 1

i

)(
n− 1

k

){
Gε+δ (σB (a)− µ)iGε+δ (σS (a)− µ)k

×Gε+δ (σB (a)− µ)m−1−iGε+δ (σS(a)− µ)n−1−k

}
.

(32)
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To understand formula (30) for fSx|µ(a|µ), suppose the focal seller with signal σS increases his

bid from a to a+∆a. Conditional on µ, consider the first term σ̇S (a)AS1 (a|B,S, µ) on its right side.

Pick a seller k with signal σk and ask ak = S (σk) . The term σ̇S (a) gε+δ (σS(a)− µ)KS
m,n (a|B,S, µ)×

∆a is the probability that seller i’s increase ∆a in his ask causes him to jump over ak and go from

trading at a to not trading at a + ∆a. This switch to not trading requires that ak = s(m) in the

sample of m bids and n− 1 asks the focal seller faces. Because the focal seller j jumps over seller

k, σ̇S(a)gε+δ (σS(a)− µ) ∆a is the probability that ak ∈ (a, a+ ∆a).14 Since ∆a is small, ak ≈ a

whenever j jumps over ak. K
S
m,n(a|B,S, µ) is the probability that, excluding both seller k and

the focal seller j, the bids/asks of the other m buyers and n − 2 sellers bracket ak, making it the

marginal bid/ask (the mth order statistic) that the focal seller must jump over to no longer trade.

Finally, the probability that k is both marginal and jumped over is multiplied by n − 1 because

there are n− 1 sellers who could be the marginal seller k. Derivation of the second term is similar.

B Invariance of the Vector Field

We begin by rewriting the formulas for KB
m,n, LBm,n, MB

m,n, KS
m,n, and LSm,n as given by (25),

(26), (24), (31), and (32), respectively, in terms of a buyer’s signal σB, a seller’s signal σS , and a

bid/ask β for which B (σB) = β = S(σS). In terms of the inverse functions, we have σB(β) = σB

and σS(β) = σS . This is purely a matter of substitution that we now illustrate in the case of

KB
m,n (b|B,S, µ) as defined in (25). Each term in the formula for KB

m,n (β|B,S, µ) can be expressed

as a function of (σB, σS) and the state µ:

Gε+δ (σB (β)− µ)kGε+δ (σS(β)− µ)j Gε+δ (σB (β)− µ)m−1−kGε+δ (σS (β)− µ)n−1−j

= Gε+δ (σB − µ)kGε+δ (σS − µ)j Gε+δ (σB − µ)m−1−kGε+δ (σS − µ)n−1−j . (33)

In this way, KB
m,n becomes

K̂B
m,n(σB, σS |µ) ≡

∑
k+j=m

0≤k≤m−1
0≤j≤n−1

(
m− 1

k

)(
n− 1

j

){
Gε+δ (σB − µ)kGε+δ (σS − µ)j ×
Gε+δ (σB − µ)m−1−kGε+δ (σS − µ)n−1−j

}

(34)

when expressed as a function of (σB, σS) ∈ R2. Similarly, define L̂Bm,n (σB, σS |µ), M̂B
m,n (σB, σS |µ)

for buyers and K̂S
m,n (σB, σS |µ), L̂Sm,n (σB, σS |µ) for sellers. In the second line of (27), the density

gε+δ (σB (β)− µ) becomes gε+δ (σB − µ) . These simplifications convert AB1 , A
B
2 ,M

B
m,n in (27) and

AS1 , A
S
2 in (30) into the functions ÂB1 , Â

B
2 , M̂

B
m,n and ÂS1 , Â

S
2 each with arguments σB, σS and µ.

The density fBx|µ(β|µ) can now be written as

fBx|µ(β|µ) = σ̇S (β) ÂB1 (σB, σS |µ) + σ̇B (β) ÂB2 (σB, σS |µ) .

14Similar to (23) we have Pr[aj ≤ S(σk) ≤ aj + ∆a|µ] = gε+δ (σS(aj)− µ) σ̇S (aj) ∆a.
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Similarly, the density fSx|µ(β|µ) can be expressed as

fSx|µ(β|µ) = σ̇S (β) ÂS1 (σB, σS |µ) + σ̇B (β) ÂS2 (σB, σS |µ)

and ∫ b

−∞

∫ ∞
b

fBxy|µ(x, y|µ)dydx = M̂B
m,n(σB, σS |µ).

The FOCs (22) and (29) can therefore be written at any point ω = (σB, β, σS) ∈ R3 as∫ {
(E[v|µ, σB]− β)

[
σ̇SÂ

B
1 (σB, σS |µ) + σ̇BÂ

B
2 (σB, σS |µ)

]
− M̂B

m,n(σB, σS |µ)
}
fµ|σ(µ|σB)dµ = 0,

(35)∫ {
(E[c|µ, σB]− β)

[
σ̇SÂ

S
1 (σB, σS |µ) + σ̇BÂ

S
2 (σB, σS |µ)

]}
fµ|σ(µ|σS)dµ = 0.

(36)

This is a linear system in σ̇B and σ̇S that is representable in the matrix form[
B11 (ω) B12 (ω)

B21 (ω) B22 (ω)

]
·

[
σ̇S

σ̇B

]
=

[
C(σB, σS)

0

]
(37)

where

B11 ≡
∫

(E[v|µ, σB]− β) ÂB1 (σB, σS |µ) fµ|σ(µ|σB)dµ,

B12 ≡
∫

(E[v|µ, σB]− β) ÂB2 (σB, σS |µ) fµ|σ(µ|σB)dµ,

B21 ≡
∫

(E[c|µ, σS ]− β) ÂS1 (σB, σS |µ) fµ|σ(µ|σS)dµ, (38)

B22 ≡
∫

(E[c|µ, σS ]− β) ÂS2 (σB, σS |µ) fµ|σ( µ|σS)dµ,

C ≡
∫
M̂B
m,n(σB, σS |µ)fµ|σ(µ|σB)dµ.

Line of Singularity. We now derive the line of singularity σ̇B = 0 that appears in Figure 2.

Consider a buyer’s FOC (35) in the case in which sellers play an offset strategy. We therefore set

σ̇S = 1 in (35), which reduces it to∫
(E[v|µ, σB]− β) ÂB2 (σB, σS |µ) fµ|σ(µ|σB)dµ = 0,

or equivalently, ∫
(E[v|µ, σB]− β) ÂB2 (σB, σS |µ) fµ|σ(µ|σB)dµ∫

ÂB2 (σB, σS |µ) fµ|σ(µ|σB)dµ
= 0. (39)
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ÂB2 is a probability density.15 Interpreting ÂB2 ·∆µ as a probability, it is the likelihood in the state

µ that the focal buyer’s bid β equals the bid of some other buyer when this other bid is the mth

smallest among the m+n− 1 bids/asks of the non-focal traders. The denominator is therefore the

probability that this event occurs. Let B denote the event in which the mth smallest bid/ask x of

the other traders is the bid of a buyer. The left side of (39) therefore equals E [v − β|σB, x = β,B],

the expected gain to the focal buyer of acquiring an item at the price β given that β = x in event

B.

Proof of Lemma 1. The lemma is proven by demonstrating that the five coefficients B11, B12,

B21, B22, C are invariant to translations along the diagonal. Since these coefficients share a common

structure, we show invariance here only in the case of B11. We consider in turn the three terms in

the integrand of (38) that defines this coefficient.

For arbitrary ρ ∈ R, consider the translation σ∗B = σB + ρ, β∗ = β + ρ, σ∗S = σS + ρ, and

µ∗ = µ + ρ. Using equation (20), which gives the formula for the first term, we check that the

translation has no effect:

E[v|µ∗, σ∗B]− β∗ =

∫
vgε(vB − µ∗)gδ(σ∗B − v)dv

fµ|σ
(
µ∗|σ∗B

) − β∗

=

∫
vgε(v − µ− ρ)gδ(σB + ρ− v)dv∫
gε(v − µ− ρ)gδ(σB + ρ− v)dv

− β − ρ

=

∫
(v + ρ)gε(v + ρ− µ− ρ)gδ(σB + ρ− v − ρ)dv∫

gε(v + ρ− µ− ρ)gδ(σB + ρ− v − ρ)dv
− β − ρ (40)

=

∫
vgε(v − µ)gδ(σB − v)dv∫
gε(v − µ)gδ(σB − v)dv

+ ρ

∫
gε(v − µ∗)gδ(σB − v)dv∫
gε(v − µ)gδ(σB − v)dv

− β − ρ

= E[v|µ, σB]− β

where the third equality is the change of variable v + ρ→ v.

The second term is

ÂB1 (σB, σS |µ) = ngε+δ (σS − µ) K̂B
m,n (σB, σS |µ) .

The translation leaves the density unchanged: gε+δ (σ∗S − µ∗) = gε+δ (σS − µ) . Applying the trans-

lation to the (j, k) term in the expansion (33) of K̂B
m,n (σB, σS |µ) shows that it is invariant:

Gε+δ (σ∗B − µ∗)
kGε+δ (σ∗S − µ∗)

j Gε+δ (σ∗B − µ∗)
m−1−kGε+δ (σ∗S − µ∗)

n−1−j

= Gε+δ (σB − µ)kGε+δ (σS − µ)j Gε+δ (σB − µ)m−1−kGε+δ (σS − µ)n−1−j .

Finally, recall from equation (3) that fµ|σ(µ|σB) = gε+δ (σB − µ) and so

fµ|σ(µ+ ρ|σB + ρ) = gε+δ ((σB + ρ)− (µ+ ρ)) = gε+δ (σB − µ) = fµ|σ(µ|σB). �

15AB2 is defined in (27), and its reduction to ÂB2 is explained after equation (34).
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C Existence of an Offset Solution to the Buyer’s FOC in the CPV

Case

Proof of Theorem 1. Define π (λ, λB) as a focal buyer’s expected profit when v∗ is his value,

he bids v∗ + λ, the other buyers use the strategy B(v) = v + λB, and sellers are honest in their

asks. The fact that all other buyers use an offset strategy and sellers report honestly implies that

π (λ, λB) has the same value for all possible values of v∗. This permits us to omit v∗ as a variable

and for convenience set it equal to zero. We seek a value of λ∗B that solves the first order condition,

∂π (λ, λ∗B)

∂λ

∣∣∣∣
λ=λ∗B

= 0.

The formula for marginal utility in the FOC (5) implies that at λ = λB = 0 the focal buyer has an

incentive to underbid his value v∗ = 0:

∂π (λ, λB)

∂λ

∣∣∣∣
λ=λB=0

< 0. (41)

Since A1 implies that π (λ, λB) is continuously differentiable, if a λB < 0 exists such that

∂π (λ, λB)

∂λ

∣∣∣∣
λ=λB

> 0, (42)

then the Intermediate Value Theorem implies that λ∗B exists.

The argument is now made in four steps. First, note that

π (0, 0) > 0

because if all traders report their values/costs honestly, then gains from trade exist and are realized

in expectation. We prove below that

lim
λB→−∞

π (λB, λB) = 0 (43)

using A1’s assumption that Gε has a first moment. Therefore π (0, 0) > limλB→−∞ π (λB, λB),

which implies that λC ∈ arg maxλB<0 π (λB, λB) exists. Second, observe that the focal buyer’s

expected profit declines as the other buyers increase their bids by increasing λB because the focal

buyer’s probability of trade goes down and the expected price if he should trade goes up. Therefore,

for any λ, λB ∈ R,
∂π (λ, λB)

∂λB
< 0. (44)

Third, λC satisfies its first order condition for a maximum,

0 =
dπ (λB, λB)

dλB

∣∣∣∣
λB=λC

=
∂π (λ, λB)

∂λ

∣∣∣∣
λ=λB=λC

+
∂π (λ, λB)

∂λB

∣∣∣∣
λ=λB=λC

; (45)
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the equation’s right-most derivative is negative by inequality (44), and therefore

∂π (λ, λB)

∂λ

∣∣∣∣
λ=λB=λC

> 0

as needed to imply existence of λ∗B.

Returning to (43), we bound π (λB, λB) by

π (λB, λB) ≤
∫ [∫ λB

−∞
(−c)ngε (c− µ)Gε (c− µ)n−1 dc

]
gε (−µ) dµ (46)

where the logic of this bound is as follows. The focal buyer trades if and only if at least m asks

and bids from among the other m + n − 1 traders are below his bid λB Consequently, the focal

buyer trades only if the smallest seller’s cost c(1) is below λB. Given his value v∗ = 0, his gain

from trading is bounded above by 0 − c(1) = −c(1) (the price he pays may in fact be larger than

c(1)). Conditional on µ, the interior integral on the right-side is the expected value of the gain from

trade computed with respect to the density of the smallest seller’s cost where the subscript on c(1)

is suppressed. This interior integral in (46) can be further bounded:16

∫ λB

−∞
(−c)ngε(c− µ)Gε (c− µ)n−1 dc ≤ −n

∫ λB

−∞
(c− µ+ µ) gε(c− µ)dc

= −n
[∫ λB

−∞
(c− µ) gε(c− µ)dc+ µ

∫ λB

−∞
gε(c− µ)dc

]
= −n

[∫ λB

−∞
(c− µ) gε(c− µ)dc+ µGε (λB − µ)

]
.

Therefore

π (λB, λB) ≤ −n
∫ [∫ λB

−∞
(c− µ) gε(c− µ)dc+ µGε (λB − µ)

]
gε (−µ) dµ

= −n
∫ [∫ λB

−∞
(c− µ) gε(c− µ)dc

]
gε (−µ) dµ− n

∫
µGε (λB − µ) gε (−µ) dµ.

The limit (43) then follows from the two limits

lim
λB→−∞

∫ λB

−∞
(c− µ) gε(c− µ)dc = 0 and lim

λB→−∞
Gε (λB − µ) = 0

that are true for all µ, with the first holding because Gε has a finite first moment. �

16This proof breaks down at this point if Gε does not have a finite first moment, as is the case with the Cauchy
distribution. We discuss this further in online Appendix L.
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D Convergence to Price-Taking Behavior in the CPV Case

Theorems 3 and 4 state rates of convergence for sequences of markets with ηm buyers and ηn

sellers for η ∈ N and fixed m and n. We are able here to establish rates for more general sequences.

Consider m,n that satisfy the bound

1

ϕ
≤ m

n
,
n

m
≤ ϕ. (47)

for some constant ϕ ≥ 1. We also use in this section the notation

m ∧ n ≡ min (m,n) .

We prove first that a buyer’s strategic term is O (1/m ∧ n), where the constant that establishes the

rate depends on Gε and ϕ. This reduces to Theorem 3 in the case of ϕ = 1, i.e., fixed m/n. In

online Appendix I, we then apply this result to show that relative inefficiency is O
(

1/ (m ∧ n)2
)

,

where again, the constant in the rate depends on Gε and ϕ. This reduces to Theorem 4 in the case

of ϕ = 1.

We begin by reducing several formulas from our analysis of the first order approach to the

specific case of the CPV case. In this case there is only one FOC, that of a buyer, since sellers

simply report their costs. A buyer’s FOC (35) reduces in this case to

v̇(v, b) =

∫
M̂B
m,ngε(v − µ)dµ− (v − b)

∫
ngε(b− µ)K̂B

m,ngε (v − µ) dµ

(v − b)
∫

(m− 1)gε(v − µ)L∗m,ngε(v − µ)dµ
(48)

where v̇ is the reduced form of σ̇B from Section 4 to the CPV case. The functions M̂B
m,n, K̂

B
m,n,

and L̂Bm,n from Appendix B reduce as follows in the CPV case:

K̂B
m,n(v, b|µ) =

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
Gε (v − µ)iGε (b− µ)j Gε (v − µ)m−1−iGε (b− µ)n−1−j ,

(49)

L̂Bm,n(v, b|µ) =
∑

i+j=m−1
0≤i≤m−2

0≤j≤n

(
m− 2

i

)(
n

j

)
Gε (v − µ)iGε (b− µ)j Gε (v − µ)m−2−iGε (b− µ)n−j ,

(50)

M̂B
m,n(v, b|µ) =

∑
i+j=m

0≤i≤m−1
0≤j≤n

(
m− 1

i

)(
n

j

)
Gε (v − µ)iGε (b− µ)j Gε (v − µ)m−1−iGε (b− µ)n−j .

(51)

We next prove a lemma that implies that an equilibrium offset cannot be arbitrarily large in

magnitude, regardless of the size of the market.

42



Lemma 2 For given values of m and n, a constant L∗ (Gε) > 0 exists such that

v − b > L∗ (Gε)⇒ v̇(v, b) < 1. (52)

Any equilibrium offset λ in the market with m buyers and n sellers therefore satisfies |λ| ≤ L∗ (Gε).

Proof. The invariance of v̇(v, b) allows us to set v = 0 with no loss of generality. We also restrict

attention to b ≤ v = 0 because setting b > v is a dominated strategy for buyers. The functions

K̂B
m,n(0, b|µ), L̂Bm,n(0, b|µ) and M̂B

m,n(0, b|µ) that appear in formula (48) and are given by (49)-(51)

satisfy the bounds

K̂B
m,n(0, b|µ) ≥ Gε (−µ)m−1Gε (b− µ)n−1 ,

L̂Bm,n(0, b|µ) ≥ nGε (−µ)m−2Gε (b− µ)Gε (b− µ)n−1 ,

and

M̂B
m,n(0, b|µ) ≤ km,nGε (−µ)m−1Gε (b− µ)Gε (b− µ)n−1

where km,n in the last formula denotes

km,n =
∑

i+j=m
0≤i≤m−1

1≤j≤n

(
m− 1

i

)(
n

j

)
.

The bound on K̂B
m,n(0, b|µ) is obtained by focusing on its i = m− 1, j = 0 term and the bound on

L̂Bm,n(0, b|µ) is obtained from its i = m− 2, j = 1 term.

The bound on M̂B
m,n(0, b|µ) is obtained as follows. Gε is strictly decreasing because Gε is strictly

increasing. Therefore, given that b ≤ v = 0, Gε (b− µ) ≤ Gε (−µ) and Gε (b− µ) ≥ Gε (−µ) . This

implies that the monomial in its ith term satisfies

Gε (−µ)iGε (b− µ)j Gε (−µ)m−1−iGε (b− µ)n−j

=
Gε (−µ)iGε (b− µ)j Gε (−µ)m−1−iGε (b− µ)n−j

Gε (−µ)1−j Gε (b− µ)j−1Gε (−µ)m−1−iGε (b− µ)i+1−m

× Gε (−µ)1−j Gε (b− µ)j−1Gε (−µ)m−1−iGε (b− µ)i+1−m

= Gε (−µ)i+j−1Gε (b− µ)Gε (b− µ)m−1−i+n−j
(
Gε (b− µ)

Gε (−µ)

)j−1( Gε (−µ)

Gε (b− µ)

)m−1−i

≤ Gε (−µ)i+j−1Gε (b− µ)Gε (b− µ)m−1−i+n−j

= Gε (−µ)m−1Gε (b− µ)Gε (b− µ)n−1

because (i) both fractions on line three are at most unity and (ii) i ≤ m− 1 and i+ j = m imply

that j ≥ 1. Substitution into (48) and factoring the integrand in the numerator implies that v̇(0, b)

43



is bounded above by∫
[km,nGε (b− µ) + nbgε(b− µ)]Gε (−µ)m−1Gε (b− µ)n−1 gε(−µ)dµ

−(m− 1)nb
∫
Gε (−µ)m−2Gε (b− µ)Gε (b− µ)n−1 gε(−µ)2dµ

. (53)

The integral in the numerator of (53) is now bounded separately over the intervals (−∞, b] and

[b,∞). The proof is completed by showing that: (i) the integral over (-∞, b] divided by the denom-

inator of (53) converges to zero as b→ −∞; (ii) the integral over [b,∞) is negative for b sufficiently

negative. These two steps are considered separately below.

Integral over (−∞, b]. This integral is bounded above by∫ b

−∞
km,nGε (b− µ)Gε (−µ)m−1Gε (b− µ)n−1 gε(−µ)dµ

≤ km,n
∫ b

−∞
gε(−µ)dµ

= km,nGε(−b)

= km,nGε(b).

The first line follows from b ≤ 0, the second from

Gε (b− µ)Gε (−µ)m−1Gε (b− µ)n−1 ≤ 1,

and the last equality follows from the symmetry of Gε. The integral in the denominator of (53)

satisfies ∫
Gε (−µ)m−2Gε (b− µ)Gε (b− µ)n−1 gε(−µ)2dµ

≥
∫ 0

−∞
Gε (−µ)m−2Gε (b− µ)Gε (b− µ)n−1 gε(−µ)2dµ

≥ Gε (b)

∫ 0

−∞
Gε (−µ)m−2Gε (b− µ)n−1 gε(−µ)2dµ

where the last inequality reflects Gε (b− µ) ≥ Gε(b) for µ ≤ 0. Combining these two bounds implies∫ b
−∞ [km,nGε (b− µ) + nbgε(b− µ)]Gε (−µ)m−1Gε (b− µ)n−1 gε(−µ)dµ

−(m− 1)nb
∫ ∫

Gε (−µ)m−2Gε (b− µ)Gε (b− µ)n−1 gε(−µ)2dµ

≤ km,nGε(b)

−(m− 1)nbGε (b)
∫ 0
−∞Gε (−µ)m−2Gε (b− µ)n−1 gε(−µ)2dµ

=
km,n

−(m− 1)nb
∫ 0
−∞Gε (−µ)m−2Gε (b− µ)n−1 gε(−µ)2dµ

.

The integrand in the denominator increases as b decreases and the ratio therefore goes to 0 as

b→ −∞.
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Integral over [b,∞). This integral equals∫ ∞
b

[
km,n + nb

gε(b− µ)

Gε (b− µ)

]
Gε (b− µ)Gε (−µ)m−1Gε (b− µ)n−1 gε(−µ)dµ. (54)

We have b − µ ≤ 0 because µ ≥ b. For Gε that satisfies (12) there exists a constant K > 0 such

that
gε(x)

Gε (x)
≥ K for x ≤ 0.

The integral (54) is therefore bounded above by∫ ∞
b

[km,n + nbK]Gε (b− µ)Gε (−µ)m−1Gε (b− µ)n−1 gε(−µ)dµ.

The integrand and hence the integral itself are negative for

km,n + nbK < 0⇔ b < −km,n
nK

. �

Proof of Theorem 3. As discussed at the beginning of this appendix, we prove that the strategic

term of buyers is O (1/m ∧ n) for any m,n satisfying (47). Our focus on offset equilibria implies

that v̇(v, b) = 1, which means that attention can be restricted to (v, b) ∈ R2 such that

v − b ≤ L∗ (Gε) (55)

where L∗ (Gε) is the constant whose value is provided by Lemma 2. Select L > L∗ such that

Gε(−L)(
Gε(−2L∗)Gε(2L∗)

)ϕ , Gε(L)(
Gε(−2L∗)Gε(2L∗)

)ϕ < 1

2
. (56)

The denominator of each ratio on the left side of (56) is constant and so a sufficiently large L

satisfies the inequalities. The number L is selected with foresight for its use later in the proof.

Formula (48) implies that v̇(v, b) ≥ δ > 0 only if

0 ≤
∫ [

M̂B
m,n − ngε(b− µ)(v − b)K̂B

m,n

]
gε(v − µ)dµ. (57)

This integral is now computed over three intervals:

0 ≤
∫ b−L

−∞
M̂B
m,ngε(v − µ)dµ

+

∫ v+L

b−L

[
M̂B
m,n − ngε(b− µ)(v − b)K̂B

m,n

]
gε(v − µ)dµ

+

∫ ∞
v+L

M̂B
m,ngε(v − µ)dµ.

The ngε(b−µ)(v−b)K̂B
m,n term has been dropped from the integrands of the first and third integrals,
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which can only increase their values. This implies that v − b is at most∫ v+L
b−L M̂B

m,ngε(v − µ)dµ∫ v+L
b−L ngε(b− µ)K̂B

m,ngε(v − µ)dµ
(58)

+

∫ b−L
−∞ M̂B

m,ngε(v − µ)dµ+
∫∞
v+L M̂

B
m,ngε(v − µ)dµ∫ v+L

b−L ngε(b− µ)K̂B
m,ngε(v − µ)dµ

. (59)

The proof is completed below by showing that that (58) is O (1/(m ∧ n)) and (59) is O(2−m∧n).

The bound we seek is thus determined over the states µ near v and b in [b− L, v + L], with states

µ in the tails [−∞, b− L] and [v + L,∞] shown to be relatively inconsequential.

Expression (58) is O (1/(m ∧ n)). For µ ∈ [b− L, v + L], the bounds

µ ≥ b− L⇔ b− µ ≤ L (60)

and

µ ≤ v + L⇔ −L ≤ v − µ

hold. The bound (55) then implies

v − µ = v − b+ b− µ ≤ L∗ + L

and

b− µ = b− v + v − µ ≥ −L∗ − L.

So

v − µ, b− µ ∈ [−L∗ − L,L+ L∗] . (61)

Turning to the numerator of (58), we have

∫ v+L

b−L
M̂B
m,ngε(v − µ)dµ =

∫ v+L

b−L

M̂B
m,n

nK̂B
m,n

nK̂B
m,ngε(v − µ)dµ (62)

≤
∫ v+L

b−L

M∗m∧n,m∧n
(n ∧m)K∗m∧n,m∧n

nK̂B
m,ngε(v − µ)dµ

≤ 2

m ∧ n

∫ v+L

b−L

Gε(v − µ)Gε (b− µ)

Gε (v − µ)
nK̂B

m,ngε(v − µ)dµ.

The step from the first to the second line follows from the fact M̂B
m,n/nK̂

B
m,n is non-increasing in n

and in m when m ≥ 2 (Williams (1991, Lem. 4.2)). The inequality

M∗m∧n,m∧n
K∗m∧n,m∧n

< 2
Gε(v − µ)Gε (b− µ)

Gε (v − µ)

follows from substitution into formulas (5.3) and (5.4) for z(v2, b) of Satterthwaite and Williams
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(1989b, p. 490) with v − µ replacing v2, b− µ replacing b, and Gε replacing F1 and F2.

The fact that v − µ and b− µ lie in the compact interval (61) implies that

Gε(v − µ)Gε (b− µ)

Gε (v − µ)

is bounded above and gε(b − µ) is bounded below for µ ∈ [b− L, v + L] . Applying these bounds

and (62), there exists a constant F ∗ such that (58) is at most

F ∗

m ∧ n
·
∫ v+L
b−L nK̂B

m,ngε(v − µ)dµ∫ v+L
b−L nK̂B

m,ngε(v − µ)dµ
=

F ∗

m ∧ n
,

which completes the proof that (58) is O (1/ (n ∧m)).

Expression (59) is O(2−m∧n). Consider first the denominator of (59). Reduce the support

of this integral from [b− L, v + L] to [b− L∗, v + L∗]. Replacing L with L∗ in the analysis (60)-(61)

implies

v − µ, b− µ ∈ [−2L∗, 2L∗]

for µ ∈ [b− L∗, v + L∗]. The fact that v ≥ b together with formula (49) for K̂B
m,n imply

nK̂B
m,n(v, b, µ) ≥

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)
·Gε (b− µ)m−1Gε (v − µ)n−1

≥
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n

j

)
·Gε (−2L∗)m−1Gε (2L∗)n−1 .

Letting

g∗ε = inf
x∈[−2L∗,2L∗]

gε(x),

the remaining term in the denominator satisfies∫ v+L∗

b−L∗
gε(b− µ)gε(v − µ)dµ ≥ (g∗ε)

2 (v − b+ 2L∗)

≥ (g∗ε)
2 (2L∗).

The denominator of (59) is thus at least

∑
i+j=m−1

0≤i,j≤m−1
0≤j≤n−1

(
m− 1

i

)(
n

j

)
·Gε (−2L∗)m−1Gε (2L∗)n−1 (g∗ε)

2 (2L∗). (63)
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Turning to the numerator of (59), notice that

µ ≤ b− L⇔ L ≤ b− µ

and

µ ≥ v + L⇔ v − µ ≤ −L.

Applying b ≤ v, formula (51) implies

M̂B
m,n ≤

∑
i+j=m

0≤i≤m−1
1≤j≤n

(
m− 1

i

)(
n

j

)
Gε (v − µ)mGε (b− µ)n−1 .

The change of index j + 1→ j implies

∑
i+j=m

0≤i≤m−1
1≤j≤n

(
m− 1

i

)(
n

j

)
=

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n

j + 1

)

=
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
n

j + 1

≤ n
∑

i+j=m−1
0≤i≤m−1
0≤j≤n−1

(
m− 1

i

)(
n− 1

j

)
.

Therefore, for µ ∈ [−∞, b− L],

M̂B
m,n ≤

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)
Gε (L)n−1 (64)

and, for µ ∈ [v + L,∞],

M̂B
m,n ≤

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)
Gε (−L)m . (65)

We now combine the bounds (63), (64) and (65). Notice that

∑
i+j=m−1
0≤i≤m−1
0≤j≤n−1

n

(
m− 1

i

)(
n− 1

j

)
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appears in each of the bounds (63), (64) and (65) and therefore cancels. The ratio (59) is therefore

bounded above with

Gε (L)n−1 ∫ b−L
−∞ gε(v − µ)dµ+Gε (−L)m

∫∞
v+L gε(v − µ)dµ

Gε (−2L∗)m−1Gε (2L∗)n−1 (g∗ε)
2 (2L∗)

≤ 1

(g∗ε)
2 (2L∗)

· Gε (L)n +Gε (−L)m

Gε (−2L∗)mGε (2L∗)n

≤ 1

(g∗ε)
2 (2L∗)

·
[

Gε (L)n

Gε (2L∗)ϕnGε (2L∗)ϕn
+

Gε (−L)m

Gε (2L∗)ϕmGε (2L∗)ϕm

]
≤ 1

(g∗ε)
2 (2L∗)

·
[(

1

2

)n
+

(
1

2

)m]
≤ 1

(g∗ε)
2 (L∗)

·
(

1

2

)m∧n
where the bound (56) is applied in the fourth line of this calculation. �

E Sampling Error

Proof of Theorem 6. We set µ = 0 with no loss in generality. In this case pREE = ξεq . We first

note that z(ηm+1) − ξεq is asymptotically normal after a suitable rescaling, i.e., for any r ∈ R,

lim
η→∞

Pr

((
z(ηm+1) − ξεq

) gε (ξεq)√η (m+ n)√
q (1− q)

≤ r

)
= Φ (r) .

See, for example, Arnold, Balakrishnan, and Nagaraja (1992, Thm. 8.5.1). The random variable

(
z(ηm+1) − ξεq

) gε (ξεq)√η (m+ n)√
q (1− q)

thus converges in distribution to the standard normal. Theorem 6 rests upon the convergence of

the first absolute moment of this random variable to the corresponding first absolute moment of

the limiting standard normal distribution. Condition (18) ensures that17

lim
η→∞

E
[∣∣z(ηm+1) − ξεq

∣∣∣∣µ = 0
]
·
gε
(
ξεq
)√

η (m+ n)√
q (1− q)

= EΦ [|r|] (66)

where r ∼ N (0, 1). From (66) it is clear that for sufficiently large η,

1

2
√
η
·K · EΦ [|r|] < E

[∣∣z(ηm+1) − ξεq
∣∣∣∣µ = 0

]
<

2
√
η
·K · EΦ [|r|]

17This result originates in Anderson (1982). We apply here Shorack and Wellner (1986, Thm. 4, p. 475) in the
case of h(x) = |x|. Condition (18) is assumption (12) of this theorem and its assumption (14) holds for h(x) = |x|
with M = 1 and x∗ = 3.
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where K denotes the constant

K ≡
√
q (1− q)

gε
(
ξεq
)√

(m+ n)
.

This completes the proof. �
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Online Appendices for “Price Discovery Using a Double Auction”

F An Example of the Failure of Affiliation in the CIV case

This section presents an example in which, conditional on the state µ, affiliation holds (i) among

traders’ signals, (ii) among the focal buyer’s signal and the ordered signals of the other traders,

(iii) among the focal buyer’s signal and the bids/asks of other traders, but (iv) not among the

focal buyer’s signal and the ordered bids/asks of the other traders. It is case (iv) that is relevant

to the focal buyer’s decision problem. There are two buyers and two sellers (m = n = 2) and

buyer one is the focal buyer. We assume that ε ∼ N (0, 1/τε) and δ ∼ N (0, 1/τδ). It follows that

ε+ δ ∼ N (0, 1/τ) for τ ≡ (1/τε + 1/τδ)
−1.

Conditional on µ the traders’ values/costs (v1, v2, c1, c2) are independent and identically dis-

tributed. Additionally, conditional on µ their signals (σ1, σ2, σ3, σ4) are also independent and

identically distributed (here the buyers are indexed by signals 1 and 2, while the two sellers by

signals 3 and 4). Hence the density of (µ, σ1, σ2, σ3, σ4) is

fµ,σ1,σ2,σ3,σ4(x0, x1, x2, x3, x4) = gµ(x0)Π4
i=1gε+δ(xi − x0).

The density gµ of µ can be either proper or improper for this section. Affiliation requires that

∂2 ln fµ,σ1,σ2,σ3,σ4(x0, x1, x2, x3, x4)

∂xi∂xj
≥ 0

for all i 6= j and i, j ∈ {0, 1, 2, 3, 4} (Milgrom and Weber (1982, Thm. 1(i))). For gε+δ that is log-

concave, so that the conditional fσ|µ(σ|µ) = gε+δ(σ−µ) (from (3)) satisfies the monotone likelihood

ratio property (MLRP), the above inequality holds (Milgrom and Weber (1982, p. 1099)). The

normal is log-concave so the vector (µ, σ1, σ2, σ3, σ4) is affiliated, which establishes (i).18

We now show that the ordered signals of the nonfocal traders are affiliated with the signal of

the focal buyer. Let s̃(i) be the ith order statistic of (σ2, σ3, σ4). The density of (µ, σ1, s̃(1), s̃(2), s̃(3))

is

fµ,σ1,s̃(1),s̃(2),s̃(3)(x0, x1, x2, x3, x4) = gµ(x0)3!Π4
i=1gε+δ(xi − x0)

= gµ(x0)gε+δ(x1 − x0)3!Π4
i=2gε+δ(xi − x0)

for x2 ≤ x3 ≤ x4. Since the initial density fµ,σ1,σ2,σ3,σ4 is symmetric in its last m + n − 1 = 2

arguments, for gε+δ normal affiliation holds (Milgrom and Weber (1982, Thm. 2)). This establishes

(ii).

We now show that the bid/asks of the nonfocal traders are affiliated with the focal buyer’s

signal. Consider the sample of bid/asks where the nonfocal buyer uses offset λB and the sellers

18Note that affiliation of a vector of random variables implies affiliation of any subset of the random variables
in that vector; in particular affiliation of (µ, σ1, σ2, σ3, σ4) implies affiliation of (σ1, σ2, σ3, σ4) (Milgrom and Weber
(1982, Thm. 4)).
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use offset λS . Note that (λB, λS) ∈ R2 are arbitrary constants, not necessarily the solutions to the

buyers’ and sellers’ FOCs. Then conditional on µ the elements of the vector (σ1, b2, a1, a2), where

b2 = σ2 + λB, a1 = σ3 + λS , a2 = σ4 + λS , are independent but not identically distributed. In

particular,

fµ,σ1,b2,a1,a2(x0, x1, x2, x3, x4) = gµ(x0)gε+δ(x1 − x0)gε+δ(x2 − λB − x0)gε+δ(x3 − λS − x0)

× gε+δ(x4 − λS − x0).

However, since the bid and the asks are increasing functions affiliation holds for the vector (µ, σ1, b2, a1, a2)

(Milgrom and Weber (1982, Thm. 3)). This establishes (iii).

We now show that the ordered bid/asks of the nonfocal traders are not affiliated with the focal

buyer’s signal. Let s(i) be the ith order statistic of the vector of bid/asks (b2, a1, a2). From David

and Nagaraja (2003, p. 98) the density of (µ, σ1, s(1), s(2), s(3)) is

fµ,σ1,s(1),s(2),s(3)(x0, x1, x2, x3, x4) = 2gµ(x0)gε+δ(x1 − x0)

×
[
gε+δ(x2 − λB − x0)gε+δ(x3 − λS − x0)gε+δ(x4 − λS − x0)︸ ︷︷ ︸

Z1

+ gε+δ(x2 − λS − x0)gε+δ(x3 − λB − x0)gε+δ(x4 − λS − x0)︸ ︷︷ ︸
Z2

+ gε+δ(x2 − λS − x0)gε+δ(x3 − λS − x0)gε+δ(x4 − λB − x0)︸ ︷︷ ︸
Z3

]
,

(67)

for x2 ≤ x3 ≤ x4. Focus on ∂2 ln fµ,σ1,s(1),s(2),s(3)(x0, x1, x2, x3, x4)/∂x2∂x3. If this is greater than

or equal to zero, then the focal buyer’s signal may be affiliated with the order statistics of other

traders’ bid/asks. If it is negative, then affiliation fails. Since the term 2gµ(x0)gε+δ(x1 − x0) does

not depend on either x2 or x3 we have

∂2 ln fµ,σ1,s(1),s(2),s(3)(x0, x1, x2, x3, x4)

∂x2∂x3
=

∂2 lnZ

∂x2∂x3
,

where Z ≡ Z1 + Z2 + Z3 and Z1, Z2, Z3 are defined in (67) above.19

Since ε+ δ ∼ N (0, 1/τ) we have gε+δ(x) =
√
τ exp(−τx2/2)/

√
2π and so

Z1 = gε+δ(x2 − λB − x0)gε+δ(x3 − λB − x0)gε+δ(x4 − λS − x0)

=

(√
τ

2π

)3

exp
{
−τ

2

[
(x2 − x0)2 + (x3 − x0)2 + (x4 − x0)2 + λ2

B + 2λ2
S

−2λB(x2 − x0)− 2λS(x3 − x0)− 2λS(x4 − x0)
]}
,

19The terms Z1, Z2, Z3 depend on (x0, x2, x3, x4, λB , λS), but we omit these arguments for simplicity.
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and similarly for Z2 and Z3. Therefore

Z =

(√
τ

2π

)3

exp
{
−τ

2

[
(x2 − x0)2 + (x3 − x0)2 + (x4 − x0)2 + λ2

B + 2λ2
S

]}
×

[
exp [τλB(x2 − x0) + τλS(x3 − x0) + τλS(x4 − x0)]︸ ︷︷ ︸

Z̃1

+ exp [τλS(x2 − x0) + τλB(x3 − x0) + τλS(x4 − x0)]︸ ︷︷ ︸
Z̃2

+ exp [τλS(x2 − x0) + τλS(x3 − x0) + τλB(x4 − x0)]︸ ︷︷ ︸
Z̃3

]
. (68)

Let Z̃ ≡ Z̃1 + Z̃2 + Z̃3 where Z̃1, Z̃2, Z̃3 are defined in (68) above. Taking the natural logarithm of

Z in (68) separates the first line from the rest. The term produced by the first line is

ln

(√
τ

2π

)3

− τ

2

[
(x2 − x0)2 + (x3 − x0)2 + (x4 − x0)2 + λ2

B + 2λ2
S

]
.

This has no x2 and x3 cross-terms and hence does not affect the cross-partial with respect to these

variables. Therefore

∂2 ln fµ,σ1,s(1),s(2),s(3)(x0, x1, x2, x3, x4)

∂x2∂x3
=

∂2 ln Z̃

∂x2∂x3
.

We now have:

∂2 ln Z̃

∂x2∂x3
= ∂

(
∂ ln Z̃

∂x2

)
/∂x3 = ∂

(
1

Z̃

∂Z̃

∂x2

)
/∂x3 = − 1

Z̃2

∂Z̃

∂x3

∂Z̃

∂x2
+

1

Z̃

∂2Z̃

∂x2∂x3

=
1

Z̃

[
∂2Z̃

∂x2∂x3
− 1

Z̃

∂Z̃

∂x3

∂Z̃

∂x2

]
. (69)

The sign of the partial is determined by the sign of the terms inside the square brackets of (69). In

turn:

∂Z̃

∂x2
= τ

(
λBZ̃1 + λSZ̃2 + λSZ̃3

)
,

∂Z̃

∂x3
= τ

(
λSZ̃1 + λBZ̃2 + λSZ̃3

)
,

∂2Z̃

∂x2∂x3
= τ

(
λBλSZ̃1 + λSλBZ̃2 + λ2

SZ̃3

)
,
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so that

∂2Z̃

∂x2∂x3
− 1

Z̃

∂Z̃

∂x3

∂Z̃

∂x2
= τ

(
λBλSZ̃1 + λSλBZ̃2 + λ2

SZ̃3

)
−

τ2
(
λBZ̃1 + λSZ̃2 + λSZ̃3

)(
λBZ̃1 + λSZ̃2 + λSZ̃3

)
Z̃1 + Z̃2 + Z̃3

= −τ
2Z̃1Z̃2

Z̃
(λB − λS)2.

Putting it all together, the partial of interest is

∂2 ln fµ,σ1,s(1),s(2),s(3)(x0, x1, x2, x3, x4)

∂x2∂x3
= −τ

2Z̃1Z̃2

Z̃2
(λB − λS)2.

Since Z̃1 and Z̃2 are strictly positive, it is clear that for any λB 6= λS the partial is strictly negative

and hence the focal buyer’s signal is not affiliated with the ordered bid/asks of the other traders.

This establishes (iv).

We note two points. First, the proof can be replicated for a focal seller by simply changing the

interpretation of λB and λS . Second, the same arguments hold trivially for the CPV case in which

τδ → ∞. We then have that gε+δ → gε and (σ1, σ2) → (v1, v2), (σ3, σ4) → (c1, c2). In the CPV

case sellers always ask their cost, so λS → 0 and affiliation fails for λB 6= 0.

G Equivalence of the Two Forms of the FOCs

In Appendix A, we derived the alternative forms (22) and (29) of the FOCs (5) and (7), or equiv-

alently, (4) and (6). The following lemma establishes the equivalence of the two derivations.

Lemma 3 The two forms (4) and (22) of the buyer’s first order condition,

(E[v|σB, x = b]− b) fBx|σ (b|σB)− Pr [x < b < y|σB] = 0

and ∫ {
(E[v|µ, σB]− b) fBx|µ(b|µ)−

∫ b

−∞

∫ ∞
b

fBxy|µ(x, y|µ)dydx

}
fµ|σ(µ|σB)dµ = 0,

are equivalent. Similarly, the two forms (6) and (29) of the seller’s first order condition are equiv-

alent.
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Proof. We focus on the more complicated case of the buyer’s FOC. We need to prove three

equalities. The first is∫
bfBx|µ(b|µ)fµ|σ(µ|σB)dµ = b

∫
fBx|µ,σ(b|µ, σB)fµ|σ(µ|σB)dµ

= b

∫
fBx,µ|σ(b, µ|σB)dµ

= bfBx|σ(b|σB).

The second line above follows from Bayes’ Rule together with the fact that, conditional on µ, the

buyer’s signal σB offers no new information regarding other traders’ signals and resulting bids/asks.

The second equality follows from integrating with respect to µ:∫
Pr [x < b < y|µ] fµ|σ(µ|σB)dµ = Pr [x < b < y|σB] .

The last equality is

E[v|σB, x = b]fBx|σ (b|σB) =

∫
E[v|µ, σB]fBx|µ(b|µ)fµ|σ(µ|σB)dµ.

Conditional on µ, x and σB are independent. Therefore∫
E[v|µ, σB]fBx|µ(b|µ)fµ|σ(µ|σB)dµ =

∫ ∫
vfv|µ,σ(v|µ, σB)fBx|µ(b|µ)fµ|σ(µ|σB)dvdµ

=

∫ ∫
vfv|µ,σ(v|µ, σB)fBx|µ,σ(b|µ, σB)fµ|σ(µ|σB)dvdµ.

Observe that

fv|µ,σ(v|µ, σB)fBx|µ,σ(b|µ, σB) = fBv,x|µ,σ(v, b|µ, σB) =
fBv,x,µ|σ(v, b, µ|σB)

fµ|σ(µ|σB)
.

Substitution produces∫
E[v|µ, σB]fBx|µ(b|µ)fµ|σ(µ|σB)dµ

=

∫ ∫
vfBv,x,µ|σ(v, b, µ|σB)dvdµ =

∫
v

{∫
fBv,x,µ|σ(v, b, µ|σB)dµ

}
dv

=

∫
vfBv,x|σ(v, b|σB)dv =

∫
vfBv|x,σ(v|x = b, σB)fBx|σ(b|σB)dv

=

{∫
vfBv|x,σ(v|x = b, σB)dv

}
fBx|σ(b|σB) = E[v|σB, x = b]fBx|σ(b|σB).

This completes the proof of equivalence for buyers. The proof for sellers is similar except that the

second of the three equalities is not present. �
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H Sufficiency

Proof of Theorem 2. Consider a focal buyer with signal σB and assume that all other buyers

and sellers play strategies B and S that satisfy the FOCs (4) and (6) for all (σB, σS) ∈ R2. For

all (σB, b) such that B (σB) = b the buyer’s FOC (4) is

πBb (σB, b|S,B) = (E[v|σB, x = b]− b) fBx|σ (b|σB)− Pr [x < b < y|σB] = 0. (70)

A sufficient condition for B to be a best response is that the following statements hold for all

(σB, b) ∈ R2:
πBb (σB, b|S,B) ≥ 0 if b < B (σB)

πBb (σB, b|S,B) = 0 if b = B (σB)

πBb (σB, b|S,B) ≤ 0 if B (σB) < b

⇔

πBb (σB, b|S,B) ≥ 0 if σB (b) < σB

πBb (σB, b|S,B) = 0 if σB (b) = σB

πBb (σB, b|S,B) ≤ 0 if σB < σB (b)

 . (71)

The left-hand column of conditions is the first derivative test on the variable b for a fixed value

of σB. The equivalent conditions in the right-hand column are obtained by applying the inverse

mapping σB(·) = B−1(·) to the variables. They are useful below when we fix the bid b and interpret

σB as the variable.

The right column is satisfied if, for a fixed b ∈ R, πb(σB, b|B,S) is increasing in σB and equals

zero at σB = σB(b). Rewrite the focal buyer’s marginal utility (70) as

πb(σB, b|B,S) = (E[v|σB, x = b]− b) fBx|σ (b|σB)− Pr [x < b < y|σB]

= fBx|σ (b|σB)

{
(E[v|σB, x = b]− b)− Pr[x ≤ b ≤ y|σB]

fBx|σ (b|σB)

}
. (72)

Given that fBx|σ (b|σB) > 0 for all (σB, b) ∈ R2, the term in brackets determines the sign of

πBb (σB, b|B,S). The entire term equals 0 at σB = σB (b) = B−1(b) because B is a solution to

the FOC. Hence, if the term in brackets is increasing in σB for all b ∈ R then (71) is satisfied.

Consider now a focal seller j and continue to assume that B and S are solutions to the buyers’

and sellers’ FOCs. For all (σS , a) such that a = S (σS) , seller j’s FOC (6) is

πSa (a|σS , B, S) = (E[c|σS , x = a]− a) fSx|σ (a|σS) = 0. (73)

Similar to the logic of (71), S is a best response if
πSa (a|σS , B, S) ≥ 0 if σS (a) < σS

πSa (a|σS , B, S) = 0 if σS (a) = σS

πSa (a|σS , B, S) ≤ 0 if σS < σS (a)

 .

Since S is a solution to the FOC, πSa (σS , a|B) = 0 at σS = σS(a) = S−1 (a), and the above is

satisfied if E[c|σS , x = a] is increasing in σS for all a ∈ R. �
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I Convergence to Efficiency in the CPV Case

Proof of Theorem 4. As discussed at the beginning of Appendix D, we consider a market with

m buyers and n sellers such that m,n satisfy (47) for some constant ϕ. The state µ is fixed. The

denominator of relative inefficiency is the potential gains from trade. In each state µ, the gains

from trade are at least m ∧ n times the expected gains from trade Γ (Gε) between a single buyer

and a single seller. Notice that the number Γ (Gε) is the same in each state µ. The expected gains

from trade in state µ are therefore at least (m ∧ n) Γ (Gε).

The numerator of relative inefficiency in (16) is the expected value of the efficient trades in state

µ that fail to be made because of buyer strategic behavior. Given the lower bound (m ∧ n) Γ (Gε)

on the denominator, it remains to be shown that the numerator is O (1/ (m ∧ n)). We first show

that the value of a trade that inefficiently fails to occur is O(1/ (m ∧ n)). The second step is then

to show that the expected number of trades that inefficiently fail to occur is bounded above by a

constant that does not depend on m or n.

Given a sample of m values and n costs, we first consider the value of a trade between a buyer

with value v and a seller with cost c that occurs in the efficient allocation but does not occur in

the equilibrium 〈B,S〉, where S is the truth-telling dominant strategy of sellers. Let p denote the

market price in the BBDA determined by the sample and by 〈B,S〉. This buyer and this seller

each fail to trade in the BBDA only if

B(v) ≤ p ≤ c. (74)

Efficiency requires that both should trade only if v is among the largest n values/costs and c is

among the m smallest values/costs. Consequently, trade between this buyer and this seller occurs

in the efficient allocation only if

c ≤ v. (75)

Combining (74) and (75) implies

B(v) ≤ c ≤ v.

Theorem 3 then implies that the value v − c of a trade that inefficiently fails to occur satisfies

v − c ≤ v −B(v) ≤ K

m ∧ n
.

We suppress the dependence of K upon the distribution Gε and the bound ϕ on the relative size

of m and n for notational simplicity in this proof.

The proof is completed by bounding above the expected number of trades that inefficiently fail

to occur in the state µ by a constant determined by F that is independent of m, n and µ. Here,

z(m+1) denotes the (m + 1)st smallest value/cost in a sample of m buyers’ values and n sellers’

costs, Fz(m+1)

(
z(m+1) |µ

)
denotes the distribution of z(m+1) conditional on µ, and L(z(m+1), µ) is

the expected number of trades that inefficiently fail to occur given the realization of z(m+1) in the
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state µ. The proof is completed by bounding the expected number of missed trades in the state µ,∫
L(z(m+1), µ)dFz(m+1)

(
z(m+1) |µ

)
, (76)

by a constant that does not depend on m, n or µ. The integral (76) is represented as the sum

µ+γ∫
−∞

L(z(m+1) |µ)dFz(m+1)

(
z(m+1) |µ

)
(77)

+

∞∫
µ+γ

L(z(m+1) |µ)dFz(m+1)

(
z(m+1) |µ

)
(78)

where γ is a constant chosen with foresight so that

Gε(γ) ≤ 1

23ϕ
. (79)

The two integrals (77) and (78) are bounded above in separate arguments.

Bounding (77). Because buyers underbid by at most K/(m ∧ n), the equilibrium market

price (i.e., the (m+ 1)st bid/ask) necessarily lies in the interval[
z(m+1) −

K

m ∧ n
, z(m+1)

]
.

The value of a buyer who inefficiently fails to trade must lie (i) at or below z(m+1) + K/ (m ∧ n)

so that his bid can fall below the market price, and (ii) at or above z(m+1) so that he should in

fact trade. Given µ and z(m+1), the expected number of trades that inefficiently fail to occur is

therefore at most equal to the expected number of buyers’ values in the interval[
z(m+1), z(m+1) +

K

m ∧ n

]
. (80)

This expected value is bounded using an upper bound on the density of trader’s value/cost in this

interval given µ.

We now compute the bound on this density. Let z denote a trader’s value/cost above z(m+1).

Conditional on µ and z(m+1), there are n − 1 traders’ values above z(m+1) that are independently

distributed with density
gε(z − µ)

Gε(z(m+1) − µ)
.

This satisfies the bound
gε(z − µ)

Gε(z(m+1) − µ)
≤ gε(z − µ)

Gε(z − µ)
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because z ≥ z(m+1). In particular, for

z ∈
[
z(m+1), z(m+1) +

K

m ∧ n

]
(81)

with

z(m+1) ∈ (−∞, µ+ γ], (82)

it is true that

z − µ ≤ z(m+1) +
K

m ∧ n
− µ ≤ γ +

K

m ∧ n
≤ γ +K.

Within this proof define the function ζ to be

ζ (Gε) = sup
y≤γ+K

gε(y)

Gε(y)
,

so that
gε(z − µ)

Gε(z(m+1) − µ)
≤ ζ (Gε)

for z and z(m+1) satisfying (81) and (82).

The expected number of buyers’ values in the interval (80) is therefore at most

1 + ((n− 1) ∧m) ζ (Gε) ·
K

m ∧ n
≤ 1 + ζ (Gε) ·K,

where the “1” counts the trader’s value/cost equal to z(m+1) and ζ (Gε) ·K/ (m ∧ n) bounds above

the probability that the value/cost of any of the other n−1 traders above z(m+1) lies in the interval

(80). Because there are m buyers, the term (n− 1)∧m bounds above the number of buyers’ values

that are above z(m+1). The desired bound on (77) is now computed as follows:

µ+γ∫
−∞

L(z(m+1), µ)dFz(m+1)

(
z(m+1) |µ

)
≤

µ+γ∫
−∞

(1 + ζ (Gε) ·K) dFz(m+1)

(
z(m+1) |µ

)
≤ 1 + ζ (Gε) ·K.

Bounding (78). We focus on the low probability that z(m+1) ≥ µ+ γ. Specifically,

∞∫
µ+γ

L(z(m+1), µ)dFz(m+1)

(
z(m+1) |µ

)
≤

∞∫
µ+γ

(m ∧ n) dFz(m+1)

(
t(m+1) |µ

)
(83)

= m ∧ n ·
(

1− Fz(m+1)
(µ+ γ |µ)

)
.

The event “z(m+1) ≥ µ + γ” requires that n values/costs be above µ + γ. The term 1 −
Fz(m+1)

(µ+ γ |µ) is therefore the probability given µ that at least n in a sample ofm+n values/costs

are greater than or equal to µ+γ. This is calculated by summing over the number i of values/costs
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below µ+ γ and then reducing as follows:

1− Fz(m+1)
(µ+ γ |µ) =

m∑
i=0

(
n+m

i

)
Gε(γ)iGε (γ)n+m−i

= Gε (γ)n
m∑
i=0

(
n+m

i

)
Gε(γ)iGε (γ)m−i

≤ Gε (γ)n
n+m∑
i=0

(
n+m

i

)
1i1n+m−i

≤ 1

23ϕn
· (1 + 1)n+m

=
1

22ϕn−m

≤ 1

2ϕn
.

The first inequality drops Gε(γ)iGε (γ)m−i < 1 from the ith term, the second inequality increases

the sum by adding terms from i = m+ 1 to i = n+m, and the final inequality applies the binomial

formula and the bound (79).

Substitution into (83) implies

∞∫
µ+γ

L(z(m+1), µ)dFz(m+1)

(
z(m+1) |µ

)
≤ m ∧ n

2ϕn
< 1,

which completes the proof. �

J The Limit Market

Proof of Theorem 5. Start with the property that for every µ there exists a price pREE with

which the traders can infer µ. After all trades are completed at pREE, only traders for whom

E [z|µ, σ] < pREE are without a unit of the good. The fraction q is the proportion of buyers in the

market. By definition, they are the only traders who start with an initial endowment of zero units

of the traded good. Given that each trader always has either zero or one unit, market clearing

requires that the proportion of traders with zero units of the good remain constant at q both before

and after trade. Therefore, conditional on µ, pREE is market clearing if and only if

q = Pr
[
E [z|µ, σ] ≤ pREE

]
= Pr

[
µ+ E [z|0, σ − µ] ≤ pREE

]
= Pr

[
V (σ − µ) ≤ pREE − µ

]
= Pr

[
σ − µ ≤ V −1(pREE − µ)

]
= Gε+δ(V

−1(pREE − µ)).
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The second equality follows from the equation

E [z|µ, σ] = γ + E [z|µ− γ, σ − γ] , (84)

which is shown in (40) in Appendix B to hold for any γ ∈ R as a consequence of our model’s

invariance. The last equality follows from the fact that σ − µ = ε + δ and consequently has

distribution Gε+δ. Solving for pREE we have

ξε+δq = G−1
ε+δ (q) = V −1

(
pREE − µ

)
⇐⇒ V

(
ξε+δq

)
= pREE − µ

⇐⇒ pREE = µ+ V
(
ξε+δq

)
. (85)

We next characterize equilibrium strategies in the BBDA in the limit market and show that the

equilibrium price is the REE price. Suppose every trader with signal σ follows the offset strategy

of bidding/asking

s = σ + V
(
ξε+δq

)
− ξε+δq . (86)

We show that this is every trader’s equilibrium strategy in the limit market. As a function of the

state µ, this strategy results in the deterministic market-clearing price µ+ V
(
ξε+δq

)
= pREE. This

is shown in two steps. First, if traders were to truthfully report their signals σ, which conditional

on µ are distributed according to Gε+δ(σ − µ), then the limit market price would be µ + ξε+δq .

Second, strategy (86) translates traders’ bids/asks by the constant V
(
ξε+δq

)
−ξε+δq , which therefore

translates the market-clearing price the same amount.

Pick a focal trader with signal σ and value/cost z who anticipates all others using strategy (86)

and considers his optimal response. In the limit market, no individual trader can affect the price

and so regardless of the focal trader’s bid/ask the price remains equal to µ+ V
(
ξε+δq

)
. If the focal

trader submits σ + V
(
ξε+δq

)
− ξε+δq then he leaves the market with an item if

σ + V
(
ξε+δq

)
− ξε+δq ≥ µ+ V

(
ξε+δq

)
⇐⇒ σ − µ ≥ ξε+δq

⇐⇒ V (σ − µ) ≥ V
(
ξε+δq

)
⇐⇒ µ+ V (σ − µ) ≥ µ+ V

(
ξε+δq

)
⇐⇒ E [z|σ, µ] ≥ µ+ V

(
ξε+δq

)
where the last line follows from (84). Hence, if the focal trader plays strategy (86) when all others

use this strategy, then he leaves the market with an item if and only if his expected value/cost

conditional on µ and σ is above the market price for any value of the state µ. He can certainly not

improve on that by deviating and hence the offset strategy σ + V
(
ξε+δq

)
− ξε+δq is the equilibrium

strategy of all traders. �
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K Robustness: A Proper Prior

Our assumption that the state µ is drawn from the uniform improper prior simplifies our theoretical

and numerical analyses through the invariance properties it implies on traders’ decision problems.

In this section we investigate a modified CIV model in which the common prior on µ is N (0, 1/τ) .

We demonstrate for small values of the precision τ that there exist equilibria that approximate the

offset equilibrium in which the prior on µ is uniform improper. This exercise shows that equilibria for

the uniform improper prior are representative of equilibria for an important, empirically plausible

class of proper priors.

We now assume that the state µ is drawn from N (0, 1/τ) for τ > 0, with the case of τ = 0

interpreted as the limiting uniform improper prior of our model. Each trader’s preference and noise

terms are drawn from N (0, 1). Consider a trader with signal σ and let fµ|σ(µ|σ; τ) be his posterior

density of µ:20

µ|σ ∼ N
(

σ

1 + 2τ
,

2

1 + 2τ

)
. (87)

As in our development of the uniform improper prior case observe that if τ = 0, then µ|σ ∼ N (σ, 2).

Denote with 〈Bτ (σB), Sτ (σS)〉 the equilibrium strategies of buyers and sellers and, as in section 4,

let 〈στB (β) , στS (β)〉 be the corresponding inverse strategies for β ∈ R. As in system (37) within

Appendix B, inverse strategies here satisfy the system of differential equations[
Bτ

11 (ω) Bτ
12 (ω)

Bτ
21 (ω) Bτ

22 (ω)

]
·

[
σ̇τS
σ̇τB

]
=

[
Cτ (ω)

0

]
, (88)

where the formulas for terms Bτ
11, B

τ
12, B

τ
21, B

τ
22 and Cτ are straightforward adaptations of the

corresponding formulas (38) in the τ = 0 case. Making the prior distribution proper changes

only how each trader integrates his uncertainty over µ; all other terms in formulas (38) remain

unaffected. Linear system (88) defines the vector field
−→
V τ (ω) = (σ̇τB, 1, σ̇

τ
S) at every point ω ∈ R3.

We compute solutions to (88) for τ ∈ {0.1, 0.3} and then verify that they represent approximate

equilibria by examining marginal expected utility at a sample of points. Section K.1 below outlines

the algorithm we use to compute these equilibria and Figure 5 presents their graphs in comparison

to the equilibrium in the improper case (τ = 0) when m = n = 8.21. In the left panel we plot

the strategies Bτ for buyers and in the right panel we plot the strategies Sτ for sellers. As shown

in the figure, these strategies are defined only for signals σ ∈ (−15, 15). These strategies are

computed over this interval under the assumption that traders with signals outside this range do

not participate. In this sense, we compute approximate equilibria. Nevertheless these strategies ex

ante are good approximations to equilibrium strategies because this nonparticipation almost never

happens.22

20See Tong (1990, Thm. 3.3.4).
21Results for m = n = 12 are available upon request.
22Consider the case of τ = 0.1. Ex ante, traders’ signals are distributed σ|µ ∼ N (0, 12) . The variance 12

corresponds to a standard deviation of 3.46. The domain of signals is 15/3.46 = 4.34 standard deviations on each
side of the origin. The probability that a trader’s signal σ falls outside (−15, 15) is therefore 1.49 × 10−5, i.e., on
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Figure 5 shows graphically the main message of this section: for the three values of τ the

strategies are essentially indiscernible from each other. As the normal proper priors approach

the uniform improper prior the offset equilibrium strategies for the improper prior more closely

approximate the equilibrium strategies for the proper priors.
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Figure 5: A trader’s equilibrium bid/ask versus his signal when µ ∼ N (0, 1/τ) in the cases of
τ = 0, 0.1, 0.3 (m = n = 8 and ε, δ ∼ N (0, 1)).

Figure 6 illustrates more clearly how equilibrium changes as one moves from the uniform im-

proper prior to a proper prior. Notably, invariance no longer holds and this has predictable effects

on equilibrium strategies. The figure graphs the equilibrium offsets λτB (σB) = Bτ (σB) − σB and

λτS (σS) = Sτ (σS) − σS for buyers and sellers as nonconstant functions of their signals. We make

two observations. First, a trader’s offset becomes larger as his signal increases, reflecting the fact

that a trader in the proper prior case has a sense of whether or not his signal is relatively high or

low and adjusts his bid/ask accordingly. Second, the offset functions become more steeply sloped

as τ increases. This reflects the fact that a trader has a stronger sense of the relative size of his

signal in the case of a larger τ. Specifically, the focal buyer’s posterior over trader j’s signal is

σj |σ ∼ N
(

σ

1 + 2τ
,
4 + 4τ

1 + 2τ

)
. (89)

Hence, as a function of his signal σ, the probability that his signal is larger than j’s signal σj is

Pr[σ > σj ] = Φ

1− 1
1+2τ√

4+4τ
1+2τ

σ

 = Φ

(
τ

1 + τ

√
1 + τ

1 + 2τ
σ

)
.

average approximately 3 out of 200,000 signals draws fall outside the interval (−15, 15). The same odds for τ = 0.3
are approximately 8 out of 100 billion.
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For the uniform improper prior (τ = 0) invariance implies that this probability equals Φ(0) = 0.5

no matter what his signal is. For a proper prior the focal buyer knows he has a higher than average

signal whenever his signal is greater than zero. An illustration shows that this is economically

significant increase in each trader’s information. Let τ = 0.1, if σ = 3.46 (one standard deviation

above its ex ante mean) then Pr[σ > σj ] = 0.618.
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Figure 6: The difference of a trader’s equilibrium bid/ask from his signal versus his signal when
µ ∼ N (0, 1/τ) in the cases of τ = 0, 0.1, 0.3 (m = n = 8 and ε, δ ∼ N (0, 1)).

This discussion of how a positive precision prior causes buyers and sellers to deviate from the

offset strategy as the precision increases from zero should not obscure the message of Figure 5: the

offset equilibrium is a good approximation for the equilibria for proper priors with moderate-size

precisions.

K.1 Numerical Calculation of Approximate Equilibria

Define Q ≡
{

(σB, 0, σS)|(σB, σS) ∈ R2
}

to be a plane through the origin of R3. Pick an initial

condition ω ∈ Q and follow the vector field
−→
V τ defined in (88) in both directions from ω as long

as both σ̇τB, σ̇
τ
S ∈ (0,∞). Each ω ∈ Q indexes a solution to the first order conditions. We are

interested in solutions that define differentiable strictly increasing strategies over as large domain

as numerically feasible. Define an approximate solution s to be the differentiable function of β,

parameterized by ω ∈ Q,
s (β|ω) = 〈sB (β|ω) , sS (β|ω)〉,

that has three properties:

1. Its domain is the open interval (βL, βU ) ⊂ R where βL < 0 < βU .

2. For all β ∈ (βL, βU ) , 〈ṡB (β|ω) , β, ṡS (β|ω)〉 =
−→
V τ (sB (β|ω) , β, sS (β|ω)) where ṡB (β|ω) and

ṡS (β|ω) are the derivatives of sB and sS with respect to β. Thus s follows the vector field.
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3. For all β ∈ (βL, βU ) , ṡB (β|ω) , ṡB (β|ω) ∈ (0,∞) and no interval (β′L, β
′
U ) exists that both

strictly contains (βL, βU ) and satisfies ṡB (β|ω) , ṡS (β|ω) ∈ (0,∞) for all β ∈ (β′L, β
′
U ) .

Observe that the last property uniquely determines βL and βU as functions of s because, given

the parameter ω, the interval (βL, βU ) is the largest interval over which s (β|ω) is increasing and

differentiable.

Given s (β|ω) and the interval (βL, βU ) it implies, define the function

χ(ω) ≡ min (−βL, βU ) .

An equilibrium is a ω∗ and s (β|ω∗) such that (i) χ (ω∗) = ∞, (ii) sB (β|ω∗) is a buyer’s best

response to all other traders playing sB and sS , and (iii) sS (β|ω∗) is a seller’s best response to all

other traders playing sB and sS . A ω ∈ Q identifies an approximate equilibrium s (β|ω) if χ(ω) is

large, the ex ante probability a trader’s signal σ is an element of (βL, βS) is essentially one, and,

for all β ∈ (βL, βU ), sB (β|ω) and sS (β|ω) are best responses for buyers and sellers, respectively.

To find the approximate equilibria in Figures 5–6 we first used a MATLAB optimization routine to

maximize χ(ω) within the limits of MATLAB’s numerical precision and then checked at a sample

of points β ∈ (βL, βU ) that both sB (β|ω) and sS (β|ω) are in fact best responses. The reason

that we must settle for an approximate equilibrium is that χ (ω) is badly behaved on some open

neighborhood of ω∗ since χ (ω∗) =∞.
This algorithm seems appropriate to the problem because the support of each trader’s signal σ

is R. Consequently this system of differential equations has no natural initial or boundary value

conditions. Our interest here, as in the rest of the paper, is in equilibria in which strategies are

everywhere strictly increasing and therefore invertible. Requiring strictly increasing strategies is a

powerful criterion for selecting among the double continuum of solutions to the system (88). For

the uniform improper prior case it selects the offset solution as the unique equilibrium.23 In the

proper prior case that we consider here the monotonicity requirement appears to have the same

effect.

A reasonable concern is that the monotonicity requirement is too effective and may cause non-

existence. For example suppose the densities gε and gδ are not symmetric about the origin. Then

the ω ∈ Q for which −βL = ∞ may not equal the ω′ ∈ Q for which βU = ∞ as an equilibrium

in increasing and differentiable strategies requires. But even in this case a ω′′ ∈ Q may exist for

which χ (ω′′) is large enough that it is one of many approximate equilibria.

L Robustness: The Cauchy Distribution

Theorem 1’s proof of the existence of an offset solution to a buyer’s FOC in the CPV model uses

finiteness of the first moment of the distribution Gε that determines the traders’ preferences. The-

23Its power as a selection criterion is not limited to this paper’s model in which values/costs and signals can take
on values over the entire real line. It operates almost as powerfully in an independent private values model where
values/costs are drawn from a compact interval. Figures 3 and 4 in Rustichini, Satterthwaite, and Williams (1994)
demonstrates this power graphically.
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orem 3’s proof of convergence to price-taking behavior in the CPV model uses regularity condition

(12) that restricts the left tail of this distribution. The proof of convergence to efficiency in Theo-

rem 4 applies Theorem 3 and so it too uses (12). We explore in this section the dependence of our

results on these conditions by considering the standard Cauchy distribution, which satisfies neither

of them. Figure 7 depicts the density of the standard Cauchy distribution in relation to the density

of the standard normal distribution.
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Figure 7: Probability density functions of standard Cauchy and standard normal.

We begin by proving in Theorem 7 that the Cauchy distribution causes nonexistence of equi-

librium in the bilateral CPV case. Recall that a buyer in the BBDA equates the marginal benefit

from lowering his bid and thereby decreasing his expected price when he trades to the marginal cost

of losing a profitable trade with the lower bid. Because of the fat tail of the Cauchy distribution,

the marginal benefit from lowering the bid always exceeds the marginal cost. As a consequence,

the buyer always has the incentive to lower his bid further and further, and so an optimal bid does

not exist for him.

We then investigate through a series of numerical experiments both the CPV and the CIV cases

with Gε, Gδ standard Cauchy for m = n = 1 and η = 2, 4, 8, and 16. What is most notable

about the results of these numerical experiments is how closely they resemble the results from the

standard normal case that are presented in sections 4.2, 4.3, 5.4.1 and 5.4.2. The results indicate

that the nonexistence of equilibrium in the bilateral case is resolved immediately as one moves to the

multilateral case: Numerical Result I concerning existence and uniqueness of equilibrium holds for

all four market sizes considered.24 Intuitively, the BBDA works well in the case of the multilateral

Cauchy distribution because this mechanism focuses on the “inner” order statistics s(m) and s(m+1)

as opposed to the highest and second highest order statistics that are focal in auction theory. As

discussed in Section 4.3, the focus on s(m) and s(m+1) complicates the issue of sufficiency of the

24Additional numerical experiments in fact demonstrate that the nonexistence of equilibrium in the bilateral Cauchy
case is resolved with the introduction of a single additional trader on either side of the market.
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first order approach in the BBDA. Because the pathology of the Cauchy distribution is its fat

tails, however, the BBDA’s focus on s(m) and s(m+1) is advantageous in this case because the fat

tails quickly recede in significance as the market increases in size and the probability that s(m)

or s(m+1) lies in the tails goes to zero. We then demonstrate that: (i) the computed equilibria

demonstrate the rate of convergence to price-taking behavior stated in Numerical Result II; the

price that is determined by these equilibria have the properties as an estimate of pREE that are

stated in Numerical Result IV. Numerical Result III concerning convergence to efficiency is omitted

from this discussion because the fat tails of the Cauchy distribution imply that both the ex ante

equilibrium and the ex ante potential gains from trade in any state are infinite.

L.1 The CPV case

L.1.1 Nonexistence of Equilibrium in the Bilateral Case

Theorem 7 Consider the BBDA in the bilateral CPV case with Gε the standard Cauchy distribu-

tion. Given honest reporting by the seller, a buyer’s marginal expected utility is negative for all bids

below the buyer’s value. An equilibrium bidding strategy for the buyer therefore does not exist.

Proof. The theorem concerns the Cauchy distribution with location parameter 0 and scale pa-

rameter 1. Hence for a buyer conditional on his value v, the seller’s cost c is Cauchy distributed

with location parameter v and scale parameter 2. Using the formula for the cumulative of the

Cauchy distribution, we have

π(v, b) = (v − b)
(

1

π
arctan

(
b− v

2

)
+

1

2

)
,

and his marginal expected utility is

πb(v, b) = −
(

1

π
arctan

(
b− v

2

)
+

1

2

)
+ (v − b) 1

π

(
2

4 + (b− v)2

)
.

It is sufficient to consider the case of v = 0 and b ≤ 0, which simplifies the notation to

πb(0, b) = −
(

1

π
arctan

(
b

2

)
+

1

2

)
− b

π

(
2

4 + b2

)
= − 1

π

(
arctan

(
b

2

)
+
π

2
+

2b

4 + b2

)
. (90)

At b = 0 we have

πb(0, 0) = −1

2
< 0,

and

lim
b→−∞

πb(0, b) = 0.
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The remainder of the argument shows that

∂πb
∂b

(0, b) < 0

for b < 0, which implies that πb(0, b) decreases from its limiting value of 0 at b = −∞ to its value

of −1/2 at b = 0. This implies

πb(0, b) < 0

for all b < 0, and so the buyer’s expected utility strictly increases as b becomes more and more

negative.

Working from (90), the second derivative is

∂πb
∂b

(0, b) = − 1

π

(
2

4 + b2
+

8− 2b2

(4 + b2)2

)
= − 1

π (4 + b2)2

(
8 + 2b2 + 8− 2b2

)
= − 16

π (4 + b2)2 < 0,

which completes the proof. �

L.1.2 Numerical Example: Gε Standard Cauchy in the CPV Case

Column 2 of Table 5 presents the calculated values of the equilibrium offset λCauchy in the CPV

case for markets with η = 2, 4, 8, and 16 traders on each side (m = n = 1). The value of the offset

roughly falls by half as η doubles, reflecting a O(1/η) rate of convergence. Column 3 of this table

displays the ratio between λCauchy and λGaussian, the equilibrium offset in the case in which Gε is

the standard normal distribution from Table 3, Panel A, column 1. While the ratio is infinite in

the bilateral case, the equilibrium offsets become comparable in size across the two distributions

as soon as the number of traders increases to 2 on a side. Given that the standard Cauchy has a

higher dispersion than the standard normal it is not surprising that the offset is larger in magnitude

for the standard Cauchy.

η λCauchy λCauchy/λGaussian

2 −1.1656 1.6903
4 −0.4936 1.4630
8 −0.2235 1.4364
16 −0.1053 1.3819

Table 5: Comparison of the equilibrium offsets in the CPV case when traders’ idiosyncratic noise
is standard Cauchy and standard Gaussian. Column 1 is the market size η (m = n = 1), column 2
is the equilibrium offset in the Cauchy case, and column 3 is the ratio of the equilibrium offsets of
the Cauchy and the Gaussian cases.
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It is worth noting that these equilibrium offsets do not uniquely maximize a focal buyer’s

expected utility in the case of the Cauchy distribution. Because of the fat downward tail, the

expected price faced by a focal buyer conditional upon his value in this case is negatively infinite

when sellers report honestly and the other buyers bid less than their values.25 As a consequence,

all bids b < v provide the focal buyer with an infinite expected utility. In what sense does the

computed offset represent utility maximization and equilibrium? The answer lies in the use of

a distribution with an infinite support as an approximation of a finite world. Truncating the

Cauchy distribution to the support [−c, c] for c > 0 and scaling its density so that its integral

over this interval equals one produces a distribution for which a buyer’s equilibrium offset and

corresponding expected utility are well-defined. This equilibrium offset in this case converges to

the value presented in Table 5 as c increases to infinity. Though the limit of expected utility is

infinite, the marginal analysis in the Cauchy case derives a meaningful limit of the solution to a

buyer’s decision problem in the finite case.

L.2 Numerical Example: The CIV Case with Gε, Gδ Standard Cauchy

We next consider the CIV case in which both Gε and Gδ are standard Cauchy. In Table 6 column

2 we report the computed offsets (λB, λS) for buyers and sellers in markets with m = n = 1 and

market size η. The offsets behave qualitatively as those in Table 1 for the Gaussian case and in

particular exhibit the rate of convergence stated in Numerical Result II. Computing the vector

η λB, λS

2 −3.3480, 0.7446
4 −1.3381, 0.3217
8 −0.6150, 0.1650
16 −0.2983, 0.0872

Table 6: Column 2 are the equilibrium offset solutions for the different sizes of market η reported
in column 1 (m = n = 1, Gε, Gδ standard Cauchy).

field for the Cauchy case produces Figure 8 that is qualitatively indistinguishable to the one for

the Gaussian case in Figure 2.

Consistent with Numerical Result I, this suggests that the offset solutions (λB, λS) in Table 6

to the buyers’ and sellers’ FOCs are in fact the unique solutions that define equilibrium satisfying

A2. We verify that the offset solutions define equilibrium by plotting in Figure 9 a focal trader’s

marginal utility for each class (corresponding to Figure 3 in the Gaussian case). We see how both

25The argument for large m = n in the CPV case is as follows. The distribution of the state µ conditional upon
the focal buyer’s value v is Cauchy with location parameter v and scale parameter 1. The symmetry of the Cauchy
distribution implies that state µ is less than v with probability 1/2. Because of the fat downward tail of the Cauchy
distribution, the expected value of µ conditional on being below v is −∞. Regardless of how the focal buyer bids,
the price in the BBDA is bounded above by the (m+ 1)st smallest value/cost among the 2m− 1 values/costs of the
other traders. This is true because the other buyers bid less than their values. This order statistic converges in
distribution to µ as m increases (Rothenberg, Franklin, and Tilanus (1964)).
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Figure 8: The normalized vector field for traders (m = n = 4, Gε, Gδ standard Cauchy). Figure
(a) assumes that sellers use the offset strategy S(σS) = σS + 0.3217 and Figure (b) assumes that
buyers use the offset strategy B(σB) = σB − 1.3381. The thick line is the offset strategy for this
indicated trader. The thin line is the 45◦ diagonal.

−10 −8 −6 −4 −2 0 2 4 6 8

−0.15

−0.1

−0.05

0

0.05

Bid b

M
ar

gi
na

l U
til

ity
 π

bB

−8 −6 −4 −2 0 2 4 6 8 10

−0.05

0

0.05

0.1

0.15

Ask a

M
ar

gi
na

l U
til

ity
 π

aS

(a) Buyer (b) Seller

Figure 9: Marginal utility for focal traders (m = n = 4, Gε, Gδ standard Cauchy). The vertical
dashed line indicates the offset solution to the focal trader’s FOC.

marginal utilities change sign from positive to negative at the computed offsets.26

Table 7 replicates the results of Table 4 for the Cauchy distribution in the CIV case with two

exceptions: (i) computations of expected gains from trade are missing from this table because they

are infinite; (ii) the variance of the sample median is only finite for η ≥ 4 (Rider (1960)) and so

η = 2 is omitted from Panel B. The strategic term of buyers in Panel A, the variances in Panel B

and the expectations of absolute errors in Panel C, all exhibit the same behavior as for the normal

distribution in Table 4: the strategic term of buyers is O(1/η), the strategic error is O(1/η), the

26Figure 10 in online Appendix M illustrates that the sufficiency conditions of Theorem 2 are also satisfied for the
standard Cauchy.
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Table 7: Convergence in the CIV case (m = n = 1, Gε, Gδ standard Cauchy) In all panels, the size
of market η is reported in column 1. Panel A: Column 2 is the buyer’s strategic term computed
at the equilibrium offsets. Panel B: Columns 2 and 3 are the variances of the errors in the price-
taking price and the equilibrium price as estimates of the REE price. Panel C: Columns 2 and 3
are the expected absolute errors of the price-taking price and the equilibrium price as estimates of
the REE price; column 4 is the expected absolute difference between these two prices.

Panel A

η Pr[x<λB<y|σB ]
fBx (λB |σB)

2 2.6034
4 1.0164
8 0.4501
16 0.2110

Panel B

η VAR
(
t(ηm+1) − pREE|µ

)
VAR

(
s(ηm+1) − pREE|µ

)
4 2.2186 2.4239
8 0.7740 0.8019
16 0.3423 0.3464

Panel C

η
Exp. Sampling Error
E
[∣∣t(ηm+1) − pREE

∣∣ |µ] Exp. Total Error
E
[∣∣s(ηm+1) − pREE

∣∣ |µ] Exp. Strategic Error
E
[∣∣s(ηm+1) − t(ηm+1)

∣∣ |µ]
2 2.1288 2.3108 1.4296
4 1.0942 1.1160 0.6459
8 0.6895 0.6854 0.3054
16 0.4624 0.4609 0.1500

sampling error is Θ(1/
√
η), the total error is O(1/

√
η), and the equilibrium price s(ηm+1) is virtually

indistinguishable from the price-taking price t(ηm+1) as an estimator of pREE for η as small as 4.

Numerical Result IV thus holds in this case.

M Numerical Example: Additional Figures and Tables in the CIV

Case for Gε, Gδ Standard Cauchy and Standard Laplace
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m\n 2 4 8 16

2 −3.3480, 0.7446 −2.3149, 0.9569 −2.1775, 1.6295 −2.6344, 2.9595
4 −2.7363, 0.2300 −1.3381, 0.3217 −0.7111, 0.7110 −0.3860, 1.3947
8 −3.5205,−0.0597 −1.4871,−0.1215 −0.6150, 0.1650 −0.0586, 0.6335
16 −5.9899,−0.1730 −2.2888,−0.5237 −1.0016,−0.3194 −0.2983, 0.0872

Table 8: Results for buyers’ and sellers’ offsets λB, λS for different values of m and n and Gε, Gδ
standard Cauchy.
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Figure 10: Sufficiency terms for focal traders (m = n = 4, Gε, Gδ standard Cauchy). The vertical
dashed line indicates the offset solution to the focal trader’s FOC.
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Figure 11: Probability density functions of standard Laplace and standard normal.
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Figure 12: The normalized vector field for traders (m = n = 4, Gε, Gδ standard Laplace). The
thick line signifies the solution to the system (37) for each trader class. The thin line is the 45◦

diagonal.

m\n 2 4 8 16

2 −1.6701, 0.4747 −1.0556, 0.5785 −0.5939, 0.8110 −0.1968, 1.1174
4 −1.4900, 0.1398 −0.8153, 0.2312 −0.3417, 0.4548 0.0523, 0.7597
8 −1.5629,−0.1662 −0.8830,−0.0895 −0.3888, 0.1162 0.0061, 0.4020
16 −1.7933,−0.4838 −1.1228,−0.4176 −0.6077,−0.2125 −0.1903, 0.0593

Table 9: Results for buyers’ and sellers’ offsets λB, λS for different values of m and n and Gε, Gδ
standard Laplace.
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Figure 13: Marginal expected utility for focal traders (m = n = 4, Gε, Gδ standard Laplace). The
vertical dashed line indicates the offset solution to the focal trader’s FOC.
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Figure 14: Sufficiency terms for focal traders (m = n = 4, Gε, Gδ standard Laplace). The vertical
dashed line indicates the offset solution to the focal trader’s FOC.
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Table 10: Convergence in the CIV case (m = n = 1, Gε, Gδ standard Laplace). In all panels, the
size of market η is reported in column 1. Panel A: Column 2 is the buyer’s strategic term computed
at the equilibrium offsets; column 3 is the expected gains from trade GFT

eq
in equilibrium and

column 4 is the expected gains from trade GFT
pt

when traders submit their price-taking bids/asks;
column 5 is the relative inefficiency. Panel B: Columns 2 and 3 are the variances of the errors in
the price-taking price and the equilibrium price as estimates of the REE price. Panel C: Columns
2 and 3 are the expected absolute errors of the price-taking price and the equilibrium price as
estimates of the REE price; column 4 is the expected absolute difference between these two prices.

Panel A

η Pr[x<λB<y|σB ]
fBx (λB |σB)

GFT
pt

GFT
eq

(GFT
pt −GFT eq

)/GFT
pt

2 1.1954 1.2740 1.0116 0.2059
4 0.5841 2.7584 2.6302 0.0465
8 0.2726 5.7535 5.6914 0.0108
16 0.1310 11.7612 11.7303 0.0026

Panel B

η VAR
(
t(ηm+1) − pREE|µ

)
VAR

(
s(ηm+1) − pREE|µ

)
2 1.2035 1.4516
4 0.5571 0.5976
8 0.2679 0.2736
16 0.1304 0.1311

Panel C

η
Exp. Sampling Error
E
[∣∣t(ηm+1) − pREE

∣∣ |µ] Exp. Total Error
E
[∣∣s(ηm+1) − pREE

∣∣ |µ] Exp. Strategic Error
E
[∣∣s(ηm+1) − t(ηm+1)

∣∣ |µ]
2 0.9364 0.9457 0.7310
4 0.6162 0.6075 0.3901
8 0.4194 0.4124 0.1925
16 0.2904 0.2868 0.0951
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