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Abstract

We study contests with technological uncertainty, where contestants can invest in different
technologies of uncertain value. The principal, who is also uncertain about the value of the
technologies, can disclose an informative yet noisy public signal about the merit of each
technology. The signal can focus contestants’ investments into more promising technologies
or increase diversification. We characterize the principal’s optimal disclosure of information
about the technologies, which depends on the value of diversification, the informativeness
of available signals, and the ex-ante beliefs of the likelihood of success for each technology.
We also find that under some conditions offering larger prizes or having more contestants
decreases the extent of information disclosure. *
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1 Introduction

Many contests feature technological uncertainty: there are multiple technologies, approaches,
or methods that contestants could pursue, and it is not clear, both for the contest sponsor
and the contestants, which of these will ultimately be successful. For instance, in prediction
competitions hosted either on digital platforms (e.g., Kaggle) or by a firm (e.g., Netflix), there
are multiple algorithms that contestants can use (e.g., machine learning or regression methods).
Contestants can use different farming methods in agricultural yield contests, such as those

*We thank the Editor, Associate Editor and two anonymous referees for their constructive com-
ments. We also thank seminar and conference participants at APIOC 2018, IIOC 2019, EARIE 2019,
Jornadas de Economı́a Industrial (2019), the Midwest Economic Theory conference, SAET 2021, EEA-
ESEM 2022, CEMFI/UC3M, the University of Melbourne, the University of Tokyo and the University
of Toronto Rotman School of Business. Emil Temnyalov gratefully acknowledges financial support
from the Australian Research Council’s Discovery Early Career Researcher Award (ARC DECRA)
DE200100590.
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sponsored by the National Corn Growers Association. In these settings, neither contestants
nor the sponsor knows with certainty which method will deliver the best results ex post.
Technological uncertainty is also present in procurement contests, such as those hosted by
the U.S. Department of Defense, where contestants and the procurer may not fully know the
procurer’s preferences over different possible attributes or designs. Similarly, in contest-like
settings within organizations, the principal and competing workers face uncertainty regarding
the impact of different projects.

Both uncertainty and competitive pressure affect how much contestants (the ‘agents’) invest
in each technology. Uncertainty means that some agents will inevitably invest in unsuccessful
technologies. For this reason, diversifying agents’ investments across multiple technologies can
improve the value that the contest sponsor (the ‘principal’) obtains in the contest. However,
diversifying investments can also reduce the total investment on the ex-post best technology,
reducing the principal’s payoff from implementing it. In such a setting, the principal, who is
also uncertain about the value of each technology, may be able to disclose information that
will influence agents’ beliefs about the prospects of each alternative, which in turn determines
their investments.

Public information revelation is a feature of many contest settings. For instance, in pre-
diction contests, the principal provides data that contestants use to train and develop their
algorithms; these data reveal information about the probability of success of different algo-
rithms. In yield contests, the National Wheat Foundation publicly distributes information on
different farming methods. In procurement contests, public evaluations of prototypes inform to
contestants about the procurer’s preferences. In all these cases, the principal can strategically
choose what data to make public to influence the contestants’ investment decisions. Revealing
all the historical data can bias agents towards an approach that worked in the past but might
not work well in the future.

We investigate the contest-design question of how much information about the technologies
the principal should reveal. Revealing more information could bias agents to invest too much
on some technologies and induce too little diversification—i.e., too little investment across
technologies that do not seem promising under the current information but could be the best
method ex post. This information design aspect applies to a number of problems where tech-
nological uncertainty is important. For instance, in prediction contests, the contestants submit
predictions produced by an algorithm that may not be the best one; but they can infer the
performance of different algorithms by testing them on a public dataset chosen by the contest
designer. Choosing a particular subset of data for contestants to build and test their algorithms
could favor one method over another.1 In Netflix’s recommendation competition in 2009, Net-
flix publicly revealed a subset of all its available data on users’ preferences for contestants
to test different prediction algorithms. From Netflix’s perspective there is an option value to
procuring a number of different algorithms because it is uncertain which one will be the most
valuable in the long run.2

We introduce a model to study technological uncertainty in contests and characterize when
the principal should reveal information to maximize the value of the contest. Depending on
the prior belief regarding the technologies, optimal information disclosure can steer agents to
focus on one specific technology or to diversify their investments across technologies.

In our setting, M agents choose how much to invest in each of N different technologies.3

Only one of these technologies is valuable for the principal—the “best” technology—and it is

1Online platforms like Kaggle, DrivenData, and crowdAI, among others, offer firms the possibility to sponsor contests
to outsource their data science needs. The contest designer partitions the available data into a “test dataset” and an
“evaluation dataset.” The test dataset is publicly available and allows participants to test their algorithms. The prize
is allocated based on the performance of the algorithm over the evaluation dataset.

2In addition to whichever algorithm performs best given their current data, the best algorithms in the long run will
depend on Netflix’s future data on users’ preferences.

3These different technologies may represent different approaches to solve a problem in the case of innovation; different
characteristics, features, or designs in the case of procurement; or different tasks or projects in the case of a worker
competing within an organization.
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the one that she will implement ex post. The contest winner is selected probabilistically among
the agents who invested in the best technology: the more an agent invests in the best technology,
the higher his chances of winning the prize. We model this competition as N parallel Tullock
contests, one for each technology.

The principal designs a public “experiment,” in the Bayesian persuasion sense of the term,
to reveal information to the agents regarding the likelihood-of-success of each technology. In
prediction contests, for instance, this experiment corresponds to the public data made available
to the participants, who can then test different classes of algorithms on the data and update
their beliefs about the possible value of each approach.

The main trade-off in choosing the information structure that maximizes the principal’s
expected payoff is one between diversification and focus: revealing more precise information
induces agents to focus on more promising technologies, but if the agents rationally over-
react to such information in equilibrium, then this may lead to too little diversification from
the principal’s perspective. We characterize conditions under which the principal’s optimal
information disclosure policy is maximally informative, partially informative, or completely
uninformative, depending on the features of the environment. Whether the principal wants to
reveal or hide information depends critically on three factors: (i) the value of technological
diversification; (ii) the quality of the principal’s information; and (iii) the extent of technological
uncertainty.

First, investing in multiple technologies generates diversification: even if one technology
looks more promising than another ex ante, the latter may turn out to be more valuable in the
long run. The larger the value of diversification, which turns out to be related to a measure of
risk aversion associated with the principal’s objective function, the more likely it is that the
principal chooses not to reveal information.

Second, the quality of the principal’s information matters: if she can design a very informa-
tive experiment, i.e., an experiment that reveals the best technology with very high probability,
there is little justification to withhold revealing that information. In practice, however, the
principal may not have access to very informative signals. For instance, in a prediction contest
the principal may have a limited amount of data to provide to the contestants.

Third, the extent of technological uncertainty reflects how asymmetric the different
approaches are a priori. If the agents’ beliefs about the technologies are ex ante very asym-
metric, the principal may want to reveal information to either reinforce or weaken the extent
of this asymmetry. The more symmetric the technologies are ex ante, the more diversification
there is without disclosing information.

We also study the relationship between information design and more traditional contest
design aspects, such as the number of competitors and the size of the prize. Under mild con-
ditions, we find that the optimal design features less information disclosure in contests with
more competitors or larger prizes. This is because when the prize is larger or more agents
compete, the aggregate investment on each technology is larger. Hence, the value of disclosing
information to focus investment towards one technology is generally lower than the value of
diversification.

Lastly, we explore the interaction between information disclosure and the optimal size of the
prize. We characterize conditions under which information design generally adds value above
and beyond what can be achieved by choosing the prize optimally and not disclosing infor-
mation. This is because the size of the prize affects the levels of investments in the contest,
whereas information disclosure affects their direction—i.e. the relative investments across dif-
ferent technologies. Hence, the latter can yield investment allocations that the former cannot
necessarily achieve. We provide a condition under which, when optimizing over both informa-
tion disclosure and prizes, the optimal solution entails a smaller prize and more information
disclosure. In other words, in this case information and prizes are substitutes: the principal
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may be better off by offering a smaller prize and optimally revealing information, instead of
offering a larger prize and not revealing information.

1.1 Related Literature

Most of the existing literature on information disclosure in contests focuses on disclosing infor-
mation about the contestant’s characteristics or the state of the competition. For instance,
Serena (2022) and Antsygina and Teteryatnikova (2022) study information design in static
contests when the designer can disclose the contestants’ types (valuations or effort costs).
Performance feedback has been theoretically investigated by Aoyagi (2010), Ederer (2010),
Bimpikis et al. (2019), Benkert and Letina (2020) and Halac et al. (2016), among others,
and empirically by Gross (2020, 2017), Huang et al. (2014), Kireyev (2016), Bockstedt et al.
(2016), and Lemus and Marshall (2021). Kovenock et al. (2015) study the effect of players
sharing information throughout the contest. Fu et al. (2016) and Xin and Lu (2016) study
optimal information disclosure regarding agents’ entry decisions in contests. Zhang and Zhou
(2016) and Mihm and Schlapp (2018) study the optimal information disclosure when players
are uncertain about the principal’s preferences.

None of the papers above study a setting where both the contestants and the contest
designer are uncertain about the value of the underlying technologies, which we focus on in
this paper. Thus we contribute to the literature by studying a novel setting where information
design can improve contest outcomes.

Our paper also contributes to the recent literature on diversification in contests. Preferences
for diversification has been studied theoretically (e.g., Terwiesch and Xu, 2008) and empiri-
cally (e.g. Boudreau et al., 2011). Letina and Schmutzler (2019) characterize the optimal prize
structure when the designer wants to induce a variety of approaches. We focus on how opti-
mal information disclosure induces variety, complementing their results, and also examine the
interaction of prize size and disclosure.

Diversification has been studied in settings other than contests. For instance, Letina (2016)
studies the effect of market competition and mergers on variety, findings conditions under
which market competition creates too much variety. Toh and Kim (2013) study how aggregate
uncertainty affects technological diversification within a firm, finding that a firm’s technology
specializes more under greater uncertainty.

Our paper also relates to R&D models with multiple risky technologies. Dasgupta and
Maskin (1987) show that, in a winner-takes-all competition, the equilibrium allocation of
research on correlated projects is too high relative to the socially efficient allocation, so there
is less diversification in equilibrium. Bhattacharya and Mookherjee (1986) present a similar
framework, but they study the level of risk taken by the firms, finding that the optimal research
strategy may feature excessive or insufficient risk taking, depending on the level of risk aversion
and the shape of the distribution of research outcomes. Cabral (1994) shows that, when the
competition is not winner-takes-all, the level of risk taking is lower than the socially optimal
level. Cabral (2003) explores the same question in a dynamic environment, showing that a fol-
lower firm takes more risk than the leader. Krishnan and Bhattacharya (2002) study how a firm
should design a product when there are several uncertain alternatives for the product’s under-
lying technology. Lastly, Cornes and Hartley (2012) study existence, uniqueness and properties
of equilibria in Tullock contests with risk-averse contestants.

2 Model

There are M agents, indexed by i ∈ {1, ...,M}, who compete in a contest. There are N
alternatives (“technologies”), indexed by t ∈ {1, ..., N}, that the agents can work on.

It is common knowledge that the principal values only one of these technologies, but it is
ex ante uncertain for the principal and the agents which one it is: we call this technology the
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“best” one ex post. The agents and principal hold a common prior, Θ ∈ ∆N , where

∆N ≡ {(θ1, ..., θN ) : θt ∈ [0, 1),

N∑

t=1

θt = 1}

and θt is the common prior belief that technology t is the best one, with t = 1, ..., N . We model
competition within each technology as a standard Tullock contest (see, e.g., Pérez-Castrillo
and Verdier, 1992). Agent i wins the contest for technology t with probability

pi(xi,t, x−i,t) =
xi,t

xt
,

where xi,t is agent i’s investment, x−i,t is the investment profile of agent i’s rivals, and xt =
M∑
j=1

xj,t is the aggregate investment in technology t.4 The contest awards a prize V to agent i

with probability pi(xi,t, x−i,t) if and only if t turns out to be the best technology.
The principal’s payoff depends on the aggregate investment into the best technology.

Specifically, the principal’s payoff is

v(x) =

N∑

t=1

f (xt) · I(t is the best technology),

where f(·) is a strictly increasing, twice differentiable, and strictly concave function and I(·) is
the indicator function.5 In words, the principal derives no benefit from investments on technolo-
gies other than the best one. A larger aggregate investment on the best technology increases
the principal’s payoff, but there are decreasing marginal returns.6

For any belief Θ = (θ1, ..., θN ) ∈ ∆N and aggregate investment profile (x1, ..., xN ), the
principal’s expected payoff is

EΘ[v(x)] =

N∑

t=1

θtf(xt). (1)

Note that, whenever there is residual uncertainty, i.e., θt < 1 for all t = 1, ..., N , the concavity
of f(·) means that the principal values diversification among the technologies.

Modeling Assumptions. The principal is risk neutral over output profiles,
(f(x1), ..., f(xN )). However, when we consider expected payoffs over the profile of total invest-
ment on each technology, (x1, ..., xN ), the principal’s preferences over such profiles are risk
averse due to the concavity of f(·). The latter interpretation—with risk aversion over invest-
ment profiles—will turn out to be insightful because the Arrow-Pratt coefficient of relative risk
aversion associated with f(·) plays an important role in our findings. Hence, we will refer to the
principal as being risk averse throughout the paper, and we will treat the principal’s payoffs
as defined over investment profiles rather than over the outputs that they correspond to.

We assume agents compete in a contest with a simple prize structure: a single prize of size V .
This prize structure is commonly used in practice and is optimal in many contest settings (see,
e.g., Clark and Riis, 1998b). Furthermore, we model the prize as technology-neutral. In practice
it may be difficult to contract over technology-specific prizes. In fact, virtually no contest in

4We make the standard assumption in the contest literature: pi(0, ..., 0) = 1/N . Also, our results are identical if we
instead assume that each contestant can only pursue one approach (e.g., due to heterogeneous expertise, or because
investment requires specialization), and we have N × M contestants.

5The principal cares about total investment in many contest-design settings (e.g., Franke et al., 2013).
6In Appendix B, we provide two models which induce such increasing and concave payoffs for the principal that are

a function of aggregate investment, and which are also consistent with the winning probabilities of a Tullock contest.
In the main text we work directly with the reduced-form representation given by the Tullock winning probabilities
and the principal’s payoff function above.
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practice uses technology-contingent prizes. In theory one could imagine a contest where the
prize depends on which technology the winner uses. This is weakly better than a single prize,
but the analysis of this case is less tractable. We study this as an extension in Appendix C; for
the sake of tractability, our baseline model uses a prize that is technology-neutral. The analysis
in the appendix can also address cost asymmetries among agents.

3 Analysis

3.1 Preliminary Analysis

Consider agent i’s problem of choosing how much to invest in technology t. Given any common
belief Θ = (θ1, ..., θN ) and the aggregate investment of agent i’s rivals on technology t, agent
i’s optimal investment profile solves the following problem:

max
xi,t≥0

N∑

t=1

[V · θt · pi(xi,t, x−i,t)− xi,t] ,

Agent i receives the prize, V , if and only if: (1) technology t is the best approach—under the
agent’s belief, this event happens with probability θt—and (2) agent i wins the contest for
technology t, which happens with probability pi(xi,t, x−i,t).

In contrast, in the first-best allocation—if the principal could control the agent’s
investments—the investment on technology t is found by solving:

max
yt≥0

N∑

t=1

[θtf(yt)− yt] .

Proposition 1. We have:

1. In the contest’s unique equilibrium, agent i’s investment on technology t is

x∗
i,t = θt

(
M − 1

M2

)
V.

2. The aggregate equilibrium investment on technology t is

x∗
t ≡

M∑

i=1

x∗
i,t = θtΩ, where Ω =

(
M − 1

M

)
V. (2)

3. In the first-best allocation, the investment on technology t is

y∗t =

{
(f ′)−1

(
1
θt

)
if θtf

′(0) > 1

0 otherwise

The term Ω represents the total equilibrium investment across all technologies.7 From
Proposition 1, the principal’s expected equilibrium payoff from a contest in which agents
compete under belief (θ1, ..., θN ) is

EΘ[v(x
∗)] =

N∑

t=1

θtf(x
∗
t )− V =

N∑

t=1

θtf(θtΩ)− V. (3)

7Note that θtf
′(0) > 1 makes the problem interesting, since the principal can simply not organize the contest if the

first-best effort is 0.
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The agents’ and the principal’s incentives are generally misaligned. The equilibrium and
first-best allocations differ in terms of both levels and directions. In terms of absolute levels, it is
easy to see from Proposition 1 that the equilibrium can generally feature both over-investment
and under-investment. For example, if V is large enough, we can have that x∗

t > y∗t for all t, i.e.,
agents invest too much across all technologies relative to the first-best. The opposite happens
when V is small enough. More generally, there can also simultaneously be under-investment
and over-investment across different technologies, for other levels of V .8

Another question is what proportion of the total investment is allocated to different tech-
nologies. That is, which technologies will agents invest too much or too little in, as a function
of their beliefs Θ, compared to the relative investment shares in the first-best allocation? This
comparison turns out to be more relevant for our subsequent results, when we consider how the
principal can strategically manipulate beliefs through information disclosure, as the respon-
siveness of agents’ equilibrium investments with respect to their beliefs plays a key role in
that analysis. Specifically, the proportion of total investment allocated towards technology t in
equilibrium is

x∗
t∑N

t=1 x
∗
t

= θt.

This is generically different from the interior first-best proportion of total investment allocated
towards technology t, which is given by

y∗t∑N
t=1 y

∗
t

=
(f ′)−1

(
1
θt

)

∑N
t=1(f

′)−1
(

1
θt

) .

Figure 1 compares the proportion of total investment allocated towards technology 1 in equi-
librium and in the first best, with two technologies (N = 2). Let Θ = (θ, 1 − θ) so the belief
that technology 1 is the best one is θ. Figure 1 (left panel) shows that, when f(x) =

√
x, agents

under-react to their beliefs regarding the technologies relative to the first-best: when θ > 0.5,
the proportion of total investment allocated in equilibrium towards technology 1 (dashed line)
is lower relative to the first best (solid line). Analogously, when θ < 0.5, the proportion of
total investment allocated to technology 1 in equilibrium (dashed line) is larger relative to the
first best (solid line). Therefore, in equilibrium the proportion of total investment allocated
towards the most promising technology is lower than the first-best proportion.

Figure 1 (right panel) considers f(x) = 1 − exp(−8x) and shows that, in this case, agents
can both over-react and under-react to their beliefs regarding the technologies, depending on
the range of beliefs considered. When the belief is around 0.5, agents over-react to beliefs, in
contrast to the left panel of the figure. In particular, when θ > 0.5 (respectively, θ < 0.5)
and not too far from 0.5, the proportion of total investment allocated in equilibrium towards
technology 1 is larger (respectively, lower) relative to the first best. Hence the equilibrium
proportion of total investment allocated to the more promising technology is too large relative
to first-best when the beliefs are not too extreme, i.e., close enough to 0.5. On the other hand,
when beliefs are far enough from 0.5, agents in equilibrium under-react to their beliefs regarding
the technologies relative to the first best allocation, as in the left panel of the figure.

8We consider the prize that maximizes the principal’s payoff later, in sections 3.3 and 3.4.

7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 Comparison of the proportion of total investment allocated towards technology 1 as a function of the
belief θ. In the left panel, the principal’s preference is f(x) =

√
x, whereas in the right panel it is f(x) =

1− exp(−8x).

The over- and under-reaction illustrated in Figure 1 can be counteracted through informa-
tion design. In the next section, we explore if and when the principal can increase her payoff
by disclosing some information about the merits of each technology through the results of an
experiment. Such an experiment can improve the allocation of investments across the tech-
nologies. On the other hand, if agents over-react to such information, there may be too little
diversification from the principal’s perspective. Thus the principal may prefer to disclose less
information, potentially inducing investment misallocation in equilibrium, in exchange for more
diversification.

3.2 Information Design

We now turn to the analysis of optimal information disclosure. In general, the principal can
reveal information to the agents regarding the feasibility or likelihood of success of the dif-
ferent technologies. Importantly, it may be impossible for the principal to fully reveal which
technology is the best: if this were possible, the principal would always choose to do so. One
important feature of our analysis is that, even after information is publicly revealed, there is
residual uncertainty.9 In such settings, we ask a number of questions. Can the principal disclose
information to improve the equilibrium investments across technologies? Should the principal
release information at all? Would a more risk-averse principal reveal more or less information?
How does competition impact the extent of information disclosure? What is the optimal size
of the prize if information disclosure is taken into account?

The principal commits to an information policy ex ante, in a Bayesian persuasion frame-
work, which will inform the agents about the feasibility or value of the different technologies.
After observing the information revealed in this experiment, each agent chooses how much
to invest in the technologies. Once each agent has made their choice, the contest resolves all
remaining uncertainty and prizes are allocated. We model public rather than private informa-
tion disclosure for two reasons. First, information disclosure is typically public in many of the
applications of our model—in prediction contests the principal reveals the same dataset to all
contestants, who then use the data to form beliefs over the value of different approaches and
to develop their prediction algorithms; in procurement contests the principal uses the same

9For example, in prediction contests, players evaluate the performance of different algorithms using a public “test
dataset,” which is chosen by the contest designer. However, there is residual uncertainty: the designer uses an “eval-
uation” dataset to determine the winner of the contest. The “best” algorithm is chosen by evaluating out-of-sample
performance. The evaluation dataset might not even exist at the beginning of the contest. In that sense, any test
dataset is a noisy public signal about the merits of each technology.
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procurement tender to solicit proposals from the contestants. Second, disclosing information
privately would entail differential treatment of contest participants, which could raise fairness
and corruption concerns in some settings, such as procurement.

Information structures. The principal designs a public signal structure s = (M, G̃(·|t)),
where M is a set of messages and G̃(m|t) is the probability that message m ∈ M is sent when
the state of nature is t, i.e., when technology t is the best choice ex post. Let S be the set of all
such signal structures available to the principal. Importantly, as noted before, we do not assume
that the principal must have access to a perfectly informative signal. Instead, we solve for the
optimal information disclosure policy for any possible set S of available signal structures.

Each signal structure, s ∈ S, induces some distribution over posterior beliefs on the tech-
nologies, Gs(Θ), and we denote the set of posterior beliefs in the support of that signal as Ps,
with generic elements Θ ∈ Ps. Let PS denote the set of all feasible posterior beliefs that can
be induced by some signal, including signals that are compositions and combinations of signals
available to the principal.
Lemma 1. For any set of signal structures S, the set of posteriors that can be induced by the
principal, PS, is convex.

Intuitively, for any two posterior beliefs θ̃, θ̃′ ∈ PS that can be induced with some signal
structures, s′ and s′′, the principal can also induce any belief that is a convex combination of
the two posteriors, αθ̃ + (1 − α)θ̃′. This can be achieved using an appropriate mix between
the signal structures, s′ and s′′, and generally requires defining a new message space and
constructing a new signal structure. Therefore, the set of feasible posteriors is a convex subset
of the N − 1 simplex. In particular, when there are only two technologies, the set of feasible
posteriors is an interval.

The following example illustrates how a standard and simple signal structure translates
into a set of feasible posteriors and how the latter can be derived from a given prior and a set
of available signal structures.
Example 1. There are two technologies. The state of the world, t ∈ {1, 2}, describes which
of the two technologies is the best. Let the most informative experiment that the principal can
design be one that sends signal s ∈ {1, 2} according to Pr(s = t|t) = α, with α ∈ (0.5, 1). For
a prior θ ∈ [0, 1] that technology 1 is the best one, the posterior beliefs conditional on signal s
are:

Pr(t = 1|s = 1) =
αθ

αθ + (1 − α)(1 − θ)
and Pr(t = 1|s = 2) =

(1 − α)θ

(1 − α)θ + α(1 − θ)
. (4)

Equation 4 generates two extreme posteriors for each prior: the boundary of PS . The entire
set of feasible posteriors, PS , is convex, and is obtained by appropriately mixing the principal’s
most informative signal with an uninformative signal (see Lemma 1).
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Fig. 2 All panels show the range of posteriors for a prior of θ = 0.4. First panel: α = 0.55, posterior in
[0.35, 0.45]. Second panel: α = 0.75, posterior in [0.18, 0.67]. Third panel: α = 0.95, posterior in [0.07, 0.86].
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Figure 2 shows the range of feasible posteriors for three values of α, a parameter that
represents the informativeness of the signals available to the principal. In each panel, the x-
axis corresponds to the prior belief, and the y-axis corresponds to the posteriors generated by
the experiment defined in Equation 4. In all panels, the vertical line corresponds to the range
of feasible posteriors for the prior belief θ = 0.4. With a less informative signal (e.g. α = 0.55,
Figure 2, first panel), the posteriors are very close to the prior, resulting in a posterior set
narrowly concentrated around the prior. With more informative signals (e.g. α = 0.75, Figure 2,
second panel), the set of feasible beliefs expands around the prior. As the signal becomes almost
perfectly informative (e.g. α = 0.95, Figure 2, third panel), the set of attainable posteriors
expands even further. Note, however, that while the principal’s signal is informative, with some
probability it will steer agents to invest in the “wrong” technology.

In our analysis we take a common prior, Θ0, and the set of feasible posteriors for each
prior, PS(Θ0) ⊆ ∆N , as the primitives of the model, assuming that PS(Θ0) is closed and
convex, following Lemma 1. In particular, Θ0 ∈ PS(Θ0) because the principal can always
decide not to reveal anything, so the posterior equals the prior. For the sake of notation, we
denote PS(Θ0) simply by PS , and we denote by ∂PS the boundary of PS . Any signal structure
can be translated into this framework. Our results then characterize the optimal information
disclosure policy for arbitrary primitives.

Optimal Information Design. We analyze the value of information disclosure in terms
of the posterior beliefs that a signal structure induces. Recall that when agents hold the belief
Θ we have x∗

t = θtΩ in equilibrium. Therefore, the principal’s expected payoff from inducing
the posterior Θ is

ν(Θ) ≡
N∑

t=1

θtf(θtΩ). (5)

As in Kamenica and Gentzkow (2011), the value of information disclosure is described by the
convexity of ν(Θ).10 Let ν̂(Θ,PS) be the concave closure of ν(Θ) over PS . The principal strictly
benefits from persuasion whenever ν̂(Θ,PS) > ν(Θ). Next, we characterize whether ν(·) is
concave or convex.
Lemma 2. ν(Θ) is strictly concave at Θ = (θ1, ..., θN ) ∈ ∆N if and only if

Ωθtf
′(θtΩ)[2− rf (θtΩ)] + ΩθNf ′(θNΩ)[2− rf (θNΩ)] < 0, for all t = 1, ..., N − 1, (6)

where rf (x) ≡ −xf ′′(x)

f ′(x)
is the relative risk aversion coefficient associated with f(·).

The necessary and sufficient condition for ν(·) to be locally concave at Θ in Lemma 2
depends on the Arrow-Pratt relative risk aversion coefficient associated with f(·). For instance,
when rf (θtΩ) > 2 for all t and Θ = (θ1, ...θN ) in the set of achievable posteriors, the principal
does not benefit from information disclosure; when rf (θtΩ) < 2 for all t and some Θ = (θ1, ...θN )
in the set of achievable posteriors, the principal benefits from information disclosure.

We illustrate the relationship between the value of information disclosure and the concavity
of f(·) for the case of two technologies. Consider f(x) = xa for any a ∈ (0, 1); we have
rf (x) = 1− a < 2, for any x. From Lemma 2, ν(·) is globally convex, so there are always gains
from information disclosure for any prior and for any PS . Furthermore, the principal designs
an experiment that generates the most extreme possible posteriors in PS : for any prior belief,
agents receive (with some probability) the most favorable signal for one of the technologies.
In other words, this signal structure induces agents to focus on one technology in equilibrium,
reducing diversification across technologies. Next, consider f(x) = 1− e−λx; we have rf (x) =
λx. Depending on λ, Lemma 2 shows that ν(·) might not be globally convex. Hence for some

10Note, however, that ν(Θ) is non-linear. When posterior beliefs are distributed according to some distribution G,
this non-linearity implies that we cannot write the principal’s expected payoff as a function of one of G’s moments (e.g.,
posterior means). By contrast, recent Bayesian persuasion papers have studied special settings where the principal’s
payoff depends on expected posteriors—see e.g. Kolotilin (2018); Hwang et al. (2019).
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beliefs and for some set of posteriors, full information revelation is not optimal, resulting in less
focus, as the agents’ posteriors would not be as extreme as under full information revelation.
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Fig. 3 Function ν(θ), the value for the principal of inducing posterior θ, for different functions f(·). Left Panel:
f(x) =

√
x; Right Panel: f(x) = 1− exp(−8x).

Why would the principal want to use a more or less informative signal structure? First,
consider the case of f(x) =

√
x. Figure 1 (left panel) shows that there is too little invest-

ment towards the most promising technology, in proportional terms, compared to the first-best
allocation, i.e., there is too much diversification in equilibrium. Figure 3 (left panel) shows
ν(·) corresponding to f(x) =

√
x, which is strictly convex, so the principal’s optimal informa-

tion disclosure policy always induces the most extreme posterior possible, which reduces the
diversification and induces more focus in equilibrium.

Second, consider the case with f(x) = 1 − e−8x. Figure 1 (right panel) shows that, for
priors around 0.5, there is too much investment towards the most promising technology, in
proportional terms, compared to the first-best allocation; there is too little diversification in
equilibrium. Figure 3 (right panel) shows ν(·) corresponding to f(x) = 1 − e−8x, which is
locally concave near θ = 0.5 and convex towards the extremes. As we will show, the principal
in this case may not disclose any information, either because the signals available are not too
informative (i.e. posteriors are narrowly concentrated around the 0.5) or because generating
extreme posteriors induces even less diversification. On the other hand, if the priors heavily
favor one of the technologies, competition pushes agents to invest relatively more towards the
less promising technology and there is too much diversification in equilibrium. To induce more
focus, the principal designs an experiment that generates more extreme posteriors.

We formally show that, in general with N ≥ 2 technologies, the gain from information
disclosure (i.e. whether ν(·) is locally convex or concave) depends on the value the principal
assigns to diversification. When rf (·) is relatively large, i.e. f(·) is very concave, diversification
is more valuable to the principal than to the agents. This is because the equilibrium allocation
for any belief Θ is too responsive to differences among the technologies relative to the principal’s
first-best investment across technologies. In this case, agents over-react to differences among the
technologies. In contrast, when rf (·) is relatively small, i.e. f(·) is relatively less concave, then
the value of diversification to the principal is smaller so revealing information that induces more
extreme beliefs is more valuable and produces an allocation closer to the first-best. Therefore,
the principal may prefer to reveal information that induces more extreme beliefs.
Proposition 2. The function ν(Θ) has the following properties:

1. All of its global maxima are at the vertices of the N − 1 simplex;
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2. The center of the simplex, Θ = (1/N, ...1/N), is a local maximum if and only if

2 < rf

(
Ω

N

)

3. If there exists a local interior maximum, it must be Θ = (1/N, ...1/N).

Proposition 2 shows that for any concave function f(·), the function ν(·) is either strictly
convex or it has a unique local interior maximum at the center of the simplex. Additionally,
ν(·) has global maxima with value f(Ω) at the extreme points of the simplex because at those
extreme points the principal and agents know with certainty which technology is the best
choice. Hence, if the principal has access to a perfectly informative signal, revealing that signal
is optimal. Also note that ν(·) cannot be globally concave, since the global maxima are at the
vertices of the simplex.

Importantly, while Figure 3 is an illustration for N = 2, Proposition 2 shows that this
figure captures all the relevant features of the problem for N ≥ 2. In more dimensions, we will
have the same two cases: either the function will be globally convex, or it will have a local
interior maximum at the center of the simplex. Figure 3 is more than just an example because
it qualitatively depicts all of the possible cases for the shape of ν(·).

Whether ν(·) is locally concave at the center of the simplex depends on rf
(
Ω
N

)
, the coef-

ficient of relative risk aversion associated with f , evaluated at the most diversified possible
equilibrium investment profile—where, in aggregate, agents invest Ω

N in each technology. In
particular, following Lemma 2, if the relative risk aversion at the most diversified equilibrium
profile is not too large, i.e., rf

(
Ω
N

)
≤ 2, then diversification is not an issue, reflected in ν(·)

being globally convex, and the principal always uses the most informative experiment, disclos-
ing as much information as possible. On the contrary, if the value of relative risk aversion in
the most diversified equilibrium profile is large, i.e., rf

(
Ω
N

)
> 2, then diversification is a prob-

lem for the principal, reflected in ν(·) being locally concave at the center of the simplex. In
this case, the principals’ information design problem is more involved, and we analyze it next.

Characterization of the Optimal Information Design. We now characterize the opti-
mal signal structure in our setting. Let Θ0 ∈ ∆N be the common prior belief profile over the
N technologies. Conditional on prior Θ0, let PS(Θ0) ⊆ ∆N (simply denoted PS) be the con-
vex set of posteriors beliefs that the principal can induce that are consistent with Bayes’ rule
(e.g., see Example 1). From these two primitives, we now define key objects to characterize the
principal’s optimal information design.

Let ΘC ≡ {Θ ∈ ∆N : ν̂(Θ,PS) = ν(Θ)} be the set of all posteriors where the value function,
ν, agrees with its concave closure, ν̂, over PS . Let ṽ ≡ sup{ν(Θ) : ν′′(Θ) ≤ 0, Θ ∈ PS} be
the largest value of the value function over the region of PS where it is concave.11 We can now
characterize the optimal disclosure policy.
Proposition 3. The optimal disclosure policy, s∗, with distribution Gs∗ such that EGs∗ [Θ] =
Θ0, is

1. maximally informative if ν(θ) ≥ ṽ for all θ ∈ ∂PS; then s∗ induces a distribution over
posterior beliefs with support consisting only of points in the boundary of the feasible set of
posteriors.

2. partially informative if ν(θ) < ṽ for some θ ∈ ∂PS and PS ̸= ΘC ; then s∗ induces a
distribution with support consisting of boundary points in ∂PS or in PS ∩ΘC .

3. uninformative if PS = ΘC ; then s∗ induces the belief Θ = Θ0.

We now consider an illustrative example with two technologies to explain the three cases in
Proposition 3. We take the common prior, θ0, and set of feasible posteriors, PS , as primitives
of the model and illustrate the optimal information policy in Proposition 3 for different priors

11If this region is empty, ṽ = −∞.
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and feasible posteriors.12 For the sake of this example, we assume PS = [θ1, θ1] with 0 ≤ θ1 ≤
θ1 = 1− θ1 ≤ 1, although this symmetry is not required for our results.

Figure 4 shows the principal’s payoff with and without information disclosure in three
different scenarios when f(x) = 1−exp(−λx) with λ = 8 and Ω = 0.9. In each panel, the black
solid line represents the principal’s payoff without disclosure, ν(θ1) ≡ ν(θ1, 1−θ1), and the red
dashed line represents the concavification of the principal’s payoff over the region of feasible
posteriors, ν̂(·) over PS . Each panel highlights three features: (1) the inflection points of ν(·),
denoted by C and D, at θ1 = 0.26 and θ1 = 0.74, respectively; (2) the unique local interior
maximum of ν(·) inside the region of feasible posteriors, which in each case corresponds to
θ1 = 1

2 ; and (3) the points B and E, where the value of ν(·) equals its value at the interior local
maximum. The function ν is concave in the region between C and D and convex otherwise. In
each case, we have that ṽ = sup{ν(θ) : ν′′(θ) < 0, θ ∈ PS} = f

(
1
2

)
= 1 − exp(−λ/2), and we

have some point θ̂1 such that θ̂1 = sup{θ : ν̂(θ, [θ1, θ1]) = ν(θ)}.
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Fig. 4 The solid black line corresponds to the principal’s payoff without disclosure with f(x) = 1− exp(−λx),
λ = 8, and Ω = 0.9. The dashed red line corresponds to the concavified function ν̂(·) over the region of feasible
posteriors PS . Each panel shows a different scenario for the set of feasible posteriors PS = [θ1, θ1] and the prior
is θ0.
First Panel: θ1 = 0.02 and θ1 = 0.98. Prior θ0 = 0.5.

Second Panel: θ1 = 0.1 and θ1 = 0.9. Prior θ0 = 0.8.

Third Panel: θ1 = 0.3 and θ1 = 0.7. Prior θ0 = 0.5.

The principal’s optimal signal structure depends on the a priori asymmetry of the technolo-
gies (i.e. the prior Θ0), the quality or informativeness of the feasible signals the principal can
use for a given prior (i.e., PS(Θ0)), and the value of diversification to the principal (i.e. ṽ).

First, if the principal can generate highly informative signals, then PS includes posterior
beliefs close to 0 and 1. When min{ν(θ1), ν(θ1)} > ṽ, a maximally-informative disclosure is
optimal. Graphically, in Figure 4 (first panel), θ1 lies somewhere between points A and B, and
θ1 lies somewhere between points E and F, and the concave closure of ν(·) is the line that
connects ν(θ1) and ν(θ1). The optimal signal reveals θ1 with some probability q and θ1 with
the remaining probability 1 − q, where q is such that the expected posterior is equal to the
prior, θ0. The principal benefits from inducing extreme posteriors. The reason is that, when the
value of diversification to the principal is low (i.e. the rf (x) coefficient is low enough), revealing
information to the agents increases the principal’s expected value because, in equilibrium,
agents under-react to asymmetries in the technologies when beliefs are extreme. This leads to

12For any prior and any set of feasible posteriors, there is a signaling technology that generates the latter from the
former under Bayesian updating. When we compare the optimal policy with various priors and different sets of feasible
posteriors, the signaling technology itself is changing to keep the priors and posteriors Bayes-consistent (see Figure 6
for an example). Our goal here is to illustrate how different priors and feasible posteriors give rise to different optimal
policies.
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an optimal disclosure rule that mixes between the two most extreme posteriors possible within
PS .

Second, suppose the available signals are not as informative and the set of feasible posteriors,
PS , is narrow enough so that max{ν(θ1), ν(θ1)} < ṽ. Moreover, suppose that the technologies
are ex-ante asymmetric, with technology 1 more likely to be successful ex ante, i.e., θ0 is to
the right of point D. Graphically, in Figure 4 (second panel), θ1 lies somewhere between points
B and C, and θ1 lies somewhere between points D and E. This requires a large enough value
of diversification so that ṽ is large. In this case, the optimal signal is partially informative: it
reveals the posterior θ̂1 with some probability q and θ1 with the remaining probability 1 − q,
where q is such that the expected posterior is equal to the prior.

Third, suppose that the principal has access to relatively uninformative signals, so she can
induce posterior beliefs in PS close to 0.5 in the region where ν(·) is concave. Graphically,
in Figure 4 (third panel), θ1 and θ1 lie somewhere between points C and D. In this case,
ν̂(·,PS) = ν(·) over PS—there is no value from information disclosure, and the optimal signal
is perfectly uninformative, inducing a posterior equal to the prior. The value of diversification
is large enough, and the technologies are symmetric enough that revealing information would
lead to more extreme posteriors, which agents would over-react to in equilibrium compared to
the first-best.

3.3 Degree of Information Disclosure: Size of the Prize and Number
of Competitors

We now study how the size of the prize and the number of competitors affect the optimal
information disclosure policy. Both the size of the prize, V , and the number of competitors,
M , impact ν(·) only indirectly, through Ω =

(
M−1
M

)
V . Thus, to study the effects of V and M ,

it is enough to examine the comparative statics on Ω.
Define the degree of information disclosure to be the type of information policy that is

optimal for the principal. From Proposition 3: for any given prior Θ0 and any given set of
attainable posteriors PS(Θ0), we have no disclosure, partial disclosure, or maximal disclosure,
depending on the parameters of the contest, including the size of the prize and the number of
competing agents.

If the region of beliefs over which the principal’s value function ν is concave, denoted by ΘC ,
expands in terms of set inclusion, then the degree of information disclosure weakly decreases, i.e.
it decreases whenever the optimal policy switches from maximal or partial disclosure towards
partial or no disclosure. We characterize the effect of V and M on the degree of information
disclosure by examining their effect on ΘC .

For tractability, we focus on the case of two technologies, so Θ = (θ, 1− θ). The condition
for concavity of ν at Ω when N = 2 (Lemma 2) is equivalent to g(Ω, θ) < 0, where

g(Ω, θ) ≡ h(Ωθ) + h(Ω(1− θ))

and h(x) = xf ′(x)[2− rf (x)]. g(Ω, θ
∗) = 0 at an inflection point, θ∗, of ν(·). Thus, for each Ω,

the inflection point of ν(·) in [0, 0.5] is the solution to the implicit equation

g(Ω, θ∗(Ω)) = 0. (7)

Lemma 3. The solution to equation (7), θ∗ ≡ θ∗(Ω), is decreasing in Ω if and only if

h′(Ω(1− θ∗))

h′(Ωθ∗)− h′(Ω(1− θ∗))
+ θ∗ > 0 (8)

A sufficient condition for inequality (8) to hold is that h is increasing and concave.
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It can be shown that the sufficient condition in the lemma (i.e., that the function h(x)
is increasing and concave) holds for all x when f(x) = xa, with a ∈ (0, 1) and for x ∈(
0, 2−

√
2

λ

)
∪
(

3+
√
3

λ ,∞
)
when f(x) = 1− exp(−λx), with λ > 0.

Directly from this lemma we can describe how the size of the prize and the number of
contestants affect the optimal degree of information disclosure in the contest.
Proposition 4. The optimal degree of information disclosure weakly decreases when the num-
ber of competitors increases or when the size of the prize increases, if and only if inequality (8)
holds.

Increasing the number of competing agents or increasing the size of the prize increases the
total investment on each technology. As a consequence, given that f(·) is concave, there is a
lower marginal return to investment on each particular technology. Intuitively, there is sufficient
investment on each technology so there is no need to sacrifice diversification to increase the
investment on any particular technology. Hence, the value of focus becomes less important to
the principal compared to the value of diversification. When inequality (8) holds, the objective
becomes more concave around the center of the simplex. Hence, for any given prior Θ0 and set of
attainable posteriors PS , as the region of concavity expands, the concavification of the objective
function changes according to each case of Proposition 3. Therefore, the optimal information
disclosure policy weakly changes from more disclosure (maximal or partial disclosure) to less
disclosure (partial or no disclosure).
Example 2. To illustrate Proposition 4, we consider f(x) = 1− exp−8x, for which inequality
(8) holds. This means that as Ω increases the region of concavity of ν increases. Figure 5
shows how the function ν(·) changes for prizes of different sizes, V = 0.6, 0.8, 1, with M = 5
competitors. The function ν becomes concave around the center and the concave region expands
as the prize increases: ν is convex when V = 0.6, but it is locally concave for V = 0.8, and the
region of concavity expands for V = 1.
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Fig. 5 Function ν when f(x) = 1− e−8x for different values of the prize V = 0.6 (solid line), V = 0.8 (dashed
line), V = 1 (dotted line). The function ν is convex when V = 0.6; it is concave in the region [0.29, 0.70] when
V = 0.8; and it is concave in the region [0.25, 0.74] when V = 1.

Additionally, suppose the prior is θ = 0.4 and the most informative experiment is generated
by the same signal specification as in Example 1, with a parameter α = 0.75. We can now
characterize the optimal information disclosure policy. Note that the set of attainable posteriors
is PS = [0.18, 0.67].13 Figure 6 shows both ν(·) (dashed line) and its concavification, ν̂(·)
(solid red line). The optimal information disclosure policy depends on V : the higher the prize
values, the lower the extent of information disclosure (see Proposition 4). Thus, with lower

13The boundary of the set of posteriors for each prior is illustrated in Figure 2 (second panel).
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prize values (e.g. V = 0.6, Figure 6, first panel), the principal uses maximal disclosure. At
higher prize values (e.g. V = 0.8, Figure 6, second panel), the principal uses partial disclosure.
At even higher prize values (e.g. V = 1, Figure 6, third panel), the principal does not disclose
information.
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Fig. 6 Function ν (dashed line) and its concavification ν̂ (solid line) for f(x) = 1−e−8x, for different prize size.
The vertical line indicates the fixed prior 0.4. The set of attainable posteriors with the experiment technology
in Example 1 is PS = [0.18, 0.67].

We can generalize Example 2 and carry out the same analysis for any prior belief θ ∈ [0, 1].
The vertical axis in Figure 7 shows the set of posteriors used by the optimal information
disclosure policy. In the first panel of Figure 7, when Ω = 0.48, the function ν is convex
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Fig. 7 As Ω increases (from the first panel to the third panel), the extent of information disclosure decreases.
For each prior, the solid (red) line shows the posteriors induced by the optimal information structure. In the
“Full” region, there is full information disclosure, i.e., signals induce most extreme posteriors possible. In the
“Partial” region, there is partial information disclosure, i.e., posteriors are not the most extreme ones. In the
“None” region, there is no information disclosure, i.e., the posterior equals the prior.

and, conditional on the set of feasible posteriors for each prior, the optimal policy is maximal
information disclosure. In other words, for each prior, the optimal information structure induces
the same posteriors induced by the most informative experiment. In the second panel, when
Ω = 0.64, there is no information revelation for any prior in [0.41, 0.59], partial information
disclosure for priors in [0.26, 0.41]∪[0.59, 0.74] and full disclosure for priors in [0, 0.26]∪[0.74, 1].
In the third panel, when Ω = 0.8, there is no information revelation for any prior in [0.35, 0.65],
partial information disclosure for priors in [0.21, 0.35]∪ [0.65, 0.79] and full disclosure for priors
in [0, 0.21] ∪ [0.79, 1]. As the number of competitors increases, the inflection point of ν(·)
decreases, meaning that the extent of information disclosure decreases. In other words, in a
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contest with more competitors, the principal may be less willing to disclose information relative
to a contest with the same characteristics but with fewer competitors.

3.4 Optimal Size of the Prize and Information Disclosure

We examine the interaction between information design and the size of the prize. In the previous
section, we characterized conditions under which increasing the prize reduces the extent of
information disclosure. Hence, a natural question to ask is whether choosing a prize optimally
completely overcomes the impact of information disclosure. Specifically, for a given prior Θ0

and set of posteriors P(Θ0), does the principal strictly benefit by disclosing information when
the size of the prize is chosen optimally?

To answer this question we define

γ(V,Θ) = ν̂(V,Θ)− ν(V,Θ),

which is a positive function, since ν̂ ≥ ν for any (V,Θ).
Proposition 5. Let V ∗

0 be the optimal prize when the principal cannot disclose information.
The principal benefits from disclosing information on top of choosing the prize optimally only
if γ(V ∗

0 ,Θ) > 0. If γ(Θ, V ) is submodular in V and Θ, the optimal size of the prize is smaller
when the principal can choose both the optimal prize and an optimal information disclosure
policy relative to the size of the prize when the principal cannot disclose information.

This proposition suggests that information disclosure and prizes can be substitutes: using
a smaller prize and disclosing information can make the principal strictly better off relative to
the case of setting prize without the possibility of information disclosure.

We illustrate that information disclosure strictly benefits the principal even after the prize
is chosen optimally. Specifically, we find the jointly optimal prize and information disclosure
for any prior θ for f(x) = 1− exp−8x with two technologies, five competitors, and we use the
experiment technology in Example 1 and Example 2, with α = 0.75.

Figure 8 (left panel) plots the principal’s payoff as a function of the prize, V , when the prior
is θ = 0.4 and the set of posteriors is P = [0.182, 0.667]. In the figure, the solid line corresponds
to ν̂(V ; θ)−V , the principal’s expected payoff when the principal uses the optimal information
disclosure, whereas the dashed line corresponds to ν(V ; θ)−V , the principal’s expected payoff
when she does not disclose information.
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Fig. 8 Left Panel: Functions ν̂(θ) and ν(θ), the value for the principal of inducing posterior θ with and without
information disclosure, for f(x) = 1− e−8x for different values of the prize V . Right Panel: The optimal size of
V as a function of the prior belief, θ, assuming the principal uses the optimal information disclosure policy.
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Figure 8 (left panel) shows that information disclosure is valuable to the principal as a
design tool, as it increases the principal’s payoff beyond that from a contest with an optimal
prize. In this example, absent any disclosure the optimal prize is V = 0.356 and the principal’s
expected payoff is 0.33. In contrast, with the optimal disclosure policy the optimal prize is
V = 0.321, and the principal obtains an expected payoff of 0.37. This shows that the optimal
information disclosure policy and the prize interact with each other: By using a combination of
optimal information disclosure and prize, the principal increases her revenue by 13.4 percent
while reducing the size of the prize by 9.8 percent.

Figure 8 (right panel) shows the optimal prize when we repeat the exercise of finding the
optimal prize for any prior θ ∈ [0, 0.5]. The figure shows that the optimal prize is increasing in
the prior, θ1, for θ1 ≤ 0.5. That is, as the two technologies become more symmetric in terms of
their probabilities of being the best one, the principal’s optimal prize increases. The intuition
for this is clearer from Figure 5 and Figure 6: for priors closer to 0.5, as the prize increases,
the principal’s objective tends to increase more compared to how much it increases for priors
further away from 0.5. Hence the optimal prize, which implicitly also depends on the optimal
information policy, tends to increase when the technologies are more symmetric and the prior
is closer to 0.5.

4 Conclusion

We study a setting where there are different approaches to tackle a problem, there is uncer-
tainty on the success of each approach, and agents compete in a contest to find the best
solution. We ask whether it is beneficial for the contest sponsor (the principal) to disclose
information regarding the different approaches. Crucially, the principal is also uncertain about
which approach is the best one, and has limited information to share with the agents. We find
that the principal does not always benefits from revealing information that would lead agents
to believe that one technology is more promising than the rest, when she cares about diver-
sification: revealing information can induce too many agents to work on the most promising
technology, which reduces diversification.

We present a tractable framework to study contests with technological uncertainty and to
analyze the trade-off between information revelation and diversification. In our setting, each
agent chooses one out of N available technologies to compete in the contest, and only one of
these technologies is the best one ex post. The principal can commit to reveal to the agents
the results of an experiment that signals the success of each technology. We fully characterize
the optimal signal structure that maximizes the principal’s expected payoff from the contest as
a function of the set of all signals available to the designer. We show that the informativeness
of the optimal signal structure crucially depends on three main features of the environment:
(i) the value of technological diversity; (ii) the quality of the principal’s information; and (iii)
the extent of technological uncertainty. Each of these factors affects the principal’s choice of
information structure, as it affects the key trade-off between diversification and focus.

Revealing more precise information about the technologies induces more extreme posteriors,
which incentivizes agents to focus on more promising technologies in equilibrium. However,
the equilibrium allocation of agents’ investments may over-react to such asymmetries in their
beliefs regarding the different technologies compared to the principal’s first-best allocation.
Because the technologies are uncertain, the principal’s payoff includes the option value of
developing less promising technologies, so diversification is also valuable and conflicts with
the incentive to focus on more promising technologies. The optimal signal structure balances
these considerations and can be maximally informative, partially informative, or completely
uninformative in different cases.

These results apply to contest setting where agents can pursue different approaches, such
as in procurement, contests for innovation, promotions within organizations, and others. In all
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of these settings, the agents and the principal may be unsure about which technology, idea, or
project will be most valuable or feasible ex post.
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Appendix A Proofs

Proof of Proposition 1

Proof. These results are standard in the literature (see, e.g., Corchón and Serena, 2018). Agent
i solves:

max
xi,t≥0

N∑

t=1


V θt

xi,t

M∑
j=1

xj,t

− xi,t


 .

This problem is separable in t, and so the first-order optimization conditions yield the following
equilibrium level of investment on technology t:

x∗
i,t = θt

(
M − 1

M2

)
V. (A1)

Thus, the aggregate equilibrium investment on technology t is

x∗
t ≡

M∑

i=1

x∗
i,t = θtΩ, (A2)

where Ω =
(
M−1
M

)
V .

If the principal could control the agent’s investments, the principal’s would choose the
aggregate investment on technology t according to:

max
yt

N∑

t=1

θtf(yt)− yt

which implies that, at an interior solution, θtf
′(y∗t ) = 1 or

y∗t = h(θt) ≡ (f ′)−1

(
1

θt

)
. (A3)

Note that y∗t increases with θt because h(·) is increasing (by concavity of f(·)).
For technology t both the equilibrium investment, x∗

t (θt), and the first-best, y∗t (θt), only
depend on the belief that technology t is the best one, rather than on the entire profile of
beliefs. The aggregate investment for different technologies, however, are not arbitrary because
they relate to each other through the condition

∑N
t=1 θt = 1.

The aggregate equilibrium investment across all technologies is

N∑

t=1

x∗
t (θt) = Ω,
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which is independent of the agents’ beliefs and only depends on the size of the prize and the
number of agents. In contrast, the aggregate first-best investment is

N∑

t=1

y∗t (θt) =

N∑

t=1

h(θt),

which depends on the profile of beliefs over all the technologies. The equilibrium investment
on technology t depends only on θt and Ω, while the first-best level depends on the shape of
the function f and on the belief θt.

Proof of Lemma 1

Proof. Consider any two posteriors θ̃, θ̃′ ∈ PS induced by some messages m′ and m′′, from
(possibly different) signal structures s′ and s′′, respectively. For any α ∈ (0, 1), the posterior
αθ̃ + (1 − α)θ̃′ can be induced with a signal structure s∗ that is an appropriately chosen
mixture of s′ and s′′. First, define a new message m∗ , and replace m′ and m′′ with m∗ in s′

and s′′, respectively. Thus, if the receiver knows whether a message is generated by s′ or s′′,
their posterior conditional on m∗ would be θ̃ or θ̃′, respectively. Now define the mixture s∗

so that with probability Pr(s′) = α·Pr(m∗)
Pr(m∗|s′) a message is generated according to s′, and with

corresponding probability Pr(s′′) = (1−α)·Pr(m∗)
Pr(m∗|s′′) a message is generated according to s′′.

The mixture probabilities Pr(s′) and Pr(s′′) are chosen such that conditional on observing
the message m∗, the receiver believes that with probability α this messages was generated by
s′, and with probability 1−α it was generated by s′′. The receiver’s posterior is αθ̃+(1−α)θ̃′,
so the set PS is convex.

Proof of Lemma 2

Proof. If Θ = (θ1, ..., θN ) ∈ ∆N we can write θN = 1 −
∑N−1

t=1 θt. Then, restricted to the
(N − 1)-simplex, ν is a function of N − 1 variables. To show that this function is concave, let
H(Θ) be the (N − 1) × (N − 1) matrix of second derivatives of ν(Θ). Given the separability
of the function ν(·) the matrix H(Θ) is diagonal. The condition in the lemma corresponds to
imposing that the element in row t is negative, which is a necessary and sufficient condition
for the Hessian to be negative definite.

Proof of Proposition 2

Proof. For part (i), note that at each vertex θi = 1 for some i ∈ N and θj = 0 ∀j ̸= i. Hence
the values at the vertices are ν(0, ..., 0, 1, 0, ..., 0) = 1 · f(Ω). The only points that can obtain
the global maximum of f(Ω) are the vertices of the simplex. To see this, consider any point
θ̃ = (θ′1, ..., θ

′
N ) such that ν(θ̃) =

∑
j θ

′
jf(θ

′
jΩ) = f(Ω). Then f(θ′jΩ) ≥ f(Ω) for some j ∈ N .

Since f is increasing, this requires θ′j = 1, hence the point θ̃ is a vertex.
For part (ii), note

ν(Θ) ≡
∑

t

θtf(θtΩ).

We can replace θN = 1−
∑N−1

i=1 θt. Then we have

ν(Θ|Θ ∈ ∆N) ≡ θNf(θNΩ) +

N−1∑

t=1

θtf(θtΩ).
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Taking the derivative w.r.t θt, for t = 1, ..., N − 1 we get

∂ν

∂θt
= −f(θNΩ)− θNΩf ′(θNΩ) + f(θtΩ) + θtΩf

′(θtΩ).

For an interior maximum, we need ∇ν = 0, so we require

f(θNΩ) + θNΩf ′(θNΩ) = f(θtΩ) + θtΩf
′(θtΩ), for all t = 1, ..., N − 1.

Clearly θt =
1
N is a solution to this equation.

Furthermore, the second order condition is negative if and only if 2 < rf
(
Ω
N

)
, which yields

part (ii).
For part (iii), suppose for the sake of a contradiction that there exists a local interior

maximum Θ = (θ1, ..., θN ) ̸= (1/N, ..., 1/N). Then there exist some indices i, j such that
θi < θj . W.l.o.g. we can relabel θt = θi and θN = θj . From the FOC, and using that f is
increasing, we get:

0 < f(θNΩ)− f(θtΩ) = −θNΩf ′(θNΩ) + θtΩf
′(θtΩ).

Hence θtΩf
′(θtΩ)− θNΩf ′(θNΩ) > 0. Plugging this in the second order condition we get:

Ω{2[θtf ′(θtΩ)− θNf ′(θNΩ)]− θtf
′(θtΩ)rf (θtΩ)− θNf ′(θNΩ)rf (θNΩ)]} > 0,

which is a contradiction. So any belief Θ that satisfies the FOC but where θt < θN cannot be
a maximum, which yields part (iii).

Proof of Proposition 3

Proof. The proof follows from the convexity of PS in Lemma 1, the characterization of the
objective function in Proposition 2, and the standard concavification argument.

1. A maximally informative signal obtains when the set of posteriors is rich enough, so
the global maxima of ν(Θ) over PS is below the concave closure of ν(Θ) over the region PS ,
because ∂PS includes points close to the vertices of the simplex, so the concave closure of ν(Θ)
over PS corresponds to the plane that connects the boundary of PS .

Then the optimal signal s∗ only induces posteriors in ∂PS , so for any arbitrary prior p ∈ PS ,
Bayesian consistency of the posteriors determines the distribution over posteriors on ∂PS .

2. A partially informative signal obtains when the set of posteriors is limited, so the concave
closure of ν(Θ) over PS coincides with ν(Θ) for some values (near the center of the simplex
∆N ).

3. An uninformative signal obtains when the set of posteriors is concentrated towards the
center of the simplex ∆N , where ν is concave, so the concavification of ν(·) over PS and ν(·)
itself coincide.

Proof of Lemma 3

Proof. First, recall that ν(·) satisfies ν(θ) = ν(1− θ), it is convex at θ = 0, and θ = 0.5 is the
unique local interior maximum. Therefore, there exists a unique θ̃ ∈ [0, 0.5] such that ν(·) is
convex in [0, θ̃] and concave in [θ̃, 0.5]. For any Ω, the inflection point as an implicit function
of Ω defined by

g(Ω, θ̃(Ω)) = 0.

21



Taking derivative of this expression with respect to Ω we get:

∂g(Ω, θ̃(Ω))

∂Ω
+

∂g(Ω, θ̃(Ω))

θ̃

dθ̃(Ω)

dΩ
= 0.

Thus,

dθ̃(Ω)

dΩ
=

−∂g(Ω,θ̃(Ω))
∂Ω

∂g(Ω,θ̃(Ω))

θ̃

.

We can write g = h(Ωθ)+h(Ω(1−θ)). Then, the derivative of g with respect to Ω is θh′(Ωθ)+
(1− θ)h′(Ω(1− θ)) and the derivative with respect to θ is Ω[h′(Ωθ)− h′(Ω(1− θ))]. Therefore,

dθ̃(Ω)

dΩ
=

−[θh′(Ωθ) + (1− θ)h′(Ω(1− θ))]

Ω[h′(Ωθ)− h′(Ω(1− θ))]
=

−h′(Ω(1− θ))

Ω[h′(Ωθ)− h′(Ω(1− θ))]
− θ

Ω
.

Hence, the derivative is negative if

h′(Ω(1− θ))

h′(Ωθ)− h′(Ω(1− θ))
+ θ > 0

which is the condition in the lemma. If h is increasing and concave, this condition clearly
holds.

Proof of Proposition 4

The optimal degree of information disclosure is characterized by the inflection point θ∗. The
further this point is from 0.5, the less the degree of information disclosure. The condition in
Lemma 3 implies that the inflection point moves further from 0.5. Since Ω is increasing both
in the size of the prize and the number of competitors, the result obtains.

Proof of Proposition 5

Proof. Without information disclosure, the principal’s expected payoff after choosing the
optimal prize, for any prior Θ, is

max
V≥0

ν(V,Θ)− V, (A4)

where we now make explicit that ν depends on V and Θ. The principal’s expected payoff from
using an optimal information structure and then choosing the optimal prize is

max
V≥0

ν̂(V,Θ)− V, (A5)

Since, in general, ν̂(V,Θ) ̸= ν(V,Θ), we would not expect the maximum values in (A4) and
(A5) to be the same. The principal gets a weakly larger payoff by optimising over the prize
and the information structure. In fact, by definition,

ν̂(V,Θ) = ν(V,Θ) + γ(Θ, V ),

where γ(·) is a positive function, since ν̂ ≥ ν. Therefore, for any prior Θ, and any prize V , we
have

ν̂(V,Θ)− V ≥ ν(V,Θ)− V,

so the maximum value in (A5) is always larger than the maximum value in (A4). Using these
observations, we have the following result.
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Appendix B Microfoundations for Tullock and f(·)
The literature has provided axioms that justify the functional form of a “contest success func-
tion.” Skaperdas (1996) provides a set of axioms that deliver a Tullock-form as a particular case
when agents make uni-dimensional investments. Clark and Riis (1998a) extends these results
by allowing contestants to differ in their types. Rai and Sarin (2009) generalizes the axioms in
Skaperdas (1996) to allow agents to make multiple types of investments that result in a “score”
which is used to determine the contest winner.

In this section, we provide two applied micro-foundations that deliver particular cases of
the two primitives of our model: (1) agents compete in a Tullock contest on each technology;
and (2) the principal’s payoff is given by a strictly increasing and concave function, f(xt).

B.1 Achieving Maximum Accuracy

Agents compete in a contest to achieve the highest accuracy, such as in a prediction contest
where the goal is to minimise prediction errors. Their investments translate into a score, and
we assume that the player with the lowest score wins. In a prediction contest, for example, the
lowest score reflects the most accurate prediction, which has the lowest mean-squared error.

Let us consider one of the technologies separately. Suppose that agent i obtains score
si ∼ exp(xi) when investing xi . That is,

Pr(si ≤ s) = 1− exp(−xis).

Agent i obtains the most accurate predictions when si < minj ̸=i sj . Note that minj ̸=i sj ∼
exp

(∑
j ̸=i xj

)
. Therefore,

P (si < min
j ̸=i

sj) =

∫ ∞

0

P (si < min
j ̸=i

sj |si = s)P (si = s)ds

=

∫ ∞

0

exp


−s ·

∑

j ̸=i

xj


xi exp(−xis)ds

=
xi∑M

k=1 xk

Therefore, agent i’s probability of winning is given by the ratio of his investment over the total
investment on a particular technology.

Next, suppose that the principal’s payoff from obtaining a minimum score of s for the best
technology is B(s). Assume that B(s) = 0 for s > s̄, for some threshold s̄. In other words, a
principal that seeks to achieve accuracy gains nothing when the most accurate prediction is,
in fact, sufficiently inaccurate. Let X ≡

∑M
k=1 xk be the agents’ aggregate investment on the

best technology. Then the principal’s expected payoff is

f(X) =

∫ ∞

0

B(s)X exp(−X · s)ds,

which is a function of the agents’ total effort. This function is strictly increasing and concave
as long as sX < 1. Note that the agents’ equilibrium aggregate investment is strictly lower
than the prize V , so sX < 1 for any X ∈ [0, V ] as long as s̄V ≤ 1.

Hence this simple foundation induces the reduced-form representation in our main model,
where the contestants win according to the Tullock contest probabilities, while the principal’s
payoff is strictly increasing and concave over the relevant range of the aggregate investment on
each technology.
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B.2 Noisy Investments and Exponential Cost

Suppose that an agent’s actual investment on a given technology depends on a level of invest-
ment that they choose, yi, plus a random shock, εi, which the agent cannot control. A negative
shock may represent that the agent cannot commit the planned investment, and must invest
less. A positive shock may represent a “donation” made by an external party, which adds to
the agent’s investment. Thus, the agent’s actual investment in a technology is

si = yi + εi.

The principal awards the prize to the agent with the largest actual investment. Assuming that
εk is i.i.d. from a type-I extreme value distribution, the probability that agent i wins the contest
is

Pr(si > max
j ̸=i

sj) =
exp(yi)∑M

k=1 exp(yk)
.

Next, suppose that the principal’s payoff is equal to the highest actual investment by some
agent on the best technology. We have that

E[ max
j=1,...,M

sj ] = ln

(
M∑

j=1

exp(yi)

)

Furthermore, assuming that the investment cost is exponential, and making the change of
variables xi = exp(yi), we obtain both the Tullock contest winning probabilities and the
appropriate principal’s payoff, f(x) = ln(x), which is strictly increasing and concave.

Hence this foundation also induces the reduced-form representation in our main model, in
this case using noisy investments and an exponential cost function.

Appendix C Technology-specific Prizes

In this section we study the possibility of choosing technology-specific prizes, {Vt}t∈N , which
naturally changes the allocation of investment across technologies. There are two important
differences with our baseline analysis. First, the parameter Ω in the baseline model is now
technology-specific, Ωt =

(
M−1
M

)
Vt. This means that the equilibrium investment towards tech-

nology t is x∗
t = θtΩt. Second, the prize is awarded only to the ex-post best technology, which

means that Vt is paid with probability θt.
Suppose the technology-specific prizes are announced before the realization of the principal’s

experiment. That is, the prizes are chosen ex-ante and are independent of the posterior beliefs.
Then, the principal’s payoff is

ν(Θ;V1, ..., VN ) ≡
N∑

t=1

θt[f(θtΩt)− Vt]

Figure C1 shows this function for f(x) =
√
x and for f(x) = 1 − exp−8x. Note that the

asymmetry of technology-specific prizes invalidates some properties of ν used in the main
analysis. For instance, the global maximum is not attained at all the extrema of the simplex: it
is attained at the technology t that maximizes f(Ωt)−Vt. We also lose symmetry with respect
to the center of the simplex.

Our analysis readily extends to the case with technology-specific prizes: we can compute the
function ν and find its concavification, to study whether or not there are gains from information
disclosure.
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Fig. C1 Left Panel: f(x) =
√
x, technology-specific prizes V1 = 0.5 and V2 = 0.3. Right Panel: f(x) =

1− exp−8x, technology-specific prizes V1 = 0.8 and V2 = 0.85.

Lemma 4. ν(Θ) is concave at Θ = (θ1, ..., θN ) ∈ ∆N if and only if

Ωtθtf
′
(θtΩt)[2 − rf (θtΩt)] + ΩNθNf

′
(θNΩN )[2 − rf (θNΩN )] < 0, for all t = 1, ..., N − 1. (C6)

where rf (x) ≡ −xf ′′(x)

f ′(x)
is the relative risk aversion coefficient associated with f(·).

This result is analogous to Lemma 2, except that different prizes in combination with beliefs
determine the concavity of ν(·). However the asymmetry introduced by technology-specific
prizes makes the taxonomy of information policies more cumbersome to describe. Figure C2
shows three cases in which the principal benefits from information disclosure when there are
technology-specific prizes.
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Fig. C2 Value of information disclosure for three particular combinations of technology-specific prizes for
f(x) = 1− exp−8x when the prior is θ = 0.4 and the most informative experiment is generated by α = 0.75 in
Example 1. Left Panel: V1 = 0.6 and V2 = 0.65. Left Panel: V1 = 0.7 and V2 = 0.75. Right Panel: V1 = 0.8 and
V2 = 0.85.

Next we ask: what is the optimal combination of prizes and information disclosure?
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Fig. C3 The value of information disclosure for different combinations of technology-specific prizes for f(x) =
1 − exp(−8x), when the prior is θ = 0.4 and the most informative experiment is generated by α = 0.75 in
Example 1.

Figure C3 shows the principal’s payoff for different combinations of technology-specific
prizes (V1, V2), when f(x) = 1− exp(−8x), when the prior is θ = 0.4 and the most informative
experiment is generated by α = 0.75 in Example 1. In this case, the optimal prize using
the optimal information disclosure is V1 = V2 = 0.32, whereas the optimal prize without
information disclosure is V1 = 0.35 < V2 = 0.37.
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