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Abstract

I study panel data linear models with predetermined regressors (e.g. lagged
dependent variables) that allow the coefficients as well as the intercept to be
individual-specific, permitting unobserved heterogeneity in the effects of regres-
sors on the dependent variable. I show that the model is not point-identified in
a short panel context but rather partially identified, and I characterize sharp
identified sets of the mean, variance, and CDF of the coefficient distributions.
The characterization is general, allowing discrete, continuous, and unbounded
data. A computationally efficient estimation and inference procedure is pro-
posed, based on a fast and precise global polynomial optimization algorithm.
The method is applied to study lifecycle earnings dynamics in U.S. households
in the Panel Study of Income Dynamics (PSID) dataset. The results suggest
substantial unobserved heterogeneity in earnings persistence, which implies
that households face different levels of earnings risk that lead to heterogeneity
in their consumption and savings behaviors.
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1 Introduction

Panel data linear models with predetermined regressors (e.g. lagged dependent variables)
are extremely popular in empirical research (Arellano and Bond, 1991; Blundell and Bond,
1998). Most of these models allow for fixed effects, which are individual-specific intercepts
that permit unobserved heterogeneity in the levels of dependent variables. Fixed effects
offer a flexible method of controlling for unobserved heterogeneity in those levels, helping
researchers to explore diverse research questions, such as the effectiveness of a public
policy. Fixed effects models are well understood for short panel data (i.e., panel data with
a small number of waves).

In addition to heterogeneity in the levels of dependent variables, there is ample ev-
idence that individuals show unobserved heterogeneity in the effects of regressors on
dependent variables. For example, firms demonstrate different degrees of labor efficiency
for production; individuals receive different rates of return on education, and households
show different degrees of persistence in their earnings with respect to their past earnings.
Such heterogeneous effects are crucial mechanisms for heterogeneous responses to exoge-
nous shocks and policies, such as employment subsidies, tuition subsidies, and income tax
reform. Heterogeneous effects also have a first-order influence on the outcomes of various
economic models. For example, heterogeneity in earnings persistence governs heterogene-
ity in the earnings risk that households experience, which leads to heterogeneous motives
for precautionary savings in the lifecycle model of consumption.

This paper studies a panel data linear model with predetermined regressors that allows
for unobserved heterogeneity in both the effects of regressors and the levels (i.e., a dynamic
random coefficient model) in a short panel context. Consider a stylized example:

Yit = bi0 + bi1Yi,t�1 + #it,

where all variables are scalars and #it is uncorrelated with the current history of Yit (up to
t � 1) but potentially correlated with its future values. In this model, both the coefficient
(bi1) and the intercept (bi0) are individual-specific, reflecting heterogeneity in the effects
of regressors and the levels, respectively. The model also allows the lagged dependent
variable Yi,t�1 to be a regressor, reflecting dynamics.

Analysis of this model is challenging in short panels since it is impossible to learn
about individual values of the bis with a small number of waves. An important work by
Chamberlain (1993), recently published as Chamberlain (2022), showed that the mean of
bis in dynamic random coefficient models is not point-identified, implying that it is not
consistently estimable. Since this negative result in the 1990s, there has been little progress
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in the literature. Arellano and Bonhomme (2012) showed that when regressors are binary,
the mean of bis for some subpopulations is identifiable and hence consistently estimable;
however, they did not provide a general identification result that allows for non-binary
regressors. Most research on random coefficient models in short panels focuses on non-
dynamic contexts (Chamberlain, 1992; Wooldridge, 2005; Arellano and Bonhomme, 2012;
Graham and Powell, 2012), but such contexts exclude important dynamic mechanisms,
such as feedback from the current dependent variable to the future regressors. For example,
a firm’s labor purchase decision next year might depend on this year’s output, because the
firm might learn about its own labor efficiency from that output. Moreover, a researcher
might also be interested in the dynamic mechanisms. For example, a household’s earnings
persistence with respect to its past earnings is an important parameter because high
earnings persistence increases the duration of earnings shocks, reducing a household’s
consumption smoothing ability, to the detriment of household welfare.

This paper is the first to present a general identification result for dynamic random
coefficient models in a short panel context. Identification results for various features of
bis are presented, including the mean, variance, and CDF of bis. This paper proposes
a computationally feasible estimation and inference procedure for these features, an
essential step of which is to employ a fast and precise algorithm to solve global polynomial
optimization problems. The procedure is then applied with the aim of learning about
unobserved heterogeneity in lifecycle earnings dynamics across U.S. households in the
Panel Study of Income Dynamics (PSID) dataset. These are presented in three steps.

First, I show that dynamic random coefficient models are partially identified, which
means that there exist finite lower and upper bounds for the parameters of interest, such as
the mean, variance, and CDF of bis. The result is general, allowing the data and coefficients
to be discrete, continuous, or unbounded. I provide a simple expression for the bounds
of the mean of bis, which explicitly shows that the bounds are finite even if the data
and coefficients are unbounded, as long as certain moments of data are finite. These
results are obtained by recasting the identification problem into a linear programming
problem (Honoré and Tamer, 2006; Mogstad, Santos, and Torgovitsky, 2018; Torgovitsky,
2019), which becomes an infinite-dimensional problem when the data or coefficients are
continuous. I then use the dual representation of infinite-dimensional linear programming
(Galichon and Henry, 2009; Schennach, 2014) to obtain sharp bounds for the parameters of
interest.

Second, I show that the sharp bounds can be computed efficiently by exploiting the
linear structure of the model. Computing sharp bounds obtained from the dual represen-
tation involves solving a nested optimization problem in which a researcher maximizes an
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objective function that contains another minimization problem. An important computa-
tional issue is that the inner minimization problem is a global minimization problem of a
possibly non-convex function. I show that, for random coefficient models, the inner objec-
tive function is a polynomial. I then use the semidefinite relaxation algorithm (Lasserre,
2010, 2015), a fast and precise algorithm for solving the global polynomial optimization
problem, to efficiently compute the sharp bounds. The algorithm also delivers a computa-
tionally tractable inference about the parameters, based on testing moment inequalities
(Chernozhukov, Lee, and Rosen, 2013; Romano, Shaikh, and Wolf, 2014; Chernozhukov,
Chetverikov, and Kato, 2019; Bai, Santos, and Shaikh, 2022). For researchers interested in
using the semidefinite relaxation approach to global polynomial optimization, I offer a
general-purpose R package optpoly that implements the approach1.

Third, I estimate a reduced-form lifecycle model of earnings dynamics. Lifecycle
earnings processes are key inputs in various economic models, including models of
lifecycle consumption dynamics (Hall and Mishkin, 1982; Blundell, Pistaferri, and Preston,
2008; Blundell, Pistaferri, and Saporta-Eksten, 2016; Arellano, Blundell, and Bonhomme,
2017). Specifying an earnings process that highlights features of real data is important
for calibrating and drawing conclusions from these models. I investigate unobserved
heterogeneity in the earnings of U.S. households in the Panel Study of Income Dynamics
(PSID) dataset. Guvenen (2007, 2009) pointed out that, when allowing for unobserved
heterogeneity in the time trend of earnings (known as a heterogeneous income profile, HIP),
the earnings persistence of the permanent income process is estimated to be significantly
smaller than 1, with the latter being the estimate from the model without the heterogeneity
in the time trend (known as a restricted income profile, RIP). I estimate a more general
model that also permits unobserved heterogeneity in the earnings persistence itself, and
I find that HIP and RIP yield similar estimates of the average earnings persistence that
are both significantly smaller than 1. This suggests that misspecifying HIP as RIP, or vice
versa, may not lead to serious misspecification when earnings persistence is allowed to
be heterogeneous. I also find evidence of substantial unobserved heterogeneity in the
earnings persistence itself, which implies that households face different levels of earnings
risk, leading to heterogeneity in their consumption and savings behaviors.

Identification results from this paper can be extended generally to other structural
models to allow for heterogeneous effects. For example, the results can be applied to allow
for individual-specific coefficients and intercepts in probit and logit regressions. They can
also be applied to vector-valued regressions, such as panel data Vector Autoregressive
(VAR) models and the systems of panel data regressions.

1Available at https://github.com/wooyong/optpoly.
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The remainder of this paper is structured as follows. Section 2 introduces a dynamic
random coefficient model. Sections 3 and 4 present identification results about the model.
Sections 5 and 6 introduce estimation, inference, and computation methods. Section 7
reviews the performance of the inference method through simulation. Section 8 applies
the methods to lifecycle earnings dynamics. Section 9 concludes. All proofs and tables
appear in the Appendix.

2 Model and motivating examples

The dynamic random coefficient model is specified as:

Yit = Z0

itgi + X0

itbi + #it, t = 1, . . . , T, (1)

where i is an index of individuals, T is the length of panel data, (Yit, Zit, Xit) 2 R⇥Rq
⇥Rp

are observed real vectors at time t = 1, . . . , T, and #it 2 R is an idiosyncratic error term
at time t. Let Yi = (Yi1, . . . , YiT) be the full history of {Yit} and Yt

i = (Yi1, . . . , Yit) be the
history of {Yit} up to time t. Define Xi, Xt

i , Zi, Zt
i similarly. Assume:

E(#it|gi, bi, Zi, Xt
i ) = 0 (2)

so that the error term is mean-independent of the full history of {Zit} (strict exogeneity)
and of the current history of {Xit} (sequential exogeneity). The presence of a sequentially
exogenous regressor {Xit} makes (1) a dynamic model. For example, the lagged dependent
variable Yi,t�1 can be included in Xit.

The model is studied in a short panel context, which corresponds to the asymptotics
that the number of individuals N ! •, but T is fixed. The random coefficients (gi, bi)

are unobserved random variables that follow a nonparametric distribution, and they can
freely correlate among themselves and with (Zi, Xi1). This is how a random coefficient
model extends a fixed effects model.

The following notation is used throughout the paper. Let Wi = (Y0

i , Z0

i , X0

i)
0
2 W be the

vector of data and Vi = (g0

i , b0

i)
0
2 V be the vector of coefficients. Then, #it is understood

as a deterministic function of (Wi, Vi) by the relationship #it = Yit � Z0

itgi � X0

itbi.
I consider a parameter q that has the form:

q = E(m(Yi, Zi, Xi, gi, bi)) = E(m(Wi, Vi))

for some known function m. Identification results are presented for a generic function m,
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but I focus on the case in which m is either a polynomial or an indicator function with
respect to Vi, which allows for computationally feasible estimation and inference. This
choice of m includes many important parameters of interest. For example, q can be an
element of the mean of random coefficients E(bi) or an element of the second moments
E(bib

0

i). q can also be the error variance E(#2
it) because #2

it = (Yit � Z0

itgi � X0

itbi)2 is a
quadratic polynomial in (gi, bi). Another example of q is the CDF of bi evaluated at b, in
which case m is set to be m = 1(bi  b), which yields q = E(1(bi  b)) = P(bi  b).

Example 1 (Household earnings). One of the simplest examples of (1) is the AR(1) model
with heterogeneous coefficients:

Yit = gi + biYi,t�1 + #it, (3)

where all variables are scalars. This is a special case of (1), with Zit = 1 and Xit = Yi,t�1.
The AR(1) model is a popular choice for empirical specification of the lifecycle earnings

process, where Yit is the log-earnings net of demographic variables, an important input in
the lifecycle model of consumption and savings behavior2. The earnings persistence, bi,
governs the earnings risk experienced by households, which is a fundamental motive for
precautionary savings. Specifying an earnings process that highlights features of real data
is important for drawing conclusions from the model of consumption and savings behavior.
The literature often models it as an AR(1) process with no coefficient heterogeneity (Lillard
and Weiss, 1979; Blundell, Low, and Preston, 2013; Gu and Koenker, 2017), or, more simply,
as a unit root process, which is an AR(1) process with gi = 0 and bi = 1 (Hall and Mishkin,
1982; Meghir and Pistaferri, 2004; Kaplan and Violante, 2014).

Guvenen (2007, 2009) estimated a variation of (3) where bi = b is homogeneous and
the time trend is heterogeneous. He pointed out that b is estimated to be significantly less
than 1 when the time trend is allowed to be heterogeneous, in contrast to earlier findings
that b is estimated at close to 1 (e.g. Abowd and Card, 1989; Topel and Ward, 1992). I
find later in Section 8 that when bi is allowed to be heterogeneous, E(bi) is estimated to
be significantly less than 1, regardless of whether the time trend is heterogeneous. Other
studies that allow for coefficient heterogeneity in earnings include Browning, Ejrnaes,
and Alvarez (2010) and Alan, Browning, and Ejrnæs (2018), with factor structure on the
coefficients.

Example 2 (Household consumption behavior). Consider a model of lifecycle consumption
behavior:

Cit = gi0 + gi1Yit + bi Ait + nit, (4)
2In the literature, it is standard to add a transitory shock to (3).
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where all variables are scalars, Cit is non-durable consumption, Yit is earnings, and Ait is
asset holdings at time t, all measured in logs and net of demographic variables. In this
model, Yit may be taken as strictly exogenous, meaning that the future earnings stream is
unaffected by current consumption choice. However, Ait must be taken as sequentially
exogenous, since assets and consumptions interrelate through the intertemporal budget
constraint.

(4) can be considered an approximation of the consumption rule derived from a struc-
tural model (Blundell, Pistaferri, and Saporta-Eksten, 2016). One parameter of interest
is gi1, the elasticity of consumption to earnings. This quantity measures a household’s
ability to smooth consumption against exogenous changes in earnings, such as exogenous
earnings shocks, and hence avoid detriment to household welfare. As with Example 1, the
literature focuses on models with no coefficient heterogeneity3.

Another parameter of interest is bi, the elasticity of consumption to asset holdings,
which measures a household’s ability to smooth consumption against exogenous changes
to assets. (4) allows a researcher to estimate this quantity while remaining agnostic about
the evolution of assets over time (i.e., under nonparametric evolution of the assets).

The results from this paper also encompass a multivariate version of (1), a system of
random coefficient models. For example, a researcher can combine (3) and (4) and consider
a joint lifecycle model of earnings and consumption behavior. The resulting model allows
the coefficients from the two processes to freely correlate among themselves and with
(Yi0, Ai1), allowing for correlation between earnings and consumption processes. Full
description of the multivariate model can be found in the Online Appendix B.1.

3 Identification of the mean

This section and the following section present identification results for the dynamic random
coefficient model defined in (1). This section focuses on identification of the mean of
random coefficients, which provides intuition for the general result in the next section.

Consider identifying a parameter that has the form:

µe = E(e0ggi + e0bbi) = E(e0Vi)

where eg and eb are real-valued vectors that the researcher chooses and e ⌘ (e0g, e0b)
0. For

example, if eg = 0 and eb = (1, 0, . . . , 0)0, then µe is the mean of the first entry of bi.

3See Jappelli and Pistaferri (2010) for a survey.
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In the following subsections, I show that µe is generally not point-identified (Section 3.1).
I then show that µe is non-trivially partially identified (Section 3.2). The results of this
section are special cases of the general results in Section 4 and the Online Appendix B.2.

3.1 Failure of point identification

This subsection shows that µe is generally not point-identified, by considering a specific
example of (1) and showing that µe is not point-identified in that example.

The example considered is the AR(1) model with heterogeneous coefficients in which
two waves are observed:

Yit = gi + biYi,t�1 + #it, E(#it|gi, bi, Yt�1
i ) = 0, t = 1, 2. (5)

The following proposition states that E(bi) is not point-identified in this model, which
implies that there is no consistent estimator for E(bi). This proposition is an application of
the general result in the Online Appendix B.2.

Proposition 1. Consider the model defined in (5). Assume that (Yi0, Yi1, Yi2, gi, bi) 2 C, where C
is a compact subset of R5. Assume also that (Yi0, Yi1, Yi2, gi, bi) are absolutely continuous with
respect to the Lebesgue measure and that their joint density is strictly positive on C. Then, under the
regularity conditions stated as Assumption 7 in the Online Appendix, E(bi) is not point-identified.

Chamberlain (1993), recently published as Chamberlain (2022), showed that E(bi)

is not point-identified in (5) when Yits are discrete and #it is mean-independent of Yt�1
i .

Proposition 1 complements this result, showing that point identification also fails with
stronger assumptions and continuous data. Failure of point identification in both the
discrete and continuous cases in (5) suggests that this is a general feature of dynamic
random coefficient models.

Proof of Proposition 1 uses that E(bi) is point-identified if and only if there exists
an unbiased estimator of bi in individual time series, something which is worth stating
separately:

Lemma 1. Under the assumptions of Proposition 1, E(bi) is point-identified if and only if there
exists a function S⇤(Yi0, Yi1, Yi2), which is a linear functional on the space of finite and countably
additive signed Borel measures that are absolutely continuous with respect to the Lebesgue measure,
such that

E(S⇤(Yi0, Yi1, Yi2)|bi) = bi

almost surely. When such S⇤ exists, E(bi) is identified by E(bi) = E(S⇤(Yi0, Yi1, Yi2)).
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I prove Proposition 1 by showing that there is no unbiased estimator of bi. The
intuition for Lemma 1 is as follows. Since the distribution of bi is unrestricted, information
on individual bi can be obtained only from its individual time series. In a long panel
context, such information can be obtained by a time series estimator of bi that is consistent
as T ! •. In a short panel context, however, such an estimator is not reliable because T is
finite. Lemma 1 shows that a time series estimator that is unbiased for finite T is the only
reliable information on bi in short panels when it comes to point identification.

3.2 Partial identification

A natural question following the last subsection is whether the data are at all informative
about µe = E(e0Vi), or whether they provide no information. This subsection shows that
the data are informative about µe. I show that there are finite bounds L and U such that

L  µe  U

which are estimable with data.
I first concisely write (1) and (2), defining Rit = (Z0

it, X0

it)
0 to be the vector of regressors

at time t:
Yit = R0

itVi + #it, t = 1, . . . , T, (6)

and
E(#it|Vi, Zi, Xt

i ) = 0. (7)

In this section and throughout the paper, I use unconditional moment restrictions that are
implications of (7). It is known that the set of unconditional moment restrictions of the
form

E(g(Vi, Zi, Xt
i )#it) = 0, (8)

indexed by a suitable class of functions g, is equivalent to the conditional moment re-
striction in (7) (Bierens, 1990; Andrews and Shi, 2013). I choose the class of g to be the
set of polynomial functions and use its finite subset for estimation and inference. Such
a finite subset contains less information than (7), but it yields a computationally feasible
estimation and inference procedure. Partial identification results based on the conditional
moment restriction of (7) are established in the Online Appendix B.2.

Consider the following assumptions:

Assumption 1. Random variables (Wi, Vi)T
t=1 and (#it)T

t=1 satisfy (6).

Assumption 2. ÂT
t=1 RitR0

it is positive definite with probability 1.
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Assumption 3. Random variables (Wi, Vi)T
t=1 and (#it)T

t=1 satisfy, for all t = 1, . . . , T:

E((R0

itVi)#it) = 0,

E((Zi
0, Xt

i
0
)0#it) = 0.

Assumption 1 states that the dynamic random coefficient model is correctly specified.
Assumption 2 is a no-multicollinearity assumption imposed on individual time series.
This is stronger than the assumption that E(ÂT

t=1 RitR0

it) is positive definite, a standard
assumption in dynamic fixed effect models. A stronger assumption is required because
the distribution of Vi is unrestricted, and each Vi can be learned only from its individual
data4. Assumption 3 considers a specific choice of unconditional moment restrictions that
are implications of (7). The first restriction states that the “error term” (#it) is orthogonal to
the “explained term” (R0

itVi). The second states that #it is orthogonal to the full history of
Zit and the current history of Xit.

The following theorem shows that µe is partially identified under Assumptions 1 to 3
and additional regularity conditions. This theorem is a special case of Theorem 2, presented
in the next section.

Theorem 1. Suppose that Assumptions 1 to 3 hold, and assume additional regularity conditions
which will be stated as Assumption 5 in the next section. In addition, assume that Wi is absolutely
continuous with respect to the Lebesgue measure. For brevity of notation, define

Ri =
T

Â
t=1

RitR0

it and Yi =
T

Â
t=1

RitYit.

Then L  µe  U where

[L, U] =


Ṽ �

1
2

p

ED, Ṽ +
1
2

p

ED

�

and
Ṽ =

1
2

e0E(R�1
i Yi) +

1
2

e0E(Ri)
�1E(Yi),

E = e0E(R�1
i )e � e0E(Ri)

�1e,

D = E(Y 0

iR
�1
i Yi)� E(Yi)

0E(Ri)
�1E(Yi),

where E � 0 and D � 0 and they are zero if and only if R�1
i e and R

�1
i Yi are degenerate across

individuals, respectively. In addition, [L, U] are the sharp bounds of µe if Assumption 3 is replaced
4Graham and Powell (2012) studied violation of Assumption 2 in a non-dynamic

context.
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by the following implication of Assumption 3:

E

 
T

Â
t=1

(R0

itVi)#it

!
= 0,

E

 
T

Â
t=1

Rit#it

!
= 0.

(9)

The closed-form expressions in Theorem 1 provide intuition on when L and U are
finite. In particular, L and U are finite even if (Yi, Ri, Vi) are unbounded, as long as E(Ri),
E(R�1

i ), E(Yi), E(R�1
i Yi), and E(Y 0

iR
�1
i Yi) are finite. Note that Ri is the squared design

matrix of individual time series, and that R�1
i Yi is the OLS estimator of Vi from individual

time series.
I now explain the intuition behind Theorem 1, focusing on the upper bound U. Con-

sider a Lagrangian where the objective function is the parameter of interest e0Vi and the
constraints are the moment functions in (9):

Q(l, µ, Wi, Vi) = e0Vi + l
T

Â
t=1

(R0

itVi)#it + µ0

T

Â
t=1

Rit#it,

where l 2 R and µ has the same dimension as Rit. Note that E(Q) = E(e0Vi) = µe

because the constraints have zero expectations.
If I substitute #it = Yit � RitVi into Q and use the notation of Ri and Yi in Theorem 1, I

obtain the expression:

Q(l, µ, Wi, Vi) = e0Vi + lY 0

i Vi � lV0

i RiVi + µ0
Yi � µ0

RiVi.

This is a quadratic polynomial in Vi whose second-order derivative is

d2Q
dVidV0

i
= �2lRi.

If l > 0, then the second-order derivative is a negative definite matrix, in which case Q
attains a global maximum at the solution to the first-order condition dQ/dVi = 0. Let
P = maxv2V Q(l, µ, Wi, v) be the resulting maximum, which is only a function of (l, µ, Wi)

since Vi is “maximized out.” Then:

P(l, µ, Wi) � Q(l, µ, Wi, Vi),
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which implies:
E(P(l, µ, Wi)) � E(Q(l, µ, Wi, Vi)) = µe.

This shows that E(P) is an upper bound of µe for any l > 0 and µ. I then obtain the
smallest upper bound by minimizing E(P) with respect to l > 0 and µ:

min
l>0, µ

E(P(l, µ, Wi)) � µe.

This coincides with U in Theorem 1, which is the sharp upper bound of µe under (9). The
lower bound can be obtained by repeating the same process with l < 0.

4 Identification of the general parameters

This section presents a general partial identification result for dynamic random coefficient
models. I consider a parameter of interest of the form

q = E(m(Wi, Vi))

for some known function m : W ⇥ V 7! R. I consider a generic set of unconditional
moment restrictions:

Assumption 4. Random vectors (Wi, Vi) satisfy:

E(fk(Wi, Vi)) = 0, k = 1, . . . , K,

where fk : W ⇥ V 7! R are moment functions and K 2 N is the number of moments.

#it does not appear in Assumption 4 because #it is understood as a deterministic function
of (Wi, Vi) by the relationship #it = Yit � R0

itVi. Assumption 4 can also be considered as
generic moment equalities without connection to random coefficient models. A more
general case that also involves conditional moment restrictions is studied in the Online
Appendix B.2.

The following example illustrates how the moment restrictions considered in the
previous section are a special case of Assumption 4.

Example 3. Consider identification of E(e0Vi) discussed in the previous section. Assump-
tion 3 implies the following moment functions. The fks for k = 1, . . . , T are

fk(Wi, Vi) = (R0

ikVi)(Yik � R0

ikVi).
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The fks for k > T are entries of the vectors

(Z0

i , Xt
i
0
)0(Yi � R0

itVi), t = 1, . . . , T

which is a (qT + pt)-dimensional vector for each t.

I characterize the identified set of q under Assumption 4 and additional regularity
conditions stated later. To do so, I first recast the identification problem into a linear
programming problem. I then show that its dual representation yields a tractable charac-
terization of the identified set.

Let PW,V 2 MW⇥V , where MW⇥V is the linear space of finite and countably additive
signed Borel measures on W ⇥ V , equipped with the total variation norm. Let PW 2 MW

be the marginal distribution of Wi that the econometrician observes. The sharp identified
set I of q is defined by:

I ⌘
⇢Z

m(w, v)dP
���� P 2 MW⇥V , P � 0,

Z
dP = 1,

Z
fk(w, v)dP = 0, k = 1, . . . , K,

Z
P(w, dv) = PW(w) for all w 2 W

�
.

I is the collection of all
R

m(Wi, Vi)dP values implied from P such that (i) P is a probability
distribution of (Wi, Vi), (ii) P satisfies moment restrictions, and (iii) the marginal distribu-
tion of Wi implied from P equals the observed distribution PW . Dependence of I on m, PW ,
and the fks are suppressed in the notation.

All defining properties of I are linear in P, which means that I is a convex set in R (i.e.,
an interval). Therefore, I can be characterized by its lower and upper bounds. The sharp
lower bound L of I is defined by:

min
P2MW⇥V , P�0

Z
m(w, v)dP subject to

Z
fk(w, v)dP = 0, k = 1, . . . , K,

Z
P(w, dv) = PW(w) for all w 2 W .

(10)

The constraint
R

dP = 1 is omitted because it is implied by the last line of (10). Note that
PW is a probability distribution.

(10) is a linear program in P, with the caveat that P is an infinite-dimensional object.
(10) is not a tractable characterization of L, in the sense that the estimation methods it
implies are computationally infeasible for random coefficient models. For example, (10)
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can be solved by discretizing the space of (Wi, Vi) and solving the discretized problem
(Honoré and Tamer, 2006; Gunsilius, 2019), which is computationally infeasible for random
coefficient models because the dimension of (Wi, Vi) is large. Wi contains the full history of
regressors and dependent variables and Vi contains all random coefficients. For the random
coefficient model with R regressors and T waves, P is a distribution on an (RT + R + T)-
dimensional space.

My approach is to use the dual representation of (10) obtained by the duality theorem
for infinite-dimensional linear programming (Galichon and Henry, 2009; Schennach, 2014).
I assume the following regularity conditions:

Assumption 5. The following conditions hold.

(i) W ⇥ V is a compact set in a Euclidean space.

(ii) (m, f1, . . . , fK) are bounded Borel measurable functions on W ⇥ V .

(iii) The following set is closed:
⇢✓Z

f1dP, . . . ,
Z

fKdP,
Z

P(·, dv),
Z

mdP
◆ ���� P 2 MW⇥V , P � 0

�
✓ RK

⇥MW ⇥ R.

A sufficient condition for Assumption 5 (iii) is that the joint distribution of (Wi, Vi)

in the data generating process, or its observationally equivalent distribution, is strictly
positive on W ⇥ V (Anderson, 1983, Theorem 9).

The following theorem characterizes I using the dual representation of (10) and the
corresponding problem for the sharp upper bound.

Theorem 2. Suppose Assumptions 4 and 5 hold. Let lk 2 R for k = 1, . . . , K. Then I = [L, U]

where:

L = max
l1,...,lK

E

"
min
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)#
, (11)

and

U = min
l1,...,lK

E

"
max
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)#
. (12)

q is point-identified if and only if L = U. Proof of Theorem 2 then implies a necessary
and sufficient condition for point identification of q, something which is worth stating
separately:

Lemma 2. Suppose that the assumptions of Theorem 2 hold. Suppose also that (Wi, Vi) are
absolutely continuous with respect to the Lebesgue measure, and that their joint density is strictly
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positive on W ⇥ V . Then q is point-identified if and only if there exists a function S⇤, which is a
linear functional on MW, and real numbers l⇤

1, . . . , l⇤

K 2 R such that:

m(Wi, Vi) +
K

Â
k=1

l⇤

k fk(Wi, Vi) = S⇤(Wi)

almost surely on W ⇥ V . When such S⇤ exists, q is identified by q = E(S⇤(Wi)).

Lemma 2 states that q is point-identified if and only if the Lagrangian reduces to
a function of data only. S⇤ can be considered an unbiased estimator because the term
ÂK

k=1 l⇤

k fk(Wi, Vi) has zero expectation.
Theorem 2 and Lemma 2 do not explicitly involve dynamic random coefficient models.

Theorem 2 is a general duality result for models of moment equalities, where the moment
functions contain both observables and unobservables (Schennach, 2014; Li, 2018). In
general, it is not obvious that Theorem 2 leads to a computationally feasible estimation
and inference procedure. I show in the next sections that, for dynamic random coefficient
models, I can obtain a computationally tractable estimation and inference procedure by
exploiting the fact that it is a linear model.

5 Estimation and inference

This section explains the estimation and inference procedure for the identified sets dis-
cussed in the previous sections, focusing on describing the procedure. The next section
discusses computation of the objects involved in the procedure.

5.1 Estimation

Theorem 2 characterizes the lower and upper bounds in the population. In practice, a
researcher does not observe the population distribution PW , instead observing a finite
sample (W1, . . . , WN) of size N which is i.i.d. PW . A natural approach for estimating L and
U is to replace expectations in (11) and (12) with sample means (the plug-in principle),
which is equivalent to considering the empirical version of (10) where PW is replaced by
the empirical distribution P̂W . I define L̂ as an estimator for L:

L̂ = max
l1,...,lK

1
N

N

Â
i=1

min
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
⌘ max

l2RK

1
N

N

Â
i=1

GL(l, Wi), (13)
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and Û as an estimator for U:

Û = min
l1,...,lK

1
N

N

Â
i=1

max
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
⌘ min

l2RK

1
N

N

Â
i=1

GU(l, Wi), (14)

where l 2 RK. Let [L̂, Û] be the plug-in bound.
The plug-in bound is used as a key object for estimation and inference, but it is not

straightforward to compute. Its computation involves solving two types of optimization
problem: the inner optimization problem over V and the outer optimization problem with
respect to l1, . . . , lK. Each problem presents its own difficulties. The inner problem must
be solved globally, but its objective function is not necessarily convex. It must also be
solved quickly because it must be solved for each i and each step of the outer problem. The
outer problem must be solved globally, too, and it might be an optimization over a large
dimensional space. The next section discusses how to tackle these computational issues.
In this section, I discuss estimation and inference, assuming that the two optimization
problems can be solved numerically.

In what follows, I show consistency of the lower plug-in bound in (13) to the population
lower bound in (11). Consistency of the upper plug-in bound is followed by the same
process.

In (13), the solution function of the inner optimization problem

GL(l, w) = min
v2V

(
m(w, v) +

K

Â
k=1

lkfk(w, v)

)

is a deterministic function given the model (i.e., given m and the fks) and (l, w). Therefore,
what is studied here is consistency of the statistical object

L̂ = max
l

L̂(l) = max
l

1
N

N

Â
i=1

GL(l, Wi) (15)

as an estimator for
L = max

l
L(l) = max

l
E (GL(l, Wi)) . (16)

L̂(l) is the objective function of an M-estimation problem, in which L(l) is the population
objective and l is the parameter that is M-estimated. Consistency then follows through
replication of the analysis of M-estimation. The regularity conditions of M-estimation are
satisfied thanks to GL being concave in l.

Proposition 2. GL(l, Wi) is globally concave in l, which implies global concavity of L(l).
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Proposition 3. Suppose that L exists and is finite, and that argmaxl L(l) is contained in a
compact set in RK. L̂ then converges to L in probability.

5.2 Inference

This subsection discusses construction of a confidence interval for the parameter q 2 R

whose sharp identified set is [L, U] in Theorem 2. Any value q 2 [L, U] must satisfy:

q � L = max
l2RK

E(GL(l, Wi)),

q  U = min
l2RK

E(GU(l, Wi)),

which implies
q � E(GL(l, Wi)) for all l 2 RK,

q  E(GU(l, Wi)) for all l 2 RK.

These then imply the following moment inequality conditions:

E(GL(l, Wi)� q)  0 for all l 2 RK,

E(q � GU(l, Wi))  0 for all l 2 RK.
(17)

(17) is a moment inequalities model with an infinite number of moment restrictions
(indexed by l 2 RK). For computational tractability, I choose a finite number of moment
inequalities from (17). Let LF be a finite subset of RK. Consider a moment inequalities
model:

E(GL(l, Wi)� q)  0 for all l 2 LF,

E(q � GU(l, Wi))  0 for all l 2 LF.
(18)

Since LF is a subset of RK, I can use (18) to draw a conservative inference about q in (17).
The degree of conservatism in (18) relative to (17) depends on how much information

is contained in (18) relative to (17). While a formal analysis of a comparison of (17) and (18)
is beyond the scope of this paper5, two observations provide guidance on how to choose
an informative LF in practice. First, the inequalities in (17) bind at two l values, namely
l⇤

L = argmaxl E(GL(l, Wi)) and l⇤

U = argminl E(GU(l, Wi)), and the inequalities are
loose for ls that are distant from them (because GL is concave and GU is convex). This

5Galichon and Henry (2011) studied reduction of the number of model restrictions
without loss of information. Their approach applies to the case in which the model
outcomes, which are values of moments in moment inequalities models, have discrete
support.

17



means that most of the information in (17) is contained in the neighborhood of l⇤

L and l⇤

U
6.

Second, the concavity of GL (and convexity of GU) implies that GL and GU are continuous,
which means that consideration of a finite set of points in the neighborhood of l⇤

L and l⇤

U
does not lead to serious loss of information, compared with consideration of all points
in the neighborhood. These observations lead to a practical strategy for choosing an
informative LF: estimate l⇤

L and l⇤

U using (13) and (14) and select a finite number of
points in their neighborhoods. I review performance of this strategy through simulation in
Section 7.

Note that (18) is a standard moment inequalities model although LF can be a large
set. The literature on many moment inequalities (Romano, Shaikh, and Wolf, 2014; Cher-
nozhukov, Chetverikov, and Kato, 2019; Bai, Santos, and Shaikh, 2022) proposes procedures
for computing a confidence interval [La, Ua] of q that has an asymptotic size of a for large
LF. Among the proposed methods, a procedure based on multiplier bootstrap by Cher-
nozhukov, Chetverikov, and Kato (2019) is particularly appealing, because the bootstrap
does not require re-computation of GL and GU, which have high computational costs.
Their procedure employs the following test statistic, computed for each q 2 R:

TCCK(q) = max

(
max
l2LF

(p
N(µGL(l)� q)

sGL(l)

)
, max

l2LF

(p
N(q � µGU(l))

sGU(l)

))
,

where

µGL(l) =
1
N

N

Â
i=1

GL(l, Wi) and s2
GL
(l) =

1
N

N

Â
i=1

�
GL(l, Wi)� µGL(l)

�2

and where µGU(l) and s2
GU

(l) are defined similarly with GU.
TCCK is then compared with a critical value cCCK(a), computed using multiplier boot-

strap. Each multiplier bootstrap replication simulates independent standard normal
random draws e1, . . . , eN 2 R and computes:

cCCK = max

(
max
l2LF

(
1

p
N

N

Â
i=1

ei
GL(l, Wi)� µGL(l)

sGL(l)

)
, max

l2LF

(
1

p
N

N

Â
i=1

ei
µGU (l)� GU(l, Wi)

sGU (l)

))
.

The critical value cCCK(a) is then the 100 ⇥ (1 � a) percentile of the bootstrapped cCCK

values. It then follows that the confidence interval is the set of q for which TCCK(q) 

cCCK(a). Note that cCCK(a) does not depend on q, because cCCK does not depend on it.

6This relates to a step in the inference procedure of Chernozhukov, Lee, and Rosen
(2013), in which they compute a set of moment restrictions that are likely to bind.
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This allows for a computationally efficient search of q, since cCCK(a) can be computed only
once and be fixed.

The inference procedure naturally extends to a vector-valued parameter q 2 Rd,
through consideration of (17) for every entry of q. For example, the moment inequal-
ities for q = (q1, q2) 2 R2 are:

E(GL1(l, Wi)� q1)  0 for all l 2 RK,

E(q1 � GU1(l, Wi))  0 for all l 2 RK,

E(GL2(l, Wi)� q2)  0 for all l 2 RK,

E(q2 � GU2(l, Wi))  0 for all l 2 RK,

(19)

where GUk and GLk are GL and GU in (17) for qk, k = 1, 2. Inference can then be performed
via the same procedure, yielding a confidence region in R2. This extension can be used to
compute a confidence interval for the variance of random coefficients which involves the
first and second moments.

5.3 Estimation and inference under over-identification

In practice, the plug-in bound may yield an empty set, in which case L̂ diverges to +•
and Û diverges to �•. This happens when the empirical distribution P̂W does not satisfy
the moment restrictions, which may occur even if the population distribution PW satisfies
the restrictions. In this case, the empirical version of (10) (where PW is replaced with P̂W)
does not have a feasible solution, resulting in an empty plug-in bound. This scenario
is comparable with over-identification in the generalized method of moments (GMM)
estimation, where the GMM objective may be strictly positive in the sample even if the
moments are correctly specified.

There are two approaches for addressing this issue. First, a researcher may obtain
a point estimate that minimizes the distance between the model and the data. Second,
the researcher may directly obtain a confidence interval without insisting on a point
estimate, assuming that the model is correctly specified. This subsection discusses these
two approaches, summarizing the full discussion in the Online Appendix B.3.

For the first approach, consider the following relaxation of the moment restrictions:

|E(fk(Wi, Vi))|  d, k = 1, . . . , K, (20)

where d � 0, which reduces to Assumption 4 when d = 0. This can be regarded as an
absolute-value GMM criterion. Then, it can be shown that the smallest d that allows (20) to
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hold with the empirical distribution, denoted by d⇤, is given by:

max
l1,...,lK

1
N

N

Â
i=1

min
v2V

(
K

Â
k=1

lkfk(Wi, v)

)
subject to

K

Â
k=1

|lk|  1, (21)

which can be computed using the computation methods in the next section. It can also be
shown that, for d � d⇤, the plug-in lower bound L̃ under the relaxation (20) is given by the
bound with a negative L1 penalty:

L̃ = max
l1,...,lK

"
1
N

N

Â
i=1

min
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
� d

K

Â
k=1

|lk|

#
. (22)

The relaxed upper bound Ũ is given similarly to (22), with a positive L1 penalty. When
d > d⇤, L̃ (and Ũ) computes the smallest (and largest) value of q among those that attain
the near-minimum of the absolute-value GMM criterion in (20).

Although (22) resolves the empty set problem, it has two drawbacks. First, it is an ad
hoc approach, with no formal justification for why the relaxation of moment conditions
is a constructive idea. Second, the procedure may yield a point-identified set (or a small
interval) even if the model is partially identified. While the literature deals with the
second problem by choosing d that is substantially larger than d⇤ (Mogstad, Santos, and
Torgovitsky, 2018), the question of how much larger it should be remains unresolved.
In the rest of this subsection, I discuss a more principled approach, which is to directly
compute a confidence interval without insisting on a point estimate.

Note that the inference procedure that tests (18) does not involve the plug-in bound
per se. The plug-in bound is involved only in the step of choosing LF, which I propose to
be the set of ls that are close to the solutions to the plug-in bound problems. The inference
procedure is valid regardless of whether the plug-in bound is empty; the issue here is that
there is no guidance for choosing LF when the plug-in bound is empty. In what follows, I
propose a strategy for choosing LF when the plug-in bound is empty.

I propose to consider a grid of positive real numbers {d1, . . . , dM} such that dm > d⇤ for
all m 2 {1, . . . , M}. Then, for each dm, I compute solutions to the relaxed plug-in bounds:

l̃L(dm) = argmax
l1,...,lK

"
1
N

N

Â
i=1

min
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
� dm

K

Â
k=1

|lk|

#
,

l̃U(dm) = argmin
l1,...,lK

"
1
N

N

Â
i=1

max
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
+ dm

K

Â
k=1

|lk|

#
.

20



I then propose to choose LF to be the set of points in the neighborhoods of every l̃L(dm)

and l̃U(dm). I review the performance of this approach via simulation in Section 7.
When d⇤ = 0, i.e., when the plug-in bound is not empty, a researcher may choose

M = 1 with d1 = 0, in which case the procedure reduces to the procedure in Section 5.2.
This means that the inference procedure with relaxed bounds generalizes the procedure
discussed in Section 5.2.

6 Computation

This section discusses computation of the objects involved in estimation and inference.
In particular, it focuses on computation of the two optimization problems in the plug-in
lower bound in (13), which apply similarly to other objects, such as the plug-in upper
bound in (14), the moment inequalities in (18) and the relaxed plug-in bounds in (22).

6.1 The inner problem

The inner optimization problem of (13) is to evaluate the function

GL(l, w) = min
v2V

(
m(w, v) +

K

Â
k=1

lkfk(w, v)

)
(23)

for each fixed w = Wi, where i = 1, . . . , N, given the value of l 2 RK.
Evaluation of GL involves a global minimization of a possibly non-convex function,

with GL required to be evaluated for each w = Wi and for each step of the outer optimiza-
tion problem. In the simple case that V is discrete or low-dimensional, the inner problem
can be solved by enumerating all points in V or the grid points of V . However, for random
coefficient models, neither of these scenarios is likely to apply.

This subsection demonstrates that GL can be computed quickly and precisely when m
and fks are polynomials in v, in which case an evaluation of GL is equivalent to globally
minimizing a polynomial, for which a fast and precise algorithm exists. The polynomial
case is useful for computing the bounds of many interesting parameters, such as the
moments of random coefficients. The following examples describe some of these.

Example 4. In Section 3, I showed identification of the mean parameter E(e0Vi) under
Assumptions 1 to 3. In this case, the m function is given by m(Wi, Vi) = e0Vi, which is a
linear function of Vi and hence a first-order polynomial. The moment functions under
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Assumption 3 consist of the functions

(R0

itVi)(Yit � R0

itVi), t = 1, . . . , T, (24)

and the entries of the vectors

(Z0

i , Xt
i
0
)0(Yi � R0

itVi), t = 1, . . . , T, (25)

which are, at most, second-order polynomials of Vi.

Example 5. Consider identification of an element of E(ViV0

i ). Then m is an element
of ViV0

i , which is a second-order polynomial of Vi. Consider the moment restriction
E((R0

iVi)3#it) = 0, in which case the fks consist of the functions

(R0

itVi)
3(Yit � R0

itVi), t = 1, . . . , T, (26)

which are fourth-order polynomials of Vi. A researcher may also consider the moment
functions in Assumption 3, in which case the additional fks are set to be (24) and (25).

In Examples 4 and 5, the moment functions are chosen to yield finite lower and upper
bounds for the parameters of interest. As a practical strategy for obtaining finite bounds, I
choose fks so that the inner objective function is an even-order polynomial whose order is
strictly larger than that of the parameter of interest. In Examples 4 and 5, I choose (24) to
obtain a second-order polynomial and (26) to obtain a fourth-order polynomial as inner
objectives. The inner objective polynomial then has a leading coefficient that is positive or
negative depending on the signs of l, which delivers finite inner minimum and maximum
that yield finite lower and upper bounds.

The polynomial case can be extended to allow m to be an indicator function of Vi. An
indicator function partitions V into two exclusive sets, with the indicator function constant
within each set. A researcher can then compute the global optimum in each partition,
followed by the optimum of both. This extension is useful for computing bounds for CDFs
of random coefficients, as described in the following example.

Example 6. Let Vi1 be the first entry of Vi 2 Rq+p, and let v0
2 R. Consider identification

of the CDF of Vi1 evaluated at v0. I set

m(Wi, Vi) = 1(Vi1  v0),

which is an indicator function of Vi. Consider the same set of moment restrictions as
in Example 4, in which case the fks are, at most, second-order polynomials in Vi. The
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m function then partitions V into two exclusive sets V1 = {(v1, . . . , vq+p) | v1  v} and
V2 = {(v1, . . . , vq+p) | v1 > v}, with m = 1 on V1 and m = 0 on V2. The inner objective
function is then a second-order polynomial within both V1 and V2, for which I can compute
the minimum. Finally, I can evaluate the inner objective by taking the smaller optimum of
the two in V1 and V2.

The next two subsections discuss a fast and precise computation method for global
optimization of polynomials. The first considers a simple case of quadratic polynomials for
which the global solution can be obtained in a closed form. The second considers generic
polynomials for which the global optimization problem is solved numerically.

6.1.1 Global optimization of quadratic polynomials

I first consider a simple case of quadratic polynomials. I express a quadratic polynomial in
standard form:

Q(v) = v0Av + b0v + c

where A is a dim(v)⇥ dim(v) symmetric matrix, b is a dim(v)-dimensional vector, and
c 2 R. If the inner objective of (23) is expressed in this standard form, (A, b, c) are functions
of the data w.

Quadratic polynomials can be solved efficiently using quadratic optimization software.
In practice, a researcher can use a heuristic but faster (that is, closed form) method to
increase the speed. If A is positive definite, Q attains the global minimum at the solution
to the first-order condition, which is given by:

min
v2V

Q(v) = c �
1
4

b0A�1b. (27)

If A is not positive definite, the minimum of Q is negative infinity unless A has a zero
eigenvalue. If A has a zero eigenvalue, Q has a finite minimum if the first-order condition,
2Av + b = 0, has an infinite number of solutions, all with the same value of Q. Otherwise,
the minimum of Q is negative infinity.

In the context of (23), if the data w follows a continuous distribution, A has a zero
eigenvalue with probability zero. Therefore, for continuous data, a researcher may rule out
the possibility of zero eigenvalue in practice, simply using (27) to express (23) in a closed
form if and only if A is positive definite; otherwise, the solution is negative infinity.

The heuristic method discussed above applies when V in (23) is unbounded. In some
cases, a researcher may consider restricting V to be a bounded set, such as by restricting the
autoregressive parameter of the AR(1) model to be within [0, 1]. In that case, the heuristic
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method can be modified to incorporate the constraint, using the Lagrange multiplier
method. Alternatively, quadratic optimization software can be used.

6.1.2 Global optimization of generic polynomials

When m and fks are polynomials of generic order, a closed form solution is not available,
but the problem can be solved numerically. The key step is to transform the problem into a
convex optimization problem (Lasserre, 2010, 2015). The resulting algorithm is not only
fast, but also computes an exact solution. This subsection summarizes the main concept of
the algorithm. A formal discussion can be found in Lasserre (2010, 2015).

Consider computing the global minimum of a fourth-order polynomial in two variables
(v1, v2). Let u(v) = (1, v1, v2, v2

1, v1v2, v2
2)

0 be the vector of monomials up to the second
order and uj(v) be the j-th entry of u(v). Let {pj(v)} be the collection of all monomials
up to the fourth order, which are unique entries of u(v)u(v)0. Let J be the cardinality of
{pj(v)}. I express a fourth-order polynomial in standard form:

p(v) =
J

Â
j=1

aj pj(v),

where aj is the coefficient on the monomial pj(v).
Consider minimization of p(v) with respect to v 2 V . The minimum of p(v) over V is

equal to the solution of the minimization problem:

min
PV2MV ,

R
dPV=1

Z
p(v)dPV (28)

where PV is a probability distribution on V . (28) is minimized at the point-mass distribution
concentrated at the minimizer of p(v). Since p(v) = ÂJ

j=1 aj pj(v), I can rewrite (28) as:

min
PV2MV ,

R
dPV=1

J

Â
j=1

aj

Z
pj(v)dPV ,

which can be rewritten further as:

min
M1,...,MJ2R, M1=1

J

Â
j=1

ajMj subject to Mj =
Z

pj(v)dPV for some PV 2 MV . (29)

Except for the fact that the constraint is complicated, (29) is a minimization over R J and
the objective is linear (thus convex) in the choice variables.
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The aim then is to replace the constraint in (29) with a convex constraint that involves
only (M1, . . . , MJ). The constraint in (29) indicates that (M1, . . . , MJ) must represent
moments of some underlying distribution, whose necessary condition can be characterized
using a matrix7. For example, a random variable X must satisfy E(X2) � E(X)2

� 0,
because Var(X) must be nonnegative. This is equivalent to the condition:

 
1 E(X)

E(X) E(X2)

!
is positive semidefinite.

This example can be generalized. Define a linear operator L that maps a polynomial to R

by the relationship:

L

 

Â
j

aj pj(v)

!
= Â

j
ajMj.

If (M1, . . . , MJ) are moments, then it must follow that:

L(u(v)u(v)0) is positive semidefinite (30)

where the operator L is applied to each element of u(v)u(v)0. L(u(v)u(v)0) is a matrix that
involves only (M1, . . . , MJ).

(30) is a convex constraint because the set of positive semidefinite matrices is a convex
set. Replacing the constraint in (29) with (30) yields a convex optimization problem:

min
M1,...,MJ2R

J

Â
j=1

ajMj subject to L(u(v)u(v)0) is positive semidefinite. (31)

The constraint can be handled more efficiently than a generic convex constraint, meaning
that the optimization problem is a semidefinite program (SDP), i.e., an optimization
problem in which a matrix that involves the choice variables is constrained to be positive
semidefinite.

The SDP approach to polynomial optimization solves (31), the semidefinite relaxation,
which can be solved quickly and reliably using SDP solvers. The algorithm offers a
certificate of optimality, a condition for the optimal value of (M1, . . . , MJ), satisfying which
means that the solution to (31) equals the global optimum. For researchers interested in
using the semidefinite relaxation approach to global polynomial optimization, I offer a

7See Lasserre (2010, 2015) for the necessary and sufficient condition that involves a
sequence of matrices.
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general-purpose R package optpoly that implements the approach8.
The solution to (31) (i.e., the SDP solution) is less than or equal to the solution to

(29), since a necessary condition is weaker than the original condition. The semidefinite
relaxation approach solves a sequence — or hierarchy — of the SDP programs, until the
certificate of optimality is obtained, which is known to occur in a finite number of steps
under suitable conditions. Even if a researcher does not succeed in solving the hierarchy
of the SDPs, the researcher can take an SDP solution as a lower bound for (29), in which
case the resulting plug-in bound is a non-sharp but valid bound for q.

6.2 The outer problem

I now turn to the outer optimization problem of (13). A researcher needs to solve the
optimization problem:

max
l2RK

1
N

N

Â
i=1

GL(l, Wi).

Assume that the researcher can evaluate GL using the algorithms in the previous subsection.
The remaining difficulty then is how to solve the optimization problem where K can be
potentially large.

Recall that GL is globally concave, as shown in Proposition 2. This implies that there
is only one local maximum in the outer optimization problem, which is also the global
maximum. Under suitable conditions, GL is differentiable when K = 1 (Milgrom and Segal,
2002, Theorem 3), which can be extended to show that GL is directionally differentiable
for K > 1. This suggests that the researcher can solve the outer problem using fast convex
optimization algorithms such as gradient descent methods.

Concavity of the outer problem comes from the concavity of GL, and precisely solving
the inner problem via the polynomial optimization algorithm is crucial for computational
tractability of the outer problem. This differs significantly from Schennach (2014) and
Li (2018), who studied generic moment equality models. I focus on random coefficient
models and exploit their linear structure to achieve computational tractability for models
with large dimensions. If a researcher uses general-purpose global optimization methods
that involve random approximation errors (e.g. simulated annealing) to solve the inner
problem, then GL is no longer concave, meaning that fast convex optimization algorithms
cannot be used for the outer problem. This is problematic when K is large, which is often
the case in applications of random coefficient models.

8Available at https://github.com/wooyong/optpoly.
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7 Simulation

This section examines the performance of the inference procedure discussed in Section 5.
The simulation uses the AR(1) model given in (3) as the data generating process (DGP):

Yit = gi + biYi,t�1 + #it, t = 1, . . . , T.

In DGP, gi 2 R and bi 2 [0, 1] follow Normal and Beta distributions respectively, and
their joint distribution is given by Gaussian copula. #it follows an independent Normal
distribution with mean zero and variance varying over t. Conditional on (gi, bi) where
bi  0.9, Yi0 is generated from the stationary distribution implied by (gi, bi) and the
variance of #i1:

Yi0 ⇠ N

 
gi

1 � bi
,

Var(#i1)

1 � b2
i

!
.

By contrast, conditional on (gi, bi) where bi > 0.9, Yi0 is generated from an independent
Normal distribution because the stationary distribution implied by (gi, bi) produces
extreme values when bi is close to 1. Parameter values of the distribution of (gi, bi) and #it

are determined based on the estimates of the income process in the application.
Simulation data are generated in two steps. The first step simulates a dataset of

100,000 observations from the parametric model described above. The second step then
creates Monte Carlo samples from the 100,000 observations, by sampling observations
with replacement. I consider the 100,000 observations as a finite population from which
Monte Carlo samples are generated. Using a finite population is necessary because the
identified set of the parametric model is infeasible to compute, while the identified set for
the finite population can be precisely computed using (13) and (14).

I generate a finite population of size 100,000 for each combination of T 2 {5, 10, 15}
and L 2 {3, 5, 7}. T is the length of panel data, and L is the maximum lag of Yit used for
the moment conditions. Given L, I use the following set of moment conditions:

E((gi + biYi,t�1)#it) = 0, t = 1, . . . , T,

E(#it) = 0, t = 1, . . . , T,

E(Yi,t�1�s#it) = 0, s = 0, . . . , min{L, T}, t = 1, . . . , T.

I also restrict (gi, bi) 2 V = [�3, 3]⇥ [0, 1], which is true for the finite populations used in
the simulation. I then compute the population identified set for each (T, L).

Then, for each (T, L), I create Monte Carlo replications by sampling N = 750 or 1000
observations with replacement from the finite population. I then compute the confidence
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interval for E(bi) in each Monte Carlo replication, using the procedure with relaxed bounds
in Section 5.3. The grid of {dm} is set to be dm 2 {1.25d⇤, 1.50d⇤, 1.75d⇤, . . . , 2.75d⇤, 3d⇤},
which is an equispaced grid of 8 values. For each l̃L(dm) and l̃U(dm), I sample P = 25, 50 or
75 points from their respective neighborhoods, by adding Gaussian noise whose standard
deviation is inversely proportional to the gradient of the bounds at the l̃s. This means
that the size of LF is 8P. The critical value is computed with 2000 multiplier bootstrap
replications.

Tables 1 and 2 present coverage probabilities of the confidence interval for E(bi) for
combinations of N, T, L, P. Each coverage probability is computed with 1000 Monte Carlo
replications. Simulation results suggest that the proposed inference procedure produces
conservative but reasonable coverage probabilities.

8 Application to lifecycle earnings dynamics

8.1 Overview

Lifecycle earnings dynamics are a key input in various macroeconomic models. For exam-
ple, in models of consumption and savings dynamics (Hall and Mishkin, 1982; Blundell,
Pistaferri, and Preston, 2008; Blundell, Pistaferri, and Saporta-Eksten, 2016; Arellano,
Blundell, and Bonhomme, 2017), households facing a higher risk in earnings dynamics
accumulate more precautionary savings in order to smooth consumption. Households
save more when they experience a positive earnings shock, with the savings used to
maintain consumption during a negative earnings shock. Specifying the earnings process
that highlights features of real data is important for calibrating and drawing conclusions
from these models.

When used as an input, it is common to specify earnings dynamics using a parsimo-
nious linear model. It consists of permanent and transitory income processes9:

Yit = zit + #it, zit = rzi,t�1 + hit,

where Yit is log-earnings net of common trends on observables such as demographics and
years of experience, {zit} is a permanent income process, and {#it} is a transitory income
process. hit and #it are i.i.d. mean zero shocks.

Guvenen (2007, 2009) studied two leading views on unobserved heterogeneity in

9As Guvenen (2007) points out, this is a stylized version of what is used in the literature,
but it still captures features important for the discussion.
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earnings dynamics. Consider two earnings processes:

Yit = ai + zit + #it, zit = rzi,t�1 + hit, (RIP)
Yit = ai + bihit + zit + #it, zit = rzi,t�1 + hit, (HIP)

(32)

where hit is potential years of experience and (ai, bi) are heterogeneous deviations from
common trends. These two models are known as the Restricted Income Profiles (RIP)
process and the Heterogeneous Income Profiles (HIP) process, respectively. In both models,
r is a key parameter because it represents the earnings persistence that households face.
The literature reports 0.5 < r < 0.7 and Var(bi) > 0 for the HIP process (e.g. Lillard and
Weiss, 1979; Baker, 1997), which means households experience modest persistence and
heterogeneous trends. By contrast, MaCurdy (1982) tested the hypothesis that Var(bi) = 0
and did not reject the hypothesis. The literature reports r ⇡ 1 for the RIP process (e.g.
Abowd and Card, 1989; Topel and Ward, 1992), meaning households experience extreme
persistence and homogeneous trends. Guvenen (2007) studied the implications of the two
models and found that the HIP process is more consistent with features of consumption
data. Guvenen (2009) pointed out that misspecifying the HIP process as the RIP process
leads to an upward biased estimator of r, obtaining r ⇡ 1.

While there is vast literature on unobserved heterogeneity in bi and its influence on
r, there is relatively little work investigating unobserved heterogeneity in r itself. Recent
studies include Browning, Ejrnaes, and Alvarez (2010) and Alan, Browning, and Ejrnæs
(2018), in which unobserved heterogeneity in r is given by a factor structure. In this
section, I investigate unobserved heterogeneity in r by estimating a generalization of (32)
where r = ri. I treat the generalized model as a random coefficient model, meaning that
distribution of ri and its dependence on (ai, bi, Yi0) are unrestricted. Distributions of the
hits are also not restricted and may depend on ri, allowing for heteroskedasticity.

In the remainder of this section, I find that, when r = ri is allowed to be heterogeneous,
RIP and HIP have similar estimates of E(ri) that are significantly less than 1. Confidence
intervals for E(ri) in the two processes have substantial overlap, with both having upper
confidence limits of around 0.6 at 90% confidence level. Confidence intervals for the
CDF of ri are also similar in the two processes. These results suggest that choosing RIP
over HIP or vice versa may not lead to serious misspecification when r is allowed to be
heterogeneous. I also find evidence of substantial heterogeneity in ri, obtaining a lower
confidence limit of 0.067 for Var(ri) in the RIP process at 90% confidence level. This implies
a lower confidence limit of 0.258 for the standard deviation of ri.
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8.2 Data and model

I use data on U.S. households from the Panel Study of Income Dynamics (PSID) dataset.
The data are based on the dataset of Guvenen (2009), who estimated RIP and HIP processes
using PSID earnings data. I constructed data of N = 800 individuals and T = 15 periods
from his dataset, details of which can be found in the Online Appendix B.4.

I follow Guvenen (2009) and use potential experience as a measure of experience,
h = age � max{years of schooling, 12}� 6. In addition, since my method requires there
to be no multicollinearity in each individual time series (Assumption 2), I remove 40
individuals (that is, 5% of data) with the smallest variations in their reported incomes,
yielding a dataset of N = 760 and T = 15. Estimation results with this removal do not
qualitatively differ from results without the removal, which can be found in the Online
Appendix B.4.

To apply my method to income processes, I transform two models in (32) to ran-
dom coefficient models. I first remove #it from Yit using a simulation-based de-noising
method inspired by Arellano and Bonhomme (2021), described in the Online Appendix
B.5, obtaining pseudo-observations of the permanent incomes, Ỹit. I then write, using (32):

Ỹit = ai + zit, zit = rzi,t�1 + hit, (RIP)
Ỹit = ai + bihit + zit, zit = rzi,t�1 + hit. (HIP)

(33)

Estimation results with this de-noising do not qualitatively differ from results without
de-noising, which can be found in the Online Appendix B.5. I then quasi-difference (33)
to transform them to random coefficient models. Quasi-differencing each of (33) yields,
respectively:

Ỹit = ai(1 � ri) + riỸi,t�1 + hit ⌘ ãi + riỸi,t�1 + hit, (RIP)
Ỹit = ai(1 � ri) + biri + bi(1 � ri)hit + riỸi,t�1 + hit ⌘ ãi + b̃ihit + riỸi,t�1 + hit. (HIP)

These are standard random coefficient models. I assume that hit is a strictly exogenous
regressor, meaning that years of schooling is strictly exogenous.

8.3 Strategy for estimation and inference

For each model, I compute confidence intervals for E(ri), Var(ri), and P(ri  r) for a grid
of r 2 {0, 0.1, . . . , 0.9, 1}. For E(ri) and P(ri  r), I use the moment restrictions stated in
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Example 4. In particular, I use for the RIP process:

E((ãi + riỸi,t�1)hit) = 0, E(hit) = 0, E(Ỹi,t�1�shit) = 0,

for s = 0, . . . , 5. I use for the HIP process:

E((ãi + b̃ihit + riỸi,t�1)hit) = 0, E(hit) = 0, E(Ỹi,t�1�rhit) = 0, E(hi,t�shit) = 0,

for r = 0, . . . , 5 and s = �5, . . . ,�1, 0, 1, . . . , 5. These make the inner objective a second
order polynomial. I then solve the inner optimization problem in a closed form.

I use additional moment restrictions to compute the confidence interval for Var(ri).
Additional moment restrictions for the RIP process are:

E((ãi + riỸi,t�1)
3hit) = 0, E(ãka

i r
kr

i hit) = 0,

for 0  ka + kr  2 where ka and kr are integers. Additional moments for the HIP process
are:

E((ãi + b̃ihit + riỸi,t�1)
3hit) = 0, E(ãka

i b̃
kb

i r
kr

i hit) = 0,

for 0  ka + kb + kr  2 where ka, kb and kr are integers. The first additional moment
restriction in both models was stated in Example 5, which makes the inner objective a
fourth-order polynomial. The second additional moment restriction then adds lower-order
terms to the inner objective. These additional restrictions yield finite lower and upper
bounds on the second moments of (ãi, b̃i, ri). I then solve the inner problem using the SDP
method with hierarchy of length two.

With these moment restrictions, I compute confidence intervals using the procedure in
Section 5.3. Tuning parameters for the inference procedure are the same as those in the
simulations, sampling P = 50 points in the neighborhood of each l̃L(dm) and l̃U(dm).

8.4 Estimation results

Confidence intervals for E(ri) and Var(ri) are given in Table 3. Both models estimate
E(ri) to be significantly less than 1, in contrast to the models with homogeneous r where
the literature estimates r ⇡ 1 for the RIP process. Moreover, the confidence intervals of
the two models demonstrate substantial overlap, having similar upper confidence limits.
This suggests that specifying homogeneous or heterogeneous b does not lead to serious
misspecification when r is allowed to be heterogeneous.

The confidence interval for Var(ri) suggests substantial heterogeneity in ri, with a
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lower confidence limit of 0.067 for the RIP process implying a standard deviation of
0.258. Similar evidence is observed from confidence intervals for the CDF of ri in Table 4.
Confidence intervals for the CDF of ri in the RIP process suggest that at least 15% of
households have ri  0.5, while another 15%, at least, of households have ri > 0.5.
Confidence intervals for the two CDFs show substantial overlap. These suggest substantial
unobserved heterogeneity in the earnings risk that households face, which is a key source
of heterogeneity in consumption and savings behaviors. These highlight the importance
of allowing for heterogeneity in ri in modeling income processes that reflect features of
real data.

9 Conclusion

This paper studies identification and estimation of dynamic random coefficient models
in a short panel context. The model extends the widely used panel data linear model
with fixed effects (Arellano and Bond, 1991; Blundell and Bond, 1998), by allowing for
individual-specific coefficients and intercept. I show that the model is not point-identified
but rather partially identified, and I characterize sharp identified sets of the parameters
of interest using the dual representation of the infinite-dimensional linear program. I
propose a computationally feasible estimation procedure whose computational feasibility
is achieved using a fast and precise algorithm for global polynomial optimization, which
also yields a computationally feasible inference procedure based on testing many moment
inequalities.

Using my method, I estimate unobserved heterogeneity in earnings persistence across
U.S. households using the PSID dataset. I find that the average earnings persistence is sig-
nificantly less than 1 when it is allowed to be heterogeneous. I also find evidence that when
earnings persistence is allowed to be heterogeneous, choosing RIP over HIP or vice versa
may not lead to serious misspecification of the earnings process. Estimates for variance
and CDF of earnings persistence suggest a substantial degree of unobserved heterogeneity,
which is a key source of heterogeneity in consumption and savings behaviors.
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Appendices

A Proofs

Proof of Proposition 1. This proof is an application of the general result in the Online
Appendix B.2. Assume the regularity conditions stated as Assumption 7 in the Online
Appendix B.2, where the item (iv) follows from the assumption that the joint density of
(Yi0, Yi1, Yi2, gi, bi) is strictly positive (Anderson, 1983, Theorem 9). Also, for notational
simplicity, assume C = C

5
0 where C0 is a compact subset of R. The proof can be easily

modified for a generic compact set C.
Suppose that E(bi) is point-identified, from which I draw a contradiction. Lemma 3 in

the Online Appendix B.2 tells that, if E(bi) is point-identified, it follows that:

f ⇤(Yi0, Yi1, Yi2) + g⇤1(gi, bi, Yi0)#i1 + g⇤2(gi, bi, Yi0, Yi1)#i2 = bi (34)

almost surely in (gi, bi, Yi0, Yi1, Yi2), where f ⇤ : C3
0 7! R, g⇤1 : C3

0 7! R and g⇤2 : C4
0 7! R are

linear functionals on the spaces of finite and countably additive signed Borel measures
that are absolutely continuous with respect to the Lebesgue measure. Substituting #it =

Yit � gi � biYi,t�1 in (34) yields, almost surely in (gi, bi, Yi0, Yi1, Yi2):

f ⇤(Yi0, Yi1, Yi2) + g⇤1(gi, bi, Yi0)(Yi1 � gi � biYi0) + g⇤2(gi, bi, Yi0, Yi1)(Yi2 � gi � biYi1) = bi.
(35)

Consider any g, g̃, b, y0, y1, y2 2 C0 such that g 6= g̃. I evaluate (35) at (gi, bi, Yi0, Yi1, Yi2) =

(g, b, y0, y1, y2) and at (g̃, b, y0, y1, y2), and I take the difference, which yields:

(y1 � g̃ � by0)4g̃,gg⇤1 � (g̃ � g)g⇤1(g, b, y0)

+ (y2 � g̃ � by1)4g̃,gg⇤2 � (g̃ � g)g⇤2(g, b, y0, y1) = 0
(36)

where 4g̃,gg⇤1 ⌘ g⇤1(g̃, b, y0)� g⇤1(g, b, y0) and 4g̃,gg⇤2 ⌘ g⇤2(g̃, b, y0, y1)� g⇤2(g, b, y0, y1).
In (36), y2 appears only in the third term. Also, (36) must hold almost surely for all

g, g̃, b, y0, y1, y2 2 C0 such that g 6= g̃, and in particular for any y2 2 C0. This implies that,
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almost surely:
4g̃,gg⇤2 = 0,

which means that g⇤2 is almost surely a constant function over g:

g⇤2(g, b, y0, y1) = g⇤2(b, y0, y1). (37)

If not, i.e., if 4g̃,gg⇤2 6= 0 on a subset of C6
0 with positive Lebesgue measure, one can change

the value of y2 without changing (g, g̃, b, y0, y1) within this subset to violate (36) with a
positive measure.

Next, consider any g, b, b̃, y0, y1, y2 2 C0 such that b 6= b̃. I evaluate (35) at (g, b, y0, y1, y2)

and (g, b̃, y0, y1, y2), and I take the difference:

(y1 � g � b̃y0)4b̃,bg⇤1 � (b̃ � b)y0g⇤1(g, b, y0)

+ (y2 � g � b̃y1)4b̃,bg⇤2 � (b̃ � b)y1g⇤2(b, y0, y1) = b̃ � b
(38)

where 4b̃,bg⇤1 ⌘ g⇤1(g, b̃, y0)� g⇤1(g, b, y0) and 4b̃,bg⇤2 = g⇤2(b̃, y0, y1)� g⇤2(b, y0, y1). In
(38), y2 appears only in the third term. This implies g⇤2(b, y0, y1) = g⇤2(y0, y1) almost surely,
similarly to the argument for (37). Then (36) simplifies to:

(y1 � g̃ � by0)4g̃,gg⇤1 � (g̃ � g)g⇤1(g, b, y0)� (g̃ � g)g⇤2(y0, y1) = 0. (39)

Let g, g̃, ĝ 2 C0 be such that ĝ � g̃ = g̃ � g. I evaluate (39) at (g, g̃, b, y0, y1) and
(g̃, ĝ, b, y0, y1), and I take the difference:

(y1 � ĝ � by0)
�
4ĝ,g̃g⇤1 �4g̃,gg⇤1

�
� (ĝ � g̃)4g̃,gg⇤1 � (g̃ � g)4g̃,gg⇤1 = 0. (40)

In (40), y1 appears only in the first term, which implies 4ĝ,g̃g⇤1 �4g̃,gg⇤1 = 0 almost surely,
similarly to the argument for (37). Then (40) simplifies to:

(ĝ � g̃)4g̃,gg⇤1 + (g̃ � g)4g̃,gg⇤1 = 0, (41)

which implies 4g̃,gg⇤1 = 0 since ĝ � g̃ = g̃ � g 6= 0. This implies that g⇤1 is almost surely a
constant function over g, i.e., g⇤1(g, b, y0) = g⇤1(b, y0). Then (38) simplifies to:

(y1 � g � b̃y0)4b̃,bg⇤1 � (b̃ � b)y0g⇤1(b, y0)

+ (y2 � g � b̃y1)4b̃,bg⇤2 � (b̃ � b)y1g⇤2(y0, y1) = b̃ � b.
(42)
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Let b, b̃, b̂ 2 C0 be such that b̂ � b̃ = b̃ � b. Evaluating (42) at (g, b̂, b̃, y0, y1, y2) and at
(g, b̃, b, y0, y1, y2) and taking the difference yields g⇤1(b, y0) = g⇤1(y0), in a similar way to
the argument for g⇤1(g, b, y0) = g⇤1(b, y0) from (40). Then (35) simplifies to:

f ⇤(y0, y1, y2) + g⇤1(y0)(y1 � g � by0) + g⇤2(y0, y1)(y2 � g � by1) = b

almost surely for all (g, b, y0, y1, y2). This is a linear identity in (g, b), so their coefficients
must coincide on both sides. This means that �g⇤1 � g⇤2 = 0 (from the coefficients on g)
and �y0g⇤1 � y1g⇤2 = 1 (from the coefficients on b). Solving these for (g⇤1, g⇤2) yields, almost
surely:

g⇤1 =
1

y1 � y0
, g⇤2 =

�1
y1 � y0

.

However, g⇤1 cannot be a function of y1, which is a contradiction. ⇤

Proof of Lemma 1. As discussed in the proof of Proposition 1, Lemma 3 in the Online
Appendix B.2 tells us that if E(bi) is point-identified, there exists ( f ⇤, g⇤1, g⇤2) such that (34)
holds almost surely on C

5
0 . Then (34) implies S⇤(Yi0, Yi1, Yi2) = f ⇤(Yi0, Yi1, Yi2) because:

E( f ⇤(Yi0, Yi1, Yi2)|bi) = E (bi � g⇤1(gi, bi, Yi0)#i1 � g⇤2(gi, bi, Yi0, Yi1)#i2|bi) = bi.

Conversely, if there exists S⇤(Yi0, Yi1, Yi2) such that E(S⇤(Yi0, Yi1, Yi2)|bi) = bi, then
E(S⇤(Yi0, Yi1, Yi2)) = E(E(S⇤(Yi0, Yi1, Yi2)|bi)) = E(bi), which completes the proof. ⇤

Proof of Theorem 1. It suffices to show that [L, U] is the sharp bound when Assumption 3
is replaced by (9). In what follows, I show that U is the sharp upper bound under (9). The
same argument applies to L. This proof is an application of Theorem 2 in Section 4.

According to Theorem 2, the sharp upper bound is given by:

min
l, µ

E

 
max

v

"
e0v + µ0

T

Â
t=1

Rit(Yit � R0

itv) + l
T

Â
t=1

(R0

itv)(Yit � R0

itv)

#!

where µ has the same dimension as Rit, and l is scalar. With the notation of Ri and Yi in
the statement of Theorem 1, I can write the above concisely as

min
µ,l

E
⇣

max
v

⇥
e0v + µ0

Yi � µ0
Riv + lY 0

i v � v0(lRi)v
⇤⌘

.

The inner maximization problem optimizes a quadratic polynomial in v. This quadratic
maximization problem has a closed form solution if l > 0, and it diverges to +• almost
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surely if l  0, as discussed in Section 6.1.1. For l > 0, the closed form solution yields:

min
l>0, µ

E

✓
µ0
Yi +

1
4l

[e + lYi �Riµ]
0
R

�1
i [e + lYi �Riµ]

◆
. (43)

I solve this problem with respect to µ for a fixed l. The first-order condition with respect
to µ given l is:

E(Yi) +
1

2l
E(Ri)µ �

1
2l

e �
1
2

E(Yi) = 0.

The optimal µ that solves this first-order condition is µ⇤ = E(Ri)�1[e � lE(Yi)]. I substi-
tute this into (43) and solve (43) with respect to l. The first order condition is:

1
l2

h
e0E(Ri)

�1e � e0E(R�1
i )e

i
= E(Yi)

0E(Ri)
�1E(Yi)� E(Y 0

iR
�1
i Yi).

Since l > 0, the optimal l that solves this first-order condition is:

l⇤ =

vuut e0E(R�1
i )e � e0E(Ri)�1e

E(Y 0

iR
�1
i Yi)� E(Yi)0E(Ri)�1E(Yi)

. (44)

Substituting (44) into (43) yields the expression of Ũ in Theorem 1.
The numerator and denominator in (44) are both weakly positive, and they are zero if

and only if R�1
i e and R

�1
i Yi are degenerate across individuals, respectively. To show this,

define the functions E(Ri) = e0R�1
i e and D(Yi,Ri) = Y

0

iR
�1
i Yi, and apply the following

proposition to E and D. ⇤

Proposition 4 (Kiefer, 1959, Lemma 3.2). For an integer l > 0, let A1, . . . , Al be n⇥m matrices
and B1, . . . , Bl be nonsingular positive definite and symmetric n ⇥ n matrices. Let a1, . . . , al be
positive real numbers such that Âk ak = 1. Then

l

Â
k=1

ak A0

kB�1
k Ak �

"
l

Â
k=1

ak Ak

#0 " l

Â
k=1

akBk

#�1 " l

Â
k=1

ak Ak

#
� 0

where ‘�’ is the partial ordering defined in terms of positive semidefinite matrices. In addition, the
equality holds if and only if B�1

1 A1 = . . . = B�1
l Al.

Proof of Theorem 2. In what follows, I prove that (11) is the dual representation of (10). The
proof is a direct application of the duality theorem of linear programming for topological
vector spaces (Anderson, 1983). The same argument applies to (12).

To apply the theorem, I first rewrite (10) as a standard form of linear programming,
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for which I introduce additional notation. Recall that MW⇥V is a linear space of finite
and countably additive signed Borel measures on W ⇥ V . Let FW⇥V be the dual space of
MW⇥V , and let FW⇥V be the space of all bounded Borel measurable functions on W ⇥ V .
Note that FW⇥V is a linear subspace of FW⇥V .

For P 2 MW⇥V and f 2 FW⇥V , define the dual pairing

hP, f i =
Z

f dP.

Let MW be the linear space of finite and countably additive signed Borel measures on
W . Let FW be the dual space of MW , and let FW be the space of all bounded Borel
measurable functions on W . Note that FW is a linear subspace of FW . In addition, define
G = RK

⇥MW and H = RK
⇥ FW , and let g = (g1, . . . , gK, Pg) and h = (l1, . . . , lK, fh)

be their generic elements. Note that H is the dual space of G. Define the dual pairing

hg, hi =
K

Â
k=1

lkgk +
Z

fhdPg.

Next, define a linear map A : MW⇥V 7! G by

A(P) =
✓Z

f1dP, . . . ,
Z

fKdP, P(·,V)
◆

.

A is a bounded (thus continuous) linear operator because fks are assumed to be bounded.
Note that

hA(P), hi =
K

Â
k=1

lk

Z
fkdP +

Z

W

fh(w)P(dw,V).

It is straightforward to show that:
Z

W

fh(w)P(dw,V) =
Z

W⇥V

fh(w)dP(w, v).

Then:

hA(P), hi =
K

Â
k=1

lk

Z
fkdP +

Z
fhdP =

Z " K

Â
k=1

lkfk + fh

#
dP ⌘ hP, A⇤(h)i, (45)

where A⇤(h) : H 7! FW⇥V is defined as

A⇤(h) =
K

Â
k=1

lkfk + fh.
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(45) shows that A⇤ is the adjoint of A. With these notations, I rewrite (10) as a standard
form of linear programming:

min
P2MW⇥V

hP, mi subject to A(P) = c, P � 0, (46)

where c = (0, . . . , 0, PW). I then apply the strong duality theorem (Anderson, 1983, Theo-
rem 6) under Assumption 5 and the continuity of A, which tells that the optimal solution
to (46) is equal to the solution to:

max
h2H

hc, hi subject to m � A⇤(h) � 0,

which I can write more concretely as:

max
l1,...,lK2R, fh2FW

Z
fhdPW subject to

K

Â
k=1

lkfk + fh  m. (47)

Now I show that (47) simplifies to (11). I rearrange the constraint of (47):

fh(w)  m(w, v)�
K

Â
k=1

lkfk(w, v).

The left-hand side does not involve v. Therefore:

fh(w)  min
v2V

"
m(w, v)�

K

Â
k=1

lkfk(w, v)

#
for all w 2 W .

Since (47) maximizes the expectation of fh, the optimal f ⇤h for a fixed (l1, . . . , lK) is given
by:

f ⇤h (w) = min
v2V

"
m(w, v)�

K

Â
k=1

lkfk(w, v)

#
(48)

almost surely in PW . If not, i.e., if f ⇤h (w) is strictly less than the right-hand side of (48) with
positive probability in PW , one can increase the value of the objective by increasing f ⇤h on a
set of positive probability. Next, I substitute (48) into (47), which yields:

max
l1,...,lK2R

Z
min
v2V

"
m(w, v)�

K

Â
k=1

lkfk(w, v)

#
dPW(w).

The above display remains equivalent even if the signs of (l1, . . . , lK) are switched,
because the ls are choice variables supported on RK. Switching the signs of ls in the
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above gives:

max
l1,...,lK2R

Z
min
v2V

"
m(w, v) +

K

Â
k=1

lkfk(w, v)

#
dPW(w)

which is the expression in (11). ⇤

Proof of Lemma 2 As in (47) in the proof of Theorem 2, the sharp lower bound of q is given
by

max
l1,...,lK2R, fh2FW

Z
fhdPW subject to

K

Â
k=1

lkfk + fh  m (49)

where all notation follows the proof of Theorem 2. Similarly, the sharp upper bound of q is
given by

min
l1,...,lK2R, fh2FW

Z
fhdPW subject to

K

Â
k=1

lkfk + fh � m. (50)

Suppose that q is point-identified but there is no such S⇤
2 FW and l⇤

1, . . . , l⇤

K 2 R

such that, almost surely:
K

Â
k=1

l⇤

k fk + S⇤ = m.

Then the solution (ll
1, . . . , ll

K, Sl) to (49) satisfies its constraint ÂK
k=1 ll

kfk + Sl
 m with

strict inequality on a set with positive Lebesgue measure on W ⇥ V . Similarly, the solution
(lu

1 , . . . , lu
K, Su) to (50) satisfies its constraint ÂK

k=1 lu
k fk + Su

� m with strict inequality on
a set with positive Lebesgue measure on W ⇥ V . Then:

E(Sl) = E

 
K

Â
k=1

ll
kfk + Sl

!
< E(m) < E

 
K

Â
k=1

lu
k fk + Su

!
= E(Su)

where strict inequalities follow because the density of (Wi, Vi) is strictly positive. The
above implies that the sharp lower bound E(Sl) is strictly less than the sharp upper bound
E(Su), which is a contradiction since q is assumed to be point-identified.

Conversely, suppose there exists (S⇤, l⇤

1, . . . , l⇤

K) such that ÂK
k=1 l⇤

k fk + S⇤ = m. Then:

E(S⇤) = E

 
K

Â
k=1

lkfk + S⇤

!
= E(m) = q,

which proves that q is point-identified by E(S⇤). ⇤

Proof of Proposition 2. It suffices to show that GL is concave in l. Let l1 = (l11, . . . , l1K)
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and l2 = (l21, . . . , l2K) be two distinct points in RK. Then, for any t 2 [0, 1] and w 2 W :

GL(tl1 + (1 � t)l2, w)

= min
v2V

(
t

"
m(w, v) +

K

Â
k=1

l1kfk(w, v)

#
+ (1 � t)

"
m(w, v) +

K

Â
k=1

l2kfk(w, v)

#)

� t min
v2V

(
m(w, v) +

K

Â
k=1

l1kfk(w, v)

)
+ (1 � t)min

v2V

(
m(w, v) +

K

Â
k=1

l2kfk(w, v)

)

= tGL(l1, w) + (1 � t)GL(l2, w).

This is the definition of concavity. ⇤

Proof of Proposition 3. When L exists and is finite, Proposition 2 implies that L(l) is
concave. Then L̂ uniformly converges to L on any compact set K0 ✓ RK, as in the proof of
Theorem 2.7 in Newey and McFadden (1994):

sup
l2K0

|L̂(l)� L(l)|
p

�! 0. (51)

Let l̂ = argmaxl L̂(l) and l0 = argmaxl L(l). If there are multiple argmaxes, choose
any of them. Then for l̂ that is on a compact set in RK:

|L(l0)� L̂(l̂)|  L(l0)� L(l̂) + |L(l̂)� L̂(l̂)| (triangle inequality)

= L̂(l0)� L(l̂) + |L(l̂)� L̂(l̂)|+ op(1) (by (51))

 L̂(l̂)� L(l̂) + |L(l̂)� L̂(l̂)|+ op(1) (l̂ is argmax)

 2|L(l̂)� L̂(l̂)|+ op(1) = op(1). (by (51))

Let LC be a compact set containing L0 ⌘ {l 2 RK
| l = argmaxl L(l)} such that its

boundary LB
C satisfies maxl2LB

C
L(l) < L(l0)� # for some # > 0. Let l̃ be the maximizer

of L̂ on LC, i.e., l̃ ⌘ argmaxl2LC
L̂(l). Then, by (51), |L̂(l)� L(l)| < #/3 uniformly on

LC with probability approaching to one, so that L̂(l̃) > maxl2LB
C

L̂(l).
Now, for any l0 outside of LC, there exists t 2 [0, 1] such that tl̃ + (1 � t)l0

2 LB
C, so

that L̂(l̃) > L̂(tl̃ + (1 � t)l0). Also, the concavity of L̂ implies that L̂(tl̃ + (1 � t)l0) �

tL̂(l̃) + (1 � t)L̂(l0). Combining the two yields (1 � t)L̂(l̃) � (1 � t)L̂(l0), implying that
l̃ is the maximizer of L̂ not only on LC but also on RK, meaning that l̃ = l̂. Therefore, l̂

is contained in the compact set LC with probability approaching to one. ⇤
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(T = 5) L = 3 L = 5 L = 7
P = 25 0.956 0.951 0.946
P = 50 0.971 0.963 0.959
P = 75 0.974 0.966 0.971
(T = 10) L = 3 L = 5 L = 7
P = 25 0.933 0.929 0.894
P = 50 0.949 0.955 0.919
P = 75 0.960 0.962 0.937
(T = 15) L = 3 L = 5 L = 7
P = 25 0.986 0.929 0.874
P = 50 0.990 0.947 0.915
P = 75 0.991 0.961 0.939

Table 1: Coverage probabilities of the inference procedures with the sample size of N = 750.
The nominal coverage probability is 0.9.

(T = 5) L = 3 L = 5 L = 7
P = 25 0.959 0.943 0.949
P = 50 0.968 0.957 0.960
P = 75 0.972 0.964 0.966
(T = 10) L = 3 L = 5 L = 7
P = 25 0.869 0.890 0.885
P = 50 0.923 0.916 0.925
P = 75 0.934 0.930 0.938
(T = 15) L = 3 L = 5 L = 7
P = 25 0.974 0.880 0.821
P = 50 0.988 0.910 0.869
P = 75 0.990 0.933 0.904

Table 2: Coverage probabilities of the inference procedures with the sample size of N =
1000. The nominal coverage probability is 0.9.
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E(ri) Var(ri)

RIP process [0.456, 0.615] [0.067, 0.292]
HIP process [0.264, 0.583] [0.000, 0.701]

Table 3: Confidence intervals for E(ri) and Var(ri) of the RIP and the HIP processes. The
nominal coverage probability is 0.9.

P(ri  r) RIP process HIP process
r = 0.0 [0.000, 0.362] [0.000, 0.752]
r = 0.1 [0.005, 0.428] [0.004, 0.800]
r = 0.2 [0.025, 0.548] [0.099, 0.818]
r = 0.3 [0.066, 0.627] [0.085, 0.834]
r = 0.4 [0.104, 0.713] [0.135, 0.879]
r = 0.5 [0.153, 0.848] [0.205, 0.914]
r = 0.6 [0.209, 0.895] [0.200, 0.983]
r = 0.7 [0.290, 0.944] [0.286, 0.986]
r = 0.8 [0.372, 0.975] [0.319, 1.000]
r = 0.9 [0.471, 0.994] [0.353, 1.000]
r = 1.0 [0.550, 1.000] [0.427, 1.000]

Table 4: Confidence intervals for P(ri  r) of the RIP and the HIP processes. The nominal
coverage probability is 0.9.
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B Online Appendix

B.1 Extension to multivariate random coefficient models

Results from this paper extend to a multivariate version of (1), a system of random
coefficient models:

Yit = Z
0

itgi + X
0

itbi + eit,

where Yit is a D⇥ 1 vector of dependent variables, Zit is a D⇥ q matrix of strictly exogenous
regressors, Xit is a D ⇥ p matrix of sequentially exogenous regressors, and eit is a D ⇥ 1
vector of idiosyncratic error terms. Assume:

E(eit|gi, bi, Zi, X
t
i) = 0,

which is a multivariate extension of (2). The following is an example of a multivariate
random coefficient model.

Example 7 (Joint model of household earnings and consumption behavior). A researcher
can combine (3) and (4) and consider a joint lifecycle model of earnings and consumption
behavior. When the time t consumption equation and the time t + 1 earnings equation are
combined, a system of random coefficient models is obtained:

Cit = gi1 + gi2Yit + bi1Ait + nit,

Yi,t+1 = gi3 + bi2Yit + #it,

which can be written in matrix form:

 
Cit

Yi,t+1

!
=

 
1 Yit 0
0 0 1

!0

B@
gi1

gi2

gi3

1

CA+

 
Ait 0
0 Yit

! 
bi1

bi2

!
+

 
nit

#it

!
.

In this model, gs and bs can freely correlate among themselves and with (Yi0, Ai1), allowing
for correlation between earnings and consumption processes.

B.2 Identification under conditional moment restrictions

This section studies moment equality models that involve both conditional and uncondi-
tional moment restrictions. Consider the following extension of Assumption 4:
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Assumption 6. The random vectors (Wi, Vi) satisfy:

E(fk(Wi, Vi)) = 0, k = 1, . . . , KU,

E(yk(Wi, Vi)|Aik) = 0, k = 1, . . . , KC,

where fk, yk : W ⇥ V 7! R are moment functions, Ai1, . . . , AiKC are subvectors of (Wi, Vi)

and KU, KC 2 N are the number of unconditional and conditional moment restrictions,
respectively.

Under Assumption 6, I characterize the identified set of

q = E(m(Wi, Vi))

for some known function m : W ⇥ V 7! R. To simplify notation, let A0

ik be the subvector of
(Wi, Vi) that collects the variables not included in Aik, so that (Aik, A0

ik) is a rearrangement
of (Wi, Vi). I then write any function f (w, v) on W ⇥V equivalently as f (ak, a0k) on Ak ⇥A

0

k,
where Ak ⇥A

0

k is the rearrangement of W ⇥ V according to (Aik, A0

ik).
I assume the following regularity conditions:

Assumption 7. The following conditions hold.

(i) W ⇥ V is a compact set in a Euclidean space.

(ii) The distribution of (Wi, Vi) is absolutely continuous with respect to the Lebesgue
measure. In addition, its density p is L• with respect to the Lebesgue measure.

(iii) (m, f1, . . . , fKU , y1, . . . , yKC) are L• with respect to the Lebesgue measure.

(iv) The following set is closed:

n⇣ Z
f1p d(w, v), . . . ,

Z
fK p d(w, v),

Z
y1p da0k, . . . ,

Z
yK p da0k,

Z
mp d(w, v)

⌘ ��� p 2 MW⇥V , p � 0
o

.

Assumption 7 (ii) is restrictive, but it is useful enough for proving Proposition 1. The
rest of the conditions are similar to Assumption 5. A sufficient condition for Assumption 7
(iv) is that the joint density of (Wi, Vi) in the data generating process, or its observationally
equivalent density, is strictly positive on W ⇥ V (Anderson, 1983, Theorem 9).

Under these assumptions, I obtain the following theorem and the lemma, which are
counterparts of Theorem 2 and Lemma 2, respectively, characterizing the identified set I of
q and providing a necessary and sufficient condition for point-identification of q.
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Theorem 3. Suppose that Assumptions 6 and 7 hold. Let lk 2 R for k = 1, . . . , KU, and let
µk : Ak 7! R for k = 1, . . . , KC. Then I = [L, U] where

L = max
{lk}

KU
k=1,{µk}

KC
k=1

E

"
min
v2V

(
m(Wi, v) +

KU

Â
k=1

lkfk(Wi, v) +
KC

Â
k=1

µk(Ak(Wi, v))yk(Wi, v)

)#

(52)
and

U = min
{lk}

KU
k=1,{µk}

KC
k=1

E

"
max
v2V

(
m(Wi, v) +

KU

Â
k=1

lkfk(Wi, v) +
KC

Â
k=1

µk(Ak(Wi, v))yk(Wi, v)

)#

(53)
where Ak(w, v) is the value of Aik given Wi = w and Vi = v.

Proof. The proof focuses on showing (52). The same argument applies to (53).
Let MW⇥V be the space of finite and countably additive signed Borel measures that are

absolutely continuous with respect to the Lebesgue measure. Using absolute continuity, I
identify an element of MW⇥V by its density p : W ⇥ V 7! R. Let pW be the density of the
observed data distribution PW . The identified set I is then defined by

I ⌘
⇢Z

m(w, v)p(w, v)d(w, v)
��� p 2 MW⇥V , p � 0,

Z
fk(w, v)p(w, v)d(w, v) = 0, k = 1, . . . , KU,

Z
yk(ak, a0k)p(ak, a0k)da0k = 0 for all ak 2 Ak, k = 1, . . . , KC,

Z
p(w, v)dv = pW(w) for all w 2 W

�
,

where ak is an element of Ak and a0k is an element of A0

k. The second line represents
unconditional moment restrictions, while the third line represents conditional moment
restrictions.

The lower bound of I is then given by the infinite-dimensional linear program

min
p2MW⇥V , p�0

Z
m(w, v)p(w, v)d(w, v) subject to
Z

fk(w, v)p(w, v)d(w, v) = 0, k = 1, . . . , KU,
Z

yk(ak, a0k)p(ak, a0k)da0k = 0, for all ak 2 Ak, k = 1, . . . , KC,
Z

p(w, v)dv = pW(w) for all w 2 W .

(54)

49



Now I show that (52) is the dual representation of (54), by a direct application of the
duality theorem of linear programming for topological vector spaces (Anderson, 1983). I
introduce additional notation. Let L2(W ⇥ V) be the space of all L2 functions on W ⇥ V ,
and let L2(W) be the space of all L2 functions on W . I also let L2(Ak) be the space of all L2

functions on Ak.
Let G and H be G = H = RK

⇥ L2(A1) ⇥ . . . ⇥ L2(AKC) ⇥ L2(W). I denote their
generic elements as g = (g1, . . . , gKU , g1, . . . , gKC

, fg) and h = (l1, . . . , lKU , µ1, . . . , µKC , fh),
respectively. Note that H is a dual space of G.

Define a linear map A : MW⇥V 7! G by

A(p) =
✓Z

f1p d(w, v), . . . ,
Z

fK p d(w, v),
Z

yk p da01, . . . ,
Z

yk p da0KC
,
Z

p dv
◆

.

A is a bounded (thus continuous) linear operator because fks and yks are assumed to be
bounded. Define the dual pairing:

hA(P), hi =
KU

Â
k=1

lk

Z
fk p d(w, v) +

KC

Â
k=1

ZZ
yk p da0k µkdak +

Z
fh

Z
pdvdw.

It is straightforward to show:
ZZ

yk p da0k µkdak =
Z

ykµk p d(w, v)

and Z
fh

Z
pdvdw =

Z
fh p d(w, v).

Then:

hA(P), hi =
Z " KU

Â
k=1

lkfk +
KC

Â
k=1

µkyk + fh

#
p(w, v)d(w, v). ⌘ hp, A⇤(h)i, (55)

where A⇤(h) : H 7! L2(W ⇥ V) is defined as

A⇤(h) =
KU

Â
k=1

lkfk +
KC

Â
k=1

µkyk + fh.

(55) shows that A⇤ is the adjoint of A.
Then, as in the proof of Theorem 2, I apply the strong duality theorem (Anderson, 1983,

Theorem 6) under Assumption 7 and the continuity of A, which tells that the optimal
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solution to (54) is equal to the solution to:

max
l1,...,lKU ,µ1,...,µKC , fh

Z
fh(w)pw(w)dw subject to

KU

Â
k=1

lkfk +
KC

Â
k=1

µkyk + fh  m. (56)

Simplifying (56), as in the proof of Theorem 2, yields the expression in (52).

Lemma 3. Suppose that the assumptions of Theorem 3 hold. Suppose also that the joint density
of (Wi, Vi) is strictly positive on W ⇥ V . Then q is point-identified if and only if there exists a
function S⇤ which is a linear functional on MW (which is the projection of MW⇥V onto W), real
numbers l⇤

1, . . . , l⇤

K 2 R, and functions µ⇤

1, . . . , µ⇤

K which are L2(A1), . . . , L2(AKC) functions,
respectively, such that:

m(Wi, v) +
KU

Â
k=1

lkfk(Wi, v) +
KC

Â
k=1

µk(Ak(Wi, v))yk(Wi, v) = S⇤(Wi)

almost surely on W ⇥ V . When such S⇤ exists, q is identified by q = E(S⇤(Wi)).

Proof. As in (56) in the proof of Theorem 3, the sharp lower bound of q is given by

max
l1,...,lKU ,µ1,...,µKC , fh

Z
fh(w)pw(w)dw subject to

KU

Â
k=1

lkfk +
KC

Â
k=1

µkyk + fh  m.

where all notation follows the proof of Theorem 3. Similarly, the sharp upper bound of q is
given by

min
l1,...,lKU ,µ1,...,µKC , fh

Z
fh(w)pw(w)dw subject to

KU

Â
k=1

lkfk +
KC

Â
k=1

µkyk + fh � m.

Lemma 3 can then be proved by replicating the proof of Lemma 2.

B.3 Estimation and inference under over-identification

In practice, the plug-in bound [L̂, Û] defined in (13) and (14) may yield an empty set, in
which case L̂ diverges to +• and Û diverges to �•. This happens when the empirical
data distribution P̂W does not satisfy the moment restrictions, which may occur even if
the population data distribution PW satisfies the restrictions. In this case, the empirical
version of (10) (where PW is replaced with P̂W) does not have a feasible solution, resulting
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in an empty plug-in bound. This scenario is comparable with over-identification in the
generalized method of moments (GMM) estimation, where the GMM objective may be
strictly positive in the sample even if the moments are correctly specified.

There are two approaches for addressing this issue. First, a researcher may obtain a
point estimate that minimizes the distance between the model and the data. Second, the
researcher may directly obtain a confidence interval without insisting on a point estimate,
assuming that the model is correctly specified.

For the first approach, consider the following relaxation of the moment restrictions:

|E(fk(Wi, Vi))|  d, k = 1, . . . , K, (57)

where d � 0, which reduces to Assumption 4 when d = 0. This can be considered an
absolute-value GMM criterion. The following proposition explains how to compute the
smallest d that allows (20) to hold with the empirical distribution.

Proposition 5. Given the sample (W1, . . . , WN), consider the linear programming problem:

min
P2MW⇥V , P�0, d�0

d subject to
����
Z

fk(Wi, Vi)dP
����  d, k = 1, . . . , K,

Z
P(w, dVi) = P̂W(w) for all w 2 W ,

(58)

where P̂W is the empirical distribution of Wi constructed from (W1, . . . , WN). Then its solution is
equal to the solution to:

max
l1,...,lK

1
N

N

Â
i=1

min
v2V

(
K

Â
k=1

lkfk(Wi, v)

)
subject to

K

Â
k=1

|lk|  1. (59)

Proof. I can rewrite (58) as:

min
P2MW⇥V , P�0, d�0

d subject to
Z

dP = 1,
Z

fk(Wi, Vi)dP  d, k = 1, . . . , K,
Z

fk(Wi, Vi)dP � �d, k = 1, . . . , K,
Z

P(w, dVi) = P̂W(w) for all w 2 W .

I can then replicate the proof of Theorem 2, obtaining (59) as the simplified dual represen-
tation of (58).
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Proposition 5 shows that a researcher can find the smallest d by solving (59), which
is similar to the plug-in bound problem. One difference is that (59) is a constrained
optimization problem; however, the constraint has a simple structure whose Jacobian can
be derived in closed form.

Let d⇤ be the solution to (59), and let d � d⇤. I then compute the lower bound L̃ under
the relaxation (57) by computing the plug-in lower bound with a negative L1 penalty on l,
with d being the penalty multiplier:

L̃ = max
l1,...,lK

"
1
N

N

Â
i=1

min
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
� d

K

Â
k=1

|lk|

#
. (60)

The following proposition justifies use of the L1 penalty. I compute the upper bound Ũ
similarly, with a positive L1 penalty.

Proposition 6. Given the sample (W1, . . . , WN) and given d 2 R, consider the linear program
that finds the smallest value of q = E(m(Wi, Vi)) that satisfies (57):

min
P2MW⇥V , P�0

Z
m(Wi, Vi)dP subject to

����
Z

fk(Wi, Vi)dP
����  d, k = 1, . . . , K,

Z
P(w, dv) = P̂W(w) for all w 2 W ,

(61)

where P̂W is the empirical distribution of Wi constructed from (W1, . . . , WN). Then its solution is
equal to L̃ defined in (60).

Proof. I can rewrite (61) as:

min
P2MW⇥V , P�0

Z
m(Wi, Vi)dP subject to

Z
fk(Wi, Vi)dP  d⇤, k = 1, . . . , K,

Z
fk(Wi, Vi)dP � �d⇤, k = 1, . . . , K,

Z
P(w, dv) = P̂W(w) for all w 2 W .

I can then replicate the proof of Theorem 2, obtaining (60) as the simplified dual represen-
tation of (61).

Proposition 6 shows that (60) equals the smallest value of q among the distributions
whose absolute-value GMM criterion defined in (57) is at most d. In principle, such a
distribution is not necessarily unique even when d = d⇤. If it is unique, the modified
plug-in bound [L̃, Ũ] becomes a point.
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In practice, due to machine precision or the stopping criterion of the optimization
algorithm, the numerical solution to (59) might be strictly smaller than its analytical
solution. To resolve this problem, a researcher may choose d to be strictly larger than the
numerical solution of d⇤, in which case (60) computes the smallest value of q among the
distributions that attain the near-minimum of the absolute-value GMM criterion. If the
minimizer distribution is unique, the relaxed plug-in bound with d > d⇤ becomes a small
interval instead of a point.

Although (60) resolves the empty set problem, it has two drawbacks. First, it is an ad
hoc approach, with no formal justification for why the relaxation of moment conditions is
a constructive idea. Second, the procedure may yield a point identified set (or a small inter-
val) even if the model is partially identified. The literature deals with the second problem
by choosing d that is substantially larger than d⇤ (Mogstad, Santos, and Torgovitsky, 2018),
but the question of how much larger it should be remains unresolved. In the remainder
of this subsection, I discuss a more principled approach, which is to directly compute a
confidence interval without insisting on a point estimate.

Note that the inference procedure that tests (18) does not involve the plug-in bound
per se. The plug-in bound is involved only in the step of choosing LF, which I propose to
be the set of ls that are close to the solutions to the plug-in bound problems. The inference
procedure is valid regardless of whether the plug-in bound is empty; the issue is that no
guidance exists for choosing LF when the plug-in bound is empty. In what follows, I
propose a strategy for choosing LF when the plug-in bound is empty.

I propose to use the relaxed plug-in bounds for choosing LF. The procedure consists of
three steps. The first step solves (59) and finds the minimum d⇤. The second step considers
a grid of positive real numbers {d1, . . . , dM} such that dm > d⇤ for all m 2 {1, . . . , M}.
Then, for each dm, the relaxed plug-in bound is computed:

l̃L(dm) = argmax
l1,...,lK

"
1
N

N

Â
i=1

min
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
� dm

K

Â
k=1

|lk|

#
.

l̃U(dm) = argmin
l1,...,lK

"
1
N

N

Â
i=1

max
v2V

(
m(Wi, v) +

K

Â
k=1

lkfk(Wi, v)

)
+ dm

K

Â
k=1

|lk|

#
.

(62)

The third step then chooses LF to be the set of points in the neighborhoods of every
l̃L(dm) and l̃U(dm). In the simulation and the application, I choose points by adding
Gaussian noise to every l̃L(dm) and l̃U(dm) whose standard deviations are inversely pro-
portional to the gradients of the l̃s. I review performance of this approach via simulation
in Section 7.
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When d⇤ = 0, i.e., when the plug-in bound is not empty, a researcher may choose
M = 1 with d1 = 0, in which case the procedure reduces to the procedure in Section 5.2.
This means that the inference procedure with relaxed bounds generalizes the procedure
discussed in Section 5.2.

B.4 Construction of the dataset

I use data on U.S. households from the Panel Study of Income Dynamics (PSID) dataset. I
use the dataset of Guvenen (2009), who estimated RIP and HIP processes using the PSID
earnings data of male heads of households collected annually from 1968 to 1993. The
dataset contains male head of households who are not in the poverty (SEO) subsample
and who consecutively reported positive hours (between 520 and 5110 hours a year) and
earnings (between a preset minimum and maximum wage). I also follow Guvenen (2009)
and use potential experience as a measure of experience:

h = age � max{years of schooling, 12}� 6.

I collect individuals with consecutive waves of data from 1976 to 1991, which yields
N = 800 and T = 15, taking the first wave as an initial value of earnings.

Recall that my method requires that there is no multicollinearity in each individual
time series (Assumption 2). To maintain this assumption, I remove 40 individuals (that
is, 5% of data) with the smallest variations in their reported incomes, giving a dataset of
N = 760 and T = 15. Estimation results with this removal do not qualitatively differ from
the results with full data. Tables 5 and 6 present confidence intervals for E(ri), Var(ri)

and the CDF of ri, computed without removing observations. The confidence intervals do
not qualitatively differ from Tables 3 and 4 in the main text, in that the upper confidence
limit of E(ri) is significantly less than 1, the lower confidence limit of Var(ri) is strictly
positive for the RIP process, and the CDF of ri has confidence limits away from 0 and 1.

B.5 Simulation-based de-noising method

Before describing how I removed #it from Yit, I first describe the simulation-based de-
noising method proposed in Arellano and Bonhomme (2021). They considered a model

Z = X + # (63)
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where all variables are scalar10 and X is independent of #. In this model, Z is observed, but
X and # are not observed. Instead, the distribution of # is known. The objective of Arellano
and Bonhomme (2021) is to obtain pseudo-observations from the distribution of X, given
the observations from Z and the knowledge on the distribution of #.

Let PZ, PX and P# be the probability distributions of Z, X and #, respectively. Let
PX+# be the distribution of X + #, which is equal to the convolution of PX and P#. The
second-order Wasserstein distance between Z and X + #, denoted by W2(PZ, PX+#), is
defined by:

W2(PZ, PX+#) =

✓
min

p2P(PZ,PX+#)

Z
||z � ẑ||2dp(z, ẑ)

◆1/2
, (64)

where P(PZ, PX+#) is the set of couplings of PZ and PX+#, i.e., the joint distributions of Z
and X + # whose marginal distributions are PZ and PX+#. It is known that (64) is a metric
for convergence in distribution among distributions with finite second moments, which
means that it satisfies the axioms of distance and that W2(µ, nk) ! 0 if and only if nk

d
! µ.

Then, because (63) holds:
W2(PZ, PX+#) = 0.

Based on this result, the aim of Arellano and Bonhomme (2021) is to find PX that minimizes
(64). They obtain pseudo-observations of X by minimizing the sample version of (64).

I apply their approach in the panel data setting to obtain pseudo-observations of the
permanent income. I assume that the transitory income process, #it, follows an i.i.d. (over i
and t) zero-mean Normal distribution whose variance is equal to the variance estimate
of the transitory income in Guvenen (2009). I then simulate K = 200 i.i.d. draws of the
transitory income process:

#k = (#k1, . . . , #kT) 2 RT, k = 1, . . . , K.

Then, given the initial values of pseudo-observations of the permanent income defined by

Ỹi = (Ỹi1, . . . , ỸiT) 2 RT, i = 1, . . . , N,

I calculate the synthetic income data by calculating:

Ŷik = Ỹi + #k 2 RT, i = 1, . . . , N, k = 1, . . . , K, (65)

giving synthetic income data of size NK. Note that (65) computes a convolution of the

10They also consider a more general case of multivariate factor models.
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permanent and the transitory income processes, because the empirical distribution of
{Ŷik} is equal to the convolution of the empirical distribution of {Ỹi} and the empirical
distribution of {#k}.

I then compare {Ŷik} with the observed income data in the PSID dataset, denoted by
Yi = (Yi1, . . . , YiT) 2 RT, i = 1, . . . , N. Let P̂Y and P̂Ŷ be the empirical distributions of {Yi}

and {Ŷik}, respectively. Then the (squared) second-order Wasserstein distance between
the synthetic and the observed data is given by:

W2
2 (P̂Y, P̂Ŷ) = min

0pijk1

N

Â
i=1

N

Â
j=1

K

Â
k=1

pijk||Yi � Ŷjk||
2

subject to
N

Â
i=1

pijk = 1,
N

Â
j=1

K

Â
k=1

pijk = 1,

which is the sample version of (64). I then obtain pseudo-observations of the permanent
income, Ỹi = (Ỹi1, . . . , ỸiT), i = 1, . . . , N, by:

{Ỹi} = argmin
Ỹ1,...,ỸN

W2
2 (P̂Y, P̂Ŷ),

which can be shown to be a convex optimization problem. This gives a dataset with
N = 800 individuals and T = 15 waves.

This de-noising procedure does not qualitatively affect the estimation results in Sec-
tion 8.4 of the main text. Tables 7 and 8 present confidence intervals for E(ri), Var(ri) and
the CDF of ri, computed without the de-noising step. The confidence intervals in Tables 7
and 8 are qualitatively similar to those in Tables 3 and 4 in the main text. For example,
the upper confidence limit of E(ri) is significantly less than 1, the lower confidence limit
of Var(ri) is strictly positive for the RIP process, and the CDF of ri has confidence limits
away from 0 and 1.
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E(ri) Var(ri)

RIP process [0.415, 0.652] [0.073, 0.235]
HIP process [0.262, 0.692] [0.000, 0.659]

Table 5: Confidence intervals for E(ri) and Var(ri), computed without removal of individ-
uals with small variations in their reported incomes. The nominal coverage probability is
0.9.

P(ri  r) RIP process HIP process
r = 0.0 [0.000, 0.422] [0.000, 0.665]
r = 0.1 [0.001, 0.482] [0.014, 0.766]
r = 0.2 [0.024, 0.613] [0.075, 0.804]
r = 0.3 [0.054, 0.674] [0.104, 0.827]
r = 0.4 [0.090, 0.770] [0.204, 0.872]
r = 0.5 [0.125, 0.845] [0.217, 0.935]
r = 0.6 [0.188, 0.930] [0.208, 0.979]
r = 0.7 [0.256, 0.959] [0.250, 1.000]
r = 0.8 [0.330, 0.987] [0.310, 1.000]
r = 0.9 [0.411, 0.998] [0.369, 1.000]
r = 1.0 [0.498, 1.000] [0.428, 1.000]

Table 6: Confidence intervals for P(ri  r), computed without removal of individuals
with small variations in their reported incomes. The nominal coverage probability is 0.9.
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E(ri) Var(ri)

RIP process [0.451, 0.615] [0.050, 0.293]
HIP process [0.242, 0.633] [0.000, 0.700]

Table 7: Confidence intervals for E(ri) and Var(ri), computed without the de-noising step
and with the removal of individuals with small variations in their reported incomes. The
nominal coverage probability is 0.9.

P(ri  r) RIP process HIP process
r = 0.0 [0.000, 0.364] [0.000, 0.715]
r = 0.1 [0.012, 0.413] [0.006, 0.765]
r = 0.2 [0.026, 0.510] [0.037, 0.845]
r = 0.3 [0.084, 0.584] [0.122, 0.843]
r = 0.4 [0.118, 0.725] [0.152, 0.882]
r = 0.5 [0.150, 0.826] [0.170, 0.936]
r = 0.6 [0.232, 0.879] [0.216, 0.983]
r = 0.7 [0.309, 0.934] [0.283, 1.000]
r = 0.8 [0.393, 0.982] [0.324, 1.000]
r = 0.9 [0.493, 0.990] [0.359, 1.000]
r = 1.0 [0.558, 1.000] [0.384, 1.000]

Table 8: Confidence intervals for P(ri  r), computed without the de-noising step and
with the removal of individuals with small variations in their reported incomes. The
nominal coverage probability is 0.9.
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