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Abstract

In the developed model, without knowing the trading strategies of the other traders in
a financial market, traders cannot derive a rational expectations equilibrium. In a dynamic
setting, market participants employ learning and adaptation to develop trading strategies to
accommodate for this information deficiency. Model-consistent use of market-based information
generally improves price performance. It can also produce episodes of extreme sudden mispricing
despite model generated historical support for its use. Simulations examine the impact of
information constraints and bounded rationality on general price efficiency and sudden market
mispricing.
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1 Introduction

An extraordinary number of traders employing a wide variety of strategies populate financial mar-

kets. Many attempt to extract rent through trading. Vigorous trading and extensive market

commentary suggests a lack of uniformity among market participants and possible disagreement as

to the true price determination process. The disagreement extends to issues of market efficiency and

how possible deviations from efficiency can best be exploited. The diversity in trading strategies

spans value seeking to extracting profitable information from the markets to exploiting anomalies.1

Within these categories, individual decisions regarding the processing of information contribute to

the large diversity of beliefs and strategies.

∗I thank Carl Chiarella and members of SydneyAgents for feedback throughout the development of this paper. I
gratefully acknowledge the financial support of the Paul Woolley Centre for Capital Market Dysfunctionality.
†Economics Discipline Group, University of Technology, Sydney, PO Box 123 Broadway, NSW 2007 Australia,

david.goldbaum@uts.edu.au
1Labels applied to trading strategies such as fundamental trading, speculation, chartism, and technical analysis

capture this diversity.
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The developed model places traders into an imperfect information environment in which fun-

damental information is noisy. Market-based strategies have a role in extracting information from

market observables but cannot be employed perfectly without unattainable knowledge about other

traders’ strategies. The analysis explores the extent to which unavoidable and reasonable data-

driven adaptation and learning by market participants become the source of market disruptions,

moving price substantially away from market fundamentals. The distinguishing feature of this

model is that the market-based trading captures information not otherwise available, improving

market efficiency when properly employed. Only when used improperly does the market based

information undermine price efficiency. The model thus offers insight into market behavior not

available from models such as Brock and Hommes (1998) that rely on inherently destabilizing

market-based strategy to move the market away from fundamentals or those following Grossman

and Stiglitz (1980) in which the market-based trading is simply a low-cost alternative to acquiring

the same information known to the informed fundamental traders.

Financial markets have long been recognized as potential feedback systems between market

behavior and trader beliefs. Beja and Goldman (1980) formally incorporate such feedback. The

complexities associated with devising an optimal trading strategy in the presence of market feedback

can lead to considerable uncertainty for the trader. This uncertainty can be incorporated into a

model as heterogeneity and bounded rationality. Frankel and Froot (1990) and De Long et al.

(1990a) and (1990b) define different groups of traders in order to formally explore the impact of

trader heterogeneity on the markets.

Empirically supported learning is one of a number of mechanisms developed to allow boundedly

rational agents to adapt to their environment within the limitations of their information or ability.

A learning process can generate emergence of rational behavior despite the limits on the agents’ in-

formation or sophistication, thereby achieving the rational expectations equilibrium (REE) without

necessarily relying on fully rational agents. Marcet and Sargent (1989a) and (1989b), and Evans

and Honkapohja (2001) include demonstrations of such convergence as examples in the formal de-

velopment of least-squares learning.2 Examples of convergence by learning include the models of

2Also see Sargent (1993).
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Bray (1982) and Townsend (1983). In contrast, Bullard (1994), Bullard and Duffy (2001), and

Chiarella and He (2003) highlight the possibility of non-convergence, while Timmermann (1996)

has the REE as the asymptotic limit but observes that the path dependent effects of learning can

be quite long lived, thus generating persistent non-equilibrium behavior.

Non-learning based adaptations include the genetic algorithm of LeBaron et al. (1999) in which

the traders individually evaluate, switch, disassemble and reassemble the trading rules employed.

Also prevalent in the literature are more structured models of switching over a fixed set of universal

strategic alternatives. Of interest in switching models is how a strategy based on market funda-

mentals or rational expectations performs in comparison to, and in the presence of, alternative

trading strategies. Non-rational strategies are demonstrated to survive and even prosper in such

competitive settings. The feedback between the market and beliefs can be particularly important

in the earned profits and population adoption of alternatives to fundamental strategies.

The two-choice model often consists of a fundamental strategy and a market-based strategy,

such as this example from Gaunersdorfer and Hommes (2007),3

E1t(pt+1) = pe1,t+1 = p∗ + v(pt−1 − p∗), 0 ≤ v < 1,

E2t(pt+1) = pe2,t+1 = pt−1 + g(pt−1 − pt−2), g ≥ 0.

The fundamental value, p∗, drives expectations in the first equation while the alternate extrapo-

lates the future value from current price innovation and is thus trend-following in nature.4 The

fundamental model generates price convergence to its fundamental value, making it inherently sta-

bilizing. The trend-following strategy tends to cause the market to drift away from fundamental,

making it inherently destabilizing. Complex dynamics in the market price can emerge as the con-

sequence of the ebb and flow in the relative popularity of the two strategies. This is particularly

true for models in which the population shifts towards adoption of trend-following expectations

3This formula is also employed by Frankel and Froot (1987). Variants of this trend following and fundamental
reverting system are common in two choice models.

4Sometimes a contrarian strategy is incorporated in place of or in addition to the trend-following strategy, for
example in Brock and Hommes (1998) and Chiarella and He (2001). Bias in the form of optimism and pessimism
is another form of heterogeneity as employed by Lux (1995), Lux (1998), and Kirman (1993). Brock and Hommes
(1997) allows for bias and extrapolation.

3



when the market is near equilibrium and towards fundamental expectations when the market is far

from equilibrium. Such population dynamics are explicit in De Grauwe et al. (1993), Giardina and

Bouchaud (2003), and Lux (1998) while achieved indirectly as the product of performance chasing

in Brock and Hommes (1998) and Brock and LeBaron (1996), among others.5

While an individual trader’s choice of strategy can be rooted in utility maximization in a discrete

choice environment, the strategy options from which the traders must choose typically lack such

micro-foundations. In the model developed for this paper, behavioral rules emerge to cope with

limited information. The fundamental approach has the trader use public and private fundamental

information to minimize mean squared error in forecasting future payoffs. Traders employing the

market-based approach seek to accurately extract information from market observables to exploit

the price inefficiency. Though they cannot know the exact relationship between price, information,

and payoff, they develop the best model supported by the historical data. The market misbehavior

that emerges is despite the efforts of the traders to make the best of the information they have

and the consequence of inaccessibility of information needed to fully know the environment they

populate.

Brock and LeBaron (1996) provides the fundamental traders with useful but idiosyncratically

noisy private information. In contrast, Grossman and Stiglitz (1980) provides uniform error-free

information and allows the market-based traders access to the current price, providing a mech-

anism for the trend-followers to extract the private information. The combination of the Brock

and LeBaron noisy private signal and the Grossman and Stigliz contemporaneous market infor-

mation employed in this investigation results in a market in which the price can be the superior

source for private fundamental information. Goldbaum (2003) employs such an information envi-

ronment, eliminating the arbitrary information cost as a necessary mechanism to motivate trader

abandonment of the fundamental-based strategy.

Goldbaum (2005) and Goldbaum (2006) substitute a least-squares learning model for the fixed

trend-following rule. The result is a market-based trading strategy that is not inherently desta-

5Hommes (2006) provides a summary of related dynamic heterogeneous agent models. Past performance can also
have an impact on the influence of a strategy on the market through wealth effects, as in Chiarella and He (2001),
Farmer and Joshi (2002), Chiarella et al. (2006), and Sciubba (2005).
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bilizing, an important differentiating feature when referencing Brock and Hommes (1998). The

combination of the dynamics of learning and switching is the alternative generator of financial

market features such as clustered volatility and fat-tailed returns. Together, the learning and the

use of the replicator dynamic (RD)6 to capture trader choice create a Grossman and Stiglitz paradox

with the accompanying absence of an equilibrium fixed point.

From both Brock and LeBaron (1996) and LeBaron et al. (1999), long memory stabilizes the

dynamic system by encouraging a focus on fundamentals while short memory encourages short-

run profitable behavior that destabilizes the system. Goldbaum (2006) considers a market model

employing convergence-friendly long memory settings to produce an asymptotically stable non-

equilibrium environment.

An exploration of learning and adaptation can also be found in Branch and Evans (2006), but

their use of the discrete choice dynamics (DCD)7 with long memory ensures the existence of a fixed

point. At the Branch and Evans fixed point, there is no longer interaction between the learning and

population processes.8 This is in contrast to Goldbaum (2006) where the nature of the interaction

is the source of the asymptotic stability.

The combination of a noisy signal of private information, an infinitely lived asset, and learning

supported information extraction from the current price allows exploration of market efficiency and

price dynamics produced by heterogeneity and switching on a platform very different from existing

studies. The model contains a tension between a strategy of relying on imperfect fundamental

information and that of seeking to optimally exploit the information content of market phenomenon.

Unique to this model, neither strategy is inherently superior so that there is no need to introduce

an arbitrary cost. Further, the market-based alternative to the fundamental information is not

inherently destabilizing but contributes towards market efficiency when used appropriately. The

finding is that the market cannot support exclusive use of a single information source in equilibrium.

Employing both fundamental and market information is supported either in an equilibrium that

6Employed by Sethi and Franke (1995), difference in performance leads to a population shift towards the more
successful strategy.

7Employed by Brock and Hommes (1997), the population is divided between strategies so that the more successful
strategy is employed by a greater proportion of the population.

8Learning and adaptation can be considered present in the process of individual trading rule adjustment and
discovery produced by the genetic algorithm employed by LeBaron et al. (1999).
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tolerates unequal return performance or in a perpetual state of disequilibrium produced by profit-

chasing behavior. The latter is found to be capable of producing substantial pricing error, depending

on the behavior of the market participants.

Section 2 develops the model and describes the implied sources of market disruptions. Section 3

presents the results of simulations exploring the different sources of disruptions to efficient pricing.

Section 4 concludes.

2 The Model

Analysis of the model reveals that equilibrium cannot be achieved with traders employing funda-

mental information alone. There is a role for market-based information in support of portfolio

decisions. The relationship between the price and payoff, though, is found to depend on the un-

observed extent to which traders rely on fundamental versus market-based information. In the

absence of this information, a dynamic model is developed based on the trader estimating the

relationship.

2.1 Information and model development

The market environment consists of a risky dividend-paying asset and a risk-free bond paying R.

The risky asset can be purchased at price pt and is subsequently sold at price pt+1 after paying the

holder dividend dt+1. The dividend process follows an exogenous AR(1) process

dt+1 = φdt + εt+1, φ ∈ (0, 1) (1)

with innovations distributed εt ∼ IIDN(0, σ2ε ). The traders select one of two forecast methods based

on the information sets

Zit ∈ {ZFit , ZMit }

ZFit = {sit, dt, dt−1, . . . }

ZMit = ZMt = {pt, dt, dt−1, . . . }.
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All traders have access to the dividend history up to time t. The two information types represent

two extremes of the trader population. The fundamental method (F) makes use of a noisy signal

on next period’s dividend,

sit = dt+1 + eit (2)

eit ∼ IIDN(0, σ2e).

The market-based approach (M) makes use of endogenous market-generated information. Consis-

tent with the model solution, pt is the only useful market information available.9

Fundamental traders project dt+1 on the available information, obtaining the mean squared

error minimizing forecast with

E(dt+1|ZFit ) = (1− β)φdt + βsit (3)

and β = σ2ε /(σ
2
ε + σ2e).

10 Consistent with the fundamental traders’ model, pt can be expressed

linearly in dt and dt+1 so that

E(pt+1|ZFit ) = E

(
1

R− φ
((1− α)φdt+1 + αdt+2)

∣∣∣∣ZFit) (4)

where α can take any value α ∈ [0, 1].11 Based on this structure the fundamental information based

forecast of the excess payoff to the risky asset is

E(pt+1 + dt+1|ZFit ) =

(
R

R− φ

)
E(dt+1|ZFit ). (5)

The particular value of α drops out of the fundamental model’s forecast of the uncertain payoff. This

is convenient from a modeling perspective as the market clearing price will not require specifying

the traders’ belief about α, contributing to overall model robustness.

9Section 4 of Goldbaum (2006) considers a population of traders learning based on Zit = {sit, pt, dt, dt−1, . . . }. The
asymptotic behavior of the representative trader market is similar to that produced by this differentiated population
driven by the replicator dynamic process.

10This value of β also has the interpretation as the signal to noise ratio.
11A value θ = β is consistent with a fundamental trader only market clearing price.
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The market-based traders employ a forecasting model that is linear in all relevant variables

consistent to forecasting the following period’s payoff,

E(pt+1 + dt+1|ZMt ) = c0t + c1tpt + c2tdt. (6)

Each trader submits a demand function,

qit(pt) = (E(pt+1 + dt+1|Zit)−Rpt)/γσ2kt, (7)

that maximizes a CARA utility function with risk aversion coefficient γ and using conditional

variance σ2kt = Varit(pt+1 + dt+1|Zkit). Let qkt be the average demand of the population of type k

traders, k = F,M based on individual expectations (5) and (6). With portion nt of traders using

the fundamental approach and 1−nt employing the market-based approach, a consistent Walrasian

price function is

pt = pt(nt, ct) = b0t + b1t(nt, ct)dt + b2t(nt, ct)dt+1 (8)

in which ct represents a vector of the coefficients in (6). The coefficients of (8) solving the market

clearing condition, ntq
F
t + (1− nt)qMt = 0, are

b0(nt, ct) =
c0t(1− nt)

σ2
F

σ2
M

ntR+ (1− nt)(R− c1t)
σ2
F

σ2
M

(9)

b1(nt, ct) =
nt

R
R−φ(1− β)φ+ (1− nt)c2t

σ2
F

σ2
M

ntR+ (1− nt)(R− c1t)
σ2
F

σ2
M

(10)

b2(nt, ct) =
nt

R
R−φβ

ntR+ (1− nt)(R− c1t)
σ2
F

σ2
M

. (11)

The presence of dt+1 in the price equation is a consequence of the market’s aggregation of in-

dividual trader demand and the law of large numbers, which effectively filters out the individual

idiosyncratic error components of the fundamental traders’ signals.12 Fundamental trader uncer-

12Formally, pt = b0t + b1t(nt, ct)dt + b2t(nt, ct)(dt+1 + 1
ntN

∑
eit) but with large ntN population of fundamental

traders, the last term is of measure zero.
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tainty, the consequence of awareness of the idiosyncratic component of their signal, explains the

presence of dt. The extent to which the market clearing price reflects the public dt or the pri-

vate dt+1 depends on the confidence of the fundamental traders in their signal (β), the beliefs of

the market-based traders about the relationship between market observables and future payoffs

(c0t, c1t, c2t), the traders’ uncertainties in predicting future payoffs (σ2Ft, σ
2
Mt), and the proportion

of the market employing the fundamental strategy (nt). Naturally, also present in the price coef-

ficients is the opportunity cost of investing in the risky asset (R) and the AR(1) coefficient of the

dividend process (φ).

Let π̂kt represent the performance measure associated with type k strategy using information

up to the beginning of period t. The 2-choice version of the more general K choice Replicator

Dynamic (RD) model found in Branch and McGough (2008) generates the transition equation

nt+1 =


nt + r(π̂Ft − π̂Mt )(1− nt) for π̂Ft ≥ π̂Mt

nt + r(π̂Ft − π̂Mt )nt for π̂Ft < π̂Mt

(12)

with

r(x) = tanh(δx/2) (13)

driving the nt process. The alternative Discrete Choice Dynamic (DCD) model has as a transition

function

nt+1 =
1

2
(1 + tanh(ρ(π̂Ft − π̂Mt )/2)). (14)

What distinguishes the two population processes is whether the performance differential determines

the innovation in nt or its level directly. Under the RD process, the more successful strategy attracts

adherents from the less successful strategy, consistent with the process described in Grossman and

Stiglitz (1980). Under the DCD, employed in Brock and Hommes (1998) and many related papers,

π̂Ft − π̂Mt maps directly into nt with the superior strategy always employed by the majority of the

population.

The conditional variance terms associated with the model specific forecast errors are derived
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using (8) and the appropriate (5) or (6),

pt+1 + dt+1 − E(pt+1 + dt+1|ZFit ) =

(
1 + b1t + φb2t −

R

R− φ

)
(φdt + εt+1)

+b2tεt+2 + β
R

R− φ
sit (15)

pt+1 + dt+1 − E(pt+1 + dt+1|ZMt ) = (φ(1 + b1t + φb2t)− c1t(b1t + φb2t)− c2t)dt

+(1 + b1t + φb2t − c1tb2t))εt+1 + b2tεt+2. (16)

2.2 A partial solution

Let REE(nt) represent an nt-dependent REE according to the definition,

Definition 1. An nt-dependent Rational Expectations Equilibrium describes a market in which

the coefficients of the market-based strategy in (6) are consistent with the actual price coefficients

of the market clearing price function in (8). Further, the fundamental strategy employs beliefs

about the price function consistent with (4) and forecast dividends according to (3).

The market described by a REE(nt) is one in which the market-based trader’s belief about the

price formation process is consistent with the actual price function. Additionally, the fundamental

traders forecast price in a manner consistent with its actual formation and forecast divided to

minimize their mean-squared error. The equilibrium is described as nt dependent because the

belief-consistent values of c and b depend on nt.

The REE(nt) solution is the b2 that solves (19), (22), and (23) of the following so that, for
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n ∈ (0, 1],

p∗t = p∗t (nt) = b∗1(nt)dt + b∗2(nt)dt+1 (17)

b∗1(nt) =
nt(1− β)φ

(R− φ)
(
nt + (1− nt)

σ∗2F
σ∗2M

) (18)

b∗2(nt) =
ntβ + (1− nt)

σ∗2F
σ∗2M

(R− φ)
(
nt + (1− nt)

σ∗2F
σ∗2M

) (19)

c∗1(nt) =
R

(R− φ)b∗2(nt)
=
R
(
nt + (1− nt)

σ∗2F
σ∗2M

)
ntβ + (1− nt)

σ∗2F
σ∗2M

(20)

c∗2(nt) =
φ

R− φ
(R− c∗1(nt)) = − ntR(1− β)φ

(R− φ)
(
ntβ + (1− nt)

σ∗2F
σ∗2M

) (21)

σ∗F (nt)
2 =

(
(1− β)

(
R

R− φ

)2

+ b∗2(nt)
2

)
σ2ε (22)

σ∗M (nt)
2 = b∗2(nt)

2σ2ε . (23)

For nt = 0, b∗1(0) = φ/(R − φ), b∗2(0) = 0 as derived from the consistent solution c∗1(0) = 0 and

c∗2(0) = R.

Let p0t and p1t represent the price at the two information extremes based on the accuracy of

the private signal. With zero content in the signal, β = 0, while zero error results in β = 1. For

nt 6= 0,13

p0t ≡ p∗t (1)|β=0 =
φ

R− φ
dt

p1t ≡ p∗t (nt)|β=1 =
1

R− φ
dt+1.

Let pFt represent the price at the extreme of a market populated by only fundamental traders. With

nt = 1,

pFt ≡ p∗t (1) =
(1− β)φ

R− φ
dt +

β

R− φ
dt+1.

The opening for profitable employment of the market-based information is the fact that pFt ∈ [p0t , p
1
t ],

13p0t and p1t also correspond to the Fama (1970) semi-strong and strong form efficient prices.
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introducing predictability in the price as a consequence of dt+1 contributing to the value of both pt

and pt+1. The presence of the market-based traders moves the market towards the efficient market

price, as reflected in p∗t (nt) ∈ [pFt , p
1
t ] with lim

nt→0
p∗t (nt) = p1t . Since p∗t (0) = p0t there is a Grossman

and Stiglitz (1980) type discontinuity at nt = 0.

Observe that b∗1(nt) + φb∗2(nt) = φ/(R− φ). Let

α∗t = α∗(nt) =
ntβ + (1− nt)

σ∗2F
σ∗2M

nt + (1− nt)
σ∗2F
σ∗2M

,

allowing the REE(nt) price to be expressed as p∗t = 1
R−φ ((1− α∗t )φdt + α∗t dt+1). With α∗t ∈ [β, 1],

the REE(nt) price can be interpreted as the present discounted value reflecting the aggregation of

the market’s forecast of future dividends. The extent to which the REE(nt) price reflects the public

dt or the private dt+1 depends on the traders.

Contributing to the model’s robustness, the REE(nt) solution is consistent with the fundamental

trader presumption that b1t+φb2t = φ/(R−φ). The development of the REE(nt) does not depend

on the trader’s knowledge of b1t and b2t individually. This is convenient since the latter would

require the fundamental traders be aware of nt. As a consequence, the fundamental model can

rationally employ the correct p∗t (nt) price function. Alternatively, without any consequence on the

REE(nt) solution, the traders may mistakenly employ p∗t (mt) for mt 6= nt, or naively employ the

pFt , p0t , p
1
t , or any other price structure consistent with (4) without consequence on the market

clearing price.

Useful for non-equilibrium pricing, the condition under which the fundamental traders can rely

on b1t + φb2t = φ/(R − φ) is weaker than the conditions necessary to generate the full REE(nt).

It only requires c2t = (R − c1t)φ/(R − φ) as evidenced by substituting for c2t in (10) to produce

b1(nt, c1t) +φb2(nt, c1t) = φ/(R−φ) regardless of the value of c1t. Thus, the condition c2t = c∗2(c1t)

implied by (21) is a sufficient condition to support the price structure underpinning the fundamental

strategy. That is, in order for the fundamental traders’ forecast to conform to the requirements

of Definition 1, the market-based traders need only employ a c2t value that is REE(nt) consistent

with c1t without necessarily employing the correct REE(nt) implied c1t = c∗1(nt).
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The REE(nt) depends on the market-based traders correctly employing ct = c∗(nt) without

error. It is appropriate to ascertain whether the traders can deduce c∗ analytically from their

knowledge of the market. From (21), c∗2 can be expressed in terms of c∗1. For a known zero

net supply of the risky asset, the traders can determine that c∗0 = 0. For market-based traders

incorporating these two conditions into their understanding of the market, only c∗1 remains to be

derived. From (20), solving for c∗1 requires knowledge of nt. Reasonably, nt is not directly observable

and thus excluded from Zit. Since nt is the endogenous product of a dynamic system, the question

becomes whether some nfp value can be identified that is consistent with REE(nt).

Forward looking traders would select a strategy based on a forecast of the performance of the

strategy’s employment in the current period. Define performance in terms of individual profit,

πkit = qkit(pt+1 + dt+1 −Rpt). (24)

Using the REE(nt) consistent c0 = 0 and c2t = c∗2(c1t), and the market clearing condition for b2t

from (11), (24) generates, for nt ∈ (0, 1],

E(πFt ) = (1− nt)∆t (25)

E(πRt ) = −nt∆t (26)

so that E(πFt − πMt ) = ∆t. Here,

∆t = ∆(c1t, nt) =

nt(1− β)R+ (1− nt)(R− c1t)
σ2
F

σ2
M(

ntR+ (1− nt)(R− c1t)
σ2
F

σ2
M

)2
( R

R− φ

)2 (R− c1t)βσ2ε
σ2M

. (27)

The REE(nt) expected profit differential, E(π∗F − π∗M ), based on c1t = c∗1(nt), reduces to

∆∗(nt) = −

 1− β

nt + (1− nt)
σ∗2F
σ∗2M

2(
R

R− φ

)2 ntσ
2
ε

σ∗2M
. (28)

That ∆∗(nt) < 0 for all nt 6= 0 reveals the benefit to extracting filtered information from the REE
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Figure 1: nfp for DCD population dynamics.

market over direct access to noisy information. The fundamental traders only profit in the presence

of error in the market-based traders’ model, as c1t deviates sufficiently from c∗1(nt), allowing ∆t to

be positive.

A fixed point to the entire dynamic system thus requires the REE(nt) solution combined with a

fixed point to the population process. The fixed point condition depends on the population regime.

Proposition 1. For ρ ∈ [0,∞), there exists a unique fixed point nfp to the dynamic system

consisting of (1), (14), and (17).

Proof. Under the DCD population process, nt+1 = f(π̂Ft − π̂Mt ) according to (14) and at the

REE(nt), π̂
F
t − π̂Mt = ∆∗(nt) . For ρ < ∞, f(x) is continuous and monotonically increasing

in x. A fixed point solution is nfp such that nfp = f(∆∗(nfp)). Since lim
nt→0

∆∗(nt) = 0 and

∆∗(nt) is monotonically decreasing as nt increases to one, a unique nfp, 0 < nfp ≤ 1/2, such that

nfp = f(∆∗(nfp)) exists.

Figure 1 captures the existence of the fixed point under the DCD population process. Since the

slope of f(0) increases with ρ in Figure 1, the value of nfp ∈ (0, 1/2] decreases with increasing ρ.

At the extremes, ρ = 0 results in a horizontal f(πF − πM ) and nfp = 1/2 while ρ→∞ approaches

a step function in f(πF − πM ) so that nfp → 0. With E(πFfp − πMfp) < 0, the DCD fixed point is

14



inconsistent with the Grossman and Stiglitz (1980) notion of an equilibrium in which the expected

performance differential is zero.

Proposition 2. No fixed point exists for dynamic system consisting of (1), (12), and (17).

Proof. Under the RD population process, the fixed point condition requires the existence of an nfp

such that nfp = f(∆∗(nfp), nfp), a condition that reduces to simply nfp such that ∆∗(nfp) = 0.

Since no such nfp exists, there can be no fixed point to the RD population process.

The fixed point condition for the population process requires that ∆(c1t, nt) = 0. A fixed point

nfp exists as a function of c1t so that nfpt = n∗(c1t). The existence of an REE, attainable either

analytically or through learning, depends on the existence of an (nfp, c1) combination for which

nfp = n∗(c∗1(n
fp)). Such a point does not exist since for c1t = c∗1(nt), ∆∗(nt) < 0 for all nt ∈ (0, 1]

and E(πFt − πMt ) > 0 for nt = 0.

2.3 Learning

With the RD driving the evolution of the population, the dynamic system is characterized by

the existence of an REE(nt) in a belief that depends on knowledge of the unobservable nt and

is the source of instability in nt. Without a fixed point, the model exists in a permanent state

of adjustment. This investigation considers the impact on the market of reasonable boundedly

rational trader behavior given the non-equilibrium market condition.

Allow the traders to estimate the value of each of the needed nt-dependent variables as accom-

modation to the inability to develop an analytical solution. All traders would need to estimate

both πFt and πMt as inputs to the model adoption decision. Each trader would need an estimate

of the σ2kt appropriate for the model adopted as an input to demand. The use of the market-based

model would need an estimate for ct. Consider the updating algorithms
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ĉt = ĉt−1 + λt(Q
−1
t xt−2(pt−1 + dt−1 − ĉt−1xt−2))

′ (29)

Q̂t = Q̂t−1 + λt(xt−1x
′
t−1 − Q̂t−1) (30)

σ̂2kt = σ̂2kt−1 + θt((pt + dt − E(pt + dt|Zkt−1))2 − σ̂2kt−1) (31)

π̂kt = π̂kt−1 + µt(π
k
t−1 − π̂kt−1), k = F,M (32)

with xt = {1, pt, dt}. For λt = 1/t, the traders update the market-based model consistent with the

standard least-squares learning algorithm of Marcet and Sargent (1989b). For λt = λ, 0 < λ < 1,

the traders update with a constant gain by which the contribution of past observations to the current

parameter estimate decays exponentially. Similarly, σ̂2kt and π̂kt are simple sample averages of all

past observations if θt = µt = 1/t but a constant gain emphasizes the more recent observations.

Proposition 3. For a fixed n with λt = 1/t and σ2kt = σ2k(n, ct), the dynamic system consisting of

(1), (8), (29), and (30) is locally stable at the REE(n).

Proof. See Appendix

By Proposition 3, the DCD population process possibility converges to the REE(nfp). The RD

population process requires further analysis to understand the possible system dynamics.

2.4 Evolution without a Fixed Point

The basic system consists of the dividend process according to (1), the Walrasian market clearing

price as captured in (8), and the system for updating beliefs described by (29) through (32). In

addition, two population processes are considered for setting nt, the DCD process of (14) and the

RD process of (12). Imposing some constraints, much of what transpires in the dynamic system

can be understood from the phase space of nt and ĉ1t based on the RD population process in Figure

2. In order to generate the phase space, assume a high degree of rationality in the market-based

model so that c0t = c∗0 = 0 and ĉ2t = c∗2(ĉ1t), according to (21). This leaves ĉ1t as the only unknown

parameter of the market-based model. Let σ̂2tk = σ∗k(nt)
2 for k ∈ {F,M} so that the employed

16



conditional variances are correct expressions reflecting the current nt. Finally, let µt = 1 so that

expected relative performance is captured by ∆(ĉ1t, nt).

The ĉ1t process is at a fixed point and the REE(nt) if ĉ1t = c∗1(nt). At the REE(nt), the market-

based model correctly reflects the relationship between the observables pt and dt and the expected

payoff of the following period, E(pt+1 + dt+1). The function c∗1(nt) is monotonically increasing for

0 < nt ≤ 1 with c∗1(n)→ R for n→ 0 and c∗1(1) = R/β.

The population process is at a fixed point if ∆(ĉ1t, nt) = 0. Let c+1 (nt) and c−1 (nt) represent

the two functions capturing combinations of ĉ1t and nt consistent with ∆(ĉ1t, nt) = 0 in (27). For

0 < nt ≤ 1, the former is monotonically increasing and everywhere above c∗1(nt),

c+1 (nt) = R

(
1 + (1− β)

nt
1− nt

σ2M
σ2F

)
, (33)

while the latter is a constant, located below c∗1(nt), at c−1 = R. Expected profits are zero at

ĉ1t = c+1 (nt) because the resulting market clearing price is the efficient market price, p1t , at which

expected profits are zero regardless of the individual trader’s position taken in the market. Expected

profits are zero at ĉ1t = c−1 (nt) because the market traders expect the risky asset to offer the same

return as the risk-free bond and thus there is no trading at the market clearing price.

A final relevant function included in the phase space is c̃1(nt). The expression ntR+(1−nt)(R−

ĉ1t)
σ2
F

σ2
M

appears in the denominator of the two pricing coefficients, b1(ĉ1t, nt) and b2(ĉ1t, nt). The

expression’s negative is the slope of the aggregate demand function so that when it is zero, the

market demand function is horizontal and different from zero, producing an infinite market clearing

price (based on a zero net supply). Let c̃1(nt) be the function

c̃1(nt) = R

(
1 +

nt
(1− nt)

σ2M
σ2F

)
, (34)

capturing the combinations of ĉ1t and nt such that ntR+(1−nt)(R−c̃1(nt))
σ2
F

σ2
M

= 0. For 0 < nt ≤ 1,

c̃1(nt) is monotonically increasing and everywhere above c+1 (nt). As the function is approached from

below or from the right the pt(c1t, nt)→ ±∞.

Above c̃1(nt), the combination of nt and ĉ1t do not allow for a reasonable market clearing price.
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The precarious nature of the market in the vicinity of c̃1(nt) is the consequence of the excessive

influence of the market-based traders. As a group, they have an upward sloping demand function

in price. From the perspective of the market-based traders, an increase in the price is interpreted

as an indication of good news about the underlying dt+1, increasing demand. At ĉ1t = c∗1(nt), the

market-based model correctly accounts for the influence of the market-based trader population on

the price. As a consequence, the aggregate demand for the risky asset remains downward sloping

in pt. For ĉ1t > c∗1(nt), the market-based model projects too large a deviation in dt+1 based on

the observed pt. The market-based traders thus take too large a position relative to the underlying

reality. For ĉ1t > c̃1(nt), the position produces an upward-sloping demand function.14

Whether the market can be relied on to behaved reasonably well depends on whether the system

can be relied upon to remain well below c̃1(nt). The traders themselves cannot be relied upon to

recognize dangerous market conditions introduced by their own belief. For any ĉ1t ∈ (R,R/β] there

exists n1 and n2, 0 < n1 < n2 ≤ 1 for which ĉ1t = c̃1(n1) and ĉ1t = c∗1(n2). The market-based

traders’ belief that c1t = ĉ1t is reasonable if the unobserved nt is near n2 but disastrously wrong,

generating substantial mispricing if nt is near n1.

Given nt, c
∗
1(nt) is an attractor for ĉ1t. For ĉ1t between c−1 (nt) and c+1 (nt), E(∆(ĉ1t, nt)) < 0

so that nt tends to decline. In this range, the market-based model, while not perfectly correct

for extracting information from the price, is sufficiently correct so that the market-based forecasts

are more accurate than the average fundamental trader relying on a noisy signal. Outside this

range, with ĉ1t < c−1 or c+1 (nt) < ĉ1t < c̃1(nt), the inaccuracy in the market-based model is large

enough that the user of the fundamental information expects to earn profits at the expense of the

market-based traders and therefore nt tends to increase in this region.

All four functions of the phase space radiate out from the point nt = 0 and ĉ1t = R but because

of the discontinuity at nt = 0, none take a value of R at nt = 0. Therefore, though the four

functions come arbitrarily close, they never intersect. The failure of c∗1(nt) to intersect with either

c−1 (nt) or c+1 (nt) graphically captures the absence of a fixed point to the dynamic system.

14As an alternate interpretation, for ĉ1t > c∗1(nt), the market-based model can be seen as underestimating the
influence of the market-based traders on the price since, for ĉ1t < R/β, there exists n > nt such that ĉ1t = c∗1(n).

18



0 n
�
' 0.2 0.4 n

+ ' 0.8 1

nt

R

c1 t

c1
-

c1
*

c1
+

c
�

1c
�

1 '

c1
+ '

Invalid Price

Region

Figure 2: Phase space in nt and ĉ1t for the RD population process. c∗1(nt) is the REE(nt) value of
ĉ1t and the attractor to the learning process for a given nt. For c−1 < ĉ1t < c+1 (nt) the market-based
model is sufficiently accurate to earn profits at the expense of the fundamental strategy leading to
a decline in nt. For ĉ1t < c−1 and for c+1 (nt) < ĉ1t < c̃1(nt) the fundamental strategy dominates
the market-based strategy so that from these regions nt is increasing. Above c̃1(nt), the aggregate
demand curve for the risky security is upward sloping and no positive price exists to clear the
market. The boundaries of the phase space are affected by how the traders estimate the conditional
variance associated with their forecasts. The dashed lines reflect an alternate specification for which
ĉ1t 6= c∗1(nt) is recognized when calculating the market-based model error.
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2.5 Degrees of Bounded Rationality

The market-based traders employ least-squares learning to overcome the inability to form rational

expectations about the relationship between market observables and payoffs. Different levels of

rationality can be considered. Traders aware of the market and its structure, as previously asserted,

can deduce that c0 = 0 regardless of the unobservable nt. They may also choose to incorporate

a feature of the REE(nt) by imposing ĉ2t = c∗2(ĉ1t) according to (21). At the other extreme, the

traders can let the data drive the estimates of all three regression coefficients.

Traders aware of the market structure recognize that the least-squares learning process is not

asymptotically consistent with the setting. There is no fixed point to the dynamic system to which

the learning process can potentially converge. The least-squares learning performs best for the

market-based traders if nt is relatively stable over time so that the relationship between price

and payoff changes slowly relative to the rate of learning. The aware trader recognizes that the

more accurate the market-based model, due to consistency in the data across time, the greater the

incentive for a performance-induced decline in nt. As nt changes over time, the market traders

must update their coefficient estimates. The equal weighting of past observations in least-squares

learning consistent λt = 1/t contributes to the stability of the system but individual accommodation

to the changing environment may lead traders to employ constant gains, setting λt = λ in (29) and

(30), in order to emphasis more recent observations. Similarly, the traders have to choose how to

weight realized performance in computing the performance measure in (32).

Another challenge for the traders is how to evaluate their error associated with the forecast of

the payoff, a component of the demand equation submitted to the Walrasian auctioneer. The error

variance can be derived for each forecast strategy, but only with knowledge of the true nt-dependent

pricing relationship. Equations (22) and (23) capture the REE(nt) values while (31) is driven by

the data. For ĉ2t = c∗2(ĉ1t), but ĉ1t 6= c∗1(nt), the conditional variances become

σ2F (nt, ĉ1t) =

(
(1− β)

(
R

R− φ

)2

+ b22(nt, ĉ1t)

)
σ2ε (35)

σ2M (nt, ĉ1t) =

((
R

R− φ
− ĉ1tb2(nt, ĉ1t)

)2

+ b22(nt, ĉ1t)

)
σ2ε , (36)
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reflecting the dependence of the market-based strategy on the accuracy of the employed forecast

model parameters. The bounded rational alternative is to have the traders estimate the values.

3 Simulations

Simulations confirm that the model driven by random innovations in dividends can produce the

dynamics suggested in the Figure 2 phase space. The simulations also explore the impact of altering

aspects of the model, including the parameters δ (or ρ), λt, and µt. Variations will also include

features capturing the rationality or sophistication of the market participants in determining how

they estimate ĉ2t, σ
2
Mt, and σ2Ft as well as comparing the two population processes, RD versus

DCD.

3.1 Environment Settings

Let p1t , the strong form efficient market price, be the standard against which the market price is

evaluated. Let |pt − p1t | be the measure of market inefficiency. In general

pt − p1t = (b1t + φb2t − φ/(R− φ))dt + (φb2t − φ/(R− φ))εt+1. (37)

Equation (37) reveals two sources of deviation from p1t . The condition b1t + φb2t = φ/(R − φ)

only requires ĉ2t = c∗2(ĉ1t), allowing ĉ1t to deviate from its REE(nt) value while still producing

zero for the first term. The second term requires the REE(nt) coefficients and nt → 0 to generate

φb∗2(nt) → φ/(R − φ). Deviation in the first term from zero indicates market-based trader error

induced mispricing of public information. The second term is a reflection of the failure to fully and

properly include private dt+1 information into the price.

All simulations share the parameter values R = 1.02, φ = 0.5, σε = σe = 1 so that β = 1/2,

and the starting value, n0 = 0.75. Pre-simulation learning on the market-based model takes place

on 200 observations generated using a fixed nt = n0.

Figures 3 through 8 display the evolution of endogenous parameters typically produced by the

simulations. To aid direct comparison, each figure is based on the same underlying randomly
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Table 1: Simulation parameter settings

Simulation nt process δ or ρ λ µ ĉ2t σ̂kt
1 DCD 10 1/t 1/t c∗2(ĉ1t) exp

2 RD 0.01 1/t 1/t c∗2(ĉ1t) exp

3 RD 1 1/t 1/t c∗2(ĉ1t) exp

4 RD 0.05 1/t 1 c∗2(ĉ1t) σ∗(nt)

5 RD 0.01 0.01 1/t c∗2(ĉ1t) exp

6 RD 0.01 1/t 1/t estimate exp

Shared Parameters: R = 1.02, φ = 0.5, σε = σe = 1⇒ β = 1/2

generated {dt} series. Each frame plots the time progression of endogenous parameters of the

model (green). The top left frame plots ĉ1t with a solid line at lim
n→0

c∗1(n) = c−1 = R. When useful,

the frame also includes c∗1(nt) (red), ĉ1t(nt) (cyan), and c̃1(nt) (blue) as determined by σ̂2Mt and

σ̂2Ft. The top right frame plots φb2t with a solid line at φ/(R−φ), reflecting the value that sets the

second term of (37) to zero. The lower left frame plots nt and the lower right plots pt − p1t . Figure

8 also includes frames for ĉ2t and of b1t + φb2t since these are not constrained in Simulation 6.

3.2 Discrete Choice Dynamics

The local stability of the fixed point under the DCD is assured if the traders employ µt = 1/t in

their performance updating. Figure 3a shows the early convergence of the system towards the fixed

point values of the respective parameter, which is indicated with a dashed horizontal line. Figure

3b shows the asymptotic properties of the convergence.

Shorten the memory associated with performance and the random component of realized returns

becomes, for ρ 6= 0, the source of noise in nt around nfp. Larger ρ generates a wider distribution

of realized nt around the fixed point nfp. For sufficiently large ρ the lower tail of the distribution

of realized nt enters the invalid price region of Figure 2, halting the simulation. At the default

parameters and µt = 1, ρ > 0.5 is large enough to prevent convergence.

3.3 Replicator Dynamics

The RD process offers a point of attraction at nt = 0 and ĉ1t = R. When the system is well-

behaved, with nt → 0 and the remaining parameters consistent with the REE(nt) solution, the
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(a) Early convergence towards REE(nfp)

(b) Asymptotic properties around REE(nfp)

Figure 3: Baseline DCD: Convergence to a REE fixed point at nfp = 0.3572.
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Figure 4: Baseline RD produce smooth convergence nt → 0 with ĉ1t → c∗1(nt).

REE(nt) solution has b2t → φ/(R− φ) as nt → 0.

The first RD simulation employs parameters consistent with convergence towards the attractor.

The users of the market-based model are highly rational, imposing c0t = 0 and ĉ2t = c∗2(ĉ1t). The

gain parameters in (29) and (32) are least-squares learning consistent with λt = µt = 1/t and the

traders’ estimates of σ2Ft and σ2Mt are derived from experience and updated according to (31).

Figure 4 is typical of the time series generated by this environment. The main features are that

there is convergence in nt towards zero and progressive updating of ĉ1t so that it remains close to

c∗1(nt) and well below c̃1(nt). As a consequence, ĉ1t converges towards lim
n→0

c∗1(n) = R. Contributing

to the smooth process of convergence is the slow evolution in nt, a product of a relatively small

δ. Increasing δ results in nt oscillating while maintaining an underlying process of convergence
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Figure 5: RD with high sensitivity to performance, with δ = 1, produces oscillations in nt overlaying
its general decreasing trend.

towards zero, as captured in Figure 5.

The simulation presented in Figure 6 substitutes the long memory of µt = 1/t with µt = 1.

To better replicate the dynamic rules governing the phase space in Figure 2, the traders measure

conditional variance using (22) and (23) rather than the experience-driven (31).15 In this scenario,

the convergence of nt towards zero is halted with nt hovering around 0.39. At time t, the dt+2

component of pt+1 remains unpredicted by the market. Payoffs are thus not perfectly forecastable

and the realization produces realized profits that deviate from expectations. With a short memory,

profit realizations generate movement in nt from period to period that undermine the learning of

15The impact of how traders estimate conditional variance on the simulation is negligible.
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Figure 6: RD with µt = 1 stabilizes n at a value above zero. The estimate ĉ1t is stable over time
while c∗1(nt) fluctuates rapidly with the fluctuations in nt.

ĉ1t and ultimately the convergence of nt.

Switching to constant gains in the updating of the market-based model parameters, with λt =

0.01, generates a different kind of non-convergence. As seen in Figure 7, after a period of learning

ĉ1t settles into a stable distribution relative to c∗1(nt), moving over time to track movement in c∗1(nt).

For sufficiently large nt, the narrow distribution in ĉ1t favors the market-based model that allows

quick adjustment in beliefs to the evolving market condition. The constant gain becomes a liability

as nt converges towards zero, the distribution in ĉ1t is at some point too wide to remain between

c−1 and c+1 . The resulting mispricing substantially rewards the fundamental model, reversing the

progress in nt with π̂F − π̂M remaining positive for some time while the small profits earned by the
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Figure 7: RD with λt = 0.01 generating small but consistent model error that produces long periods
of near efficient pricing with inevitable bursts of mispricing.

market-based strategy take time to accumulate.

Relax the rationality of the trader by decoupling ĉ2t from c∗2(ĉ1t) so that the market-based

strategy estimates both c1t and c2t through the learning process of (29) and (30). The consequence

is two fold. First, the possible inconsistency between ĉ1t and ĉ2t 6= c∗2(ĉ1t) introduces a new source

of error in the market-based model. Second, there is additionally a price impact beyond simply

adding to the magnitude of the error.

Figure 8 includes a middle row plotting ĉ2t on the left and b1t + φb2t on the right. The latter

captures that the first term of (37) is no longer constrained to zero. Under this environment,

the market clearing pricing function is no longer consistent with the pricing function employed in

27



Figure 8: RD with ĉ2t allowed to differ from c∗2(ĉ1t) producing error in the pricing of observable
and unobservable components of price.

the fundamental model, introducing a new source of error. The consequence of this is seen in the

forecast errors in (15) and (16). For (15), the coefficient on φdt+εt+1 is no longer zero and the same

is true for the coefficient on dt in (16). The market does not properly price even the observable

component of price. Relative to the base simulation, price deviations from the efficient price show

considerably more volatility clustering with greater volatility that coincide with deviations from

bt1 + φb2t = φ/(R− φ).

A more sophisticated fundamental trader accounts for the market-based population induced

distortion to the price, as though deviations from b1t +φb2t = φ/(R−φ) are known and accounted

for. This sophisticated fundamental trader behavior introduces multiple market clearing prices at
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Figure 9: Roots of the b2(nt, ĉ1t, ĉ2t) solution in the presence of rational fundamental traders who
account for the deviation from b1t+φb2t = φ/(R−φ). ĉ1t = 1.1. The root for the b2(nt, ĉ1t) solution
is included as a dashed line. For ĉ2t = c∗2(ĉ1t), for all values of nt, one of the roots of b2(nt, ĉ1t, ĉ2t)
is equal to the root of b2(nt, ĉ1t). For ĉ2t > c∗2(ĉ1t), the point of tangency that ensures continuity in
the roots of b2(nt, ĉ1t, ĉ2t) that match the root of b2(nt, ĉ1t) is lost. For ĉ2t < c∗2(ĉ1t), a gap opens
between the two points of intersection in two of the roots tracing b2(nt, ĉ1t).

low values of nt, as depicted in Figure 9. Rather than imposing discipline in the pricing of the

asset, the pricing errors are larger than with the model populated by less sophisticated fundamental

traders.

The three frames of Figure 9 are generated by solving for the market clearing b2(nt, ĉ1t, ĉ2t)

using the simulation default parameters. Each frame displays a different condition relating ĉ2t to

c∗2(ĉ1t). When ĉ2t = c∗2(ĉ1t) is imposed before solving for the price, only one non-imaginary root

exists, the b2(nt, ĉ1t) solution. This solution is included in each frame as a dashed line. As n

decreases from above towards ñ = 0.034, the solution for b2 → ∞. The three real roots obtained
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when solving for b2(nt, ĉ1t, ĉ2t) are depicted under the three scenarios of ĉ2t = c∗2(ĉ1t), ĉ2t > c∗2(ĉ1t),

and ĉ2t < c∗2(ĉ1t). All three real roots are potential solutions. For ĉ2t = c∗2(ĉ1t), segments of the

three roots combine to produce a curve that overlaps with the b2(nt, ĉ1t) solution. For ĉ2t > c∗2(ĉ1t),

a range of n open for which the two roots close to the b2(nt, ĉ1t) solution become imaginary, leaving

as the only real price coefficient a root that that does not produce a smooth market clearing price

function in n. The multiple solutions means that the market cannot reasonably be simulated.

The traders estimate the conditional variance of the pricing error associated with their chosen

model. The ratio of the estimated variance, σ̂2Mt/σ̂
2
Ft, affects the coefficients of the pricing equation,

b1t and b2t. The baseline updating mechanism of (31) has the traders updating the estimated

variance based on observation. In a well-behaved market such as that seen in Figure 4, substituting

the REE(nt) variance values, σ2Ft = σ∗F (nt)
2 and σ2Mt = σ∗M (nt)

2 of (22) and (23), has little impact

since the estimates track closely to the REE(nt) values. The ratio σ∗F (n)2/σ∗M (n)2 is monotonically

increasing in n. At the default simulation parameter values, the ratio ranges from 1.52 to 3.08 for

nt near zero and nt = 1, respectively.

Away from the REE(nt), the impact on how traders estimating the conditional variance impacts

market behavior and convergence can be seen in (33) and (34). The inverse ratio appears in the

formulas for c+1 and c̃1. Increasing relative uncertainty among the employers of the market-based

strategy decreases their price impact (because they take a smaller position). The greater stability

is reflected in the increased distances between c∗1(nt) and c+1 (nt) and between c+1 (nt) and c̃1(nt).

Incorporating (35) and (36) into the model accomplishes this feat by introducing the error in

ĉ1t into the the concurrent time t market-based trader uncertainty. Larger estimates of c1t feed

greater market-based trader uncertainty, attenuating market-based trader demand. The dashed

lines designated c+
′

1 and c̃
′
1 in Figure 2 that are everywhere above the corresponding c+1 and c̃1

capture the consequence. There is a value n̄
′

such that for nt > n̄
′

the invalid price region does

not exist. Thus, regardless of how large is ĉ1t > R, there exists a positive market clearing price.

Similarly, there is a value of n+
′

such that for nt > n+
′

the market-based strategy is always

profitable.
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4 Conclusion

Data overcomes deficiencies in trader knowledge when traders rely on increasingly long histories to

inform their decisions, producing a well-behaved, though not necessarily efficient, market. Regimes

in which traders place greater emphasis on more recent outcomes undermine market efficiency and

allow other deficiencies to affect the price.

If the trader strategy-adoption choice is best captured by the Discrete Choice Dynamic, the re-

sulting fixed point is a rational expectations equilibrium at which the market-based trading strategy

reliably outperforms the fundamental strategy. The pricing function that clears the market is a

stable linear combination of public and private information. The fixed point can be achieved with

long memory. It is characterized by price predictability that goes unexploited as the un-modeled

component of individual trader strategy adoption has traders continue to use the fundamental strat-

egy despite its inferior performance. The model fails to converge to the fixed point when traders

employ finite memory. In this case, the market is prone to frequent sudden substantial pricing

errors where even just random dividend realizations can lead to sudden jumps in the population

between the two strategies.

If the evolution in strategy-adoption is better captured by the Replicator Dynamic process,

then the market is without a fixed point. Instead, it offers an opportunity for the market to grow

increasingly less reliant on fundamental traders. If this potential is realized, it is only because the

traders employ increasingly long data histories to improve their ability to extract private informa-

tion from market observables and because the population as a whole uses similarly long histories

when evaluating performance. The resulting market is asymptotically well-behaved, generating

only small price deviations from full efficiency, though these deviations are clustered in magnitude.

Decisions by traders to place greater emphasis on current data undermine convergence, thereby

undermining market efficiency. The nature of the market deviation depends on the traders. For

short memory in evaluating relative performance the market is characterized by a non-degenerative

population of fundamental traders and a price function that generates prices close to the REE price

appropriate for the population split. Short memory in estimating the parameters of the market-

based model produces a market that is reasonably well-behaved for the majority of the time with
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sudden bursts of mispricing. The mispricing appears when the population, based on historical

performance, crosses a threshold to become over-reliant on the market-based strategy relative to

its accuracy. Correct pricing returns when the population reverses trend and increasingly adopts

the fundamental strategy, driven by the performance during the period of mispricing.

Other sources of error remain present when traders rely on shorter histories. Inconsistency

between the coefficients of the pricing model introduces error not only for the traders using the

model but also undermines the price forecast of fundamental traders. All errors are made less ex-

treme if the market-based traders employ some caution when their information calls for substantial

positions. This calls for a more sophisticated strategy whereby the market-based traders exercise

restraint when the market-derived information is suspect due to the size of the position.
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Part I

Proof of Proposition 3

Proof. Under the regularity conditions (see Marcet and Sargent (1989b), p342-343), the stability

of the learning process can be established from the stability of T (c)− c where T (c) maps c into the

projection coefficients. From (20) and (21),

c1 =
R

R− φ
1

b2

and

c2 =
φ

R− φ
(R− c1)

so that, according to (11),

T (c1) =
nR+ (1− n)(R− c1)

σ2
F

σ2
M

nβ

and

T (c2) = − φ

R− φ

nR(1− β) + (1− n)(R− c1)
σ2
F

σ2
M

nβ


The eigenvalues of the Jacobian, ∂[T (c)−c]

∂c , are
{
−1, −1− 1−n

n
1
β
σ2
F

σ2
M

}
, which are both less than

zero. The learning process is thus locally stable so that Pr(|ct − c∗| > δ)
a−→ 0 for δ > 0.
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