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Abstract 

 

The paper studies a panel data models with a multifactor structure in both the errors and the regressors 

in a microeconometric setting in which the time dimension is fixed and possibly very small. An esti-

mator is proposed that is consistent for fixed T  as N  tends to infinity and that does not impose re-

strictive conditions on the number of factors or the number of regressors or the time series properties 

of the panel. A small Monte Carlo simulation shows that this estimator is very accurate for very small 

values of T . Two empirical cases are provided to demonstrate performances of our estimator in prac-

tice. 
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1. Introduction 

The effects of common shocks – which may be macroeconomic, technological, institutional, political, 

environmental, health, sociological, etc. (e.g. Andrews (2005)) - have been recently investigated by 

various authors including, among others, Case (1991), Conley (1999), Andrews (2005), Pesaran 

(2006) and Bai (2009) (see also the references therein). These shocks induce cross-sectional depend-

ence in panel data models which is often modelled in a parsimonious way through the use of factors. 

The earlier contributions allow only for models with factors in the errors (e.g. Case (1991), Conley 

(1999)) for which consistent estimation of the interest parameters could be done by maximum likeli-

hood procedures (e.g. Robertson and Symons (2000)). Coakley, Fuertes and Smith (2002) suggest an 

estimation procedure based on principal components applied to the residuals. More recently, it has 

been noticed by several authors that common shocks would likely affect both the errors and the re-

gressors (see among others Andrews (2005) and Pesaran (2006)) and would thus induce endogeneity 

requiring more sophisticated estimation procedures. 

    Most of the current literature has a macroeconometric focus and has mainly developed from the 

seminal contribution of Pesaran (2006) who proposes estimators which are consistent when both the 

N  and T  dimensions tend to infinity. These results have been extended by Bai (2009) to set-ups that 

allow for a more complex dependence of the regressors on the unknown factors and factor loadings, 

and by Su and Jin (2012) and Huang (2013) to semiparametric models. Tests for cross-sectional de-

pendence have been studied by Pesaran (2004), Hoyos and Sarafidis (2006) and Sarafidis, Yamagata 

and Robertson (2009). Dynamic panel data models with factor structures have been considered by 

Phillips and Sul (2003), Coakley, Fuertes and Smith (2006), Sarafidis and Robertson (2009) and 

Sarafidis (2009). 

    The two main features of the macroeconometric literature on cross-sectional dependence are: (1) 

the time dimension of the panel is large and the cross-sectional dimension may be small (e.g. Phillips 

and Sul (2003)) or more commonly it is also large (e.g. Pesaran (2006), Hoyos and Sarafidis (2006) 

and Sarafidis, Yamagata and Robertson (2009), Sarafidis and Robertson (2009), and Sarafidis (2009), 

Bai (2009)); and (2) the number of explanatory variables is usually small. On the other hand, microe-

conometric models are usually characterized by a very large number of individuals, a large number of 

explanatory variables, usually much larger than the time dimension which tends to be small. Typical-

ly, microeconometric models also involve endogeneity (not caused by the factor structure) and may be 

semi- or non-parametric. For these models it is also unreasonable to assume that all regressors are af-

fected by shocks such as age, gender, race, etc. Therefore, the solutions offered by the macroecono-

metric literature are unsuitable and very often not even applicable. Surprisingly, the microeconometric 

literature dealing with common shocks affecting the errors as well as the regressors is very small. 
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    The main contributions to the microeconometric literature involving a factor structure in the errors 

as well as correlation between the errors and the regressors are given by Ahn, Lee and Schmidt (2001) 

and Ahn, Lee and Schmidt (2013), Andrews (2005) and Kuersteiner and Prucha (2013). Ahn, Lee and 

Schmidt (2001) and Ahn, Lee and Schmidt (2013) study a model in which the factors are fixed (rather 

than random as in this paper). Regarding the factors as parameters creates identification problems re-

quiring a standardization of the factors which is exploited by Ahn, Lee and Schmidt (2001) and Ahn, 

Lee and Schmidt (2013) to construct GMM estimators for the slope coefficients. Andrews (2005) and 

Kuersteiner and Prucha (2013) regard the factors as unobservable random variables and as such their 

models seem to be suited to capture common shocks. Andrews (2005) gives conditions for consisten-

cy of the OLS estimator in a cross-section regression with common shocks and extends his results to 

some panel data estimators. Kuersteiner and Prucha (2013) extend the work of Andrews (2005) by 

deriving a central limit theory for sample moments under weaker assumptions and establishes limiting 

distribution of GMM and maximum likelihood estimators for general models in which the regressors 

may present cross-sectional correlation. 

    This paper builds on this literature by considering a linear panel data model in which the errors and 

the regressors are affected by common shocks represented by common factors. The model is very 

similar to the one suggested by Pesaran (2006)) but the underlying assumptions are expressed condi-

tionally on the common factors in the same spirit as Andrews (2005) and Kuersteiner and Prucha 

(2013). We suggest a GMM estimator that it is a standard fixed effects estimator in which the N  and 

T  dimensions are interchanged and as such it is very easy to calculate and can be applied in a micro-

econometric set up in which the number of regressors is large (and possibly much larger than the time 

series dimension) and no restriction is imposed on the number of factors (c.f. Ahn, Lee and Schmidt 

(2001), Ahn, Lee and Schmidt (2013)). We will require the regressors to be exogenous even if this 

condition can be weaken as in Kuersteiner and Prucha (2013) and will analyse a model in which 

classical endogeneity is present in a companion paper. 

    The structure of the paper is as follows. Section 2 considers a panel data model with homogeneous 

slopes, discusses the assumptions, proposes a generalized method of moment estimators and studies 

its asymptotic properties. Section 3 extends these results to a model with heterogeneous slopes. Sec-

tion 4 discusses a simple simulation exercise. Two empirical examples are provided in Section 5. Sec-

tion 6 concludes. All proofs are in the Appendix. 

2.  Homogeneous slopes 

We consider a simple panel data model with cross-sectional dependence and correlation between the 

errors and the regressors: 

(1) 
( ) ( ) ( ) ( ) ( )

0 0
1 1 1
i i i i

T T k k T p p
y z x eα β
× × × × ×
= + +  
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(2) 
( ) ( ) ( )1 1

i T i i
T mT m

e F γ ε
×× ×

= +  

(3) 
( )

.i i T i
m p

x v F
×

= + Γ  

The observed regressors are split into two groups: those which are not affected by common shocks 

(e.g. individual characteristics such as gender, race, age, etc.), iz , and those which may be affected by 

common shocks, ix . The parameters associated to the regressors, 0α  and 0β , are the same for every 

1,2,...,i N=  and 1,2,....,t T=  (hence the homogeneous slopes). The common shocks are captured by 

the unobserved matrix of common factors, ( )1 2, ,..., 'T TF f f f= , (c.f. Andrews (2005)); iγ  and iΓ  are 

a ( )1m×  vector and a ( )m p×  matrix of factor loadings; iε  is a purely idiosyncratic random vector 

with zero mean and constant covariance matrix; and iv  represents the values of the regressors that 

would be observed in the absence of common shocks. Factors, factor loadings, iv  and iε  are not ob-

served. The factor structure generates cross-sectional heterogeneity in the error term of (1). This also 

creates correlation between errors ie  and regressors ix  so that standard estimators of the parameters 

in (1) are inconsistent. 

    We now introduce some assumptions on both the observed and the unobserved variables. We as-

sume that the matrix of factors, which we do not observe, is random and finite with probability one. 

Since we regard the time dimension as fixed, no other assumptions for the factors are needed.  

    All variables are defined on a probability space ( ), , PΩ  . The sigma algebra generated by the ran-

dom vector ( )Tvec F  is denote by ( )( ){ }: Tm
Tvec Fω ω= ∈ ∈    where Tm  is the Borel sigma 

algebra in Tm
 . Notice that   is a sub-algebra of  . Notice also that expectations and probabilities 

conditional on   are unique up to a.s. equivalence, so that for example two conditional expectations 

which differ only on sets with probability zero are regarded as equivalent. We will regard condition-

ing on   as conditioning on the factors TF .  

 

Assumption C.1. The sequence of random vectors { }, 1,...,i i nε =  is conditionally independent given 

 , [ ]| 0iE ε =  a.s. and 1

2
|iE δε +  < ∆ < ∞   a.s. for some 0δ > , 1,....,i N= . 

 

Assumption C.2. The sequence of random matrices ( ){ }, , 1,...,i iz v i n=  is conditionally independent 

given   with ( ) 2

2
, |i iE z v

δ+  < ∆ < ∞
 

  a.s. for some 0δ > , 1,....,i N= .  
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Assumption C.3. The sequence of random vectors { }, 1,...,i i nγ =  is conditionally independent given 

 , [ ]|iE γ γ=  a.s. and 1

2
|iE δγ +  < ∆ < ∞   a.s. for some 0δ > , 1,....,i N= . 

 

Assumption C.4. The sequence of random vectors ( ){ }, 1,...,ivec i nΓ =  is conditionally independent 

given  , ( ) ( )|iE vec vec Γ  = Γ   a.s. and 2

2
|iE Mδ+ Γ ≤ < ∞   a.s. for some 0δ > , 

1,....,i N= . 

 

Assumption C.5. The random vectors iε , ( ),i ivec z v , iγ  and ( )ivec Γ  are conditionally independent 

given   for all 1,2,...,i N= . 

 

    Notice that the expectations in the assumptions hold a.s. since they involve conditional expectations 

which are random variables and may fail on sets of probability zero. The random vectors iε ’s are 

assumed to be purely idiosyncratic and the ( ),i iz v ’s are assumed to form a sequence of independent 

observations given the factors. Since we interpret iv  as a vector of regressors which would be 

observed if the common shocks would not affect the regressors, we need to assume that these form an 

independent sequence of events which are heterogeneous and may be correlated with iz .  

    The factor loadings in both the regressors and the errors are assumed to be independent conditional 

on   but not necessarily identically distributed. Notice that Assumption C.5 only requires 

independence conditional on   but does not require the factor loadings in the regressors and errors to 

be independent unconditionally (c.f. Pesaran (2006)). Thus, the covariance matrix between ix  and ie  

conditional on   is zero: 

(4) 

( ) ( ) ( ) ( ) [ ]{ }
( ) ( ) [ ] ( ) [ ]{ }

' | | ' |

| ' | | '

cov , |

0

|

'

'

.

i i p T Ti i i i

i ip T Ti i

x e I F E vec E vec E F

I F E vec E E vec E F

γ γ

γ γ

= ⊗ ⋅  ⋅  −   ⋅ ⋅   

= ⊗ ⋅   ⋅ −   ⋅ ⋅ 

Γ Γ

Γ  Γ 
=

   

      

On the other hand, the unconditional covariance matrix between regressors and errors, 

(5) 

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( )

( ) ( ) [ ]

( ) ( ) ( ) ( ) [ ]

cov , ' '

'

| '

' '

' '

' |

|

' ' ,

'

i i p T T p T T

p T

i i i

T

p T T

p T T p T

i

T

i

i i

i

x e E I F vec F E I F vec E F

E I F E vec F

E I F E vec E F

E I F vec F E I F ve

E

c E F

γ γ

γ

γ

γγ

   = ⊗ ⋅ − ⊗   
 = ⊗  ⋅   
   − ⊗   ⋅    

   = ⊗ Γ ⋅ − ⊗

Γ Γ

Γ

Γ

Γ ⋅   



 
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is, in general, not zero. Thus Assumptions C.1-C.5 imply endogeneity due to the factor structure. 

More traditional forms of endogeneity in the presence of factor structures in the errors and the regres-

sors are studied in a companion paper.  

    Ahn, Lee and Schmidt (2001) consider a similar model to ours but they do not make explicit the 

dependence of the regressors on the factors or the factor loadings. They regard the factors as fixed 

parameters so that it is as if they would conduct the analysis conditional on the factors. Our work dif-

fers from theirs on three major aspects. Firstly, regarding the factors as parameters implies a fre-

quentist sampling scheme whereby the repeated sampling takes place with the factors unchanged from 

sample to sample. In our model repeated sampling takes place with the factors TF  also been 

resampled. Since the factors are not observable, we believe that our sampling scheme is a more realis-

tic way of capturing common shocks. Secondly, as the first line of (4) shows, once we condition on 

the factors, the correlation between the regressors and the errors must come through the correlation 

between the regressors and the factor loadings given the factors in their case, and this makes the anal-

ysis more complicated. Thirdly, Ahn, Lee and Schmidt (2001) do not allow for cross-sectional de-

pendence among the errors in the sense that  

(6) ( )cov , | ' ' ' ' 0i j T T T Te e F F F Fγγ γγ= − = , 

whereas, unconditionally 

(7) 

( ) ( )( ) [ ]
[ ]

[ ] [ ] [ ]

cov , ' ' ' '

' ' | | ' ' |

' ' ' ' .

i j T i i T j j T i i j T j

T i j T T i j T

T T T T

e e E F F E F E F

E E F F E E F E E F

E F F E F E F

γ ε γ ε γ ε γ ε

γ γ γ γ

γγ γ γ

   = + + − + +  
       = − ⋅       

= − ⋅

    

Regarding the factors as parameters also entails identification problems (c.f. Ahn, Lee and Schmidt 

(2001)). More details will be discussed below. 

    Andrews (2005) considers a similar model for 1T =  in which iε  and iv  are identically zero and 

studies the OLS estimator. He assumes that the factors and the factor loadings are mutually independ-

ent and shows that if the factor loadings in the regressors and those in the errors are conditionally in-

dependent then the OLS estimator is consistent, and, once renormalized in the usual way, has an as-

ymptotic mixed normal distribution. However, if the two sets of factor loadings are conditionally de-

pendent, the OLS estimator is inconsistent and has an asymptotic mixed normal distribution once it 

has been re-centred in a suitable way. 

    The assumptions of Pesaran (2006) are slightly different because he specifies assumptions for the 

unconditional distributions of the various quantities involved and allows for both T  and N  to tend to 

infinity. Thus, Pesaran (2006) imposes stationarity on the distributions of the factors and the compo-

nents of iε  and iv  and assumes independence of the components of iε  and iv  over the cross-sectional 

dimension. Since the time dimension is fixed in our model, we do not need any assumption on the 
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temporal dependence for iε , iv  and factors. We also do not impose that iε  and iv  are independent 

unconditionally. Moreover, we impose independence between the factor loadings in the regressors 

and the errors conditional on the factors but do not make any claim about their unconditional distribu-

tion and so may or may not violate Assumption 3 of Pesaran (2006). 

    To develop consistent estimators of 0β  and 0γ  when N →∞  and T  is fixed, we notice that, given 

Assumptions C.1-C.5, the following conditional moments hold 

(8) ( ) ( ) [ ] [ ]( ), ' | , ' | ,| | 'ii i i i i j T TiE E zz x e E z x e F FE v γ   = = + Γ        

for , 1,2,...,i j N= , which can be rewritten as ( ) ( ), ' | 0i i i jE z x e e − =   a.s. implying the uncondi-

tional moments ( ) ( ), ' 0i i i jE z x e e − =  . The corresponding empirical moments are  

(9) ( ) ( )
1

1 , ' 0
N

i i i
i

z x e e
N =

− =∑ , 

where 
1

1 N

j
j

e e
N =

= ∑ . Then the resulting estimator of ( )0 0', ' 'α β  is 

(10) ( ) ( ) ( )( ) ( ) ( )
1

1 1

1 1, ' , , 'ˆ
ˆ

,
N N

i i i i i i i
i i

z x z x z x z x y y
N Nβ

α −

= =

 
 

 
= − − 
  

 
∑ ∑ , 

where ( )
1

1 /
N

i
i

y N y
=

= ∑  and ( )
1

1 /
N

i
i

x N x
=

= ∑ . If all the regressors are affected by the factors, the above 

estimator simplifies to an estimator proposed by Coakley, Fuertes and Smith (2006). 

(11) ( ) ( )
1

1 1

ˆ ' '
N N

i i i i
i i

x x x x y yβ
−

= =

 
= − − 
 
∑ ∑ . 

    Notice that the estimator in (10) is the ordinary least squares estimator for the transformed model 

 ( ) 0

0

,i i i iy y z z x x e e
α
β
 
 
 

− = − − + − . 

Thus, it is a fixed effects estimator for the model 

 ( ) 0

0

,i i i iy a z x e
β
α 
 
 

= + + , 

where a  is a 1T ×  vector of fixed effects (notice that the i  and t  dimensions are interchanged from 

the “standard” fixed effects estimator). The estimator in (10) can be easily estimated using standard 

statistical packages. 
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    In order to compare our estimator with the GMM estimator of Ahn, Lee and Schmidt (2001) we 

now take 1m = . By standardizing the factors as ( )2 31, , ,...., 'T TF f f f=  and considering them as pa-

rameters, Ahn, Lee and Schmidt (2001) notice that  

 
( ) ( )( )

[ ] [ ] [ ]( )
, | ,

| , |
i i it T i i T i t i it

t i T t i T t T i i

E z x e F E z v F f

f E z F f E v F f F E

γ ε

γ γ γ

  =  + Γ +    
= + Γ

  

 and 

 
( ) ( ) ( )

[ ] [ ] [ ]( )
1 1, | ,

| , | .
i i t i T i T i i t i i

t i T t i T t T i i

E z x f e F E z F v f

f E z F f E v F f F E

γ ε

γ γ γ

  =  Γ + +    
= + Γ

  

Thus ( )( )( )1, | 0i i it t i TE vec z x e f e F − =  , so that an estimator of 0α  and 0β  can be obtained from the 

( )( )1p k T T+ −  empirical equivalents to the moments condition  

 ( )( )( )1, 0i i it t iE vec z x e f e − =  . 

For the case where 1m > , Ahn, Lee and Schmidt (2013) use the same technique to introduce a nor-

malization and exploit this for the estimation of the interest parameter. These are very different from 

the moment conditions in (8) and closely exploit the standardization of the factors in a standard factor 

model (for a clear discussion see Geweke and Zhou (1996)) which is not invariant to different order-

ing of the variables (c.f. Chan, Leon-Gonzalez and Strachan (2013)).  

    Consistency of our estimator in (10) is given in the following theorem. 

 

Theorem 1. Given Assumptions C.1-C.5, if 

 ( ) ( ) ( ) ( )
1 1

1 1, ' , |    and   ' ' |
N N

i i i i i T T i
i i

E z z v v z z v v E F F
N N= =

   
− − − − Γ −Γ Γ −Γ   

   
∑ ∑   

are uniformly positive definite a.s., the following results hold:  

1) 
ˆ
ˆ
α

β

 
  
 

 is unbiased; 

2) 0

0

ˆ

β̂

α α
β

   
→       

 a.s.. 

 

    Theorem 1 shows that, for fixed T , the estimators α̂  and β̂  are unbiased and consistent as N  

tends to infinity. For the case where the factors affect all the regressors, unbiasedness was also noted 

for the estimator in (11) by Coakley, Fuertes and Smith (2006) who assume that the factor loadings in 

the regressors and the errors are mutually independent (which is stronger than Assumption C.5).  
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    To obtain the asymptotic distribution of α̂  and β̂  we need slightly stronger versions of Assump-

tions C.1 and C.3 requiring the existence of higher order moments. 

 

Assumption N.1. The sequence of random vectors { }, 1,...,i i nε =  is conditionally independent given 

 , [ ]| 0iE ε =  a.s., [ ]' | ii iE εε ε = Σ  a.s. and 2 |iE δε +  < ∆ < ∞   for some 0δ >  a.s., 

1,....,i N= . 

 

Assumption N.3. The sequence of random vectors { }, 1,...,i i nγ =  is conditionally independent given 

 , [ ]|iE γ γ=  a.s., [ ]|cov i iγγ = Σ  a.s. and 2 |iE δγ +  < ∆ < ∞   for some 0δ >  a.s., 

1,....,i N= . 

 

Theorem 2. Given Assumptions N.1, C.2, N.3, C.4 and C.5, if  

 ( ) ( ) ( ) ( )
1 1

1 1, ' , |    and   ' ' |
N N

i i i i i T T i
i i

E z z v v z z v v E F F
N N= =

   
− − − − Γ −Γ Γ −Γ   

   
∑ ∑    

are uniformly positive definite a.s., the following results hold conditional on  :  

 ( )( ) ( )( ) ( )1 1/20

0

0ˆ
ˆ

,D
T T p kN B F A F N I

ββ

α α −

+

 
− →

   
      
 

  (stably), 

where  

 ( ) ( )( ) ( ) ( )( )
1

1lim , ' , |'
N

i zN vN T i zN vT i T N TN i
i TF FA E F F

N
Fε γω µ τ ω µ τ

→∞
=

 = − + Γ − + Γ Σ + Σ∑ 

 ( ) [ ] ( ) ( )( )
1

1lim ' , , || '
N

i iNT zN vN T zN vN T
i

B E F
N

F Fµ τω µ τω
→∞

=

+ Γ + Γ= −∑   

 ( ) ( ) ( )
1

,    and 1 , , | .  
N

zN vN i ii i i
i

E z
N

z x vω µ τ
=

=   = ∑   

  

Corollary 1. Given Assumptions N.1, C.2, N.3, C.4 and C.5, if  

 ( ) ( ) ( ) ( )
1 1

1 1, ' , |    and   ' ' |
N N

i i i i i T T i
i i

E z z v v z z v v E F F
N N= =

   
− − − − Γ −Γ Γ −Γ   

   
∑ ∑    

are uniformly positive definite a.s., 

 0

0

ˆ
ˆ

DN X
β

α α

β

   
− →  

 


       

, 
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where  

 ( )( ) ( ) ( )( )( ) ( )1 1
0, T T T T TX N B F A F B F pdf F dF

− −
≡ ⋅∫ . 

 

    Theorem 2 shows that, for fixed T , α̂  and β̂  have a normal asymptotic distribution conditional 

on the factors. However, removing the conditioning on TF , the asymptotic distribution of our estima-

tor is covariance-matrix-mixed normal with mixing density given by the density function of the fac-

tors (c.f. Corollary 1) which is unknown.  

    Theorem 2 implies that 0

0

ˆ
ˆN

ββ

α α   
     

 
−


 




 converges stably over   in the sense of Renyi (1963): 

The sequence of random variables ( )N Nξ ξ ω= , 1,2,...N =  is stable if for any event F ∈  with 

( )Pr 0F > , the conditional distribution of Nξ  with respect to F  tends to a limiting distribution (see 

also Kuersteiner and Prucha (2013)). Stability implies the mixed normality result in Corollary 1, 

which for the case where 1T = , is analogous to the results for the ordinary least squares estimators 

derived by Andrews (2005) (e.g. his Theorem 4). Similar mixed normality results are obtained by 

Kuersteiner and Prucha (2013). 

    We now briefly deal with the problem of hypothesis testing in this set-up. Even if the relevant dis-

tribution for ( )ˆˆ ', ' 'α β  is the unconditional one, which is nonstandard, tests of hypotheses can be con-

structed as usual. In order to do this we need to be able to “estimate” ( )TA F  and ( )TB F  conditional 

on  . From the proof of Theorem 1 we know that  

 ( ) ( ) ( )( ) ( )
1

1ˆ , ' , ,
N

i i i i T
i

B z x z x z x B F
N =

= − →∑  a.s.. 

    For ( )TA F  we need more restrictive versions of Assumptions C.2 and C.4 requiring the existence 

of higher order moments. 

 

Assumption CM.2. The sequence of random matrices ( ){ }, , 1,...,i iz v i n=  is conditionally independ-

ent given   with ( ) 4

2
, |i iE z v

δ+  < ∆ < ∞
 

  a.s. for some 0δ > , 1,....,i N= .  

 

Assumption CM.4. The sequence of random vectors ( ){ }, 1,...,ivec i nΓ =  is conditionally independ-

ent given  , ( ) ( )|iE vec vec Γ  = Γ   a.s. and 4

2
|iE Mδ+ Γ ≤ < ∞   a.s. for some 0δ > , 

1,....,i N= . 
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Lemma 1. Given Assumptions N.1, CM.2, N.3, CM.4 and C.5, then 

 

(12) 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )

1

1ˆ , , ' , , ˆ

               , , ' , ,ˆ

   a.s.

ˆ

.

ˆ

N

i i i i i
i

i i i

T

i i

A z x z x y x

y

y z x z
N

y z x z z x z

A

x x

F

α

α

β

β

=

  = −     
  ⋅ −

 
− − −   

 

 
− − −  


  

   
→

∑

 

 

An asymptotic version of the F-test conditional on   for the null hypothesis that 

( )0 0 0: ', ' 'H R rα β =  against the alternative hypothesis ( )0 0 0: ', ' 'H R rα β ≠ , where R  is a known and 

fixed ( )q p k× +  matrix of rank q p k< +  and r  is a known and fixed 1q×  vector can be easily con-

structed since conditional on    

(13) ( ) ( )
11 1 2ˆˆ ˆ' '

ˆ
ˆ

ˆ
ˆ

DN R r RB AB R R r qχ
β β

α α−
− −   

      
   

   
− − →      

   
 

under the null hypothesis. Notice that the chi-square random variable on the right-hand-side does not 

depend on  , so that the left-hand-side of (13) will converge to a ( )2 qχ  unconditionally. 

    Asymptotic version of the t-test can be constructed similarly. If we denote by ( )2ˆi TFσ  the element 

in position ( ),i i  of the matrix 1 1ˆˆ ˆB AB− − , we can test the null hypothesis that the i th component of 

( )0 0', ' 'α β  equals to a fixed value r  by noting that under the null hypothesis conditional on   

 ( ) ( ) ( )1/22 ˆˆ 0,1D
i i r Nθσ

−
− → , 

where îθ  denotes the i th component of ( )ˆ',ˆ 'ˆ 'θ α β= . Once again the limiting distribution under the 

null hypothesis does not depend on   so that 

 ( ) ( ) ( )1/22 ˆˆ 0,1D
i i r Nθσ

−
− → . 

We summarise this in the following corollary. 

 

Corollary 2. Let R  be a known and fixed ( )q p k× +  matrix of rank q p k< +  and r  be a known 

and fixed 1q×  vector. Given Assumptions N.1, CM.2, N.3, CM.4 and C.5, if the null hypothesis 

( )0 0 0: ', ' 'H R rδ β =  holds then as N →∞ , 
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(14) ( ) ( )
11 1 2ˆˆ ˆ' '

ˆ
ˆ

ˆ
ˆ

DN R r RB AB R R r qχ
β β

α α−
− −   

      
   

   
− − →      

   
. 

Moreover, if 1q =   

(15) ( )
1 1

1 0,1ˆˆˆ ˆ '

ˆ
DR r N

RB AB R β

α
− −

 


 
− →   

  
. 

 

Notice that the distributions of the two test statistics above under the null hypothesis do not depend on 

 , however, they do depend on   under the alternative hypothesis. 

 

    We now investigate briefly the effects of dependence between the factor loadings in the regressors 

and the errors conditional on   for our estimator.  

 

Assumption D.5. The random vectors iε , ( ),i ivec z v  and 
( )

i

ivec
γ 
  Γ 

 are conditionally independent 

given   for all 1,2,...,i N= . 

 

Theorem 3. Given Assumptions C1-C.4 and D.5, if  

 ( ) ( ) ( ) ( )
1 1

1 1, ' , |    and   ' ' |
N N

i i i i i T T i
i i

E z z v v z z v v E F F
N N= =

   
− − − − Γ −Γ Γ −Γ   

   
∑ ∑    

are uniformly positive definite a.s., conditional on   

 ( ) ( )
10

0

0
ˆ
ˆ

T
T

B F
Fββ

α α −   
      

 
→ +  ∆ 

 a.s., 

where ( )TB F  is defined in Theorem 2 and 

 ( ) [ ]
1

1lim ' ' | ' '
N

i T T i T TN i
T E F F F F

N
F γ γ

→∞
=

∆ = Γ −Γ∑  . 

 

Notice that by replacing Assumption C.5 with Assumption D.5, the estimators of both 0δ  and 0β  

have an asymptotic bias conditional on  , dependent in a complicated way on the correlation be-

tween the factor loadings and the distribution of the factors. This implies that unconditionally, the es-

timators of both 0α  and 0β  have a non-degenerate non-standard asymptotic distribution: 

( ) ( )
10

0

0
ˆ
ˆ

D
T

T

B F
Fβ

α α

β
−   

      

 
→ +  ∆ 

. 
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3. Heterogeneous slopes 

In this section, we consider a more general case, where the coefficients of iz  and ix  are allowed to be 

different for each individual. Precisely, the model is 

(16) 
( ) ( ) ( ) ( ) ( )1 1 1

i i i i i i
T T k k T p p
y z x eβα
× × × × ×
= + +  

(17) 
( ) ( ) ( )1 1

i T i i
T mT m

e F γ ε
×× ×

= +  

(18) 
( )

i i T i
m p

x v F
×

= + Γ  

(19) 0

0

1

2

i i

ii

α α
η
η

β β
     

= +     
     

, 

where 1iη  and 2iη  are random variables. We are interested in inference about the mean of the individ-

ual-specific slope coefficients 0α  and 0β . These parameters are estimated using the estimator (10) 

derived in the previous section.  

    Some further assumptions are needed. 

 

Assumption H.5. Conditional on  , ( )21 '', 'i iηη , iv , iε , iΓ  and iγ  are independent for , ,1i N= … .  

 

Assumption H.6. The sequence of random vectors ( ){ }21 ' ', 1,...,',i i i nηη =  is conditionally independ-

ent given   with ( )1 2 ' ' |', 0i iE η η  =   and ( ) 1
21 2

'', ' |iiE
δ

ηη
+  < < ∞

 
∆ . 

 

Assumption HN.6. The sequence of random vectors ( ){ }21 ' ', 1,...,',i i i nηη =  is conditionally inde-

pendent given   with ( )1 2 ' ' |', 0i iE η η  =  , ( ) ( )2 21 1', ',' ' ' |i ii iE ηη η ηη  = Σ   and 

( ) 2
21 2

'', ' |iiE
δ

ηη
+  < < ∞

 
∆ . 

 

Assumption H.5 extends assumption C.5 by requiring that ( )21 '', 'i iηη  is independent of iv , iε , iΓ  

and iγ  conditional on  . This does not require unconditional independence so it is weaker than As-

sumption 3 of Pesaran (2006). 

    Theorem 4 gives the distributional properties for our estimator. 

 

Theorem 4. If Assumptions C.1, C.2, C.3, C.4, H.5 and H.6 hold and if 

 ( ) ( ) ( ) ( )
1 1

1 1, ' , |    and   ' ' |
N N

i i i i i T T i
i i

E z z v v z z v v E F F
N N= =

   
− − − − Γ −Γ Γ −Γ   

   
∑ ∑   
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are uniformly positive definite a.s.,  then 

(1) 
ˆ
ˆ
α

β

 
  
 

 is unbiased; and 

(2) 
ˆ
ˆ
α

β

 
  
 

 is consistent. 

If Assumptions N.1, CM.2, N.3, CM.4, H.5 and HN.6 hold, and  

 ( ) ( ) ( ) ( )
1 1

1 1, ' , |    and   ' ' |
N N

i i i i i T T i
i i

E z z v v z z v v E F F
N N= =

   
− − − − Γ −Γ Γ −Γ   

   
∑ ∑    

are uniformly positive definite a.s., then conditional on  , 

 ( ) ( ) ( )( ) ( )1/210

0

0,
ˆ
ˆ

D
T T T p kN B F A F C F N I

β
α

β

α −
+

    
     − → + 
      (stably), 

where  

 ( ) ( )( ) ( )( )
1

1li 'm |, ' ,i

N

T N zN vN T i i i zN vN T
i

F FC F E
N ηω µ τ ω ω ω µ τ

→∞
=

− + Γ Σ − + Γ =  ∑  , 

and iω , ( ),zN vN TFµ τ + Γ , ( )TA F  and ( )TB F  are defined in Theorem 2.  

 

    Theorem 4 shows that for a fixed T  our estimator is unbiased, consistent and asymptotically nor-

mal conditional on the factors. This is different from the conditional asymptotic distribution given in 

Theorem 2 because of the presence of the term ( )TC F . Thus, the effect of random coefficients on the 

asymptotic properties of our estimator is just an increase in the variance. 

    Since the factors are not observable, it is the marginal distribution which is the relevant distribution, 

so removing the conditioning on  , we obtain the following corollary. 

 

Corollary 3. Given Assumptions N.1, CM.2, N.3, CM.4, H.5 and H.N6 the following result holds: 

 

( ) ( ) ( )( ) ( )( ) ( )

0

0

1 1

ˆ
ˆ

0,

D

T T T T T T

N X

X N B F A F C F B F pdf F dF

α

β

α
β

− −

   
      

 
− →  

 

+ ⋅



≡ ∫
  

 

Thus, ( )ˆ '', ˆ 'α β  is asymptotically covariance-matrix-mixed normal. Notice that Theorem 3 and Corol-

lary 3 reduce to Theorems 1 and 2 and Corollary 1 if the iη ’s are identically zero. 
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    In order to construct tests on 0α  and 0β  we need to find a consistent estimator of the asymptotic 

covariance matrix ( ) ( ) ( )( ) ( )1 1
T T T TB F A F C F B F− −+ , which is given in the following theorem. 

 

Lemma 2. If assumptions N.1, CM.2, N.3, CM.4, H.5 and HN.6 hold, then a consistent estimator of 

( ) ( )T TA F C F+  can be obtained by expression (12), so that a consistent estimator of the asymptotic 

covariance matrix conditional on   in Theorem 3 is still given by expressions 1 1ˆˆ ˆB AB− −  in the previ-

ous section.  

 

    Asymptotic tests of hypothesis can be constructed as outlined in the previous section. 

 

Corollary 4. Let R  be a known and fixed ( )q p k× +  matrix of rank q p k< +  and r  be a known 

and fixed 1q×  vector. If assumptions N.1, CM.2, N.3, CM.4, H.5 and HN.6 and the null hypothesis 

( )0 0 0: ', ' 'H R rα β =  hold then (14) and (15) still hold for the model (16)-(19). 

4. Monte Carlo Study 

This section provides some Monte Carlo evidence on the properties of the generalized methods of 

moment estimator suggested in the previous sections. To simplify the simulation we assume that all 

the regressors are affected by the common shocks so that we can compare out estimator with that of 

Ahn, Lee and Schmidt (2001) and Ahn, Lee and Schmidt (2013) (abbreviated in ALS) as well as with 

the CCEMG and CCEP estimators of Pesaran (2006). These have been designed for a model similar 

to ours but for a panel in which both the cross-section and the time dimensions are large. We will also 

include in the comparison the OLS estimator. 

    We consider a simplified version of the data generating process (DGP) used by Pesaran (2006) in 

his Section 7. Precisely, we assume the DGP is  

(20) 1 1 1 1 2 2it i t i i t i i t ity d x x eξ β β= + + + , 

(21) 1 1 2 2 3 3it i t i t i t ite f f fγ γ γ ε= + + +  

and  

(22) 1 1 2 2 1 1 2 2 3 3ijt ij t ij t ij t ij t ij t ijtx a d a d f f f v= + + Γ + Γ + Γ + , 

where 1,2j = , 1,2,...,i N=  and 1,...,t T= . Notice that we consider the case where β  has only two 

components to allow a comparison with the results of Pesaran (2006) because the CCEMG cannot be 

calculated when T  is less than the dimension of β  (when p T= , the matrix 'i w ix M x  may or may 

not be singular depending on the sample realization of ix  and iy ). 
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    The common factors and the errors in (22) are generated as follows 

 
( )1

, 50

. . . 0,1 for 1,2, 49,...,0,...,

0

jt fj jt

j

f f i i d N j t T

f

ρ −

−

= + = = −

=
 

 
( )

[ ]

1

, 50

. . . 0,1 for 1,2, 49,...,0,...,

0, . . . 0.05,0.95 .

ijt vij ijt

ij vij

v v i i d N j t T

v i i d U

ρ

ρ

−

−

= + = = −

= 

 

The errors in (21) are generated as AR(1) process 

 ( )1/22
, 1 1it i i t i i itε εε ρ ε σ ρ ζ−= + −  

for [ ]1,..., / 2i N=  and as MA(1)  

 ( ) ( )1/22
11it i i it i itε εε σ θ ζ θ ζ

−

−= + +  

for [ ]/ 2 1,...,i N N= + , where ( ). . . 0,1it i i d Nζ  , ( )2 . . . 0.5,1.5i i i d Uσ  , [ ]. . . 0.05,0.95i i i d Uερ   and 

[ ]. . . 0,1i i i d Uεθ  . 

    The factor loadings in (22) are generated independently as ( )2. . . ,ijp jpi i d N µ σΓΓ   and 

( ). . . 0.5,1.5jp i i d Uµ −  for  1,2,3p =  and those in (21) as ( )2
1 . . . 1,i i i d N γγ σ , ( )2

2 . . . 1,i i i d N γγ σ , 

3 0iγ = , 2 0.7σΓ =  and 2 0.5γσ = . Finally, for the slopes coefficients, we consider both cases where 

01 02 1β β= =  (homogeneous slopes) and 0ij j iβ β η= +  where ( ). . . 0,0.4i i i d Nη   and 01 02 1β β= =  

(heterogeneous slopes). We will report results for some combinations of the parameters (further re-

sults are available from the Authors’ webpages).  

    When present, the fixed effects are generated as 

 ( )( )
1

2
2 2 1

2, 50

1

0.5 . . . 0,1 0.5 49,...,0,...,

0

t

t t

d

d d i i d N t T

d
−

−

=

= + − = −

=

 

and ( ). . . 1,1it i i d Nξ   and the  for 1,2ijka k =  are independently generated from ( )0.5,0.5N as in 

Pesaran (2006).  

    Tables 1 to 4 show bias and mean-squared errors for the cases without fixed effects by imposing the 

restrictions 1 0iξ = , 1 0ija =  and 2 0ija = . The estimation of the model without fixed effects is straight-

forward for all procedures considered. Fixed effects are introduced in Tables 5 and 6 and are dealt 

with by the method of Ahn, Lee and Schmidt (2013) and by our procedures by regarding 1td   and 2td  
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as unknown factors. For this reason we do not report any evidence for the case where there are fixed 

effects and only one factor (since this is treated by Ahn, Lee and Schmidt (2013) and by our method 

as a multifactor model without fixed effects). The method of Ahn, Lee and Schmidt (2013) was de-

vised for the homogeneous slopes case only. Therefore, for this estimator we will compute the ALS 

estimator for the heterogeneous slopes case as if the slopes would be homogeneous. 

    We report the bias and mean square error (MSE) for the our estimator (denoted by GMM), for the 

CCEMG and CCEP estimators of Pesaran (2006) and for the GMM estimators of Ahn, Lee and 

Schmidt (2001) and Ahn, Lee and Schmidt (2013) (denoted by ALS). We also report results for two-

sided “t test” for 0 01: 1H β =  and 0 01: 0.95H β = . The Monte Carlo experiments are based on 10,000 

replications. 

 

4.1 Bias and MSE 

The bias for our GMM estimator is very small for every sample size as one would expect from the 

fact that it is unbiased. In contrast, the bias of the CCEP and CCEMG is small only for large T . For 

very small T (say less than 5) these two estimators either cannot be computed or have bias compara-

ble or larger than that of the OLS estimator. The ALS estimator cannot be calculated for very small 

T . Its bias seems to increase as T  grows. 

    The MSE of our GMM estimator and ALS estimator decrease as N  becomes large but does not 

seem to be strongly affected by T . Simulations (that are not reported here but are available on the 

Author’s website) show that our GMM estimator is not affected by either the number of regressors or 

the number of factors. Pesaran’s CCEP and CCEMG estimators, on the other hand, are severely af-

fected. The MSE of both the CCEP and CCEMG decrease as either N  or T  grows and it can be ex-

tremely large for small T .  

    The presence of fixed effects (Tables 5 and 6) does not affect the bias or the MSE of our estimator 

but considerably affects the CCEP and the CCEMG estimators. As remarked by Pesaran (2006), the 

CCEP estimator performs better than the CCEMG.  

 

4.2 Size and power 

Tables 1 to 6 report a t-type test for 0 01: 1H β =  against 0 01: 1H β ≠  constructed using our, the CCEP 

and CCEMG estimators. The test based on our estimator tends to be slightly oversized but the empiri-

cal size is very close to the theoretical 5% size for 100N > . Also the size for the test based on our 

estimator does not seem to be affected by T . The power of the test base on our estimator seems to 

increase with T . 

    The tests based on CCEP and CCEMG estimators are sometimes considerably oversized and some-

times undersized when T  is small. The size for the CCEP based test can be as large as 0.35 for small 

T . For the CCEMG based test the size is closer to the nominal size. For 10T >  the empirical size is 
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very close to the nominal one for the tests based on both estimators. Their power is very much affect-

ed by T  and for small T  both tests have power smaller than the size.   

    Simulations available from the Authors’ website show that size and power of the test based on our 

estimator are not affected by either number of factors or the dimension of the parameter 0β , but both 

size and power of the tests based on the CCEP and the CCEMG estimators are influenced by these in 

a significant way. 

5. Empirical Applications 

We will now consider two empirical applications. 

 

5.1. Efficiency of health care 

Evans, Tandon, Murray and Lauer (2000) have studied the efficiency of health care delivery by vari-

ous countries using a dataset available at:  

http://people.stern.nyu.edu/wgreene/Text/Edition6/tablelist6.htm,  

which contains observations on several variables for 191 countries for the period between 1993 and 

1997. The variables considered are (1) a composite measure of health care attainment (DALE), (2) a 

measure of per capita health expenditure (HEXP) and (3) a measure of educational attainment (HC3). 

Evans, Tandon, Murray and Lauer (2000) estimated the model 

(23) ( ) ( ) ( ) ( )( )2
1 2 33ln ln l 3n lnit it itit i itHEXP HDALE eC HCα β β β= + + + + . 

The original dataset is an unbalanced panel. In order to keep the example as simple as possible we 

transform it into a balanced panel by deleting all countries for which the observations are not availa-

ble for the whole period 1993-1997. By doing so we are left with 140 countries. We will estimate a 

random effect and a fixed effects model which would be normally used in this context. It is reasonable 

to assume that in the period considered the errors may be affected by common shocks that may also 

affect per capita health expenditure and educational attainment, so that we can specify a model of the 

form  

(24) 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )

2
1 2 3

2

3 3

3 3

ln ln ln ln ,

' ,

ln , ln , ln '

it iit itt

i

it

it it it

t t i it

i t i

DALE e

e

HEXP HC HC

HEXP HC H

f

C v f

α β β β

γ ε

= + + + +

= +

= + Γ

  

where the factor tf  represents the common shock at time t . This model can be estimated using the 

our estimator as well as the CCEP and CCEMG estimators and the ALS estimator with one factor. We 

http://people.stern.nyu.edu/wgreene/Text/Edition6/tablelist6.htm
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also estimate the first equation in (24) using the Pooled OLS estimator. The results of the estimation 

procedures are presented in Table 7.  

    The estimated coefficients for the fixed and random effects models are very close. The Pooled OLS 

estimator of the first equation in (24) shows a much larger impact of ( )ln itHEXP  on health care at-

tainment than both the fixed and the random effects estimator. When we estimate the model with fac-

tors both in the errors and the regressors we find very different results. The estimates of our method 

suggest that the quadratic term is insignificant and that the impact on health care attainment of both 

educational attainment and per capita health expenditure is considerably larger than what would be 

suggested by both the random and the fixed effects model. The magnitude of the CCEP coefficient 

estimate is much smaller while that of the CCEMG estimate are much more different from any other 

estimator. We will therefore ignore the CCEMG estimator. For the CCEP estimator the standard er-

rors are not fully interpretable as measures of variability due to the small time dimension (5). The 

ALS estimator also produces anomalous results.  

    All estimators produce an elasticity of health care attainment with respect to health care expendi-

ture. In the range covered by the sample, the elasticity of health care attainment with respect to educa-

tional attainment is positive. Figure 1 plots these elasticities over the sample values for 3itHC . Notice 

that the fixed effects and the random effects model imply an elasticity of health care attainment with 

respect to educational attainment which is increasing, while our estimator and pooled OLS estimator 

imply an elasticity which is decreasing as educational attainment increases. For the ALS estimator 

such estimated elasticity becomes negative for 113 4. 5itHC > . The policy implications of these dif-

ferent results could be substantial. 

 

5.2 The Balassa-Samuelson effect 

The Balassa-Samuelson hypothesis states that the differences in individual countries’ exchange rate 

ratios (i.e. the ratio between purchasing power parity relative to the US, say, and the nominal ex-

change rate relative to the US) can be explained by the GDP per capita measured in purchasing power 

parity (e.g. de Boeck and Slok (2006)). In its simplest formulation this can be written as 

 1 2log(exchange  rate ratio ) log(PPP GDP per capita )it i i it iteβ β= + ⋅ + . 

The data is available from “Alan Heston, Robert Summers and Bettina Aten, Penn World Table Ver-

sion 7.1, Center for International Comparison of Production, Income and Prices at University of Penn-

sylvania, July 2012” for 188 countries for the period 2001-2010. In the period considered, the global 

financial has taken place so that common shocks are plausible in this period. The scatter plot of the 

data reported in Figure 2 shows that the sample is very heterogeneous. Thus, we also restrict the sam-

ple to OECD countries. As in the previous empirical application we estimate a fixed effects and a ran-

dom effect model. We also estimate the slope parameter using the Pooled OLS estimator, the CCEP, 
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CCEMG, the ALS and our estimators. The estimates and standard errors are reported in Table 8. For 

the dataset comprising all countries, the estimated coefficients vary between-.01322 (CCEP) and 

0.4989 (Fixed Effects). For OECD countries the estimated coefficients varies between -0.0147 (ALS) 

and 0.8490 (Fixed effects). The different estimates reflect the high variability of the sample (see Fig-

ure 2). The estimates from the Pooled OLS and our estimator for the sample of OECD countries are 

very close to the coefficient 0.41 for non-transition countries reported in equation (8) of de Boeck and 

Slok (2006). 

 

6. Conclusions 

This paper has analysed a panel data model with both homogeneous and heterogeneous slopes and 

with multifactor error structure in which the factors also affect both errors and the regressors. A con-

sistent generalized method of moments estimator has been proposed for the case where the time di-

mension is fixed and N  tends to infinity. This estimator exists for every 1T ≥  and is very simple to 

compute. As N →∞ , it has a nonstandard asymptotic distribution which is covariance-matrix mixed 

normal with mixing density given by the unknown distribution of the shocks. However, tests on the 

interest parameters can be constructed using standard t- and F-procedures. A Monte Carlo simulation 

has shown that these estimators outperform the CCEP and CCEMG estimators of Pesaran (2006) and 

the ALS estimator of Ahn, Lee and Schmidt (2001) and Ahn, Lee and Schmidt (2013) when the time 

dimension is small. Two empirical applications have also been considered. 
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Appendix: technical results 

Let ( )0 0 0', ' 'θ α β= , ( )ˆ ˆˆ ', ' 'θ α β= , ( ),i i iz xω =  and ( ), xzω =  to simplify the notation.  

 

Proof of Theorem 1 

From the definition and equation (1) we can write  

(25) ( ) ( )
1

0
1 1

1 1'ˆ '
N N

i i i i
i i

e e
N N

θθ ω ωω ω
−

= =

 
= + − − 

 
∑ ∑ . 

From Assumptions C.1 to C.5, conditional on  , the iγ ’s are independent with mean γ  and are in-

dependent of jv  and jΓ . Moreover, conditional on  , iε  is also independent of jv  and jΓ . Thus, 
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the expected value of the second term on the right hand side of (25) is zero such that 0
ˆ |E θ θ  =  . 

Therefore, θ̂  is unbiased conditional on   and it is thus unbiased unconditionally.  

    To show consistency, we write  

 ( )
1 1

1 1' ' '
N N

i i i i
i iN N
ω ω ωω ω ω ω

= =

− = −∑ ∑ . 

We firstly show that conditional on  , [ ]
1

1 | 0
N

i
i

E
N

ω ω
=

− →∑   a.s.. Since ( ),i i iz vω = , write 

 
[ ]

[ ]( ) [ ]( ) [ ]( )
1

1

1 1

1 1 1| , | |

1 |

.
N N N

i i i i T i i

N

i
i

i i i
z E z v E v F E

N N

E
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ω ω

= = =

=

 
= − −

−

+ Γ − Γ 
 
∑

∑

∑ ∑



 
  

Assumption C.2 implies that the components of ( ),i i iz vω =  form sequences of independent random 

variables with finite means and satisfy the conditions for a conditional Markov’s strong law of large 

number (e.g. Prakasa Rao (2009)), thus [ ]( ) [ ]( )
1 1

1 1| , | 0
N N

i i i i
i i

z E z v E v
N N= =

 
− − → 

 
∑ ∑   a.s.. Simi-

larly we can conclude that [ ]( )
1

1 | 0
N

i i
i

E
N =

Γ − Γ →∑   a.s.. Thus, conditional on  , 

( ),zN vN TFω µ τ→ + Γ  a.s.. 

    We now focus on 
1

1 '
N

i i
iN
ω ω

=
∑ . Each term in the sum is a ( ) ( )p k p k+ × +  matrix. So let 1ζ  and 2ζ  

be arbitrary ( ) 1p k+ ×  vectors. Then 1 2
1

1 ' '
N

i i
iN
ζ ω ω ζ

=
∑  is a sum of independent random variables sat-

isfying the following inequality a.s.: 
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




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The last terms is uniformly bounded because of Assumption C.2 and C.4. Thus, 

 [ ]
1 1

1 1' lim ' |
N N

i i i iNi i
E

N N
ω ω ω ω

→∞
= =

→∑ ∑   a.s. 

and  
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 ( ) [ ] ( ) ( )
1 1

1 1' lim ' | , ' ,
N N

i i i iNi i
z v T z v TE

N
F F

N
ω µ τω ω ω ω µ τ

→∞
= =

+ Γ− − Γ→ +∑ ∑   a.s.. 

To show that the right hand side is positive definite a.s., we notice that 
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

 

Since the first matrix is positive definite a.s. and the second is positive semi-definite uniformly in N  

a.s., their sum is positive definite uniformly in N  a.s. and the limit is also positive definite a.s.. 

    We now focus on ( )
1 1

1 1' '
N N

i i i i
i i

e e e e
N N

ω ω ω
= =

− = −∑ ∑ . We already know that ( ),zN vN TFω µ τ→ + Γ  

a.s. and with a similar argument we can show that Te F γ→  a.s.. For the remaining term 
1

1 '
N

i i
i

e
N

ω
=
∑ , 

we notice that C.5 implies [ ] [ ] [ ] ( ) ( )( )' | ' | | , ' | 0, 'i i i i i i T TE e E E e E z v F Fω ω γ= =   + Γ     , so 

that ( )
1

' ,1 N

i i
i

z v TFe
N

µω τ
=

→ + Γ∑  a.s. and consistency of the estimator follows. 

 

Theorem 2 

    To prove conditional normality we write 

(26) ( ) ( ) ( )
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We know already that  
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We will now show that the last term can be neglected. In fact, we know already that 

( ), 0zN vN TFω µ µ− + Γ →  a.s.. Precisely we will prove that 

 ( ) ( )
1/2
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1 1 ' 0,
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D
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i i
N F F e F N I

N Nε γ γ
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Σ + Σ − →  

  
∑ ∑ . 

    Let i i Te Fκ γ= −  and notice that they form a sequence of independent random variables conditional 

on  . We can now use the Cramer-Wold device to find the distribution of 
1

1 N

i
iN
κ

=
∑ . Let ζ  be an 

arbitrary 1T ×  vector and focus on 
1

1 '
N

i
iN
ζ κ

=
∑ . We will now verify the Liapounov’s conditions for 

the validity of a conditional central limit theorem: 
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These conditions are satisfied so that 
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Moreover, (27) converges stably in the sense of Renyi (1963) for all F ∈ . So we can conclude that 
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and notice that [ ]| 0i iE ϖ κ = . 

    We will establish that ( )2 |i iE δϖ κ + ∞ <   is bounded uniformly. Notice that 
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   is uniformly bounded because of Assumptions C.2 and C.4. Moreover,  
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Now we have verified all the moment conditions required to obtain convergence in distribution condi-
tional on    
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so that conditional on    
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Thus, (28) converges stably in the sense of Renyi (1963) for all F ∈ . 

 

Proof of Corollary 1.  
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It follows from Theorem 1 that the sequence of random variables in (28) is stable. By Theorem 1 of 

Aldous and Eagleson (1978), (28) and ( )( ) ( )( )1 1/2
T TB F A F

−
 converge stably in distribution to 

( ) ( )( ) ( )( )( )1 1/2
0, ,p k T TN I B F A F

−

+ . It follows that ( )0
ˆN Xθ θ− → . 

 

Before proving Lemma 1 we prove some preliminary results. 

 

Lemma A.1 Given Assumptions N.1, CM.2, N.3, CM.4 and C.5, the following results hold condi-

tional on   as N →∞ : 
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If also Assumption H.5 and HN.6 hold then 
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Proof of Lemma A.1 

Notice that Assumptions CM.2 and CM.4 imply Assumptions C.2 and C.4. 

a) Write 
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Focus on (a.1) at first. In the proofs of Theorems 1 and 2, we have shown that conditional on    
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i

F e F e F F A F
N

ω µ τ γ γ ω µ τ
=

− + − − + Γ →Γ −∑  a.s. 

and 

 ( ), 0zN vN TFω µ τ− + Γ →  a.s.. 

Similarly, we can prove that  

 ( )( ) ( )
1 1

lim '1 1' i T i T

N N

Ni T i T
i i

e F e F FF
N N ε γγ γ

→∞
= =

→− Σ− Σ +∑ ∑  a.s.. 

and 

 
( )( ) ( )( )

( ) [ ] ( )( )

1

1 1

1 ' ,

1 1| , a.sl ..im ' lim 'i T i T

N

i T i T i zN vN T
i

N N

i Ti zN vN T
i i

i TN N

e F e F

F F F F

F
N

E F
N Nε γ ε γ

γ γ ω µ τ

ω µ τ
→∞ →∞

=

= =

− − − + Γ

→ Σ + Σ Σ ++ Σ− Γ

∑

∑ ∑
 

So conditional on   

 ( ) ( )( ) ( ) ( )
1

1 ' '
N

i T i T T
i

i ie F e F A F
N

ω ωγω ωγ
=

− − − →−∑  a.s.. 

Now consider (a.2) and notice that (a.3) is just its transpose. The norm of this term is  

 

( ) ( )( ) ( )

( )

1 2

2

2 2 2
1

2 2

2 2 2 2
1

2 2

2 2 2 2 2
1 1

1 ' '

1

1 2

1 12 .

i i

i

N

i T T
i

N

T i T
i
N

T i T
i

N N

T i T i
i i

i T

i

e F F
N

F e F
N

F e F
N

F e F e F
N N

e

e

e

e

ω ω γ γ ω ω

ω ω

ω ω

ω

γ

γ

γ γ ω

γ

γ

γ

=

=

=

= =

− −

≤ − ⋅

− −

−

≤ − ⋅ + −

 
= − ⋅ − + − 

−

 

∑

∑

∑

∑ ∑

  

Since 1

2
|i TE e F δγ + −   and ( )2 1 1

2 2
|i TiE e Fδ δω γ+ + −   are bounded the last term converges 

a.s. to zero so that ( ) ( )( ) ( )
1

1 ' ' 0
N

i
i i iT Te F F

N
eω ω ω ωγ γ

=

− −− − →∑  a.s.. 

    Similarly, by using the triangle inequality and sub-multiplicativity one obtains for (a.4) 

 
( ) ( )( ) ( ) 2 2

2 2
1 12

2 2 2

2 2 2
1

1 1' '

12 .

N N

T T T
i i

N

T

i

i
i

i iF F Fe
N

N

e
N

e F

eγ γ γ

γ

ω ω ω ω ω ω

ω ω

= =

=

− − −− − ≤ − ⋅

 
≤ − ⋅ + 

 

∑ ∑

∑
 

Based on the above, the first result follows. 
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b) Write 

 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

( )( )

1 2

21

3

2 2 21

3

2 2 2 22 1

3 32
2 2 2 22 1

1 ' ' '

1 ' '

ˆ

ˆ

ˆ

'

1

1

1 2

ˆ

ˆ .

i i

N

i
i

N

i
i

i

i i

N

i
i

N

i
i
N

i

i

i

i
i i

e
N

e
N

e
N

e

e

e

e
N

e e

e

N

ω ω θ θ ω ω ω ω

ω ω θ θ ω ω ω ω

ω ω θ θ

θ θ ω ω

θ θ ω ω

=

=

=

=

=

− − − −

− − − −

−

−

≤ −

≤ ⋅ − ⋅

≤ ⋅ + +

≤ ⋅

−

−

− + +

∑

∑

∑

∑

∑

  

Above we have applied the triangle inequality for the first inequality, sub-multiplicativity in the sec-

ond and the triangle inequality in the third and the rc  inequality in the fourth one. For the last sum to 

converge we need ( )13

2
|iE

δ
ω

+ 
  

  and 1

2
|iE e δ+ 

   to be bounded. This follows from the as-

sumptions of this lemma. Thus this term goes to zero a.s. because θ̂  is consistent a.s.. 

 

c) Write 

 

( ) ( )( )( ) ( ) ( )

( )

( )

24

2 21 12

2 4

2 22 1

2 4 43
22 1

0 0

2

ˆ ˆ ˆ1 1' ' '

1

ˆ .

ˆ

12

i i i i i

i

N N

i i

N

i

i
i

N

N N

N

N

ω ω ω ω θ θ θ θ ω ω ω ω ω ω θ θ

θ θ ω ω

θ θ ω ω

= =

=

=

− − − − − − − −

−

≤

≤ +

≤ +−

∑ ∑

∑

∑

 

Since ( )14

2
|iE

δ
ω

+ 
  

  is uniformly bounded the series 4

2
1

1 N

i
iN

ω
=
∑  converges to a finite quantity 

a.s.. Thus, the result follows because θ̂  is consistent a.s.. 

 

d) Write  

 

( ) ( )( ) ( )

( )
1 2

2 2 33

2 2 2 2 2 2 22 21 1

2 4 42
2 2

0

2 2 22 1 1

1 ' '

1 1

'

ˆ

1 1

ˆ

2

ˆ

ˆ

i

i i i i i i

i

N

i i i i
i

N N

i i

N N

i i
i i i

N

N N

N N

θ θ η

ω ω ω θ θ η θ θ ω ω ω η

θ θ ω

ω ω ω ω ω ω ω

η ω ω η

=

= =

= =

− − − −

− − −≤ ≤ +

 
≤  − +

 

∑

∑ ∑

∑ ∑
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Since 4 4

2
|iE δω + 

   and 1

2
|iE δη + 

   are uniformly bounded, the series 4

2 2
1

1 N

i
i iN

ω η
=
∑  and 

2 2
1

1
i i

N

iN
ω η

=
∑  converge to finite quantities a.s.. Thus, the result follows because θ̂  is consistent a.s.. 

 

e) As before, write 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

' '1 1' ' ' '

1 ' ' .'

N N

i i i i i i i i
i i

N

i i i

i T i

i
i

T

e e
N

e F

e

N

F
N

ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω

η γ η

γ η

= =

=

− − − −

− −

− = −

− −

∑ ∑

∑
 

The term in the second row converges to zero because it satisfies 

 

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

2
1 12

2

2 2 22
1

2

2 2 2 2 2
1

3 2

2 2 2 2 2 2
1 1

1 1' ' ' '

1

1

.

'

2

'T i T i

T i

N N

i i i i i i
i i

N

i i
i
N

i i
i

N N

i

T i

T i ii
i i

N N
e F e F

e F

e F

e F

N

N

N

ω ω ω ω ω ω ω ω ω ω

ω ω ω

ω ω ω

γ η γ η

γ η

γ η

γ ω ω ωη η

= =

=

=

= =

− − − − −

− −

−

−

− ≤

≤

≤ +

 
≤ + 

 

∑ ∑

∑

∑

∑ ∑

  

It is easy to check that the sums in the last term converge to finite quantities. Since 0Te F γ− →  a.s., 

then ( ) ( ) ( )
1

'1 ' ' 0T

N

i i i
i

ie F
N

ω ω ωγ ω ωη
=

−−− →∑  a.s.. 

Similarly, ( ) ( ) ( )
1

'1 ' 0'
N

i i i iT i
i

Fe
N

ω ω ωγ ω ωη
=

−−− →∑  a.s.. Therefore, the result follows. 

 

f) Now we consider the term ( ) ( ) ( ) ( )
1

'1 ' 'i i i i i
i

i

N

N
ω ω ω ω ηη ω ω ω ω

=

− − − −∑ . The result follows by 

proceeding as a). 

 

Proof of Lemma 1.  

Write 
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( ) ( ) ( )( )( ) ( )( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( )( ) ( ) ( )

1

1

1

0 0

0

0

0 0

1

1

ˆ ˆ

ˆ

ˆ '

ˆ ˆ

1ˆ ' '

1 ' '

1 ' '

1 ' '

1 ' ''

N

T i i i i i i
i
N

i i i i
i

N

i i i i
i
N

i i i i
i
N

i i i i
i

A F e e
N

e e
N

e
N

e e

e e

e

e

N

e
N

ω ω ω ω ω ω ω ω

ω ω ω ω

ω ω ω ω ω ω

ω

θ θ θ θ

θ θ

ω ωθ θ

θ θ θ

ω ω ω

ω ω ω ω ω ω ω ωθ

=

=

=

=

=

= − −

= − −

− −

− − − − − − − −

− −

− − − −

− − − −

− − − −

− −

+ − −

∑

∑

∑

∑

∑

 

Then, the lemma follows from Lemma A.1 a), b) and c). 

 

Proof of Theorem 3 

Write 

 ( ) ( )
1

0
1 1

ˆ 1 1' '
N N

i i i T i T i
i i

F F
N N

θ ω ω ω γ γ ε εθ ω
−

= =

 
= + − − + − 

 
∑ ∑ . 

Under assumption D.5 the factor loadings are not independent and this affects only the term  

 
1 1 1

1

0
' '1 1 1' 1 ' '' ' ' '

.
N N N

i i N
i T i T i T i

i i i i T T ii i T i
i

z z
F F F

F Fv F vN N N
N

ω γ γ γ
γ= = =

=

 
     = = +     Γ+ Γ     

 
∑ ∑ ∑ ∑

  

Let ζ  be an arbitrary ( ) 1p k+ ×  vector and consider 
1

'1 '
'

N
i

T
i i

i

z
F

vN
ζ γ

=

 
 
 

∑ . Then, 

 
'

| |
'

' '
' '

i i
T T

i i
i

z z
E F E F

v v
γζ ζ γ

      
=      

      
   

and 

 
( )

( )

1

2

2

1 1 1

22

1 1 1

22

| |
'

' ' ,
'

' | |,

i
T ii i

i

i T
i

i i T

z
E F z v F

v

z F

E

E Ev

δ
δ δ δ

δ δ δ

γ γζ ζ

γ

ζ

ζ ζ

+
+ + +

+ + +

      
   

 ≤
 

   ≤ ⋅   

 
 

 

   

and this term is uniformly bounded by Assumption C.2 and C.3. Thus we can conclude that 

1

' '1
' '

N
i zN T

T i
i i vN T

z F
F

v FN
µ γ

γ
γτ=

   
→   

   
∑  a.s. conditional on  . Similarly, let ζ  be an arbitrary 1p×  vector 
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and consider 
1

1 ' ' '
N

i T T i
i

F F
N

ζ γ
=

Γ∑ . Since 
1 1
2 2' ' ' ' ' ' ' 'i T T i i T T i i T T iF F F F F Fζ γ ζ ζ γ γΓ ≤ Γ Γ  by the Cau-

chy-Schwartz inequality and 
1 1/2
2

2 2
' ' ' 'i T T i T iF F Fζ ζ ζ ζΓ Γ ≤ Γ  so that  

 
11 1 1 1 1

2
2 2 2 2

' ' ' | ' | | ,i T T i T i T iE F F F E F Eδ δ δδδ δζ γ ζ ζ γ
+

+ + + + +     Γ ≤ ⋅ Γ ⋅ ⋅          

which is uniformly bounded. Thus, we can conclude that   

 [ ]
1 1

1 1' ' ' ' |
N N

i T T i i T T i
i i

F F E F F
N N

γ γ
= =

Γ → Γ∑ ∑   a.s.. 

Similarly we can show that 

 
1

'1 ' '
' ' '

N
zN T

i T T
i vN T T T

F
F F

F F FN
γ

ω γ
γ

µ
τ

ω γ
γ=

  
= →    + Γ   

∑  a.s. 

and  

 
1

1 ' ' 0
N

i i
iN
ω ε ω ε

=

− →∑  a.s..  

Thus, conditional on   ( ) ( )
1

0

0ˆ
T

T

B F
F

θ θ −  
→ +  ∆ 

 a.s. so that θ̂  is biased conditional on  .  

 

Proof of Theorem 4  

Let 1

2

i
i

i

η
η

η
 

=  
 

. Write 

 ( )
1

1 1 10

0 1'ˆ
ˆ

'
N N N

i i i i i i j j
i i j

e e
N

α α
ω ω ω ω η ηω ω

ββ

−

= = =

      
= + − − − +             

∑ ∑ ∑   

Unbiasedness follows from the independence of ix  and ie  and ix  and iη  conditional on  .  

    We now consider consistency. In Theorem 1, we have shown that ( )
1

1 ' 0i

N

i
i

e e
N

ω
=

− →∑  a.s.. For 

the rest error terms, we just need to focus on 
1

1 '
N

i i i
iN

ηω ω
=
∑  and 

1

1 N

i i
iN

ηω
=
∑ . Firstly let ζ  be an arbi-

trary ( ) 1p k+ ×  vector and write 
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( )

( )

( )

11 1
2

2

1 2 2 1
2

2 2

1 2 2 1
2

2 2

' ' | ' ' |

' |

' | | .

i i

i

i i i i

i

i i

E E

E

E E

δδ δ

δ δ δ

δ δ δ

η η

ω η

ω η

ζ ω ω ζ ζ ω ω

ζ ζ

ζ ζ

+
+ +

+
+ +

+
+ +

   ≤   

 ≤  

   ≤ ⋅   

 



 

  

Each term on RHS above is bounded. Thus, 
1

1 0'
N

i i i
iN

ηω ω
=

→∑  a.s.. Similarly, 
1

1 0
N

i i
iN

ηω
=

→∑  a.s.. 

Hence, the consistency follows. 

    For asymptotic normality we write  

 ( ) ( ) ( ) ( )
1

1 1 1
0

1 1' ' 'ˆ
N N N

i i i i i i i
i i i

N e e
N N

ηθ θ ω ω ω ω ω ω ω
−

= = =

   
− = − − + −  

   
∑ ∑ ∑ . 

Notice that we have shown that ( )
1

1 '
N

i i
i

e e
N

ω
=

−∑  converges to a normal distribution in Theorem 1. 

( )
1

1 '
N

i i
i

e e
N

ω
=

−∑  and ( )
1

1 '
N

i i i
iN

ηω ω ω
=

−∑  are conditionally uncorrelated, so we only need to focus 

on ( )
1

1 '
N

i i i
iN

ηω ω ω
=

−∑ . Write 

 
( )

( )( ) ( )( )
1

1 1

1 '

1 1, ' , ' .

N

i i i
i

N N

i zN vN T i i zN vN T i i
i i

N

F F
N N

η

µ τ η µ τ η

ω ω ω

ω ω ω ω

=

= =

−

= − + Γ − + Γ−

∑

∑ ∑
 

We know that ( ), 0zN vN TFω µ τ + Γ− →  a.s.. Let ζ  be an arbitrary 1T ×  vector and notice that 

[ ]' | 0i iE ζ ηω = ,  

 
2 22 2 2 2

2 2 2
2 2' | ' | ' | |i i i i i iE E E E
δ δδ δ δ δζ η ζ ζ η ζ ζ ηω ω ω

+ +
+ + + +       ≤ ≤             

and this is uniformly bounded. Thus, this satisfies Liapounov’s condition conditional on   and 

1

1 N

i i
iN

ηω
=
∑  converges to a normal distribution stably in the sense of Renyi (1963) for all F ∈ , so 

that 

 ( )( )
1

1, ' 0
N

zN vN T i i
i

F
N

ωµ ηω τ
=

− + Γ →∑  a.s.. 

    For the remaining term, we verify that for any arbitrary 1p×  vector ζ  the summation 

( )( )
1

1 ' , '
N

i zN vN T i i
i

F
N

ζ µω ωτ η
=

− + Γ∑  satisfies Liapounov’s conditions conditional on  : 
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 ( )( )' , ' | 0i zN vN T i iE Fζ µ τ ηω ω − + Γ =    

and 

 

( )( )( )

( )( )

( )( )

( )( )

2

2 2
2

2

2 2 2
2

22

22 24 2 222
2 22

' , ' |

' , ' |

' , ' | |

' 2 | , ' | | .

i zN vN T i i

i zN vN T i i

i zN vN T i i

i zN vN T i i

E F

E F

E F E

E E F E

δ

δ δ

δ δ δ

δδ δδ δ

ζ µ τ η

ζ ζ µ τ η

ζ ζ µ τ η

ζ ζ µ

ω ω

ω ω

ω

η

ω

ω τ ω

+

+ +

+ + +

++ ++ +

 − + Γ  

 − + Γ  

   − + Γ ⋅    

    + + Γ ⋅

≤

≤

≤    





 

  

  

In the expression above, 4 2

2
|iE δω + 

   is uniformly bounded because of Assumptions CM.2 and 

CM.4, 2

2
|iE δη + 

   is uniformly bounded because of Assumptions HN.6. Finally,  

 ( ) ( )2 2 2

22 2
, ' | , |zN vN T i zN vN T iE F F E

δ δ δω ωµ τ µ τ
+ + +   + Γ ≤ + Γ < ∞  
    

because of assumptions CM.2 and CM.4. 

    Thus,   

 
( )( )

( )( ) ( )( )
( )1

1

1 ' , '
0,1

1' , ' , |

N

i zN vN T i i
i

N

i zN vN T i i i zN vN T
i

F
N N

E F F
N η

ζ µ τ η

ζ µ τ µ τ

ω ω

ζω ω ω ω

=

=

− + Γ
→

  − + Γ Σ − + Γ   

∑

∑ 

, 

so that we have  

(29) ( ) ( )( ) ( )1/2

1 1

1 1' 0,
N N

D
T T i i i i j j p k

i j
A F C F e e N I

NN
ω ω ωη η

−

+
= =

 
+ − + − → 

 
∑ ∑ . 

Thus, (29) converges stably in the sense of Renyi (1963) for all F ∈ .  

 

Proof of Corollary 3.  

It follows from Theorem 1 that the sequence of random variables in (29) is stable. By Theorem 1 of 

Aldous and Eagleson (1978), (29) and ( )( ) ( ) ( )( )1 1/2
T T TB F A F C F

−
+  converge stably in distribution 

to ( ) ( )( ) ( ) ( )( )( )1 1/2
0, ,p k T T TN I B F A F C F

−

+ + .  

    Therefore, it follows that ( )0
ˆN Xθ θ− → . 

 

Proof of Lemma 2. Write 
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( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

0 0

0

0

1

1

1

1

1ˆ ' '

1 ' '
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The first line has been proved in Lemma 1. The others lines are proved in Lemma A.1. 
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Table 1 
Small Sample Properties of the GMM, CCEP, CCEMG, ALS and OLS estimators 

Homogeneous slopes without fixed effects (one factor) 
    Bias MSE Size (5% level, 1 1β = ) Power (5% level, 1 0.95β = ) 

1̂β    T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 
GMM N=20 0.001 -0.001 0.000 -0.001 0.000 0.019 0.016 0.012 0.009 0.006 0.117 0.120 0.113 0.106 0.098 0.140 0.147 0.152 0.160 0.178 
  50 -0.001 -0.001 0.000 0.000 0.001 0.007 0.006 0.004 0.003 0.002 0.079 0.076 0.070 0.070 0.067 0.131 0.144 0.160 0.200 0.231 
  100 0.000 0.000 0.001 -0.001 0.000 0.003 0.003 0.002 0.002 0.001 0.065 0.069 0.064 0.065 0.059 0.167 0.196 0.239 0.289 0.365 
  200 0.000 0.000 0.000 -0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.059 0.061 0.055 0.057 0.057 0.256 0.304 0.377 0.482 0.578 
      

    
  

   
  

     
  

   
  

CCEP N=20 NA 0.075 -0.002 0.001 0.001 NA 47.679 0.020 0.006 0.003 NA 0.086 0.010 0.069 0.076 NA 0.100 0.013 0.123 0.202 
  50 0.101 0.217 0.001 0.000 0.000 51.791 61.402 0.007 0.002 0.001 0.096 0.134 0.007 0.056 0.057 0.114 0.158 0.013 0.193 0.356 
  100 0.121 0.026 0.000 0.000 0.000 36.997 89.512 0.004 0.001 0.001 0.140 0.202 0.005 0.051 0.054 0.164 0.233 0.015 0.326 0.604 
  200 0.116 -0.067 0.000 0.000 0.000 22.815 164.136 0.002 0.001 0.000 0.190 0.280 0.005 0.055 0.049 0.225 0.315 0.025 0.569 0.874 
      

    
  

   
  

     
  

   
  

CCEMG N=20 NA 0.060 2.267 0.000 0.001 NA 2629.068 86801.903 0.010 0.003 NA 0.050 0.028 0.064 0.064 NA 0.058 0.030 0.103 0.172 
  50 NA -1.609 2.435 0.000 0.000 NA 16350.827 24803.917 0.004 0.001 NA 0.047 0.026 0.057 0.055 NA 0.055 0.027 0.137 0.297 
  100 NA -1.209 -5.726 0.000 0.000 NA 2500.712 321242.695 0.002 0.001 NA 0.052 0.022 0.050 0.049 NA 0.060 0.023 0.209 0.517 
  200 NA -3.118 1.703 0.001 0.000 NA 92326.136 16096.756 0.001 0.000 NA 0.059 0.020 0.056 0.051 NA 0.067 0.021 0.359 0.797 
      

    
  

   
  

     
  

   
  

OLS N=20 0.105 0.110 0.119 0.120 0.127 0.060 0.057 0.054 0.052 0.051 
     

  
   

  
  50 0.103 0.108 0.115 0.123 0.125 0.043 0.043 0.042 0.043 0.044 

     
  

   
  

  100 0.103 0.108 0.117 0.124 0.128 0.038 0.039 0.040 0.041 0.042 
     

  
   

  
  200 0.102 0.110 0.115 0.120 0.125 0.035 0.036 0.037 0.039 0.040 

     
  

   
  

      
    

  
   

  
     

  
   

  
ALS N=20 0.059 0.070 0.082 0.100 0.143 0.082 0.073 0.066 0.066 0.078 

     
  

   
  

  50 0.061 0.070 0.082 0.110 0.155 0.047 0.045 0.046 0.054 0.076 
     

  
   

  
  100 0.063 0.073 0.084 0.116 0.163 0.036 0.039 0.043 0.053 0.075 

     
  

   
  

  200 0.061 0.075 0.088 0.120 0.162 0.030 0.036 0.041 0.052 0.074                     

Notes: 
1

2 0.4, 0.5fησ ρ= =    
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Table 2 
Small Sample Properties of the GMM, CCEP, CCEMG, ALS and OLS estimators 

Heterogeneous slopes without fixed effects (one factor) 
    Bias MSE Size (5% level, 1 1β = ) Power (5% level, 1 0.95β = ) 

1̂β    T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 
GMM N=20 -0.003 0.000 -0.002 -0.002 0.001 0.094 0.084 0.072 0.059 0.051 0.155 0.154 0.146 0.138 0.129 0.160 0.159 0.151 0.145 0.135 
  50 0.000 0.001 0.001 -0.001 -0.002 0.041 0.036 0.030 0.025 0.021 0.101 0.099 0.091 0.085 0.085 0.113 0.112 0.105 0.104 0.103 
  100 0.001 -0.001 0.003 -0.001 0.001 0.021 0.018 0.015 0.013 0.011 0.081 0.072 0.069 0.069 0.069 0.096 0.097 0.098 0.097 0.106 
  200 0.001 0.000 -0.001 0.000 -0.001 0.011 0.009 0.008 0.007 0.006 0.065 0.064 0.067 0.059 0.060 0.103 0.099 0.109 0.117 0.120 
      

    
  

   
  

     
  

   
  

CCEP N=20 NA 0.048 -0.001 0.001 0.000 NA 136.254 0.075 0.043 0.037 NA 0.081 0.025 0.081 0.088 NA 0.090 0.026 0.092 0.099 
  50 NA 0.222 0.000 0.001 -0.001 NA 57.014 0.032 0.020 0.017 NA 0.101 0.020 0.060 0.066 NA 0.116 0.023 0.081 0.093 
  100 -0.073 0.185 0.002 -0.002 0.001 361.632 14.270 0.016 0.010 0.009 0.108 0.146 0.015 0.056 0.061 0.128 0.174 0.021 0.088 0.100 
  200 NA -1.210 0.000 0.001 0.000 NA 15957.391 0.008 0.006 0.005 NA 0.214 0.011 0.050 0.052 NA 0.248 0.023 0.121 0.131 
      

    
  

   
  

     
  

   
  

CCEMG N=20 NA -0.097 1.596 -0.001 0.000 NA 7452.975 20639.163 0.031 0.023 NA 0.046 0.034 0.068 0.075 NA 0.053 0.034 0.080 0.089 
  50 NA 6.935 0.502 0.001 0.000 NA 682825.900 14686.696 0.012 0.009 NA 0.053 0.024 0.060 0.057 NA 0.059 0.024 0.083 0.092 
  100 NA 0.487 -0.820 -0.001 0.000 NA 3502.847 2003.974 0.006 0.005 NA 0.053 0.024 0.053 0.054 NA 0.062 0.025 0.099 0.123 
  200 NA -2.295 0.476 0.001 0.000 NA 24237.121 3298.454 0.003 0.002 NA 0.051 0.022 0.048 0.053 NA 0.062 0.024 0.152 0.186 
      

    
  

   
  

     
  

   
  

OLS N=20 0.104 0.109 0.116 0.124 0.125 0.124 0.117 0.109 0.097 0.091 
     

  
   

  
  50 0.105 0.111 0.119 0.123 0.123 0.073 0.069 0.067 0.062 0.060 

     
  

   
  

  100 0.105 0.109 0.120 0.122 0.128 0.054 0.053 0.052 0.052 0.051 
     

  
   

  
  200 0.104 0.108 0.115 0.122 0.122 0.044 0.043 0.044 0.044 0.044 

     
  

   
  

      
    

  
   

  
     

  
   

  
ALS N=20 0.046 0.071 0.078 0.105 0.142 0.183 0.171 0.159 0.152 0.155 

     
  

   
  

  50 0.060 0.074 0.089 0.110 0.152 0.091 0.091 0.093 0.096 0.109 
     

  
   

  
  100 0.060 0.074 0.088 0.115 0.164 0.060 0.064 0.066 0.076 0.095 

     
  

   
  

  200 0.063 0.076 0.088 0.119 0.160 0.045 0.048 0.053 0.063 0.083                     

Notes: 
1

2 0.4, 0.5fησ ρ= =  
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Table 3 
Small Sample Properties of the GMM, CCEP, CCEMG, ALS and OLS estimators 

Homogeneous slopes without fixed effects (several factors) 

  
Bias MSE Size (5% level, 1 1β = ) Power (5% level, 1 0.95β = ) 

1̂β  
 

T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 
GMM N=20 0.001 0.000 -0.001 0.000 -0.001 0.018 0.014 0.010 0.007 0.005 0.115 0.113 0.111 0.105 0.088 0.146 0.148 0.153 0.169 0.177 
  50 -0.001 0.000 0.004 0.002 0.000 0.006 0.005 0.004 0.003 0.002 0.077 0.074 0.067 0.068 0.066 0.137 0.153 0.180 0.226 0.253 
  100 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.002 0.001 0.001 0.062 0.064 0.076 0.058 0.060 0.184 0.208 0.262 0.326 0.408 
  200 0.000 0.000 0.001 0.000 0.000 0.002 0.001 0.001 0.001 0.000 0.057 0.059 0.049 0.053 0.052 0.283 0.337 0.424 0.547 0.659 
  

 
  

   
    

   
    

   
  

    
  

CCEP N=20 NA 0.515 0.003 0.001 0.001 NA 642.606 0.019 0.007 0.004 NA 0.123 0.011 0.070 0.072 NA 0.140 0.013 0.122 0.185 
  50 NA 0.397 0.002 0.000 0.001 NA 263.666 0.007 0.002 0.001 NA 0.199 0.006 0.058 0.063 NA 0.226 0.013 0.188 0.336 
  100 NA 0.103 0.001 -0.001 0.000 NA 79.622 0.003 0.001 0.001 NA 0.274 0.006 0.052 0.058 NA 0.305 0.017 0.314 0.554 
  200 NA 0.505 0.000 0.000 0.000 NA 892.562 0.002 0.001 0.000 NA 0.363 0.006 0.056 0.051 NA 0.396 0.028 0.565 0.836 
  

 
  

   
    

   
    

   
  

    
  

CCEMG N=20 NA 0.320 -1.904 0.001 0.001 NA 8258.417 14540.520 0.011 0.004 NA 0.068 0.032 0.066 0.066 NA 0.079 0.032 0.103 0.161 
  50 NA -3.395 0.096 0.000 0.001 NA 131127.428 745.211 0.004 0.001 NA 0.070 0.022 0.053 0.057 NA 0.081 0.024 0.138 0.292 
  100 NA -0.298 0.010 -0.001 0.000 NA 10827.129 1506.229 0.002 0.001 NA 0.074 0.025 0.051 0.054 NA 0.085 0.025 0.204 0.492 
  200 NA 1.280 1.070 0.000 0.000 NA 16580.928 34000.783 0.001 0.000 NA 0.087 0.023 0.052 0.053 NA 0.100 0.023 0.349 0.770 
  

 
  

   
    

   
    

   
  

    
  

OLS N=20 0.121 0.126 0.129 0.143 0.145 0.069 0.063 0.055 0.052 0.047   
   

  
    

  
  50 0.115 0.125 0.134 0.139 0.143 0.053 0.051 0.048 0.044 0.042   

   
  

    
  

  100 0.113 0.123 0.133 0.138 0.143 0.049 0.046 0.046 0.042 0.041   
   

  
    

  
  200 0.117 0.123 0.134 0.139 0.144 0.047 0.045 0.045 0.041 0.041   

   
  

    
  

  
 

  
   

    
   

    
   

  
    

  
ALS N=20 NA NA 0.044 0.058 0.074 NA NA 0.061 0.049 0.049   

   
  

    
  

  50 NA NA 0.035 0.050 0.064 NA NA 0.031 0.032 0.036   
   

  
    

  
  100 NA NA 0.028 0.043 0.060 NA NA 0.021 0.024 0.032   

   
  

    
  

  200 NA NA 0.026 0.037 0.052 NA NA 0.016 0.019 0.027                     

Notes: 
1

2 0, 0.5fησ ρ= =  
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Table 4 
Small Sample Properties of the GMM, CCEP, CCEMG, ALS and OLS estimators 

Heterogeneous slopes without fixed effects (several factors) 
    Bias MSE Size (5% level, 1 1β = ) Power (5% level, 1 0.95β = ) 

1̂β  
 

T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 
GMM N=20 0.004 0.000 0.001 0.001 0.001 0.097 0.081 0.069 0.055 0.046 0.144 0.135 0.135 0.126 0.113 0.148 0.140 0.142 0.136 0.123 
  50 0.000 0.001 0.000 0.002 -0.001 0.038 0.033 0.028 0.022 0.019 0.090 0.087 0.084 0.078 0.075 0.100 0.102 0.098 0.099 0.097 
  100 -0.001 0.001 0.001 0.000 -0.001 0.020 0.017 0.014 0.011 0.010 0.073 0.067 0.070 0.064 0.064 0.093 0.092 0.100 0.095 0.100 
  200 0.002 0.001 0.002 0.001 0.000 0.010 0.008 0.007 0.006 0.005 0.064 0.060 0.058 0.057 0.055 0.102 0.101 0.110 0.117 0.124 
  

 
  

    
  

   
  

     
  

   
  

CCEP N=20 NA 0.030 0.000 0.000 0.002 NA 112.576 0.075 0.048 0.039 NA 0.102 0.027 0.087 0.082 NA 0.112 0.029 0.095 0.093 
  50 NA -0.085 0.001 0.002 0.000 NA 230.511 0.032 0.021 0.018 NA 0.146 0.025 0.058 0.063 NA 0.166 0.025 0.079 0.085 
  100 NA 0.562 -0.001 0.001 -0.001 NA 612.208 0.017 0.011 0.009 NA 0.200 0.015 0.055 0.059 NA 0.223 0.024 0.088 0.096 
  200 NA -2.365 0.001 0.001 0.000 NA 60073.387 0.008 0.006 0.005 NA 0.288 0.022 0.050 0.052 NA 0.324 0.024 0.114 0.127 
  

 
  

    
  

   
  

     
  

   
  

CCEMG N=20 NA 
-

14.525 0.495 0.001 0.001 NA 2885956.452 4243.719 0.031 0.024 NA 0.062 0.032 0.076 0.075 NA 0.071 0.032 0.085 0.091 
  50 NA 0.405 0.620 0.000 0.001 NA 3331.833 6301.987 0.012 0.009 NA 0.067 0.018 0.059 0.061 NA 0.078 0.022 0.087 0.091 
  100 NA 0.157 -5.799 0.001 -0.001 NA 1500.517 191855.387 0.006 0.005 NA 0.076 0.025 0.051 0.057 NA 0.088 0.026 0.101 0.115 
  200 NA 0.419 -0.870 0.000 0.000 NA 727.155 24766.845 0.003 0.002 NA 0.087 0.011 0.047 0.052 NA 0.101 0.024 0.149 0.182 
  

 
  

    
  

   
  

     
  

   
  

OLS N=20 0.122 0.130 0.135 0.145 0.147 0.131 0.118 0.105 0.090 0.082 
     

  
   

  
  50 0.117 0.126 0.128 0.140 0.144 0.080 0.074 0.066 0.061 0.056 

     
  

   
  

  100 0.115 0.125 0.132 0.138 0.142 0.063 0.059 0.055 0.050 0.048 
     

  
   

  
  200 0.118 0.128 0.132 0.137 0.143 0.054 0.053 0.049 0.046 0.044 

     
  

   
  

  
 

  
    

  
   

  
     

  
   

  
ALS N=20 NA NA 0.043 0.082 0.095 NA NA 0.185 0.149 0.140 

     
  

   
  

  50 NA NA 0.040 0.071 0.089 NA NA 0.091 0.083 0.087 
     

  
   

  
  100 NA NA 0.037 0.063 0.080 NA NA 0.053 0.056 0.064 

     
  

   
  

  200 NA NA 0.030 0.054 0.070 NA NA 0.031 0.040 0.047                     

Notes: 
1

2 0.4, 0.5fησ ρ= =  
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Table 5 
Small Sample Properties of the GMM, CCEP, CCEMG, ALS and OLS estimators 

Homogeneous slopes with fixed effects (several factors) 

  
Bias MSE Size (5% level, 1 1β = ) Power (5% level, 1 0.95β = ) 

1̂β  
 

T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 
GMM N=20 0.001 0.000 0.002 -0.001 0.000 0.023 0.018 0.014 0.009 0.006 0.119 0.109 0.110 0.100 0.088 0.142 0.136 0.145 0.138 0.156 
  50 0.000 0.001 0.000 0.000 0.002 0.008 0.007 0.005 0.003 0.003 0.075 0.076 0.072 0.075 0.072 0.123 0.132 0.141 0.173 0.218 
  100 -0.001 -0.001 0.001 0.000 -0.001 0.004 0.003 0.003 0.002 0.001 0.061 0.064 0.064 0.068 0.051 0.142 0.162 0.200 0.254 0.317 
  200 -0.001 0.000 0.000 0.000 -0.001 0.002 0.002 0.001 0.001 0.001 0.059 0.052 0.056 0.056 0.056 0.219 0.260 0.325 0.423 0.531 
      

   
    

   
    

   
    

   
  

CCEP N=20 NA 0.446 0.501 0.000 -0.001 NA 959.509 409.452 0.009 0.004 NA 0.113 0.144 0.060 0.074 NA 0.121 0.161 0.096 0.159 
  50 -0.351 5.410 0.329 -0.001 0.001 3846.041 207686.735 118.117 0.004 0.001 0.146 0.169 0.230 0.057 0.055 0.161 0.186 0.257 0.144 0.305 
  100 0.127 0.154 0.168 0.000 0.000 52.832 221.685 652.458 0.002 0.001 0.204 0.236 0.308 0.050 0.056 0.223 0.257 0.337 0.230 0.504 
  200 0.103 0.316 -0.604 0.000 0.000 231.473 1255.066 2841.201 0.001 0.000 0.274 0.318 0.408 0.053 0.048 0.298 0.342 0.444 0.404 0.786 
      

   
    

   
    

   
    

   
  

CCEMG N=20 NA -7.569 1.918 -0.001 -0.001 NA 294101.859 28849.970 0.021 0.004 NA 0.058 0.078 0.062 0.071 NA 0.065 0.088 0.083 0.144 
  50 NA 1.301 0.188 0.000 0.001 NA 15223.355 3235.178 0.008 0.002 NA 0.055 0.076 0.055 0.058 NA 0.064 0.088 0.099 0.260 
  100 NA 0.885 0.307 0.000 0.000 NA 17339.190 706.492 0.004 0.001 NA 0.062 0.071 0.054 0.056 NA 0.070 0.084 0.128 0.441 
  200 NA 0.215 -1.516 0.001 0.000 NA 687.649 16169.695 0.002 0.000 NA 0.063 0.075 0.047 0.052 NA 0.072 0.089 0.211 0.724 
      

   
    

   
    

   
    

   
  

OLS N=20 0.041 0.063 0.081 0.097 0.112 0.031 0.031 0.031 0.031 0.032   
   

    
   

  
  50 0.041 0.061 0.080 0.099 0.113 0.017 0.020 0.022 0.026 0.028   

   
    

   
  

  100 0.038 0.058 0.077 0.100 0.110 0.013 0.016 0.019 0.025 0.026   
   

    
   

  
  200 0.038 0.057 0.078 0.098 0.110 0.011 0.014 0.018 0.023 0.025   

   
    

   
  

      
   

    
   

    
   

    
   

  
ALS N=20 NA NA NA 0.051 0.071 NA NA NA 0.055 0.056   

   
    

   
  

  50 NA NA NA 0.040 0.065 NA NA NA 0.030 0.040   
   

    
   

  
  100 NA NA NA 0.034 0.049 NA NA NA 0.021 0.029   

   
    

   
  

  200 NA NA NA 0.023 0.042 NA NA NA 0.014 0.024                     

Notes: 
1

2 0, 0.5fησ ρ= =  
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Table 6 
Small Sample Properties of the GMM, CCEP, CCEMG, ALS and OLS estimators 

Heterogeneous slopes with fixed effects (several factors) 
    Bias MSE Size (5% level, 1 1β = ) Power (5% level, 1 0.95β = ) 

1̂β  
 

T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 T=2 3 5 10 20 
GMM N=20 0.003 -0.002 -0.004 0.002 0.003 0.100 0.086 0.069 0.056 0.046 0.143 0.133 0.123 0.118 0.117 0.150 0.138 0.132 0.127 0.130 
  50 0.001 0.004 -0.001 0.002 0.003 0.041 0.034 0.028 0.023 0.019 0.089 0.085 0.082 0.080 0.079 0.099 0.097 0.094 0.096 0.102 
  100 0.001 0.001 -0.001 -0.001 0.001 0.021 0.018 0.014 0.012 0.009 0.070 0.070 0.067 0.066 0.064 0.088 0.088 0.093 0.096 0.099 
  200 -0.001 0.000 -0.001 0.000 0.000 0.010 0.009 0.007 0.006 0.005 0.060 0.060 0.059 0.061 0.059 0.091 0.099 0.102 0.111 0.127 
  

 
  

    
  

   
    

    
  

   
  

CCEP N=20 NA 0.038 0.488 0.000 0.002 NA 248.890 1258.497 0.046 0.035 NA 0.098 0.121 0.082 0.087 NA 0.105 0.132 0.088 0.099 
  50 NA 0.081 -3.438 0.000 0.001 NA 674.674 86293.365 0.019 0.014 NA 0.142 0.184 0.063 0.065 NA 0.150 0.204 0.084 0.090 
  100 NA 0.103 0.241 0.000 0.000 NA 149.836 83.813 0.009 0.007 NA 0.189 0.243 0.059 0.059 NA 0.206 0.268 0.095 0.105 
  200 -1.960 0.061 0.320 0.000 0.000 50140.994 806.556 475.424 0.005 0.004 0.227 0.258 0.336 0.055 0.056 0.245 0.278 0.370 0.125 0.153 
  

 
  

    
  

   
    

    
  

   
  

CCEMG N=20 NA -0.307 -0.745 -0.001 0.002 NA 189860.758 4461.696 0.041 0.025 NA 0.054 0.072 0.069 0.074 NA 0.062 0.080 0.077 0.092 
  50 NA -1.464 -0.273 0.000 0.002 NA 26492.400 11595.105 0.016 0.010 NA 0.050 0.069 0.055 0.061 NA 0.057 0.078 0.077 0.095 
  100 NA 2.218 0.033 -0.001 0.000 NA 22734.894 2508.048 0.008 0.005 NA 0.054 0.075 0.057 0.055 NA 0.064 0.088 0.092 0.121 
  200 NA 0.715 -0.266 0.000 0.000 NA 975.098 31518.476 0.004 0.002 NA 0.065 0.080 0.055 0.054 NA 0.076 0.094 0.126 0.186 
  

 
  

    
  

   
    

    
  

   
  

OLS N=20 0.043 0.059 0.078 0.104 0.116 0.102 0.088 0.076 0.072 0.067   
    

  
   

  
  50 0.038 0.061 0.075 0.103 0.116 0.046 0.043 0.041 0.044 0.043   

    
  

   
  

  100 0.039 0.058 0.078 0.098 0.112 0.027 0.028 0.030 0.032 0.034   
    

  
   

  
  200 0.037 0.058 0.077 0.097 0.112 0.018 0.021 0.023 0.027 0.029   

    
  

   
  

  
 

  
    

  
   

    
    

  
   

  
ALS N=20 NA NA NA 0.067 0.092 NA NA NA 0.163 0.142   

    
  

   
  

  50 NA NA NA 0.052 0.085 NA NA NA 0.081 0.085   
    

  
   

  
  100 NA NA NA 0.040 0.067 NA NA NA 0.050 0.058   

    
  

   
  

  200 NA NA NA 0.032 0.057 NA NA NA 0.030 0.041                     

Notes: 
1

2 0.4, 0.5fησ ρ= =   
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Table 7. Estimates and standard errors for the Evans, Tandon, Murray and 

Lauer (2000) model 

Variables Fixed 
Effects 

Random 
Effects 

Pooled  
OLS ALS GMM CCEP CCEMG 

const 3.8022 
(0.0291) 

3.7000 
(0.0304) 

3.2128 
(0.0329) 

 
 

 
   

( )ln itHEXP  0.0090 
(0.0031) 

0.0129 
(0.0032) 

0.0839 
(0.0057) 

0.4215 
(0.0150) 

0.0840 
(0.0116) 

0.0004 
(0.0248) 

-0.1009 
(0.0600) 

( )ln 3itHC  0.0640 
(0.0364) 

0.0790 
(0.0357) 

0.2551 
(0.0394) 

2.9922 
(0.0338) 

0.2556 
(0.0831) 

0.0164 
(6.4480) 

5.4785 
(0.2087) 

( )( )2
ln 3itHC  0.0206 

(0.0142) 
0.03852 

(0.01333) 
-0.0218 
(0.0138) 

-1.0576 
(0.0333) 

-0.0220 
(0.0299) 

-0.0113 
(3.0906) 

12.9946 
(3.3602) 

Note: Standard errors in parenthesis 

 

 

 

Table 8: Estimates of the relationship between log exchange rate 

ratio and log PPP per capita GDP 

Variables Fixed 
Effects 

Random 
Effects 

Pooled 
OLS ALS GMM CCEP 

All countries       

log(PPP GDP
 per capita )it

 0.4989 
(0.01449) 

0.3626 
(0.0117) 

0.1753 
(0.0059) 

-0.0595 
(0.0158) 

0.1671  
(0.0208) 

-0.1322 
(0.0398) 

OECD countries 
       

log(PPP GDP
 per capita )it

 0.8490 
(0.0331) 

0.7415 
(0.0297) 

0.4986 
(0.0196) 

-0.0147 
(0.0212) 

0.4614 
(0.0663) 

0.6837 
(0.0504) 

Note: Standard errors in parenthesis 
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Figure 1: Elasticity of health care attainment with respect to educational attainment (vertical axis) as functions of educational attainments (horizontal axis) 

calculated for the fixed effects estimator (dashed line), the random effects estimator (dotted line), the GMM estimator (solid line) and the CCEP estimator 

(dashed-dotted line). For the pooled OLS estimator the elasticity is the same as the one produced by the GMM estimator. 
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Figure 2: Log exchange rate ratio (vertical axis) vs PPP GDP per capita (horizontal axis): raw data and fitted values from the fixed effects estimator (dashed 

line), the random effects estimator (dotted line), the GMM estimator (solid line) and the CCEP estimator (dashed-dotted line). For the pooled OLS estimator 

the elasticity is the same as the one produced by the GMM estimator 
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