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Abstract

Recent turmoil on global financial markets has led to a discussion on which
policy measures should or could be taken to stabilize financial markets. One such
a measure that resurfaced is the imposition of short-selling constraints. It is con-
jectured that these short-selling constraints reduce speculative trading and thereby
have the potential to stabilize volatile financial markets. The purpose of the current
paper is to investigate this conjecture in a standard asset pricing model with het-
erogeneous beliefs. We model short-selling constraints by imposing trading costs
for selling an asset short. We find that the local stability properties of the fun-
damental rational expectations equilibrium do not change when trading costs for
short-selling are introduced. However, when the asset is overvalued, costs on short-
selling increase mispricing and price volatility.
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1 Introduction

The practice of short-selling – borrowing a financial instrument from another in-
vestor to sell it immediately and close the position in the future by buying and
returning the instrument – is widespread in financial markets. In fact, short-selling
is the mirror image of a “long position”, where an investor buys an asset which
did not belong to him before. While a long position can be thought of as a bet on
the increase of the assets’ value (with dividend yield and opportunity costs taken
into account), short-selling allows investors to bet on a fall in stock prices. Some
people have argued that such betting may increase volatility of financial markets
and even lead to the incidence of crashes. A proposed policy would then restrict
short-selling. In this paper we investigate consequences of such a restriction in a
heterogeneous agents model of a financial market and show that it may increase
in mispricing as well as price volatility.

The historical account of Galbraith (1954) provides evidence that short sales
were common during the market crash of 1929. As short-sellers were often blamed
for the crash, the Securities and Exchange Commission (SEC) introduced the so-
called “uptick rule” in 1938, which prohibited the selling short “on a downtick”, i.e.,
at prices lower than the previous transaction price. Curiously enough, the uptick
rule was removed on July 6, 2007, right before the market crash of 2008 − 2009
began. Fig. 1 shows the evolution of the S&P500 index and indicates the end
of the uptick rule period by the dotted vertical line in the left part of the figure.
Since its removal, calls to restore the uptick rule have been recurrent. We show the
dates of the statements by different practitioners, authority experts, congressmen
and senators for restoring the uptick rule. The calls did not remain unanswered
and in the fall of 2008 – at the peak of the credit crisis – the SEC temporarily
prohibited short-selling in 799 different financial companies. The SEC’s chairman,
Christopher Cox, argued that: “The emergency order temporarily banning short
selling of financial stocks will restore equilibrium to markets.”1 The period for
which the short-selling ban was imposed is indicated by two vertical lines in the
right part of the figure. Even more stringent policies have been adopted in other
countries, see Beber and Pagano (2013) for an overview. It is not clear, however,
whether such a ban on short-selling has actually been helpful in stabilizing financial
markets. According to Boehmer, Jones, and Zhang (2009) the price for the banned
stocks sharply increased when the ban was announced, but gradually decreased
during the ban period. The whole S&P500 index continued to fall during the
short-sell ban as well as afterwards, see Fig. 1.

The traditional academic view on constraints on short-selling is that they may
lead to overpricing of the asset.2 Miller (1977), for example, argues that the equi-

1See http://www.sec.gov/news/press/2008/2008-211.htm.
2Apart from the legal constraints, short-selling may also be constrained because it may be
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Figure 1: S&P 500 and the uptick rule. The end of the “uptick rule”, the period
between 19 September 2008 and 2 October 2008, when the short-sales ban for 799
financial stocks was in place and the major calls for reinstatement of the rule are
shown.

librium price between demand and supply for a risky asset reflects an average
view among heterogeneous investors about the asset’s value. The investors with
the most pessimistic view on the future price of the asset may sell the asset short
at the equilibrium price. Therefore, the constraints on short selling effectively re-
strict the supply of shares, leading to a higher equilibrium price level than would
emerge in the absence of constraints. In the more sophisticated, dynamic model
of Harrison and Kreps (1978) risk-neutral investors have different expectations
about the dividends of a certain asset and perfect foresight about beliefs of the
other investors. In the absence of short-selling constraints, investors with differ-
ent opinions take infinitely large, opposite positions. When the constraints are

costly, compared to taking a “long position”. In particular, an investor willing to sell short should
eventually deliver the shares to the buyer, and hence is required to “locate” the shares, i.e., to
find another investor who is willing to lend these shares. (When shares have not been located,
the operation is called “naked short-selling”, which is subject to more strict regulations and is
often banned, since it is believed to permit price manipulation.) In the absence of a centralized
market for lending shares such an operation may be complicated. At least, it is costly, because
short-selling requires not only paying a standard fee to the broker but also involves a commission
(plus dividends) to the actual owner of the stock. Moreover, there is a recall risk of the lender
wanting to recall a borrowed stock.
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imposed, the price reflects the beliefs of the most optimistic investors, and due to
speculative motives the actual price may even be higher.

However, since these first contributions other models have been developed that
predict no mispricing or even underpricing as a consequence of short-selling con-
straints. Diamond and Verrecchia (1987) argue that since the constraints are
common knowledge, financial market participants should take them into account
both in their behavior as well as in their beliefs about the behavior of the other
market participants. In their model of asymmetric information (based on Glosten
and Milgrom (1985)) short-selling prevents some investors from desired trading.
Even if not all private information is fully incorporated into the order flow, the
fully rational and risk-neutral market-maker will take the existence of short-selling
constraints into account, and will set bid and ask prices at the correct level. Bai,
Chang, and Wang (2006) show that this result might change when rational traders
are risk-averse. In this case uninformed traders will ask a premium for their higher
perceived risk (because the short-selling constraints slow down price recovery),
which leads to lower prices. But the model of Bai, Chang, and Wang (2006) may
also result in the opposite prediction, as a consequence of smaller supply. Similarly,
in a general equilibrium economy considered by Gallmeyer and Hollifield (2008) the
short-sell constraints can lead either to overpricing or to underpricing depending
on the intertemporal elasticity of substitution of the optimists. Notice that many
of these results are obtained by assuming that investors are unboundedly rational.
Laboratory experiments with paid human subjects show that short-selling con-
straints may lead to considerable mispricing, with the important reservation that
relaxing the constraints reduces mispricing, but does not eliminate it completely,
see, e.g., Haruvy and Noussair (2006).

Empirical research on short-sell bans tends to support the view that banned
securities are overpriced. Jones and Lamont (2002) study data on the costs of
short-selling between 1926 and 1933 and find that those assets which were expen-
sive to sell short subsequently earned lower returns. Similarly, Chang, Cheng, and
Yu (2007) examine the effect of revisions in the list of securities which cannot be
sold short at the Hong Kong stock exchange. They find that inclusion of a stock to
the list leads to an abnormal negative return, while exclusion from the list is asso-
ciated with an abnormal positive return. These results imply that a short-selling
ban leads to overpricing. Lamont and Thaler (2003) discuss 3Com/Palm and other
examples of clear mispricing, where an arbitrage opportunity is obviously present.
They attribute a failure to correct mispricing to the high cost of selling short.
On the other hand, recent analysis of Beber and Pagano (2013) shows that, with
the exception of the US, there is no evidence of overpricing of the banned stocks
during the recent wave of short-selling constraints. They compute the cumulative
abnormal return (with respect to the market) after the day the ban is introduced
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for the stocks in the countries where the ban was imposed. Comparison of the
cumulative returns of the stocks subject to a ban with the remaining stocks shows
that the effect of ban on the stock price was positive during the first 30 days after
it was introduced, but changed sign afterwards, even if the restrictions were not
yet relaxed. These results indicate that the ban leads to a price increase for the
banned stocks but only in the short run (which is also consistent with the US
data).

Most of the models discussed above are static in nature and assume that in-
vestors are fully rational. This assumption of full rationality has been challenged
on theoretical as well as empirical grounds. Theoretically, it can be argued that
to actually compute rational beliefs, agents would need to know the precise struc-
ture and laws of motion for the economy, even though this structure depends on
other agents’ beliefs, see, e.g., Evans and Honkapohja (2001). Empirically, some
important market regularities, such as recurrent periods of speculative bubbles
and crashes, fat tails of the return distribution, excess volatility, long memory
and volatility clustering are difficult to explain with models with fully rational
investors. Moreover, there is an abundance of experimental evidence that suggests
that theoretical models with fully rational agents do not even provide accurate de-
scriptions of the behavior of relatively simple laboratory markets (see, e.g., Smith,
Suchanek, and Williams, 1988, Lei, Noussair, and Plott, 2001, Hommes, Sonne-
mans, Tuinstra, and van de Velden, 2005 and Anufriev and Hommes, 2012).

An alternative approach is to consider models of behavioral finance (see, e.g.,
Shleifer, 2000 and Barberis and Thaler, 2003 for reviews) or, closely related, hetero-
geneous agents models (HAMs, see Hommes, 2006 and LeBaron, 2006 for reviews).
In HAMs, for example, traders choose between different heuristics or rules of thumb
when making an investment decision. Typically, heuristics that turned out to be
more successful in the (recent) past will be used by more traders. Such models
are also successful empirically (by reproducing many of the empirical regularities
discussed above, see Lux, 2009), and therefore become an increasingly accepted
alternative to the traditional models with a fully rational, representative agent.
In this paper we investigate the impact of introducing short-selling constraints in
such a heterogeneous agents model.

We take the well-known and widely used asset pricing model with heteroge-
neous beliefs from Brock and Hommes (1998) as our benchmark model. Traders in
this model have to decide every period how much to buy or sell of an inelastically
supplied risky asset, and they base their decision on one of a number of behav-
ioral prediction strategies (e.g., a fundamentalist or a trend following / chartist
prediction strategy). As new data become available agents not only update their
forecasts but they also switch from one prediction strategy to another depending
on past performance of those strategies. Such a low-dimensional heterogeneous
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agents model is able to generate the type of dynamics typically observed in finan-
cial markets, in particular when traders are sensitive to differences in profitability
between different prediction strategies.

We investigate the impact of imposing short-selling constraints in this frame-
work, by analytical as well as numerical methods. Specifically we assume that
traders need to pay additional ‘trading costs’ when they take a short position. We
find that the imposition of these costs for short-selling does not affect the local
stability properties of the fundamental steady state, that is, the financial mar-
ket is neither stabilized nor destabilized due to these costs. However, if the price
dynamics are volatile to begin with, the costs for short-selling affect the global dy-
namics and may lead to even more volatile price dynamics. The intuition for this
result is that the implicit constraint on short-selling reduces the potential of the
financial market to quickly correct mispricing. Limited liquidity in the market in
each time period contributes to this effect. Furthermore, the temporary mispricing
gets reinforced by the population dynamics.

A recent, independent study by Dercole and Radi (2012) gives results that are
qualitatively similar to ours. They also study the effect of imposing short-selling
constraints in the Brock and Hommes (1998) framework, but their model differs
from ours in two respects. First, their analysis is restricted to the case of a full
ban on short-selling, whereas our model allows for a wide range of intermediate
settings, with the full ban as a limiting case. Second, the ban in their model is
imposed only in periods in which the asset price decreases. They therefore focus
on the effects the up-tick rule, mentioned above, has on price stability, whereas
we are interested in the more general effects of trading costs of short-selling on
market dynamics.

The rest of the paper is organized as follows. In the next section we extend the
Brock-Hommes model to the case of positive outside supply and costly short selling.
The dynamics of the model for the typical and familiar case of fundamentalists
versus chartists are studied in Section 3. Section 4 concludes the paper.

2 An asset pricing model with heterogeneous be-

liefs and trading costs for short-selling

In this section we extend the well known heterogeneous beliefs asset pricing model
of Brock and Hommes (1998) to allow for short selling constraints, which we model
by introducing trading costs for selling short. In Section 2.1 we derive an individual
trader’s demand for the risky asset given his or her beliefs and the trading costs.
In Section 2.2 we discuss aggregate demand for the risky asset and determine the
market clearing price for the risky asset. Finally, Section 2.3 – following Brock
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and Hommes (1998) – introduces evolutionary selection between the different belief
types.

2.1 Individual asset demand

Consider a financial market where traders can invest their wealth in two assets,
an inelastically supplied risky asset (“stock”), and a riskless asset (“bond”). The
riskless asset is in perfect elastic supply and yields gross return R = 1 + rf ;
its price is normalized to 1. The risky asset has ex-dividend price pt and pays
random dividend yt in period t. The dividend is assumed to be identically and
independently distributed with mean value y. The supply of the risky asset is
inelastic and equal to S units per trader, where S is a non-negative constant.3

All traders are myopic mean-variance maximizers, with the same risk aversion
coefficient a. Moreover, traders have correct knowledge of the dividend process
and homogeneous beliefs about the variance of asset prices, denoted σ2. The only
source of heterogeneity stems from the fact that traders may differ in their beliefs
about the future price level. More specifically, there are H distinct belief types,
or prediction strategies, with price expectations of type h ∈ H = {1, . . . , H} given
by Eh,t [pt+1].

Denote the number of shares of the risky asset purchased at time t by a trader
of type h by Ah,t. In the case when Ah,t < 0, which may be optimal when the
trader believes the price of the risky asset will go down, trader h sells the risky
asset short. Trader h selects Ah,t in order to solve

max
Ah,t

(
Eh,t [Wh,t+1]−

a

2
Vh,t [Wh,t+1]

)
, (1)

where Wh,t+1 is wealth of a trader of type h in period t+ 1, which is subject to an
individual intertemporal budget constraint. This budget constraint is given by

Wh,t+1 = RWh,t + (pt+1 + yt+1 −Rpt)Ah,t −Rτ (Ah,t) .

This intertemporal constraint deviates from the standard wealth constraint (see,
e.g., Brock and Hommes (1998)) because it explicitly takes into account that mar-
ket regulation or institutional arrangements may lead to additional trading costs,
represented by τ (Ah,t).

4 The money spend on trading costs cannot be invested in

3Note that, apart from introducing trading costs, we also extend Brock and Hommes (1998)
by allowing for positive outside supply of the risky asset, S > 0. In Hommes, Huang, and Wang
(2005) the case S > 0 is also studied but in a setting with an auctioneer, whereas we assume
market clearing. We will get back to this issue in Section 3.1.

4We thank Gaetano Gaballo and an anonymous referee for suggesting to provide microfoun-
dations for the short selling constraints, which we do by introducing these trading costs.
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the riskless asset and therefore next period’s wealth is decreased by Rτ(Ah,t). We
specify these trading costs as

τ(Ah,t) =

0 if Ah,t ≥ 0

T |Ah,t| if Ah,t < 0
,

where T is a non-negative constant.5 The case T = 0 corresponds to the original
model of Brock and Hommes (1998). When T > 0, the trader needs to pay trading
costs but only when he or she sells the risky asset short. Trading costs imply that
the marginal benefits for selling one unit of the risky asset short drop from Rpt
to R (pt − T ), whereas marginal (expected) costs are still Eh,t [pt+1] + y. In the
presence of these costs the trader therefore has to expect a higher capital gain in
order for short-selling to be profitable. In particular, if T is sufficiently high, short-
selling is effectively ruled out and in that case the trading costs are equivalent with
a full ban on short-selling.

Given our assumptions, the objective function (1) for trader h, as a function
of Ah,t, can be written as

Φ (Ah,t) =


RWh,t + (Eh,t [pt+1] + y −Rpt)Ah,t − a

2
σ2A2

h,t

RWh,t + (Eh,t [pt+1] + y −Rpt)Ah,t −RT |Ah,t| − a
2
σ2A2

h,t

if Ah,t ≥ 0

if Ah,t < 0
.

(2)

For T = 0 this objective function is maximized at

A∗h,t =
Eh,t[pt+1] + y −Rpt

a σ2
, (3)

which is the standard mean-variance demand function.
If trading costs are positive, however, the solution is more complicated. First

notice that, as long as A∗h,t from (3) is non-negative, it will still maximize (2).
Non-negativity of A∗h,t is equivalent with

pt ≤ pht ≡
Eh,t [pt+1] + y

R
.

The precise cut-off value pht depends on the expectations of belief type h. Belief
types that are more optimistic about the future asset price will have higher cut-
off values and higher demand for the asset. They will therefore be more rarely

5Alternative specifications of trading costs, for example τ (A) = T2A
2 for A < 0 and τ (A) = 0

for A ≥ 0, are also possible, see footnote 6.
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Figure 2: Individual demand as a function of the price of the risky asset. For
T = 0, the demand function is linearly decreasing in the price p (the dashed line).
For T > 0 the individual demand function is piecewise linear (the solid line) with
zero demand for prices between ph and p̃h = ph + T .

affected by the trading costs. If pt > pht traders have the incentive to go short
since they expect a decrease in the asset price. However, since they now have to
pay an additional cost of T per unit sold short, the expected decrease in the asset
price should be higher by exactly an additional T units for short-selling to become
profitable. It follows that individual demand for trader h, as a function of the
current market price pt, becomes

Ah,t (pt) =



1
aσ2 (Eh,t [pt+1] + y −Rpt)

0

1
aσ2 (Eh,t [pt+1] + y −R (pt − T ))

if pt ≤ pht

if pht < pt ≤ pht + T

if pt > pht + T

. (4)

Fig. 2 gives an example of the individual demand for trader h as a function
of pt (for given values of Eh,t [pt+1] and the parameters y, R, T and aσ2). The
figure shows that the individual demand curve consists of three linear pieces. For
pt ≤ pht the individual demand coincides with the standard mean-variance demand
function A∗h,t. When pt > pht the trading costs become effective and the trader will
go short only when expected benefits outweigh costs. Thus, when the expected
capital gain from short-selling, pt − pht , is smaller than the trading cost per unit,
T , the trader will take a zero position, which corresponds to the flat section of
the individual demand curve. When the expected capital gain is larger than the
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trading cost, pt − pht > T , the trader will sell the asset short.6 Note that for
sufficiently high T there will never be short-selling of the risky asset.7

2.2 Asset market equilibrium

Let the fraction of traders of type h at time t be given by nh,t ≥ 0, with
∑H

h=1 nh,t =
1. Aggregate demand (per trader) at time t for the risky asset then equals
At (pt) =

∑H
h=1 nh,tAh,t (pt), with Ah,t (pt) given by (4). In every period t the

market equilibrium price pt will be such that the market for the risky asset clears,
that is, it solves

H∑
h=1

nh,tAh,t (pt) = S, (5)

where S ≥ 0 is the average outside supply.
First we consider the case where all traders are fully rational, and that there is

common knowledge of rationality. Since traders then have identical price expec-
tations individual asset demand will be the same for each trader. In equilibrium
each trader will hold exactly S units of the risky asset and no trader sells the asset
short. The only non-exploding equilibrium solution to (5) in this case is pt = pf ,
for all t, with pf given by

pf =
y

rf
− a σ2

rf
S. (6)

We refer to pf as the fundamental price. When outside supply S is zero, this
is simply the discounted value of the future stream of dividends. Under positive
supply, risk-averse investors require a risk premium to hold the risky asset, which
is reflected in the last term of (6).

It will be convenient to rewrite the individual demand function (4) in terms of

6 Note that the slopes of the first and third pieces of the individual demand function are the
same and equal to − R

aσ2 . It is easy to show that for the alternative specification of quadratic
trading costs the resulting individual demand curve will have just one kink. Specifically, if
τ (A) = T2A

2 for A < 0 and τ (A) = 0 for A ≥ 0, then the demand curve coincides with A∗h,t for

pt ≤ pht and is flatter with slope − R
aσ2+2T2

for pt > pht . We investigated this case in an earlier
version of the current paper, and also studied the case when costs have both linear and quadratic
components. The results are qualitatively similar to those reported in this paper.

7Therefore, a full ban on short-selling, as considered for example in Dercole and Radi (2012),
is a special case of our model for T →∞.
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the deviation of the price from the fundamental, xt = pt − pf . This gives

Ah,t (xt) =



1
aσ2 (Eh,t [xt+1]−Rxt) + S

0

1
aσ2 (Eh,t [xt+1]−R (xt − T )) + S

if xt ≤ xht

if xht < xt ≤ xht + T

if xt > xht + T

. (7)

where the cut-off value in deviations is

xht =
Eh,t [xt+1] + a σ2S

R
. (8)

If there is diversity of beliefs some traders may sell the asset short in equilibrium
and it becomes more difficult to determine the market equilibrium price. First note
that the aggregate demand function At (xt) =

∑
h nh,tAh,t (xt) is the weighted sum

of H piecewise-linear demand functions (for an illustration with H = 2, see Fig. 3).
Each of these piece-wise linear demand functions is continuous and decreasing in
xt and has two kink points, one in xht and one in xht + T . Therefore the aggregate
excess demand function, which consequently may have up to 2H different kink
points, will also be continuous and decreasing in xt. Moreover, it will be strictly
decreasing as long as demand is strictly positive (the aggregate demand curve has
a flat portion only if xt ∈

[
xht , x

h
t + T

]
for each belief type h, which would imply

that aggregate demand is zero). The following result immediately follows from
these considerations.

Proposition 2.1. If S > 0 there exists a unique solution xt to At (xt) = S.

To characterize this market equilibrium price we partition, for a given price
deviation x, the set of belief types H as follows:

P (x) =
{
h ∈ H | x ≤ xht

}
, Z(x) =

{
h ∈ H | xht < x ≤ xht + T

}
, and

N(x) =
{
h ∈ H | x > xht + T

}
.

That is, the set P (Z, N) consists of the trader types that have positive (zero,
negative) demand for the risky asset. Aggregate demand at price x, At(x), can
now be written as

At(x) =
∑

h∈P (x)

nh,t

(
Eh,t [xt+1]−Rx

aσ2
+ S

)
+
∑

h∈N(x)

nh,t

(
Eh,t [xt+1]−R (x− T )

aσ2
+ S

)
.

(9)
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Solving the market clearing equation At(xt) = S we find that the market price (in
deviations) is characterized by

xt =
1

R
∑

h/∈Z(xt) nh,t
(10)

×

 ∑
h∈P (xt)

nh,t (Eh,t [xt+1]) +
∑

h∈N(xt)

nh,t (Eh,t [xt+1] +RT )− aσ2S
∑
h∈Z(x)

nh,t

 .

Note however, that xt is still implicitly defined by (10) since the right-hand side
also depends upon xt through the definition of the sets P (xt), Z(xt) and N(xt).
Below we will derive the market equilibrium price xt explicitly for some special
cases. Appendix A contains the description of an algorithm for finding the market
equilibrium price for an arbitrary number of belief types.

2.2.1 Market equilibrium in absence of trading costs

If T = 0 we have P (xt) = H and equation (10) reduces to

xt =
1

R

H∑
h=1

nh,t Eh,t [xt+1] , (11)

that is, the realized price deviation is equal to the (discounted) weighted average
of price expectations for the next period. Note that this holds for any number of
belief types H.

2.2.2 Market equilibrium when there are two belief types

For the case of two belief types, H = 2, it is also possible to derive the price
explicitly. Let us assume that at time t belief type 1 is more optimistic about next
period’s asset price than belief type 2, i.e., E1,t [xt+1] > E2,t [xt+1]. In a market
with two belief types, and given that S > 0, the traders of the optimistic type must
have positive demand for the risky asset at the equilibrium price. Therefore only
three cases are possible: either the pessimistic type (belief type 2) has positive
demand at the equilibrium price, or it has zero demand at the equilibrium price,
or it has negative demand at the equilibrium price. These three cases are shown in
the three panels of Fig. 3, which graphically illustrates the market equilibrium in
the model with heterogeneous expectations (see the caption for an explanation).

In the first case (left panel of Fig. 3) both belief types have a positive position
in the equilibrium and the relevant market equilibrium price is given by (11) for
H = 2, that is

xNCt =
1

R
(n1,t E1,t [xt+1] + n2,t E2,t [xt+1]) . (12)
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Figure 3: Temporary market equilibrium. Demand functions of the two different
types are shown as thin solid lines. Aggregate demand (thick dashed or thick solid
line, when short-selling has no or positive costs, respectively) is the vertical average
of these two demand functions weighted by the fractions of the two types. Equi-
librium price (in deviations) is obtained as the x-coordinate of the intersection of
the aggregate demand with supply (horizontal dashed line). Equilibrium positions
of the two types are obtained as the y-coordinates of the corresponding demand
functions evaluated in the equilibrium price. Three cases discussed in the text are
illustrated. Left panel: Both types have positive demand at the equilibrium price.
Middle panel: The pessimistic type has zero demand at the equilibrium. Right
panel: The pessimistic type has negative demand at the equilibrium.

This is only relevant when the second type’s equilibrium position is positive, that
is, when xNCt < x2t , or equivalently, when E1,t [xt+1]− E2,t [xt+1] < aσ2S/n1,t.

In the second case (middle panel of Fig. 3) the pessimistic trader type 2 has
a zero position in the equilibrium. The equilibrium price can then be found from
(10) as

xFt =
1

R

(
E1,t [xt+1]−

n2,t

n1,t

aσ2S

)
. (13)

This expression for the equilibrium price is relevant when xFt ∈ [x2t , x
2
t + T ). The

condition xFt < x2t +T is equivalent with E1,t [xt+1]−E2,t [xt+1] < aσ2S/n1,t +RT .
Finally, the right panel of Fig. 3 illustrates the case where the equilibrium

allocation is such that pessimistic belief type sells the risky asset short. From (10)
the price then follows as

xCt =
1

R
(n1,t E1,t [xt+1] + n2,t (E2,t [xt+1] +RT )) .

The three cases discussed above are the ones when type 1 traders are more
optimistic than type 2 traders. The two remaining cases, which can be studied
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in a similar way, are those where type 2 traders are pessimistic and have zero or
negative equilibrium position in the risky asset, respectively.

The next proposition summarizes the market equilibrium price if there are two
belief types.

Proposition 2.2. Consider the model with short-selling constraints and two belief
types. The equilibrium price for period t, xt, is given as follows

xt =



1
R

(n1,t E1,t [xt+1] + n2,t (E2,t [xt+1] +RT ))

1
R

(
E1,t [xt+1]− n2,t

n1,t
aσ2S

)
1
R

(n1,t E1,t [xt+1] + n2,t E2,t [xt+1])

1
R

(
E2,t [xt+1]− n1,t

n2,t
aσ2S

)
1
R

(n1,t (E1,t [xt+1] +RT ) + n2,t E2,t [xt+1])

if 4 Et ≥ aσ2S
n1,t

+RT

if aσ2S
n1,t
≤ 4Et <

aσ2S
n1,t

+RT

if − aσ2S
n2,t
≤ 4Et <

aσ2S
n1,t

if − aσ2S
n2,t
−RT ≤ 4Et < −aσ2S

n2,t

if 4 Et < −aσ2S
n2,t
−RT

,

(14)

where 4Et = E1,t [xt+1]− E2,t [xt+1].

Fig. 4 gives a schematic representation of the five different regions, correspond-
ing to the different expressions for the equilibrium price xt in (14). For the full
ban on short-selling, i.e., when trading costs T → ∞, the most left and the most
right regions disappear and only the three central regions need to be considered.

2.2.3 The instantaneous price increase from introducing trading costs

Before introducing the last element of our model (the evolution of fractions of
belief types), it is useful to address a comparative statics question. Consider a
financial authority that aims to discourage short-selling through an unanticipated
increase of trading costs in period t, after expectations and the distribution of
traders over belief types have already been determined. What short-run impact
does this policy have on the market price, and how strong will this impact be?

From Proposition 2.2 it follows that the current distribution of the traders over
the belief types is pivotal for this instantaneous effect of the increase in trading
costs. Consider the stylized scenario where at time t trading costs are increased
from T = 0 to a value that implies a full ban on short-selling.8 Moreover, let type
1 traders be more optimistic than type 2 traders, that is 4Et > 0.

8To fully understand the quantitative effects for the intermediate situation – where trading
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Figure 4: Illustration of the five different regions for equilibrium market price presented

in Proposition 2.2.

In the absence of trading costs the equilibrium price, xNCt , will be given by (12).
For high trading costs the price equals either xNCt or xFt (as in (13)). In particular
(see Proposition 2.2 or Fig. 4), increased trading costs will affect the equilibrium
price if and only if 4Et > aσ2/ (1− n2,t), that is, when the pessimistic traders
are sufficiently pessimistic (that is, 4Et is high), and/or when the fraction of
pessimistic traders n2,t is small. This latter effect can be explained by considering
the market equilibrium equation (5). Intuitively, the higher the fraction of a
certain type is, the more homogeneous the population of traders is, and the closer
the individual equilibrium holdings of this type of traders is to the average available
supply S > 0. Hence, when the fraction of pessimistic traders is high enough they
may still hold a positive number of shares (although less than S) at the equilibrium
and an increase in trading costs for short-selling will not have an effect. (Compare
the left and right panels of Fig. 3.)

Provided that 4Et > aσ2/ (1− n2,t) the instantaneous price increase due to
the introduction of trading costs for short-selling is equal to

xFt − xNCt =
n2,t

R

(
4Et−

aσ2S

1− n2,t

)
. (15)

The impact of the introduction of trading costs gets stronger with 4Et, that is,
when the constrained traders become more pessimistic. The effect of the relative
number of pessimistic traders, n2,t, is ambiguous however. When the fraction n2,t is
just low enough to guarantee that trading costs will have an effect, an even smaller
fraction will make the increase in the price larger (see the term in the brackets
which increases as n2,t gets smaller). However, the first term of (15) decreases with
n2,t, implying that when n2,t is very small, so will be the price increase.

Miller (1977) argued that short-selling constraints eliminate the pessimistic
investors’ opinion from the pricing equation, increasing market-clearing prices.
The discussion above not only quantifies the instantaneous effect of introducing
short-sell constraints, but also illustrates that the effect on the price exists only
under certain conditions (in particular, when the fraction of pessimistic traders is

costs marginally increase in period t – would require a tedious study of several cases, corre-
sponding to the different regions in which the equilibrium price lies before and after the change
in trading costs. This analysis leads to a similar conclusion about the role of the fraction of
pessimistic traders.
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low enough). Note that in the longer run the distribution of types will change after
the introduction of trading costs, making it more difficult to evaluate the impact
of these costs. The remainder of the paper is devoted to understanding these long
run effects.

2.3 Updating of belief types

Following Brock and Hommes (1998) we assume that, at the end of every trading
round traders may update their belief type or prediction strategy on the basis
of the performance of these different types. Performance of the different types
is measured by the net return generated by those belief types. Excess return of
holding the risky asset at time t is the difference between the return on the risky
asset, pt + yt, and the return on the risk free asset, which is R (pt−1 − T ) or Rpt−1,
depending upon whether the risky asset was sold short or not. Written in terms
of price deviations excess return therefore becomes

rt =


r̃t = xt −Rxt−1 + δt + aσ2S

r̃t +RT = xt −R (xt−1 − T ) + δt + aσ2S

if Ah,t−1 > 0

if Ah,t−1 < 0
(16)

where δt = yt − y is a shock due to the dividend realization. Individual holdings
Ah,t−1 are given by (7). We then specify performance of belief type h, in period t,
as

Uh,t = rtAh,t−1 − Ch,

where Ch is the information cost associated with strategy h, which is assumed to
be constant over time.

Similar to the position of the trader, the performance measure can therefore
fall in three regimes. In particular, we have

Uh,t =



1

aσ2

(
Eh,t−1 [xt]−Rxt−1 + aσ2S

)
×
(
xt −Rxt−1 + δt + aσ2S

)
− Ch,

if xt−1 ≤ xht−1

−Ch if xht−1 < xt−1 ≤ xht−1 + T,

1

aσ2

(
Eh,t−1[xt]−R(xt−1 − T ) + aσ2S

)
×
(
xt −R (xt−1 − T ) + δt + aσ2S

)
− Ch

if xt−1 > xht−1 + T

In the remainder we will focus on the deterministic skeleton of the model,
that is, we take δt ≡ 0 for all t. The fraction of traders choosing belief type h
in period t + 1 depends upon the relative performance of this type, as measured
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by Uh,t. This evolutionary competition between belief types can be modeled in
different ways. Following Brock and Hommes (1998) we use the so-called logit
dynamics, which has become one of the standards ways to model switching between
types in heterogeneous agent models of financial markets. Other models, such as
reinforcement learning or replicator dynamics typically lead to similar qualitative
results. The logit dynamics are specified as

nh,t+1 =
exp [βUh,t]∑H
h′=1 exp [βUh′,t]

. (17)

Note that, for period t + 1, the new fractions of traders, nh,t+1 are determined
on the basis of past return, rt and their positions two periods ago, Ah,t−1. The
parameter β ≥ 0 is the intensity of choice measuring the sensitivity of agents with
respect to the difference in past performances of the different types. If the intensity
of choice goes to infinity, all traders always switch to the most successful type of
the previous period. At the opposite extreme, with β = 0, agents are equally
distributed over the different belief types, independent of the past performance
of these types. For the special case of zero outside supply and no trading costs
Brock and Hommes (1998) find that for many specifications of the belief types the
dynamics of the model depends on the value of β. We extend these results to the
positive supply case below.

The full heterogeneous beliefs model can now be described by the implicit
pricing equation (10) and the evolution of fraction (17). If there are only two
belief types (as in the application from the next section) the price dynamics are
given by (14), whereas the switching dynamics (17) becomes

n2,t+1 =
1

1 + exp [β4Ut]
, n1,t+1 = 1− n2,t+1 . (18)

The performance differential 4Ut = U1,t − U2,t can be written as

4Ut =


r̃t4At−1 −RTA2,t−1 −4C if 4 Et−1 ≥ aσ2S

n1,t−1
+RT

r̃t4At−1 −4C if − aσ2S
n2,t−1

−RT ≤ 4Et−1 <
aσ2S
n1,t−1

+RT

r̃t4At−1 +RTA1,t−1 −4C if 4 Et−1 < − aσ2S
n2,t−1

−RT
(19)

where r̃t is excess return for the risky asset when Ah,t ≥ 0 and 4At−1 = A1,t−1 −
A2,t−1, with Ah,t−1 given by (7) and 4C = C1 − C2. Recall that, if there are
two trader types, determination of the equilibrium price and the equilibrium de-
mands of the two types requires considering five different regions, see Fig. 4 and
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Proposition 2.2. It is then straightforward to check that we have

4At−1 =



1
aσ2 (E1,t−1 [xt]− E2,t−1 [xt]−RT ) if 4 Et−1 ≥ aσ2S

n1,t−1
+RT

1
aσ2 (E1,t−1 [xt]−Rxt−1) + S if aσ2S

n1,t−1
≤ 4Et−1 <

aσ2S
n1,t−1

+RT

1
aσ2 (E1,t−1 [xt]− E2,t−1 [xt]) if − aσ2S

n2,t−1
≤ 4Et−1 <

aσ2S
n1,t−1

− 1
aσ2 (E2,t−1 [xt]−Rxt−1)− S if − aσ2S

n2,t−1
−RT ≤ 4Et−1 < − aσ2S

n2,t−1

1
aσ2 (E1,t−1 [xt]− E2,t−1 [xt] +RT ) if 4 Et−1 < − aσ2S

n2,t−1
−RT

(20)

Note that only in two of the five cases (the first and last one) trading costs are
being paid by one of the types. The model with two types is now described by
equations (14), (18), (19) and (20).

3 A stylized asset market model with fundamen-

talists and chartists

In this section we analyze the model from the previous section for a stylized but
typical and often studied application of the heterogeneous beliefs model put for-
ward in Brock and Hommes (1998). This application involves two belief types,
each representative of an important class of belief types that can be encountered
on actual financial markets.9 First, the fundamentalists believe that the price will
return to its fundamental value in the next trading period, that is, they predict
E1,t[pt+1] = pf . In terms of deviations this can be written as

E1,t [xt+1] = 0 . (21)

In addition, fundamentalists have to pay ‘information’ costs C > 0 in order to
carry out the fundamental analysis necessary to obtain the fundamental forecast.
Secondly, chartists or trend extrapolators use past data to forecast the future price
and believe that any mispricing will continue. That is, they predict E2,t [pt+1] =
pf + g (pt−1 − pf ), which in terms of deviations can be written as

E2,t [xt+1] = gxt−1, (22)

where g > 0 is the extrapolation coefficient. The forecast of chartists is assumed
to be available for free.

9More general formulations of these two belief types can be found in Gaunersdorfer, Hommes,
and Wagener (2008) and Anufriev and Panchenko (2009).
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In Section 3.1 we investigate the model without trading costs. We will use this
model (which is equivalent to the model studied in Brock and Hommes (1998), ex-
cept that we allow for positive exogenous supply of shares, S > 0) as a benchmark
against which the model with trading costs for short-selling can be compared. In
Section 3.2 we study the effect of trading costs in this asset market model on (i)
the existence, location and local stability of the steady states of the model; and
(ii) global dynamics of asset prices.

3.1 Asset price dynamics in the benchmark model

Given (21) and (22) and letting nt = n2,t be the number of chartists in period t,
the price dynamics in deviations (11) reduces to

xt = nt
g

R
xt−1 . (23)

This price deviation may increase over time when the chartists are strongly ex-
trapolating the price, g > R, and when their fraction is large enough. From (18),
(19) and (20) we obtain

nt =
[
1 + exp

(
−β
[g xt−3
aσ2

(
xt−1 −Rxt−2 + δt−1 + aσ2S

)
+ C

])]−1
. (24)

If we consider the so-called “deterministic skeleton”, that is, take δt ≡ 0, the sys-
tem consisting of (23) and (24) reduces to a 3-dimensional deterministic dynamical
system. The next result characterizes the steady states of the deterministic skele-
ton and its local stability properties. It generalizes Lemma 2 from Brock and
Hommes (1998) to the case of positive supply, S > 0.10

Proposition 3.1. Consider the system (23)–(24), with δt ≡ 0. Let neq = 1/(1 + e−βC)
and n∗ = R/g. Let x+ and x− denote the solutions (when they exist) to

1

n∗
= 1 + exp

[
−β
( gx
aσ2

(
−rfx+ aσ2S

)
+ C

)]
, (25)

with x+ ≥ x−. Then:

1. for 0 < g < R, the fundamental steady state E1 = (0, neq) is the unique,
globally stable steady state.

10Hommes, Huang, and Wang (2005) also consider positive supply in an asset pricing model.
In their case, however, the asset price is not determined by equilibrium between supply and
demand, but by a market maker.
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2. for R < g < 2R, we introduce two constants 0 < βSN < β∗ as follows

βSN = −
4rf ln g−R

R

4rfC + aσ2gS2
and β∗ = − 1

C
ln
g −R
R

. (26)

We have:

(a) 0 ≤ β < βSN : the fundamental steady state E1 = (0, neq) is globally
stable;

(b) βSN < β < β∗: two non-fundamental steady states E2 = (x+, n
∗) and

E3 = (x−, n
∗) exist. The steady states E1 and E2 are locally stable, the

steady state E3 is unstable. For every β it holds that x+ > x− > 0.

(c) β > β∗: the fundamental steady state E1 is unstable, and for every β
it holds that x+ > 0 > x−. The two non-fundamental steady states E2

and E3 are locally stable for β small enough; they lose their stability
through a Neimark-Sacker bifurcation when β increases.

3. for g > 2R, there exist three steady states E1 = (0, neq), E2 = (x+, n
∗) and

E3 = (x−, n
∗); the fundamental steady state E1 is unstable.

Proof. See Appendix B.

An important finding is that the heterogeneous beliefs asset pricing model can
have multiple steady states. The second case of this proposition, dealing with
intermediate values of the extrapolation coefficient, g ∈ (R, 2R), allows for both
stability and instability of the fundamental steady state, depending on the intensity
of choice. This is illustrated in the bifurcation diagrams in Fig. 5, where we choose
parameter values S = 0.1, rf = 0.1, ȳ = 10, g = 1.2, aσ2 = 1 and C = 1.

The left panel shows the theoretical result of the second case from Proposi-
tion 3.1. The dynamical system exhibits a saddle-node bifurcation at β = βSN

in which two non-fundamental steady states are created and a transcritical bifur-
cation at β = β∗ where the fundamental steady state loses its stability. Further-
more, when β becomes larger, both non-fundamental steady states lose stability
through a Neimark-Sacker bifurcation leading to an invariant closed curve and
(quasi-)periodic dynamics. For large values of β, the dynamics of the system are
illustrated by the numerical bifurcation diagram, displayed in the right panel of
Fig. 5. The two different colors in the bifurcation diagrams correspond to different
attractors for the same intensity of choice, but with different initial conditions
(starting above and below the fundamental price, respectively). For values of β
for which the non-fundamental steady states are unstable the asset price exhibits
endogenously generated bubbles and crashes (recall that these are simulations for
the model with δt = 0 for all t).
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Figure 5: Bifurcation diagram for the model with fundamentalists and chartists in
absence of trading costs. Left Panel: Theoretical diagram illustrating Prop. 3.1,
case 2.. The thick curves show the locally stable steady states, the dotted curves
show the unstable steady states. Right panel: The numerical version of the bifur-
cation diagram. For each β ∈ [1, 5], 2000 points after 1000 transitory periods are
shown. Two attractors are shown by the points of different colour. The parameters
are: S = 0.1, rf = 0.1, ȳ = 10, g = 1.2, and C = 1.

Comparing these results with the case of zero supply, S = 0, studied in Brock
and Hommes (1998), one observes that positive supply breaks the symmetry be-
tween the upper and lower attractors.11 When supply is positive agents have a
positive position in the risky asset and require a positive return at the fundamen-
tal steady state. As a result, the asset price may respond much more strongly to
a positive deviation from the fundamental price than to a negative deviation of
equal size.

The dynamics in the model is illustrated in Fig. 6 for β = 4. The left (right)
panels show the dynamics on the upper (lower) attractor. From top to bottom the
panels show the evolution of prices, fractions of fundamentalists and the positions
of both fundamentalists and chartists, respectively. On the upper attractor the
price is initially growing, generating positive return. The chartists expect a further
price rise and hold the shares of the risky asset, the fundamentalists expect a
devaluation and their positions are negative. The relative fraction of chartists
is high, not only because fundamentalists pay information costs, but also because
chartists’ expectations of positive returns are confirmed. The mechanism leading to
a crash is endogenous to the model and works as follows. As prices become larger,

11When S = 0 the dynamics exhibits a pitchfork bifurcation at β∗ = βSN . Moreover, the
bifurcation diagram is symmetric with respect to the line x = 0.
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Dynamics on the upper attractor. Dynamics on the lower attractor.

Figure 6: Dynamics in the benchmark model with fundamentalists and chartists
without trading costs. Upper panels: prices. Empty disks correspond to the
period with negative excess return. Middle panels: fraction of fundamentalists.
Lower panels: positions of fundamentalists (points) and chartists (empty disks).
Parameters are: S = 1, β = 4, rf = 0.1, ȳ = 10, g = 1.2, and C = 1.

the capital gain cannot compensate for the lower dividend yield. Return decreases
and eventually becomes negative (the periods of negative return are indicated by
the empty disks for the price in the top panel). The performance of fundamentalists
improves, their fraction increases, and returns continue to decrease. Eventually
the increase in the number of fundamentalists is so substantial that the market
crashes and prices return to their fundamental value. Here the performance of
fundamentalists, relative to that of chartists, is lower due to the information costs
and the story repeats.
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On the lower attractor we observe cyclical dynamics for the same value of
β. On this trajectory the asset is undervalued and the return is always positive:
dividend yield outweighs the capital gain effect. Chartists have smaller positions
than fundamentalists, and may even go short during some periods, but dominate
the market due to costs for the fundamental strategy. An initial fall in prices is
reinforced by chartists but is reversed due to their bad relative performance.

3.2 Asset price dynamics with trading costs

We now introduce trading costs in the setting of Section 3.1. Recall that we have
fundamentalists (with E1,t [xt+1] = 0) and chartists (with E2,t [xt+1] = gxt−1), so
that the expectation differential is given by 4Et [xt+1] = −gxt−1.12 Substituting
these values for E1,t [xt+1], E2,t [xt+1] and 4Et [xt+1] into equations (14), (18),
(19) and (20) one obtains the relevant dynamical system (see Appendix C for the
resulting equations). In what follows we will investigate the existence of steady
states and their local stability properties, as well as the global dynamics of asset
prices and how these dynamics depend upon the trading costs T .

3.2.1 Impact of trading costs on steady states

Recall that, for strictly positive but finite values of T and two belief types, there
are five different regions, depending upon which belief type, if any, is selling short
(see Fig. 4). Steady states may exist in each of these five regions and, as a further
complication, explicit solutions to the conditions that implicitly define the steady
states in these regions typically do not exist. Therefore we need to resort to
numerical methods.

Our findings concerning steady states are summarized in Fig. 7. The left pan-
els show bifurcation diagrams, with the intensity of choice β as the bifurcation
parameter, for the case with trading costs (red curves, for T = 0.1, T = 0.2 and
T = 0.3, respectively) and for the case without trading costs (black curves, which
are identical to the curves in the left panel of Fig. 5). Dashed (black and red)
curves correspond to unstable steady states, whereas the solid curves represent
steady states that are locally stable. The right panels of Fig. 7 present the same
bifurcation curves, but in (n, x)-space. These panels demarcate the five different
regions in which the steady state can lie, and depict the position of the steady
states in these regions (for different values of β). For a given value of n (not

12We abstract from the fact that traders in the market may start to use different prediction
strategies due to the introduction of trading costs. For example, fundamentalists may believe
that prices will take longer to return to the fundamental value under the new market conditions.
For the moment we will only consider how the trading costs have an impact on the distribution
of traders over the existing belief types. In Section 4 we discuss how this can be extended.
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Figure 7: Bifurcation diagrams (left panels) and phase spaces of the steady states
corresponding to different β ∈ [0, 50] (right panels) of the asset pricing model with
fundamentalists and chartists for S = 0.1. Upper panels: T = 0.1; Middle panels:
T = 0.2; Lower panels: T = 0.3.

too close to 1), moving from low (negative) to high (positive) values of x one
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passes the regions where chartists have negative individual demand (lower blue
area), chartists have zero demand (lower dark blue area), all traders have positive
individual demand (white area), fundamentalists have zero demand (upper dark
blue area) and fundamentalists have negative individual demand (upper light blue
area). Unstable steady states correspond to the thin black curves and stable steady
states are represented by the thick black curves.

Several important observations can be made from these bifurcation diagrams.
First, the fundamental steady state (with x∗ = 0) exists in both the benchmark
model and the model with trading costs. Moreover, the critical value β∗ for which
this fundamental steady state loses stability through a transcritical bifurcation is
not affected by the trading costs. This can be easily understood from the fact that
at the fundamental steady state all traders have a positive position (Ah,t = S > 0
for all h). Trading costs therefore do not have any impact on the existence and local
stability of the fundamental steady state. This is consistent with the panels on
the right of Fig. 7. The fundamental steady state, corresponding to the horizontal
black line at x = 0, becomes unstable for one particular value of the fraction of
chartists, neq (this critical value of neq is characterized by β = β∗ from Proposition
3.1), which does not depend on the level of the trading costs.

However, the existence of the non-fundamental steady states does depend, to
a substantial extent, on the trading costs. In particular, the non-fundamental
steady states emerge for a substantially lower value of the intensity of choice β
when T > 0. Higher trading costs therefore increase the space of parameters for
which mispricing may occur. The right hand panels of Fig. 7 show that these
non-fundamental steady states emerge in the area where trading costs are effective
and the fundamentalist traders have a zero or negative position in equilibrium.

Related to this, an increase in trading costs, for a given value of β, increases
the distance between the upper non-fundamental steady state and the fundamental
steady state and therefore increases mispricing in this sense as well. The underlying
mechanism is the following. If the price deviation is sufficiently high chartists will
buy the risky asset and fundamentalists will sell the asset short. The introduction
or increase of trading costs decreases the return on selling the asset short and the
fundamentalists therefore require a higher equilibrium price to still be willing to
take a negative position in the risky asset.

Note that the location of the lower non-fundamental steady state, when it
lies below the fundamental steady state, is only marginally affected by trading
costs. In fact, from Fig. 7 it follows that the lower non-fundamental steady state
is identical to the one in the benchmark model for a considerable range of values
of β. The reason for this is the following. In the lower non-fundamental steady
state fundamentalists believe that the asset is undervalued with respect to its
fundamental price and will buy the asset. However, since the fraction of chartists
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is much higher than the fraction of the fundamentalists, due to the information
costs the latter have to pay, chartists may still take a positive position in the
risky asset without violating market clearing condition (5). Only for higher values
of β the trading costs play a role and chartists holdings of the risky asset in
the lower non-fundamental steady state become zero. This leads to a difference
between the lower non-fundamental steady state in the model with trading costs
and the one in the benchmark model, as the left panels of Fig. 7 illustrate. The
price will be higher with trading costs (that is, the absolute price deviation will
be smaller) since the chartists now take a zero, instead of a negative, position.
Consequently fundamentalists hold fewer shares, which they are willing to do for
a smaller (negative) price deviation.

Finally, the critical values of the intensity of choice β related to the secondary
bifurcations of the non-fundamental steady-states, that is, the values of β for
which these steady states lose stability and endogenous fluctuations emerge, are
smaller for higher T . This effect is present both in the upper and the lower non-
fundamental steady state. In fact, the right panels of Fig. 7 show that the lower
fundamental steady state becomes unstable as soon as the chartists holdings of the
risky asset become zero or negative. This implies that introducing trading costs
may decrease mispricing, provided the market is at the lower non-fundamental
steady state, but only at the expense of destabilizing the market. Note that
the upper non-fundamental steady state, where mispricing is increased by the
introduction of trading costs, is still locally stable in part of the region where the
fundamentalists behavior is influenced by the trading costs.

Summarizing these findings we find that, although existence and local stability
of the fundamental steady state are not affected by trading costs, existence, loca-
tion and local stability of the non-fundamental steady states are. This suggests
that the introduction of trading costs may destabilize the financial market and
increase volatility, or at least lead to a higher degree of mispricing of the risky
asset.

3.2.2 Global dynamics in the presence of trading costs

Fig. 8 shows two bifurcation diagrams obtained by numerical simulations. The
left panel presents the bifurcation diagram with respect to β for T = 0.1. This
diagram is generated with the same parameter values as the right panel of Fig. 5,
except for the trading costs. For comparison, the maximal price deviation from
Fig. 5 has been superimposed upon the left bifurcation diagram in Fig. 8. The
bifurcation diagram is consistent with the steady state analysis from above: for
the upper attractor the introduction of trading costs leads to a substantial increase
in mispricing and volatility for a wide range of values of the intensity of choice β.
The quantitative effect of trading costs on the lower attractor is clearly smaller
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Figure 8: Numerically computed bifurcation diagrams for the model with funda-
mentalists and chartists with trading costs. For each simulation, 2000 points after
1000 transitory periods are shown. Two attractors are shown by the points of dif-
ferent colour. Left panel: β is changing between 1 and 5 and T = 0.1. The black
curves corresponding to the maximum price deviation for the case without trading
costs are superimposed for comparison. Right panel: T is changing between 0 and
0.3 and β = 4. Other parameters are: S = 0.1, rf = 0.1 , ȳ = 10, g = 1.2, and
C = 1.

(although the lower non-fundamental steady state becomes unstable for a much
smaller value of β in the presence of trading costs, as can be seen from comparing
the left panel of Fig. 8 with the right panel of Fig. 5).

The right panel of Fig. 8 shows a bifurcation diagram with respect to trading
costs T , for a fixed value of β = 4. Again, an increase in trading costs T leads to
a substantial increase in volatility, in particular along the upper attractor.

Fig. 9 shows bifurcation diagrams based upon numerical simulations for the
same market with a random disturbance, εt ∼ N

(
0, (0.01)2

)
, added to the realized

price in every period. The two panels of Fig. 9 show the average price of the risky
asset (left panel) and the standard deviation of that price (right panel) after a
transitory period of 1000 periods for simulations of this stochastic model with
different values of β. The red points show the results for the model with trading
costs (T = 0.1) and the blue points the results for the model without these costs.
Fig. 9 is consistent with our earlier findings that trading costs typically increase
mispricing and volatility substantially. It also shows that the dynamics of the
deterministic version of the model give a good representation of the dynamics in
the stochastic model. Finally, Fig. 9 helps in understanding which attractor of
the deterministic model is more relevant in case several of these attractors coexist.
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Figure 9: Effect of trading costs on the average (left panel) and standard deviation
(right panel) of the price for the risky asset for the benchmark model (blue points)
and (T = 0.1, red points) in the presence of noise. Other parameters are: S = 0.1,
rf = 0.1, ȳ = 10, g = 1.2, and C = 1. For each β ∈ [1, 12], the statistics are
computed for 2000 points after 1000 transitory periods. At each time step of the
simulation a random disturbance εt ∼ N

(
0, (0.01)2

)
is added to the realized price.

When only the lower non-fundamental steady state is locally stable, which happens
for intermediate values of β, the dynamics of the stochastic model are attracted
to that steady state. However, for values of the intensity of choice β such that
all steady states of the (deterministic) dynamical system are unstable, and two
coexisting attractors exist, dynamics in the stochastic model typically settle on
the upper, more volatile, attractor.

How do the time series of prices, fractions and positions of the different traders
in the presence of trading costs compare with that of the benchmark model? Fig. 10
shows the trajectories for the same value of β = 4 and for the same initial condi-
tions as in Fig. 6 but now for the model with trading costs. In particular for the
upper attractor this leads to a more extreme bubble and crash pattern, with the
price deviation increasing up to around 20 (instead of around 5 in the case without
trading costs). The introduction of trading costs for short-selling therefore inhibits
the market’s potential to correct mispricing.
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Dynamics on the upper attractor. Dynamics on the lower attractor.

Figure 10: Dynamics in the model with fundamentalists and chartists and trad-
ing costs, T = 0.1. Upper panels: prices. An empty disks correspond to the
period with negative excess return. Middle panels: fraction of fundamentalists.
Lower panels: positions of fundamentalists (points) and chartists (empty disks).
Parameters are: S = 1, β = 4, rf = 0.1, ȳ = 10, g = 1.2, and C = 1.

4 Conclusion

In this paper we have analyzed the quantitative consequences of imposing short-
selling constraints for asset-pricing dynamics in a model with heterogeneous beliefs.
Most of the existing literature points out that short-selling restrictions may lead
to systematic overvaluation of the security. The intuition for that was provided by
Miller (1977) who shows, in a two-period setting, that a diversity of expectations
among investors leads to overpricing. Our model formalizes this intuition and
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extends it to a dynamic setting.
In our model the demand of myopic investors depends on their expectations of

the future price. Expectations are heterogeneous and agents are allowed to switch
between different forecasting rules over time. As is well known, the dynamics of
such a model depends on the intensity of choice. For low values of this parameter
the dynamics converge to the fundamental steady state. For high values of the
intensity of choice the model may exhibit price oscillations with excess volatility.

We introduce short-selling constraints in this environment by imposing trading
costs for selling the risky asset short. Since trading costs do not have to be paid
at the fundamental steady state, where all traders hold a positive amount of the
risky asset, existence and local stability of that steady state are unaffected by these
costs. However, typically non-fundamental steady states also exist in this environ-
ment, and their existence and local stability depends crucially on trading costs. In
particular, when there are trading costs for short-selling, these non-fundamental
steady states emerge for a wider range of parameters of the underlying model,
they may correspond to a much larger degree of mispricing – in particular when
the asset is overvalued – and they lose stability for lower values of the intensity of
choice parameter. Introducing trading costs for short-selling may therefore very
well increase mispricing and price volatility, a feature which is quite robust and
confirmed by our numerical simulations.

To study the effect of short-selling constraints, we have deliberately chosen a
model with heterogeneous expectations, capable of generating the patterns of bub-
bles and crashes that financial authorities aim to prevent or mitigate by restricting
short-selling.13 Some features of this model may influence our findings. Conse-
quently, in future research we would like to extend the model in several directions.
First, the myopic agents of the model do not take the short-sell constraints into
account while forming their expectations. While we believe that such an assump-
tion is quite reasonable in the framework of boundedly rational agents, it would
be also interesting to analyze the model with some fraction of rational agents, who
take the short-sell constraints into account. Alternatively, one might look at a
larger set of belief types and investigate whether the introduction of trading costs
changes the (steady state) distribution of the population of traders over these be-
lief types. Second, the constraints which we analyzed are individual, while on the
real markets there are many aggregate constraints. For example, the total amount
of shares available for short sales is, in reality, limited. The effect of that type
of constraints can be analyzed in a large scale agent-based version of the current
model.

Finally, the effect of short-selling constraints is closely related to the role of

13Our paper therefore also contributes to the small but growing literature on using heteroge-
neous agents models to evaluate regulatory policies, see, e.g., Westerhoff (2008).
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margin requirements. Indeed, in a real market selling a share short requires pro-
viding some collateral to the broker. If the price of an asset rises, the investor
who is short should cover his nominal losses to an extent which depends on the
margin requirement. It is not surprising that among the most important ques-
tions discussed in the literature on margin requirements is their role in market
volatility and the prevention of bubbles. Two opposing points of views can be
found in the literature. On the one hand, Seguin and Jarrell (1993) and Hsieh
and Miller (1990) argue that margin requirements are empirically irrelevant for
price behavior, whereas, e.g., Garbade (1982) and Hardouvelis and Theodossiou
(2002) provide theoretical arguments why an increase in margin requirements is
beneficial for market stability. Again, with an agent-based extension of the model
presented here we plan to analyze the joint effect of short-selling constraints and
margin requirements on financial market dynamics and price volatility.
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und Statistik, 228, 195–227.

34



APPENDIX

A Market equilibrium when there are more than

two belief types

The procedure outlined in Section 2.2 to determine the market equilibrium price
can be straightforwardly extended to more than two belief types. The problem,
however, that the number of different regions that are needed to describe the
market equilibrium price becomes very high for more than two belief types. For
example, for H = 3 we already have 19 instead of 5 different regions for which we
have to determine the market equilibrium price (given that in equilibrium always
at least one belief type has to have strictly positive demand – and therefore the
set P (xt) can never be empty – in general there will be 3H − 2H different regions
when there are H different belief types). Since this is too complicated to work
with we outline an algorithm below to determine the market equilibrium price for
more than two belief types that can be used in numerical simulations.

The algorithm to compute the market equilibrium price xt consists of the fol-
lowing steps.

1. For any period t we can, without loss of generality, order the types on the
basis of their expectations, Eh,t [xt+1], from the most optimistic type (h = 1)
to the least optimistic type (h = H). This implies that the cut-off values (8)
satisfy

xHt ≤ xH−1t ≤ · · · ≤ x2t ≤ x1t . (27)

Note that the ordering of the set of second kink points, which are given by
xht + T for h ∈ H, is the same as in (27). The aggregate demand function
will have (up to) 2H kink points, which we denote z1t , . . ., z

2H
t and rank from

high to low as follows:

xHt = z2Ht ≤ z2H−1t ≤ . . . ≤ z2t ≤ z1t = x1t + T (28)

2. For an arbitrary point x, we determine the sets P (x), N (x) and Z (x) as
follows. If we find h′, h′′ ∈ H such that xh

′+1
t < x ≤ xh

′
t and xh

′′+1
t + T <

x ≤ xh
′′
t + T , we have P (x) = {1, 2, . . . , h′} and N(x) = {h′′ + 1, . . . , H}.

Moreover, if x ≤ xHt (that is, the price is so low that even the most pessimistic
trader type wants to buy the asset) we have P (x) = H and if x > x1t (the
price is so high that even the most optimistic belief type wants to sell it) we
have P (x) = ∅. Similarly, we have N (x) = H if x > x1t +T and N (x) = ∅ if
xt ≤ xHt + T . Finally, we can find Z (x) as the complement of P (x)∪N (x).
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3. We find the equilibrium by evaluating aggregate demand (9) in the kink
points given in (28). First compute At

(
z2Ht
)
. If At

(
z2Ht
)
≤ S we know that

the market equilibrium satisfies xt ≤ z2Ht and we apply (10) for P (x) = H

to find the market equilibrium price x (which, in this case, will be given
by (11)). If At

(
z2Ht
)
> S, we proceed to the next kink point z2H−1t . If

At
(
z2H−1t

)
≤ S the market equilibrium price satisfies x ∈

(
z2Ht , z2H−1t

]
.

Using Step 2. we determine the relevant sets P (x), Z (x) and N (x) and
find the equilibrium by applying (10) for these given sets and the algorithm
stops. If At

(
z2H−1t

)
> S we proceed to kink point z2H−2t , and so on.

This algorithm will eventually stop and find an equilibrium because aggregate
demand will never increase when we move from kink point zkt to kink point zk−1t

and in the largest kink point z1t = x1t +T all types have non-positive demands and
therefore At (z1t ) < S. Notice that, depending on the expectations of the different
belief types, there might be a different ordering of kink points, (27). This prevents
us from writing one explicit formula for the equilibrium price.

B Proof of Proposition 3.1

System (23)-(24) can be written as 3D system in terms of variables xt and nt,
which are price deviation and the fraction of chartists after the trading14 in time
t, respectively, and a new variable yt = xt−1.

xt+1 = gntxt/R

nt+1 =
(

1 + exp
{
−β
[g yt
aσ2

(g ntxt
R
−Rxt + aσ2S

)
+ C

]})−1
yt+1 = xt.

Let (x∗, n∗, y∗) denote an arbitrary steady-state. The first equation implies that
either x∗ = 0 or n∗ = R/g. The first case corresponds to the fundamental steady
state, whereas in the second case the non-fundamental steady states may arise.
Defining F (z) := (1 + exp{β[z − C]})−1 and

z (xt, nt, yt) = −g yt
aσ2

(gntxt
R
−Rxt + aσ2S

)
,

the Jacobian matrix at an arbitrary steady state (x∗, n∗, y∗) is given by

J(x∗, n∗, y∗) =

 gn∗/R gx∗/R 0
F ′ (z∗) ∂z

∂xt
F ′ (z∗) ∂z

∂nt
F ′ (z∗) ∂z

∂yt

1 0 0

 , (29)

14Note that to satisfy a convention of writing the dynamical system as variables at time t+ 1
which are functions of variables at time t, we have changed the timing, so that nt = n2,t+1.
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where

z∗ = −g y
∗

aσ2

(
gn∗x∗

R
−Rx∗ + aσ2S

)
= −g (x∗)2

aσ2

(
−rf + aσ2S

)
.

The derivatives are

F ′(z) = − β exp(β(z − C))

(1 + exp(β(z − C)))2
= −β

(
F (z)−1 − 1

)
F (z)2 ,

∂z

∂xt
= − gyt

aσ2

(gnt
R
−R

)
,

∂z

∂nt
= − gyt

aσ2

gxt
R
,

∂z

∂yt
= − g

aσ2

(gntxt
R
−Rxt + aσ2S

)
.

Fundamental steady state. As we found above the system has a fundamen-
tal steady state. Using the second equation of the system we find that the fraction
in this steady state is equal to neq2 . Since neq2 ∈ [1/2, 1), the fundamental steady
state always exists. When g < R we obtain from (23) that |xt+1| < κ|xt| for any
t with κ = g/R < 1. This proves the global stability result of the first case. The
Jacobian at the fundamental steady state is equal to

J(0, neq2 , 0) =

gneq2 /R 0 0
0 0 −F ′ (0) gS
1 0 0


and the eigenvalues are 0, 0 and gneq2 /R. When g > 2R we obtain that the last
eigenvalue is greater than 1 and the fundamental steady state is unstable. When
R < g < 2R, we find that the fundamental steady state is locally stable for β < β∗,
with β∗ defined as in (26).

Non fundamental steady states. When n∗ = R/g the non-fundamental
steady state may exist, but only if n∗ ∈ [0, 1]. Furthermore, equation (25) has
to have real solutions. The function on the right-hand side of this equation is
bell-shaped and is shown for two values of β in Fig. 11. It is easy to check that
the function attains its maximum at the point xm = aσ2S/(2rf ) where its value
is (1 + exp[−β(C + aσ2gS2/(4rf ))])

−1. Equating the maximum with R/g we find
that the two non-fundamental steady states emerge for β = βSN defined in (26).
For β > βSN the two solutions are given by

x∗± =
aσ2S

2rf
±

√
aσ2

√
aσ2gS2β + 4rf

(
βC + ln

(
g
R
− 1
))

2rf
√
gβ

.

When β increases the value at xm increases, so that for β > βSN the two non-
fundamental steady states always exist. Notice that since the point of tangency,
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Figure 11: Emergence of the non-fundamental steady-states in R < g < 2R case.
The dashed line shows the ratio R/g ∈ (1/2, 1) from the LHS of (25). Two bell-
shape curves illustrate the function from the RHS of (25) for two values of β. When
β = 0.5 (red) there are no steady-states, while for β = 3 (blue) two steady-states
have been created.

xm > 0, initially (i.e., for small β), x∗+ > x∗− > 0. At β = β∗ the second term
under the square root in the numerator becomes zero and, obviously, x− = 0. At
this moment the steady state E3 = (x−, n

∗
2) coincides with the fundamental steady

state. The Jacobian at the non-fundamental steady state is given by

J(x, n∗, x) =

 1 gx/R 0
kxrf −kgx2/R −k(aσ2S − rfx)

1 0 0

 , (30)

where

k =
g

aσ2
F ′
(
− g x
aσ2

(
aσ2S − rfx

))
= −β g −R

aσ2

R

g
,

and in the last equality we used that n∗2 = F (z). The characteristic equation is

λ3 − λ2
(

1− gkx2

R

)
− gkx2λ+

gkx

R

(
aσ2S − rfx

)
= 0.

Take β = βsn, when x+ = x− = aσ2S/(2rf ). Calculations show that λ = 1 is one
of the eigenvalues, while the two others are given by

λ± =
−(aσ2)2gkS2 ±

√
(aσ2)2gkS2

(
16r3fR + (aσ2)2gkS2

)
8r2fR

.

When S = 0 both eigenvalues λ± are zeros. Hence, when S is positive but small
enough, they are within the unit circle. Therefore, when β gets larger than βsn,
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one of the non-fundamental steady states should be unstable while the other one
is stable. At β = β∗ > βsn the lower non-fundamental steady state, E3, undergoes
a bifurcation by coinciding with the fundamental steady state, which is stable for
β < β∗. We then conclude that it is E3 that is unstable and E2 that is stable for β
slightly higher than the bifurcation value at βsn. When β →∞ the steady states
approach the values

aσ2S

2rf
±
√
aσ2
√
aσ2gS2 + 4rfC

2rf
√
g

,

whereas k → −∞. It implies that the sum of eigenvalues diverges (it is equal to
gkx2/R− 1 from the characteristic equation), implying that they lose stability.

C Market dynamics with trading costs and fun-

damentalists versus chartists

Recall that we denote nt = n2,t, the fraction of chartists. The price dynamics in
deviations, given in general by (14), when substituting E1,t [xt+1] = 0, E2,t [xt+1] =
gxt−1 and 4Et [xt+1] = −gxt−1 becomes

xt =



nt

R
(gxt−1 +RT ) if xt−1 ≤ − aσ2S

g(1−nt)
− RT

g

− 1
R

nt

1−nt
aσ2S if − aσ2S

g(1−nt)
− RT

g
< xt−1 ≤ − aσ2S

g(1−nt)

1
R
ntgxt−1 if − aσ2S

g(1−nt)
≤ xt−1 ≤ aσ2S

gnt

1
R

(
gxt−1 − 1−nt

nt
aσ2S

)
if aσ2S

gnt
≤ xt−1 ≤ aσ2S

gnt
+ RT

g

1
R

((1− nt)RT + ntgxt−1) if xt−1 >
aσ2S
gnt

+ RT
g

(31)

The fraction of chartists evolves according to

nt+1 = (1 + exp {β4Ut})−1 , (32)

where 4Ut = U1,t − U2,t is given by (19), which in this case becomes (note that
the exogenously given cost differential is 4C = C1 − C2 = C)

4Ut =


r̃t4At−1 −RTA2,t−1 − C if xt−2 ≤ − aσ2S

(1−nt−1)g
− RT

g

r̃t4At−1 − C if − aσ2S
g(1−nt−1)

− RT
g
< xt−2 ≤ aσ2S

gnt−1
+ RT

g

r̃t4At−1 +RTA1,t−1 − C if xt−2 >
aσ2S
gnt−1

+ RT
g
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(33)

with A1,t = − 1
aσ2R (xt−1 − T ) + S, A2,t = 1

aσ2 (gxt−2 −R (xt−1 − T )) + S and

4At =



− 1
aσ2 (gxt−2 +RT ) if xt−2 ≤ − aσ2S

g(1−nt−1)
− RT

g

− 1
aσ2Rxt−1 + S if − aσ2S

g(1−nt−1)
− RT

g
< xt−2 ≤ − aσ2S

g(1−nt−1)

− 1
aσ2 gxt−2 if − aσ2S

g(1−nt−1)
< xt−2 ≤ aσ2S

gnt−1

−
(

1
aσ2 (gxt−2 −Rxt−1) + S

)
if aσ2S

gnt−1
< xt−2 ≤ aσ2S

gnt−1
+ RT

g

− 1
aσ2 (gxt−2 −RT ) if xt−2 >

aσ2S
gnt−1

+ RT
g

(34)

The full dynamical system is now given by equations (31), (32), (33) and (34).
Note that for T = 0 this system reduces to (23)-(24) studied in Subsection 3.1.

As another special case, consider T → ∞. This is equivalent with a full ban
on short selling and it implies that only three of the five regions remain. We then
obtain equilibrium price

xt =


− 1
R

nt

1−nt
aσ2S if xt−1 ≤ − aσ2S

g(1−nt)

1
R
ntgxt−1 if − aσ2S

g(1−nt)
< xt−1 ≤ aσ2S

gnt

1
R

(
gxt−1 − 1−nt

nt
aσ2S

)
if xt−1 >

aσ2S
gnt

As above, let us denote by nt the fraction of chartists (i.e., nt = n2,t) in period t.
This fraction evolves according to

nt+1 = (1 + exp {β4Ut})−1 ,

where 4Ut = r̃t4At−1 − C with

4At =


− 1
aσ2Rxt−1 + S if xt−2 ≤ − aσ2S

g(1−nt−1)

− 1
aσ2 gxt−2 if − aσ2S

g(1−nt−1)
< xt−2 ≤ aσ2S

gnt−1

−
(

1
aσ2 (gxt−2 −Rxt−1) + S

)
if xt−2 >

aσ2S
gnt−1
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