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Abstract

This paper stresses the importance of heterogeneity in learning. We introduce competition be-

tween di�erent learning rules and demonstrate that, though these rules can coexist, their convergence

properties are strongly a�ected by heterogeneity. We consider a Bertrand oligopoly with di�erentiated

goods. Firms do not have full information about the demand structure and they want to maximize

their perceived one-period pro�t by applying one of two di�erent learning rules: least squares learning

and gradient learning. We analytically show that the stability of gradient learning depends on the

distribution of learning rules over �rms. In particular, as the number of gradient learners increases,

gradient learning may become unstable. We study the competition between the learning rules by means

of computer simulations and illustrate that this change in stability for gradient learning may lead to

cyclical switching between the rules. Stable gradient learning typically gives higher average pro�t than

least squares learning, making �rms switch to gradient learning. This however, can destabilize gradient

learning which, because of decreasing pro�ts, makes �rms switch back to least squares learning. This

cycle may repeat itself inde�nitely.
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1 Introduction

There are many situations where decision makers do not have full information about the environment in

which they operate. Firms, for example, might not know relevant characteristics of their environment such

as how the demand for their good depends on the price they charge, how it is a�ected by their competitors,

who their competitors are and how they act. Learning has a natural role in these situations: agents gather

the information resulting from their actions, they evaluate it and take it into account when making a

decision.

There exists a wide variety of methods for modeling learning in the economics literature, including

di�erent belief-based models, least squares learning and evolutionary methods. Fudenberg and Levine

(1998), Evans and Honkapohja (2001) and Cressman (2003) give good overviews of these classes. Di�erent

methods may lead to di�erent outcomes. This is illustrated in O�erman et al. (2002), for example: they

consider two imitation-based and one belief-based learning rule that lead to di�erent market outcomes

theoretically as well as in a laboratory experiment in a Cournot oligopoly with three �rms framework they

consider. This shows that it is essential to explicitly model the agents' learning behavior. Furthermore, the

heterogeneity of agents should also be taken into account. Agents may prefer di�erent learning methods

(due to di�erences in computational abilities, for example) for �nding out what the optimal decision

is. In fact, Stahl (1996) �nds experimental evidence both for heterogeneity among individuals and for

switching to rules that performed better in the past. Therefore, it is important to analyze what happens

in a heterogeneous environment and how di�erent learning methods a�ect each other.

The aim of this paper is to analyze the interaction between two di�erent learning methods in a het-

erogeneous setting where decision makers di�er in the method they use. The relevance of this issue is that

the convergence properties of a learning method might be a�ected by the presence of another method. For

instance, a method that is capable of �nding the Nash equilibrium in a homogeneous setting might lead

to a di�erent outcome in a heterogeneous environment. Furthermore, if di�erent methods lead to di�erent

outcomes in a homogeneous setting, then it is unclear what will happen in a heterogeneous environment.

As a framework of the analysis we consider a Bertrand oligopoly with di�erentiated goods. Firms do not

have full information about the market: they do not fully know the demand function they face. They may

use one of two di�erent well known learning methods for deciding on the price of their good. The �rst

method is least squares (LS) learning. With this method �rms approximate their demand function with

a linear function that depends only on their own price. Then they use this estimated demand function to

decide on the price and they update the coe�cients in the approximation in every period. Least squares

learning is a natural learning method in this setup: when the relation between some variables is unknown,
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then it is natural to specify a regression on the variables and to use the estimates for decision making. In

our model the approximation the �rms may apply is misspeci�ed in two ways: not all the relevant variables,

i.e. the prices of the other �rms, are included in the regression and the functional form is incorrect. The

other learning method we consider is gradient learning. With this method �rms use information about the

slope of their pro�t function for modifying their current price. Gradient learning captures the idea that

�rms systematically change the price of their good in the direction in which they expect to earn a higher

pro�t. Locally stable �xed points of gradient learning correspond to local pro�t maxima, therefore it is

natural to use it in the setting we consider. We analyze LS and gradient learning for the following reasons.

Both of them are reasonable methods in the environment we consider and, as we will see, they have been

applied in the literature of oligopolistic markets. In the model we assume that �rms do not observe either

the prices set by other �rms or the corresponding demands. Therefore, it is an important criterion that

the learning methods should use information only about the �rms' own prices and demands. Both LS and

gradient learning are appropriate in this sense. Moreover, they result in di�erent market outcomes in a

homogeneous setting, so it is not clear what kind of outcome will be observed when some �rms apply LS

learning while others use gradient learning and when �rms are allowed to switch between the learning

methods. One method may drive the other one out of the market when endogenous switching between the

methods is introduced.

We address the following questions in this paper. How do the two learning methods a�ect each other

in a heterogeneous environment? Do the dynamical properties of the model depend on the distribution

of learning methods over �rms? If the properties of the methods vary with respect to this distribution,

can we observe cycles in which the majority of �rms apply the same learning method and later they

switch to the other one? Can one method drive out the other one? We study these questions with formal

analysis and with computer simulations. We �nd that the learning methods we consider lead to di�erent

market outcomes in a homogeneous setting. With least squares learning, �rms move towards a so-called

self-sustaining equilibrium, as introduced by Brousseau and Kirman (1992), in which the perceived and

the actual demands coincide at the price charged by the �rms. The learning method does not have a

unique steady state; the initial conditions determine which point is reached in the end. In contrast, if

gradient learning converges, it leads to the unique Nash equilibrium of the market structure we consider.1

However, gradient learning may not always converge and then we observe high-period cycles or quasi-

periodic dynamics. In the steady states of a heterogeneous setting with �xed learning rules, LS learners

1In general, gradient learning may converge to local pro�t maxima that are not globally optimal. Bonanno and Zeeman

(1985) and Bonanno (1988) call this kind of outcomes local Nash equilibria. In the market structure we consider there is a

unique local pro�t maximum so gradient learning leads to the Nash equilibrium if it converges.
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are in a self-sustaining equilibrium in which gradient learners give the best response to the price set by

all other �rms. The convergence properties of gradient learning depend on the distribution of learning

methods over �rms: an increase in the number of gradient learners can have a destabilizing e�ect. When

endogenous switching between the learning rules is introduced, then a stable gradient learning does not

necessarily drive out LS learning. Some LS learners may earn a higher pro�t than they would make as

a gradient learner and then they would not switch to gradient learning. However, LS learning may drive

out gradient learning when the latter is unstable. An interesting cyclical switching can occur when the

convergence properties of gradient learning change as the distribution of learning methods over �rms

varies. When gradient learning converges, gradient learners typically earn more than the average pro�t

of LS learners. This gives an incentive for LS learners to switch to gradient learning. An increase in the

number of gradient learners, however, typically destabilizes gradient learning, resulting in low pro�ts for

gradient learners so they may start switching back to LS learning. At some point, gradient learning will

converge again and the process may repeat itself.

With this paper we demonstrate that di�erent learning methods are likely to coexist and that this

coexistence can have substantial consequences for the dynamical properties of the learning methods. The

dynamics with coexisting learning rules are more complex than in a homogeneous environment.

Our paper builds upon and contributes to several recent streams of literature on learning in economics.

Least squares learning, for example, is widely used in the economics literature. The model we consider is

closely related to the model of Kirman (1983) and Brousseau and Kirman (1992). These papers analyze

the properties of misspeci�ed LS learning in a Bertrand duopoly with di�erentiated goods under a linear

demand speci�cation. The learning method they use is misspeci�ed as �rms focus on their own price e�ect

only. In this paper we generalize some results of Kirman (1983) to the case of n �rms under a nonlinear

demand speci�cation. Gates et al. (1977) consider least squares learning in a Cournot oligopoly. Each �rm

regresses its average pro�ts on its outputs and uses the estimated function to determine the output for

the next period. The learning method the authors consider di�ers from ours in two respects. First, each

observation has the same weight in our model whereas �rms weigh observations di�erently in Gates et al.

(1977). Second, the �rms' action is speci�ed as the action that maximizes the one-period expected pro�t

in our paper. In Gates et al. (1977) the next action is the weighted average of the previous action and the

action that maximizes the estimated pro�t function. Tuinstra (2004) considers the same kind of model that

is studied in this paper. The �rms use a misspeci�ed perceived demand function but a di�erent learning

method is applied. When posting a price, �rms are assumed to observe the demand for their good and

the slope of the true demand function at that price. Then they estimate the demand function by a linear

function that matches the demand and the slope the �rms faced. For the estimation �rms use only the most
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recent observation. Firms will then use the new estimates for determining the price in the next period.

Tuinstra (2004) analyzes the dynamical properties of this model and shows that complicated dynamical

behavior can occur depending on the cross-price e�ects and the curvature of the demand functions.

Arrow and Hurwicz (1960) analyze the dynamical properties of gradient learning in a general class of

n-person games. They derive conditions under which the process converges to an equilibrium and they

illustrate their �ndings for the case of a Cournot oligopoly. Both Furth (1986) and Corchon and Mas-Colell

(1996) analyze a price-setting oligopoly in which �rms adjust their actions using gradient learning. The

uniqueness and the stability of equilibrium points are analyzed in these papers. In this paper we also

consider these issues although in a discrete time setting.

The previously discussed papers consider a homogeneous setting in which each agent uses the same

learning method. However, it is reasonable to assume heterogeneity in the sense that agents apply dif-

ferent methods. Furthermore, they might switch between these methods. The switching mechanism we

apply is related to reinforcement learning as in Roth and Erev (1995) and to the discrete choice model

applied in Brock and Hommes (1997). In Roth and Erev (1995) agents have many possible pure strategies

and each strategy has a propensity that determines the probability of the pure strategy being applied.

These propensities depend on past payo�s. When a particular strategy was used in a given period, then

its propensity is updated by adding the realized payo� to the previous propensity. The propensities of

the strategies that were not used are not updated. The probability of a pure strategy being applied is

proportional to the propensity of the strategy. We also use propensities for LS and gradient learning in

the switching mechanism but they are updated di�erently than in Roth and Erev (1995): when a certain

method was used, then the new propensity of that method is a weighted average of its old propensity and

the current pro�t while the propensity of the other method remains unchanged. Furthermore, we deter-

mine the probabilities in a di�erent way: we use the discrete-choice probabilities as in Brock and Hommes

(1997). This way we can control how sensitive the �rms are to di�erences in the performance measures.

In Brock and Hommes (1997) the authors analyze a cobweb model in which agents can use either naive

or perfect foresight predictors. The authors show that endogenous switching between the predictors leads

to complicated dynamical phenomena as agents become more sensitive to performance di�erences. Droste

et al. (2002) also analyze the interaction between two di�erent behavioral rules. They consider Cournot

competition with best-reply and Nash rules. With the best-reply rule, �rms give the best response to

the average output of the previous period. Nash �rms are basically perfect foresight �rms that take into

account the behavior of the best-reply �rms. The model of this paper di�ers in important aspects from

the setup of Droste et al. (2002). First, �rms do not know the demand they face in this paper whereas

the demand functions are known in Droste et al. (2002). Second, Droste et al. (2002) basically consider
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social learning: the �rms observe the actions of every �rm and they use this information for deciding on

the production level. In contrast, �rms observe only their own action and the corresponding outcome in

this paper. Thus, they use individual data in the learning process instead of industry-wide variables. A

consequence of this di�erence is that �rms that apply the same learning method or behavioral rule choose

the same action in Droste et al. (2002) but they typically act di�erently in the model we consider. Third,

the switching methods are also di�erent in the two papers. Droste et al. (2002) use replicator dynamics

whereas we consider a discrete choice model, augmented with experimentation.

The paper is organized as follows. In Section 2 we present the market structure and derive the Nash

equilibrium of the model. Section 3 discusses least squares learning and gradient learning. We analyze the

steady states of a homogeneous LS-learning oligopoly both analytically and through simulations. Then we

investigate the dynamical properties of the model with only gradient-learning �rms. Section 4 combines

the two learning methods in a heterogeneous setting. The learning rules are �xed in the sense that �rms

apply the same learning rule during the whole simulation. We analyze the model both analytically and

numerically. We compare the pro�tability of the two learning methods as the distribution of methods over

�rms varies. Section 5 focuses on switching. We illustrate cyclical switching between the learning methods

when the stability of gradient learning changes with the number of gradient learners. Section 6 concludes.

The proofs of the propositions are presented in the Appendix.

2 The market structure

Consider a market with n �rms, each producing a di�erentiated good and competing in prices. The demand

for the product of �rm i depends on the price of good i and on the average price of the other goods. The

demand is given by following nonlinear function:

Di(p) = max
{
α1 − α2p

β
i + α3p̄

γ
−i, 0

}
, (1)

where pi is the price of good i, p is the vector of prices and p̄−i = 1
n−1

∑
j 6=i

pj . All parameters are positive

and we further assume that β, γ ∈ (0, 1] and β ≥ γ. Parameter α3 speci�es the relationship between the

products: for α3 > 0 the goods are substitutes whereas for α3 < 0 they are complements. In this paper

we focus on substitutes.2 The demand is decreasing and convex in the own price and it is increasing and

concave in the price of the other goods. The market structure is fully symmetric: �rms face symmetric

demands and the marginal cost of production is constant, identical across �rms and equal to c.

2We discuss results for the case of complements too but we do not report the corresponding simulations. The case of

complements is discussed in more detail in Kopányi (2013) under a linear demand speci�cation.
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We impose some restrictions on the parameter values which ensure that a symmetric Nash equilibrium

exists.

Assumption 2.1 The parameters satisfy α1 − α2c
β + α3c

γ > 0 and −α2βc
β + α3γc

γ < 0.

The �rst restriction says that the demand is su�ciently large: demands are positive when each �rm sets

the price equal to the marginal cost. The second restriction ensures that the demand for the goods strictly

decreases if every �rm increases the price of its good marginally in a symmetric situation where pi = p for

all �rms (as long as D(p) > 0)3. Proposition 2.2 speci�es the unique Nash equilibrium of the model. The

proof is presented in the Appendix.

Proposition 2.2 Under Assumption 2.1 the model has a unique Nash equilibrium. In this equilibrium,

each �rm charges price pN that is characterized by the equation

α1 − α2p
β
N + α3p

γ
N − α2β(pN − c)pβ−1N = 0. (2)

The Nash equilibrium price exceeds the marginal cost.

Note that the Nash equilibrium is symmetric and the price is independent of the number of �rms. This is

due to the fact that the average price of other goods determines the demand so the number of �rms does

not a�ect the equilibrium.

Firms do not have full information about the market environment. In particular, they do not know

the demand speci�cations, furthermore they cannot observe either the prices or the demands for the other

goods. They are assumed to know their own marginal cost. Firms repeatedly interact in the environment

described above. They are myopic pro�t maximizers: they are only interested in maximizing their one-

period pro�t. Firms can apply one of two methods to decide on the price they ask in a given period. These

methods are discussed in Section 3.

3 Learning methods

One method that �rms may apply is least squares learning. With this method �rms use an estimated

demand function for maximizing their expected pro�t. The other method is gradient learning: �rms use

information about their marginal pro�t at the current price and they adjust the current price of their good

in the direction in which they expect to get a higher pro�t. Both methods focus on the own price e�ect

without considering the e�ect of the price change of other goods. Section 3.1 presents LS learning while

gradient learning is analyzed in Section 3.2.

3I.e. the own price e�ect dominates in a symmetric situation.
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3.1 Least squares learning

With least squares learning �rms use past price-quantity observations for estimating a perceived demand

function and then they maximize their expected pro�t, given this perceived demand function. The pa-

rameter estimates determine the price they set in the next period. As new observations become available,

�rms update the parameter estimates and thus the price of their good.

3.1.1 The learning mechanism

Firm i assumes that the demand for its good depends linearly on the price of the good but that it is

independent of the price of other goods. The perceived demand function of �rm i is of the form

DP
i (pi) = ai − bipi + εi, (3)

where ai and bi are unknown parameters and εi is a random variable with mean 0. Notice that �rm i

uses a misspeci�ed model since the actual demand (1) is determined by all prices, furthermore it depends

on prices in a nonlinear manner. Kirman (1983) applies the same kind of misspeci�ed LS learning in a

Bertand duopoly with di�erentiated goods. He argues that it is reasonable for �rms to disregard the prices

of other goods in an oligopolistic setting. When the number of �rms is large, it requires too much e�ort

to collect every price, so �rms rather focus on their own-price e�ect and treat the pricing behavior of the

other �rms as an unobservable error.

For obtaining the coe�cients of the perceived demand function the �rm regresses the demands it faced

on the prices it asked. All past observations are used with equal weight in the regression. Let ai,t and bi,t

denote the parameter estimates observed by �rm i at the end of period t. These estimates are given by

the standard OLS formulas (see Stock and Watson (2003), for example):

bi,t =

(
1
t

t∑
τ=1

pi,τ

)(
1
t

t∑
τ=1

qi,τ

)
− 1

t

t∑
τ=1

pi,τqi,τ

1
t

t∑
τ=1

(pi,τ )2 −
(

1
t

t∑
τ=1

pi,τ

)2 , (4)

ai,t =
1

t

t∑
τ=1

qi,τ + bi,t
1

t

t∑
τ=1

pi,τ , (5)

where qi,τ denotes the actual demand for good i in period τ : qi,τ = Di(pτ ).

Note that even though ai,t and bi,t should be positive in order to have an economically sensible perceived

demand function, the parameter estimates may be negative in some periods. Furthermore, if ai,t ≤ bi,tc,

then �rm i cannot expect to earn a positive pro�t since the perceived demand becomes zero already at a

price that is smaller than the marginal cost c. In these situations we assume that the �rm does not use

the parameter estimates to choose a price. We will shortly specify how the �rm acts in this situation.
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When the aforementioned cases do not occur (that is when ai,t > bi,tc > 0), then �rm i determines the

price for the next period by maximizing its expected pro�t:

max
pi,t+1≥c

Et ((pi,t+1 − c)(ai,t − bi,tpi,t+1 + εi,t+1)) = max
pi,t+1≥c

{(pi,t+1 − c)(ai,t − bi,tpi,t+1)}.

The objective function is quadratic in pi,t+1 and the quadratic term has a negative coe�cient. Then

in period t + 1 the �rm asks the perceived pro�t-maximizing price pi,t+1 =
ai,t
2bi,t

+ c
2 . If the condition

ai,t > bi,tc > 0 does not hold, then �rm i draws the price from the uniform distribution on the set

S =
{
p ∈ Rn+ : pi > c, Di(p) > 0, i = 1, . . . , n

}
.4 This set is the set of price vectors for which every

�rm makes a positive pro�t. Thus, when the perceived demand function is not sensible economically (i.e.

ai,t ≤ 0 or bi,t ≤ 0), then the �rm asks a random price rather than applying an incorrect pricing formula.

Also, the �rm asks a random but not unpro�table price rather than a price that yields a certain loss.

LS learning is implemented in the following way. For any �rm i:

1. pi,1 and pi,2 are randomly drawn from the uniform distribution on set S.

2. At the end of period 2 the �rm uses OLS formulas (4) and (5) to obtain the parameter estimates

ai,2 and bi,2.

3. a. In period t ≥ 3 the �rm asks the price pi,t =
ai,t−1

2bi,t−1
+ c

2 if ai,t−1 > bi,t−1c > 0. In every other case

pi,t is drawn from the uniform distribution on the set S.

b. After realizing the demand, the �rm updates the coe�cients of the perceived demand function

using (4) and (5).

4. The process stops when the absolute price change is smaller than a threshold value δ for all �rms:

max
i
{|pi,t − pi,t−1|} < δ.

Notice that the learning process of other �rms interferes with the �rm's own learning process. As the prices

of other goods change, the demand the �rm faces also changes. Although the change in the demand for

good i is caused not only by the change in its price, �rm i attributes the change in its demand solely to

changes in its own price and to random noise. Therefore, the �rm tries to learn a demand function that

changes in every period. Learning is more complicated in the initial periods since prices are more volatile

than in later periods when the learning process slows down.

4More properly: when �rm i chooses a random price, then a price vector p is drawn from the uniform distribution on S

and �rm i will charge the i-th component of p. Every other �rm j chooses a price according to the pricing formula or, if the

condition aj,t > bj,tc > 0 does not hold, �rm j draws another vector.
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3.1.2 Equilibria with LS learning

Brousseau and Kirman (1992) show that the misspeci�ed LS learning we consider does not converge in

general.5 Price changes however become smaller over time as the weight of new observations decreases.

Thus, the stopping criterion we speci�ed will be satis�ed at some point and the learning mechanism stops.

We will see that the resulting point is very close to a so-called self-sustaining equilibrium in which the

actual and the perceived demands of a �rm coincide. The set of possible equilibria is in�nite, however.

With the method described above �rms use a misspeci�ed model since the perceived demand functions

(3) di�er from the actual demand functions (1). Nevertheless, �rms may �nd that the price they charge

results in the same actual demand as the perceived demand function predicts. If this holds for all �rms,

then the model is in equilibrium since the parameter estimates of the perceived demand functions do not

change and �rms will ask the same price in the following period. To see that this is the case, note the

following. The LS coe�cients at the end of period t minimize the sum of squared errors up to period

t. If the perceived and the actual demands are equal at pt+1, then the parameter estimates at+1 and

bt+1 remain the same: under at and bt the error corresponding to the new observation is 0 and the sum

of squared errors up to period t is minimized. Thus, the sum of squared errors up to period t + 1 is

minimized by exactly the same coe�cients. Brousseau and Kirman (1992) call this kind of equilibrium

self-sustaining equilibrium: �rms charge the optimal price (subject to their perceived demand function)

and the corresponding demand coincides with the demand they expected to get, therefore the �rms have

no reason to believe that their perceived demand function is misspeci�ed. Following their terminology, we

refer to such equilibria as self-sustaining equilibria (SSE).

The left panel of Figure 1 illustrates a disequilibrium of the model. The solid line is the perceived

inverse demand function

pi = PPi (qi) ≡
ai
bi
− 1

bi
qi, (6)

the dashed line depicts the actual inverse demand function

pi = Pi(qi, p̄−i) ≡
[

1

α2

(
α1 + α3p̄

γ
−i − qi

)] 1
β

. (7)

The downward-sloping dotted line is the perceived marginal revenue. The quantity that maximizes the

expected pro�t of �rm i is given by the x-coordinate of the intersection of the perceived marginal revenue

(MR) and the marginal cost (MC). Let qP denote this quantity. If the �rm wants to face a demand equal

to qP , then it has to ask price p which is determined by the value of the perceived inverse demand function

5LS learning may converge in many other situations. Marcet and Sargent (1989) derive conditions under which LS learning

converges for a wide class of models.
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at qP . However, the �rm might face a di�erent demand as the actual and perceived demand functions

di�er. Let qA denote the actual demand the �rm faces when its price is p. The left panel of Figure 1

shows a situation in which the expected and the actual demands are not the same. This is not an SSE

of the model. In this case the �rm will add the new observation (p, qA) to the sample and run a new

regression in the next period. This new observation changes the perceived demand function and the �rm

will charge a di�erent price. In contrast, the right panel of Figure 1 illustrates the situation when qP = qA,

that is the actual and the expected demands coincide at price p. This constitutes an SSE (provided that

the corresponding variables of the other �rms also satisfy these conditions). The new observation does

not change the coe�cients of the perceived demand function so the �rm will charge the same price in

subsequent periods.

We now describe the equilibrium conditions and the set of SSE prices. Variables p∗i , a
∗
i , and b

∗
i , (i =

1, . . . , n) constitute an SSE if the following conditions are satis�ed for all �rms:

p∗i =
a∗i
2b∗i

+
c

2
, (8)

Di(p
∗) = DP

i (p∗i ). (9)

Condition (8) says that �rms set the price that maximizes their expected pro�t subject to their perceived

demand function. Condition (9) requires that the actual and the perceived demands are the same at the

SSE prices. Since we have 2 independent equations and 3 variables for each �rm, we can express a∗i and

b∗i as a function of the SSE prices. Thus, for given prices we can �nd perceived demand functions such

that the �rms are in an SSE. Proposition 3.1 speci�es the coe�cients of the perceived demand function in

Figure 1: Disequilibrium (left) and self-sustaining equilibrium (right) of the model with LS learning. Parameter

values: α1 = 35, α2 = 4, α3 = 2, β = 0.7, γ = 0.6, c = 4 and p̄−i = 8.
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Figure 2: The set of SSE prices for two �rms (left panel) and the end prices of simulations with initial prices drawn

from the uniform distribution on the set of SSE prices (right panel). Parameter values: α1 = 35, α2 = 4, α3 = 2,

β = 0.7, γ = 0.6, c = 4 and δ = 10−8.

terms of the SSE prices. It also describes the set of SSE prices. The proposition is proved in the Appendix.

Proposition 3.1 For given prices p∗i (i = 1, . . . , n) the model is in an SSE if the coe�cients of the

perceived demand function of �rm i are given by

a∗i = Di(p
∗)

(
1 +

p∗i
p∗i − c

)
,

b∗i =
Di(p

∗)

p∗i − c
.

The set of SSE prices is described by the conditions p∗i > c and Di(p
∗) > 0, or equivalently

c < p∗i < Pi(0, p̄
∗
−i) =

[
1

α2

(
α1 + α3(p̄

∗
−i)

γ
)] 1

β

.

This set is nonempty and bounded.

The values of a∗i and b∗i derived in Proposition 3.1 are in line with Proposition 3 of Kirman (1983):

they reduce to the same expression for the case of a duopoly with a linear demand function and zero

marginal cost. Note that the set S we use in the LS algorithm coincides with the set of SSE prices. The

set of SSE prices always contains the Nash equilibrium as the Nash equilibrium price exceeds the marginal

cost and the corresponding demand is positive. The left panel of Figure 2 depicts the set of SSE prices

for the case of two �rms. The �gure corresponds to parameter values α1 = 35, α2 = 4, α3 = 2, β = 0.7,

γ = 0.6 and c = 4. We will use these parameter values in all later simulations too. For these values the

Nash equilibrium price is pN ≈ 17.7693 with corresponding pro�t πN ≈ 223.9148.
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In Proposition 3.1 we characterized the set of prices that may constitute an SSE. However, nothing

ensures that every point of that set will actually be reached from some initial points. In fact, Kirman

(1983) derives the set of points that can be reached with some initial values for the case of two �rms and

linear demand speci�cation. He shows that this set is smaller than the set of SSE prices.6

Note that di�erent �rms could use di�erent types of perceived demand functions, in general. For

example, some �rms could take into account the prices of (some of the) other �rms. Furthermore, perceived

demand functions could be nonlinear in prices. We discuss the e�ects of heterogeneity in the perceived

demand functions in the concluding remarks.

3.1.3 Simulation results

To illustrate some properties of least squares learning we simulate the model where each �rm is an LS

learner. We use the aforementioned parameter values with threshold value δ = 10−8 in the stopping

criterion. First we illustrate that �rms reach a point in the set of SSE prices when there are two �rms. We

drew 2000 random points from the uniform distribution on the set of SSE prices and ran 1000 simulations

using these points as initial prices.7 In order to save time we limited the number of runs to 10000.8 The

right panel of Figure 2 depicts the end prices of the 1000 runs. We observe that almost all of the �nal

points lie in the set of SSE prices and that they do not �ll the whole set. Nevertheless, there is quite a

variety in �nal prices so homogeneous LS learning can lead to many possible outcomes. For the case of

10 �rms we observed a variety in the �nal prices again and that most of the �nal points lie in the set

of SSE prices. This latter result is not robust to the demand parameters: when the set of SSE prices is

more expanded towards high prices, then �nal points fall outside the set of SSE prices more often.9 The

other �nding that LS learning may result in many possible outcomes is robust with respect to the demand

parameters. These results remain valid even when we add a small noise to the actual demands.

Figure 3 illustrates typical time series of prices and pro�ts for the case of 10 �rms. Although the

stopping criterion is satis�ed at period 9201, we plot only the �rst 20 periods as the time series do not

change much after that. We observe that prices are more volatile in the �rst few periods but then they

6Kirman (1983) does not consider non-negativity constraints on ai and bi so any positive price pair can constitute an SSE

in his model.
7We need two initial points for each simulation. The �rst 2 points are used as initial values in the �rst simulation, the

third and the fourth are used in the second one etc.
8So the simulation stopped at period 10000 even if the stopping criterion was not met. Based on other simulations, this

does not a�ect the outcome substantially.
9Simulations show that if we do not consider the non-negativity constraint on demands, then almost all points lie within

the set of SSE prices irrespective of the shape of the set.
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Figure 3: Time series of prices (left) and pro�ts (right) in an oligopoly with 10 LS learners. Parameter values:

α1 = 35, α2 = 4, α3 = 2, β = 0.7, γ = 0.6, c = 4 and δ = 10−8. Nash equilibrium values: pN ≈ 17.7693 and

πN ≈ 223.9148.

start to settle down. In this particular simulation, end prices are between 16.3 and 19.6, while pro�ts lie

between 225.4 and 229.3. Note that pro�ts exceed the corresponding Nash equilibrium pro�t 223.9. We

analyzed the distribution of end prices by simulating the model with initial prices drawn from the uniform

distribution on the set of SSE prices. As the number of �rms increases, a higher proportion of end prices

lies close to the mode that exceeds the Nash equilibrium price.

3.2 Gradient learning

Let us now turn to the other method that �rms may apply for deciding on prices. Instead of assuming

a speci�c form for the demand function and estimating its parameters, �rms use information about the

slope of their pro�t function.10 Knowing the slope at the current price, �rms adjust the price of their good

in the direction in which they expect to get a higher pro�t.

3.2.1 The learning mechanism

The price charged by �rm i in period t+ 1 is given by

pi,t+1 = max

{
pi,t + λ

∂πi(pt)

∂pi,t
, c

}
, (10)

10For analytically calculating the slope �rms would need to know the actual demand function and the prices asked by

other �rms. Nevertheless, with market experiments they can get a good estimate of the slope without having the previously

mentioned pieces of information. Thus, it is not unreasonable to assume that �rms know the slope of their pro�t function.
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where the derivative of the pro�t function is α1−α2p
β
i,t +α3p̄

γ
−i,t−α2β(pi,t− c)pβ−1i,t . Formula (10) shows

that the price adjustment depends on the slope of the pro�t function and on parameter λ. In Section 3.2.2

we will see that the stability properties of this learning rule depend heavily on the value of λ.

We augment this method with an additional rule. Note that if a �rm sets a too high price for which the

demand is zero, then (10) gives the same price for the next period since the slope of the pro�t function is

zero at that point. However, it should be clear for the �rms that the zero pro�t may result from charging

a too high price, so it is reasonable to lower the price. Therefore, we add the following rule to gradient

learning: if a �rm faced zero demand in two consecutive periods, then it lowers its previous price by λ0.

This rule ensures that �rms cannot get stuck in the zero pro�t region. We assume that λ0 takes the same

value as λ in all simulations.11

Gradient learning is implemented in the following way. For every �rm i:

1. pi,1 and pi,2 are drawn from the uniform distribution on the set S.12

2. In period t ≥ 3:

• If Di(pt−2) 6= 0 or Di(pt−1) 6= 0, then pi,t = max
{
pi,t−1 + λ∂πi(pt−1)

∂pi,t−1
, c
}
.

• If Di(pt−2) = Di(pt−1) = 0, then the price is given by pi,t = max {pi,t−1 − λ0, c} .

3. The process continues until all price changes are smaller in absolute value than a threshold value δ.

Similarly to the case of LS-learning �rms, the �rms' learning processes interfere with each other. Although

a �rm moves in the direction that is expected to yield a higher pro�t, it may actually face a lower pro�t

after the price change since the pro�t function of the �rm changes due to the price change of other �rms.

Nevertheless, if gradient learning converges, then this disturbance becomes less severe as there will be only

small price changes in later periods.

3.2.2 Equilibrium and local stability

Let us now investigate the dynamical properties of gradient learning. In the �rst part of the analysis we

will not consider non-negativity constraints on prices and demands and we disregard the augmenting rule.

We will discuss the e�ects of these modi�cations after deriving the general features of the learning rule.

11The exact value of λ0 a�ects only the speed of return from the zero pro�t region, it does not a�ect the convergence

properties of the method.
12Although it would be su�cient to take one initial value for the simulations, we take two initial values so that gradient

learning would be more comparable with LS learning in a heterogeneous setting. We take initial values from the same set for

the same reason.
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The law of motion of prices is given by

pi,t+1 = pi,t + λ
∂πi(pt)

∂pi,t
.

The system is in a steady state if the derivative of the pro�t function with respect to the own price

is zero for all �rms. Under the demand speci�cation we consider, this condition characterizes the Nash

equilibrium, so the Nash equilibrium is the unique steady state of the model with only gradient learners.

Let us now analyze the stability of the steady state. Proposition 3.2 summarizes the dynamical prop-

erties of the gradient-learning oligopoly. The proof of the proposition can be found in the Appendix.

Proposition 3.2 The Nash equilibrium price pN is locally stable in the gradient-learning oligopoly if

λ

{
α2βp

β−1
N

[
2 + (β − 1)

pN − c
pN

]
+ α3γp

γ−1
N

1

n− 1

}
< 2.

When the expression on the left hand side equals 2, n−1 eigenvalues become −1, the remaining eigenvalue

lies within the unit circle.

According to Proposition 3.2, the steady state is locally stable if parameter λ is su�ciently small. The

steady state loses stability through a degenerate �ip bifurcation: multiple eigenvalues exit the unit circle

through the value −1. In general, many di�erent cycles with period multiple of 2 could be created with

this kind of bifurcation.13 We numerically investigate the occurring dynamics in the next section. Note

that the coe�cient of λ in the stability condition is decreasing in n as pN is independent of n. Thus, an

increase in the number of �rms has a stabilizing e�ect.

So far we have not considered the e�ect of the constraints pi ≥ c, Di(p) ≥ 0 and the augmenting rule

that lowers too high prices. For discussing these e�ects let us �rst consider a linear demand function. In

that case the system is linear so there are three kinds of possible dynamics if we do not consider any

constraints: convergence to a steady state, to a 2-cycle or unbounded divergence. Unbounded divergence

is no longer possible when we impose the constraints on prices and demands. These constraints and the

augmenting rule drive prices back towards the region where the demands are positive. Therefore, we may

observe high-period cycles, quasi-periodic or aperiodic dynamics for high values of λ.

In the nonlinear setting we consider, the non-negativity constraint on prices must be imposed since a

negative price yields a complex number as demand. The e�ect of the constraints and the augmenting rule

is the same as for a linear demand function: unbounded divergence cannot occur, we observe high-period

cycles, quasi-periodic dynamics or aperiodic time series instead.

13More details about degenerate �ip bifurcations can be found in Mira (1987), Bischi et al. (2000) and Bischi et al. (2009).
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(a) Convergence to the Nash equilibrium for λ = 0.8 (b) Convergence to a 2-cycle for λ ≈ λ∗

(c) Quasi-periodic dynamics for λ = 0.9344 (d) Aperiodic dynamics for λ = 1

Figure 4: Typical time series of prices in an oligopoly with 10 gradient learners for di�erent values of λ. Other

parameter values: α1 = 35, α2 = 4, α3 = 2, β = 0.7, γ = 0.6, c = 4 and δ = 10−8. Nash equilibrium price:

pN ≈ 17.7693.

Similarly to LS learning, �rms could use di�erent types of gradient learning as well. This can be

implemented with di�erent adjustment parameter λ among �rms. Heterogeneity in parameters of the

learning algorithms is well established by the laboratory experiments in di�erent settings, see e.g. Erev

et al. (2010) and Anufriev et al. (2013). In the concluding remarks we discuss the e�ect of individual

heterogeneity with respect to the adjustment parameter λ.

3.2.3 Simulation results

We run simulations for illustrating the possible dynamics of the model with only gradient learners. We

use the same parameter values as before. Figure 4 illustrates typical time series of prices: convergence to
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the Nash equilibrium for λ = 0.8 in panel (a), time series that resemble a 2-cycle for λ = λ∗ ≈ 0.9391 in

panel (b), quasi-periodic dynamics for λ = 0.9344 in panel (c) and aperiodic dynamics for λ = 1 in panel

(d). These patterns can occur for di�erent demand parameters too but for di�erent values of λ.

In line with Proposition 3.2, we observe convergence to the Nash equilibrium price when λ is su�ciently

small. Starting with initial prices in a small neighborhood of the Nash equilibrium, we can observe time

series converging to a 2-cycle around the point of bifurcation. Furthermore, by varying initial conditions

we observe a co-existence of several attracting 2-cycles. For higher values of λ we observe high-period

cycles, quasi-periodic or aperiodic dynamics.

It turns out from simulations that the lower λ is, the larger the range of initial prices for which

convergence can be observed in simulations. So when the steady state is locally stable and λ is close to the

bifurcation value, then we observe convergence only for a small set of initial prices. When initial prices lie

outside of this set, then we observe high-period cycles, quasi-periodic or aperiodic dynamics.

4 Heterogeneous oligopoly with �xed learning rules

In this section we combine the learning methods discussed in Sections 3.1 and 3.2 and we consider the case

of a heterogeneous oligopoly in which some �rms use least squares learning while others apply gradient

learning. Firms use a �xed learning method and they cannot change the rule they use. We will see that the

main features of the two methods remain valid even in the heterogeneous setting: when λ is su�ciently

small, then LS learners get close to an SSE in which gradient learners give the best response to the prices

set by the other �rms.

4.1 Steady states and stability

Consider a market with nL LS learners and n − nL gradient learners where 0 < nL < n. Let us assume

without loss of generality that the �rst nL �rms are the LS learners. We discussed in Section 3.1.2 that

the steady states of an LS-learning oligopoly are characterized by a self-sustaining equilibrium. The same

conditions must hold for LS learners in a steady state of a heterogeneous oligopoly: their actual and

perceived demands must coincide at the price they ask (given the prices of other �rms), otherwise they

would update their perceived demand function and the price of their good would change in the next

period. At the same time, the slope of the pro�t function of gradient learners must be zero in a steady

state otherwise the price of their good would change. Proposition 4.1 characterizes the steady state of the

heterogeneous oligopoly with �xed learning rules. We leave the proof to the reader, it can be proved with

very similar steps as in the proof of Proposition 2.2.
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Proposition 4.1 In a steady state of the system, LS learners are in an SSE and gradient learners give

the best response to the prices set by other �rms. The price pG set by gradient learners is characterized by

α1 − α2p
β
G + α3

[
1

n− 1

(
nL∑
s=1

p∗s + (n− nL − 1)pG

)]γ
− α2β(pG − c)pβ−1G = 0,

where p∗s denotes the price of LS learner s.

Later we will illustrate with numerical analysis that there is a unique solution pG to the above equation.

Since, at a steady state, gradient learners give the best-response price, steady states are similar to a

Stackelberg oligopoly outcome with LS learners as leaders and gradient learners as followers. It is, however,

not a real Stackelberg outcome because LS learners do not behave as real leaders since they do not take

into account the reaction function of gradient learners when setting the price of their good. Nevertheless,

LS learners may earn a higher pro�t than gradient learners in a steady state.14

Let us now turn to the stability of the steady states. As LS learners always settle down at a certain

price since the weight of a new observation decreases as the number of observations increases, stability

depends mainly on the dynamical properties of gradient learning. Proposition 4.2 presents these properties.

The proof can be found in the Appendix.

Proposition 4.2 Under the assumption that LS learners have reached their steady state price, the dy-

namical properties of gradient learning are as follows. For 0 < nL < n − 1 the price pG set by gradient

learners is locally stable if 0 < λM1 < 2 and 0 < λM2 < 2, where

M1 = α2βp
β−1
G

[
2 + (β − 1)

pG − c
pG

]
− α3γ

(
nLp̄

∗ + (n− nL − 1)pG
n− 1

)γ−1 n− nL − 1

n− 1
, (11)

M2 = α2βp
β−1
G

[
2 + (β − 1)

pG − c
pG

]
+ α3γ

(
nLp̄

∗ + (n− nL − 1)pG
n− 1

)γ−1 1

n− 1
, (12)

and p̄∗ = 1
nL

nL∑
s=1

p∗s is the average LS price.

For nL = n− 1 the price set by the gradient learner is locally stable if

λα2βp
β−1
G

[
2 + (β − 1)

pG − c
pG

]
< 2.

14Gal-Or (1985) shows that there is a second mover advantage in a price-setting duopoly with substitute goods. Under a

linear demand speci�cation, this result can be extended to a higher number of �rms too. We expect this to hold also for the

nonlinear demand speci�cation we consider when the demand functions are not too far from the linear case. However, since

LS learners do not charge the optimal leaders' price, this deviation from the optimal price may hurt the gradient learners

even more and they may earn a lower pro�t than the LS learners.
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Note that the previous proposition concerns the stability of the price set by gradient learners and

not those of the steady states. Although LS learners get close to an SSE and the price set by gradient

learners is locally stable for low values of λ, we cannot say that the steady state is locally stable. A small

perturbation of a steady state leads to di�erent LS prices and this changes the best-response price too.

If, however, the LS prices remained the same, then gradient learners would return to the best-response

price after a small perturbation. Note further that the proposition establishes su�cient conditions for local

stability only. Thus, we might not observe convergence to a steady state for large perturbations of gradient

learners' price.

The distribution of learning methods over �rms a�ects the stability of the price set by gradient learners

as nL appears in the aforementioned stability conditions. It is, however, not clear analytically how stability

changes with respect to nL because a change in nL a�ects the average LS price p̄∗, which can take many

di�erent values. For further analyzing this issue, we use numerical calculations. First we check the direct

e�ect of nL on stability and then we analyze how an increase in nL a�ects the average LS price.

Although LS prices are unknown, we can make use of the fact that the set of SSE prices is bounded:

the minimal SSE price is c and the maximal SSE price p̂ is de�ned by α1 + α3p̂
γ − α2p̂

β = 0 (as shown

in the proof of Proposition 3.1). Thus, we have c ≤ p̄∗ ≤ p̂. Taking values for p̄∗ from this range, we can

calculate pG, M1 andM2 numerically. The left panel of Figure 5 shows that pG is unique (given the average

LS price and the number of LS learners). Note that there is a value of p̄∗ for which the best-response price

is the same irrespective of the number of LS learners. This price equals the Nash equilibrium price since

the best response to the Nash equilibrium price is the Nash equilibrium price itself.

It turns out from the calculations that only M2 is relevant for stability: M1 is always positive and

M1 < M2 as α3 > 0. Using (12) we can calculate for any p̄∗ and any nL the threshold value of λ for

which the gradient learners' price loses stability. Using these threshold values, we depict the stability-

instability region for di�erent values of nL in the right panel of Figure 5. We can see from the graph

that for a given average LS price, the region of stability is increasing (decreasing) in nL if the average LS

price is larger (smaller) than the Nash equilibrium price and if there are more than one gradient learners

(i.e. nL < n − 1).15 Thus, for a �xed average LS price, an increase in the number of LS learners has a

(de)stabilizing e�ect if the average LS price is larger (smaller) than the Nash equilibrium price and if there

are at least 2 gradient learners. For nL = n−1 the stability condition becomes di�erent. When the average

LS price exceeds the Nash equilibrium price, then the change in the stability region is still monotonic, but

it is no longer monotonic when the average LS price is lower than the Nash equilibrium price.

15Remember that there is a di�erent stability condition for the case nL = n− 1.

20



Figure 5: The gradient learners' price as a function of the average price of nL least squared learners (left panel)

and boundaries of the stability regions in the coordinates (p̄∗, λ). For the corresponding number nL of least square

learners the gradient learning algorithm is locally stable for pairs below the boundary. Parameter values: α1 = 35,

α2 = 4, α3 = 2, β = 0.7, γ = 0.6 and c = 4.

As the number of LS learners changes, the average LS price changes too. Since p̄∗ may change in

any direction, we cannot say unambiguously whether a change in nL has a stabilizing or a destabilizing

e�ect on the price set by gradient learners. For analyzing how the average LS price changes as nL varies,

we run 1000 simulations for each value of nL between 1 and 9 with initial prices drawn from the set of

SSE prices. Let p̄i,j denote the average LS price in run i with j LS learners, where i = 1, . . . , 1000 and

j = 1, . . . , 9.16 We used λ = 0.937 in these simulations: for this value of λ the convergence property of

gradient learning changes as nL varies. The simulations show that the average LS price p̄i,j exceeds the

Nash equilibrium price in 64 − 71% of the runs for di�erent number of LS learners. We analyzed the

range in which the average LS price varies. For a �xed run i we considered the minimal and the maximal

average LS price over the di�erent number of LS learners: min
j
p̄i,j and max

j
p̄i,j . This gave the interval[

min
j
p̄i,j ,max

j
p̄i,j

]
in which the average LS price varies in a given run i as the number of LS learners

changes. We obtained an interval for each of the 1000 runs this way. Then we considered the length of

these intervals

(
max
j
p̄i,j −min

j
p̄i,j

)
and calculated the mean and the standard deviation of them over the

1000 runs. The 95% con�dence interval of the length is [0.9723, 1.2656]. Thus, as the number of LS learners

changes, the average LS price does not vary much (5.47%-7.12% compared to the Nash equilibrium price

of pN ≈ 17.7693). We compared the means of the average LS prices for di�erent number of LS learners

too: 1
1000

1000∑
i=1

p̄i,j . The minimal value was 18.3097 (for j = 5) and the maximal value was 18.3778 (for

j = 2). The means for di�erent number of LS learners do not di�er from each other signi�cantly at the

16We used the same initial prices in a �xed run i for the di�erent values of j.
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Figure 6: The end points of the simulations with �rm 1 as gradient learner and �rm 2 as LS learner. Parameter

values: α1 = 35, α2 = 4, α3 = 2, β = 0.7, γ = 0.6, c = 4, λ = λ0 = 0.5 and δ = 10−8.

5% level. Based on the �ndings that average LS prices are typically larger than the Nash equilibrium price

and that they do not vary much as the number of LS learners changes, we conclude that an increase in

the number of LS learners has typically (but not necessarily) a destabilizing e�ect on gradient learning.

The stability analysis becomes much simpler for the case of complements (α3 < 0). In that case it is

easy to see that 0 < M2 < M1 so the relevant stability condition becomes M1 < 2. Numerical calculations

show that the value ofM1 monotonically decreases in the number of LS learners irrespective of the average

LS price. Thus, an increase in the number of LS learners has a stabilizing e�ect on the best response price

when the average LS price is �xed. Overall, the relation between stability and the distribution of learning

methods over �rms is stronger for complements than for substitutes.

4.2 Simulation results

First we simulate the model for 2 �rms with �rm 1 as gradient learner and �rm 2 as LS learner. We used

λ = λ0 = 0.5 in the simulations. The price set by the gradient-learning �rm is locally stable for this choice

of λ. We run 1000 simulations with initial prices drawn from the uniform distribution on the set of SSE

prices. Figure 6 depicts the end prices and the set of SSE prices. The LS learner indeed gets close to an

SSE in almost all cases: 99.7% of the points lie in the set of SSE prices. The structure of the end points

also con�rms that the gradient learner gives the best response price: the points lie close to the reaction

curve of the gradient learner.

Figure 7 compares the pro�tability of the two learning methods. The left panel shows the average LS

and gradient pro�ts (with 95% con�dence interval) for di�erent number of LS learners. For drawing this

graph, we simulated the model 1000 times for each number of LS learners with initial prices drawn from
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Figure 7: The average LS and gradient pro�ts pro�ts (with 95% con�dence interval) (left panel) and the percentage

of runs in which gradient learners earn a higher average pro�t. Parameter values: α1 = 35, α2 = 4, α3 = 2, β = 0.7,

γ = 0.6, c = 4 and λ = λ0 = 0.937.

the uniform distribution on the set of SSE prices. We let each simulation run for 2000 periods and for each

�rm we considered the average of its pro�ts over the last 100 periods as the pro�t of the �rm in the given

simulation.17 Thus, for the case of k LS learners, we had 1000k observations for LS pro�ts and 1000(10−k)

observations for gradient pro�ts. We calculated the average and the standard deviation of these values

separately for LS and gradient learners. The con�dence interval is calculated as mean ± 2stdev/
√

1000k

and mean ± 2stdev/
√

1000(10− k) for LS and gradient learners respectively. The left panel shows that

gradient learning yields signi�cantly lower average pro�t than LS learning when the number of LS learners

is low. In contrast, it gives signi�cantly higher pro�ts when the number of LS learners is high enough.

The right panel of Figure 7 depicts for each number of LS learners the percentage of the 1000 simulations

in which the average gradient pro�t was larger than the average LS pro�t. The graph shows that gradient

learning becomes more pro�table than LS learning more often as the number of LS learners increases.

Since pro�tability is closely related to the convergence properties of gradient learning, this illustrates that

an increase in the number of LS learners has typically a stabilizing e�ect.18

Based on this change in the stability of gradient learning, we conjecture a cyclical switching between

172000 periods are typically enough for pro�ts to converge when gradient learning converges. We take the average over the

last 100 periods in order to get a better view on the pro�tability of the methods. When gradient learning converges, then

pro�ts do not vary much in the last periods. When the price is unstable, gradient pro�ts change more or less periodically, so

averaging over the last few pro�ts describes the pro�tability of the method better than considering only the last pro�t.
18When gradient learning does not converge, then it gives low average pro�t as the price �uctuates between too low and

too high values. Therefore, when the average gradient pro�ts are high, the best-response price must be locally stable and

gradient learning must converge.
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the learning methods when �rms are allowed to choose which method they want to apply. Conjecture 4.3

summarizes our expectation. In the following section we will investigate if cyclical switching occurs.

Conjecture 4.3 When �rms are sensitive to pro�t di�erences, changes in the convergence properties

of gradient learning may lead to cyclical switching between the learning rules. When gradient learning

converges, LS learners have an incentive to switch to gradient learning as it typically yields a higher pro�t.

This increase in the number of gradient learners, however, may destabilize the best-response price, resulting

in lower gradient pro�ts. Then �rms switch to LS learning, so gradient learning may converge again and

the cycle may repeat itself.

5 Endogenous switching between learning mechanisms

We introduce competition between the learning rules in this section. We extend the model by allowing

for endogenous switching between the two methods: �rms may choose from the two learning rules in each

period. For deciding about the rules, �rms take into account their performance: the probability of choosing

a speci�c method is positively related to the past pro�ts realized while using that method. Section 5.1

speci�es the switching mechanism, the simulation results are discussed in Section 5.2. The simulations

con�rm that the cyclical switching we conjectured occurs.

5.1 The switching mechanism

The switching mechanism is based on reinforcement learning as in Roth and Erev (1995) and it is related

to the discrete choice model as in Brock and Hommes (1997). The mechanism is augmented with experi-

mentation too. Every �rm i has a performance measure for each of the rules. These measures determine

the probability of �rm i applying a certain rule. Performances depend on past realized pro�ts. Let li,t

(gi,t) denote the performance of LS (gradient) learning perceived by �rm i at the end of period t. The

performance measure for LS learning is updated in each period in the following way:

li,t =

 (1− w)li,t−1 + wπi,t if �rm i used LS learning in period t

li,t−1 otherwise
,

where w ∈ (0, 1] is the weight of the latest pro�t in the performance measure. The performance of gradient

learning is updated analogously. The initial performances are the �rst pro�ts that were realized using the

method in question for each �rm. Thus, performance measures are basically weighted averages of past

pro�ts realized by the given method where weights decay geometrically.
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These performance measures determine the probability of applying a learning method in the following

way. Firm i applies LS learning in period t+ 1 with probability

PLS
i,t+1 = (1− 2η)

1

exp [ω (gi,t − li,t)] + 1
+ η, (13)

where ω ≥ 0 measures how sensitive the �rms are to di�erences in the performance measures and η is the

probability of experimentation. The higher ω is, the higher the probability of applying the method with

the higher performance. For ω = 0 �rms choose both methods with 50% probability. When ω = +∞, then

�rms choose the method with the higher performance with probability 1− η. The interpretation of (13) is

that the choice is based on the performance di�erence between the methods with probability 1− 2η and

the �rm randomizes with equal probabilities between the methods with probability 2η.

The model with endogenous switching is implemented as follows.

1. pi,1 and pi,2 are drawn from the uniform distribution on the set S, for each i.

2. In period 3, k randomly chosen �rms apply LS learning, the other �rms use gradient learning. LS

and gradient prices are determined by the learning mechanisms discussed in Section 3.

3. In period 4:

a. Firms try the other method: all LS learners switch to gradient learning and vice versa. Prices

are determined by the two learning mechanisms. The initial performances are li,4 = πLSi and gi,4 =

πgradi .19

b. Firms choose a method for the following period: �rm i applies LS learning in period 5 with

probability PLS
i,5 .

4. In period t ≥ 5 :

a. Prices are determined by the two learning mechanisms. The performance measures lt and gt are

updated.

b. Firm i chooses LS learning for period t+ 1 with probability PLS
i,t+1.

5. The process stops when a prede�ned number of periods T is reached.

In the simulations of the following section we use w = 0.5, ω = 25 and η = 0.005. We simulate the

model for T = 10000 periods.

Erev et al. (2010) �nd evidence for inertia in subjects' choices in market entry experiments: subjects

tend to choose the same action unless there is a substantial drop in the corresponding payo�. Anufriev

19πLS
i (πgrad

i ) denotes the pro�t of �rm i that was earned while using LS (gradient) learning in period 3 or 4.
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and Hommes (2012) also �nd substantial evidence of inertia in forecasting behavior by estimating the

individual learning model of heuristic switching on data from learning to forecast experiments. Inertia

could be incorporated in the switching mechanism, we discuss its e�ects in the concluding remarks.

5.2 Learning cycles

First we shortly discuss the results of simulations when the convergence properties of gradient learning

do not change as the distribution of learning methods over �rms varies and then we illustrate cyclical

switching. When gradient learning always converges (i.e. for any number of LS learners), then LS learning

need not be driven out even if the �rms are very sensitive to performance di�erences. Some �rms may earn

a high LS pro�t and they apply LS learning not only due to experimentation but in many consecutive

periods. However, the number of LS learners is typically low. In contrast, when gradient learning diverges

fast and �rms are su�ciently sensitive to performance di�erences, then gradient learning is driven out

by LS learning. Firms apply gradient learning only due to experimentation, each �rm uses LS learning

in almost every period. When �rms are less sensitive to di�erences in the performance measures, then

gradient learning is used more often but LS learning is applied in the vast majority of the periods.

Now let us consider the case when the convergence properties of gradient learning change as the

distribution of learning methods over �rms varies. First we illustrate cyclical switching in a duopoly

because it is easier to see what drives the �rms' switching behavior when the number of �rms is low. Then

we show that cyclical switching occurs for higher number of �rms too. We use the same demand and cost

parameters as before. Figure 8 depicts typical time series of prices and the corresponding performance

measures for the case of two �rms. We used λ = 0.85 and k = 1 in the simulation. Gradient learning is

stable for this value of λ only if one �rm uses it. In the �rst third of the illustrated periods �rm 1 uses

mainly LS learning while �rm 2 is a gradient learner. Firm 1 tries gradient learning in one period but it

immediately switches back to LS learning as the latter performs better. This change in the price of �rm 1

drives away the price of �rm 2 from the best-response price and it takes a few periods until the gradient

learner reaches the optimal price again. Later �rm 1 tries gradient learning again and this induces a change

in prices after which the �rm becomes a gradient learner. When both �rms apply gradient learning, prices

start an oscillating divergence. At some point the performance of gradient learning becomes worse than

that of LS learning and �rm 1 switches back to LS learning. This ends the �rst oscillating part. Gradient

learning, however, becomes more pro�table again for �rm 1 and another oscillating part starts. This part

ends in the same way: �rm 1 switches back to LS learning after which the price set by �rm 2 starts

to converge. The last oscillating part starts by �rm 2 switching to LS learning. The price set by �rm 2
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Figure 8: Cyclical switching in a duopoly. Time series of prices (upper panel), the performance measures of �rm

1 (middle panel) and �rm 2 (lower panel). Parameter values: α1 = 35, α2 = 4, α3 = 2, β = 0.7, γ = 0.6, c = 4,

λ = λ0 = 0.85 and k = 1.

decreases which yields a lower pro�t for �rm 1. Because of this �rm 1 switches to gradient learning.

Cyclical switching can occur for higher number of �rms too. Figure 9 illustrates this for 10 �rms with

λ = 0.95 and k = 5. We can observe both diverging and converging phases for gradient learners which
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Figure 9: Cyclical switching with 10 �rms. Time series of prices (upper panel) and number of LS learners (lower

panel). Parameter values: α1 = 35, α2 = 4, α3 = 2, β = 0.7, γ = 0.6, c = 4, λ = λ0 = 0.95 and k = 5.

shows that the stability of the method changes. This change is related to the number of LS learners. In the

�rst periods, the number of LS learners is high and we observe that the gradient learners' prices converge.

Then some LS learners switch to gradient learning, which is re�ected in the drop in nL. As the time series

of prices show, gradient learning becomes unstable. After that the number of LS learners starts increasing

gradually until it reaches the level nL = 9, for which the gradient price shows a converging pattern again.

28



Then �rms start switching to gradient learning again, which destabilizes the price. We could �nd evidence

for cyclical switching for the case of complements too.

Note that cyclical switching may occur only if the value of parameter λ is such that gradient learning

converges when there are few gradient learners and it diverges otherwise. For any parameter values that

satisfy Assumption 2.1, we can �nd values of λ for which the gradient learners' price is locally stable

when the number of gradient learners is low and unstable otherwise, for a given average LS price. Note,

however, that this change in stability does not ensure that cyclical switching occurs: local stability does not

imply that convergence occurs for any initial values. Nevertheless, for any parameter values that satisfy

Assumption 2.1, there exist values of λ for which cyclical switching may in general occur, but it may be

harder to �nd such values of λ for some parameter values than for others.

6 Concluding remarks

Due to the richness of possible learning methods, agents may prefer to use di�erent ways of learning

about their environment. In this paper we demonstrate that several learning methods can coexist, in the

sense that there is no clear winner in the pro�t-driven evolutionary competition between the methods.

We stress that this coexistence may have a substantial e�ect on the dynamical properties of the learning

methods and that the dynamics with heterogeneity in learning methods is much more complex than under

homogeneous learning.

In this paper we have analyzed the interaction between least squares learning and gradient learning

in a Bertrand oligopoly with di�erentiated goods where �rms do not know the demand speci�cation and

they use one of the two methods for determining the price of their good. These learning methods have

been widely used for modeling learning behavior in oligopolistic markets, but mainly in a homogeneous

setup. The methods that we have chosen are not exceptional in the sense that other learning methods may

lead to similar results: best response learning, for example, would yield similar outcomes in the current

model as a stable gradient learning.

We have analyzed four di�erent setups. In a pure LS-learning oligopoly �rms move towards a self-

sustaining equilibrium in which their expected and actual demands coincide at the prices they charge.

The set of SSE prices contains in�nitely many points including the Nash equilibrium of the model. The

initial conditions determine which point is reached in the long run. We formally prove that �rms reach

the Nash equilibrium when every �rm applies gradient learning and the method converges. When gradient

learning does not converge, then it leads to high-period cycles, quasi-periodic or aperiodic dynamics. In

a heterogeneous oligopoly with �rms applying a �xed learning method, we have analytically derived that
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the dynamical properties of gradient learning depend on the distribution of learning methods over �rms.

Numerical analysis shows that an increase in the number of LS learners can have a stabilizing e�ect.

When gradient learning converges, then LS learners move towards a self-sustaining equilibrium in which

gradient learners give the best response to the prices of other �rms. When endogenous switching between

the learning methods is introduced in the model, then a stable gradient learning may not always drive out

LS learning: some LS learners may �nd LS learning to be more pro�table for them. LS learning, however,

may drive out gradient learning when the latter never converges. When the convergence properties and

the pro�tability of gradient learning changes as the distribution of learning methods over �rms varies, a

cyclical switching between the learning methods may be observed. Gradient learners tend to switch to LS

learning when gradient learning does not converge and thus gives low pro�ts. This decrease in the number

of gradient learners can stabilize the method, resulting in higher pro�ts. This can give an incentive for LS

learners to switch back to gradient learning. Gradient learning, however, may lose its stability again and

the cycle may repeat itself.

The previous analysis can be extended in several ways. Observations could have di�erent weights in the

LS formulas. Since observations of the early periods are less informative about the demand function due to

the volatility of the prices of other �rms, it might be reasonable to introduce a weighting function that gives

less weight to older observations. Erev et al. (2010) �nd speci�c behavioral regularities in market entry

experiments where subjects need to make decisions based on their experience. Since �rms have similar tasks

in our model, implementing some of these regularities can make the learning methods and the switching

behavior empirically more relevant. For example, we could consider inertia in the switching behavior:

�rms tend to keep their current learning method unless there is a large drop in its pro�tability. The results

of our paper remain valid since inertia does not a�ect the main driving factor of cyclical switching: the

stability of gradient learning. However, it would take longer time to observe cyclical switching as there

would be less switching in the model due to inertia. Another factor that can be considered is individual

di�erences within the class of learning methods. These individual di�erences could be incorporated in the

current model using di�erent kinds of perceived demand functions such as higher-order polynomials in LS

learning and di�erent values of adjustment parameter λ for di�erent �rms in gradient learning. In case

of LS learning, �rms would still reach a self-sustaining equilibrium when the perceived demand functions

are misspeci�ed. If the adjustment parameter λ varies among �rms, it can be shown that the stability

of gradient learning depends on the distribution of adjustment coe�cients. If the stability condition is

satis�ed, then every gradient learner reaches the best response price. If, however, the stability condition is

not satis�ed, then none of the prices of gradient learners converge. In this latter case, the amplitude of the

price oscillation and the pro�tability of the method is negatively related to the value of the adjustment
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parameter. Even when we implement heterogeneity in the adjustment parameter of gradient learners,

we can observe switching between the learning methods. Firms with very high and very low values of λ

almost always use LS learning, whereas �rms with intermediate values of λ keep switching between the

learning methods as the convergence properties of gradient learning vary. It might also be reasonable to

change the information that is available to �rms. If LS learners observe the price of some but not all of

the goods, then they may take this extra information into account for estimating the demand parameters.

The step size parameter of gradient learning could be endogenized such that the method would stabilize

itself automatically when prices start to diverge. Other learning methods such as best-response learning,

�ctitious play or imitation could also be applied in the current setup. We could add less myopic decision

makers to the model such as perfect foresight �rms or �rms that are actively learning, i.e. �rms that want

to maximize a discounted sum of pro�ts.

The analysis can be extended to di�erent market structures as well. It might be interesting to analyze

what happens under Cournot competition when the quantities set by �rms are strategic substitutes.

Moreover, learning in more complex environments where �rms make not only a price or quantity choice

but they also need to make investment, quality or location decisions, can be studied as well along the lines

outlined in this paper.
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Appendix

The proof of Proposition 2.2

The pro�t of �rm i is given by πi(p) = (pi − c)
(
α1 − α2p

β
i + α3p̄

γ
−i

)
.20 The �rst-order condition with

respect to pi is

α1 − α2p
β
i + α3p̄

γ
−i − α2β(pi − c)pβ−1i = 0. (14)

This equation needs to hold for all �rms. We will show that �rms choose the same price in equilibrium.

Consider two arbitrary �rms i and j and suppose indirectly that pi > pj in equilibrium. Let y =
n∑
k=1

pk − pi − pj . Then the �rst-order conditions for �rms i and j read as

α1 − α2p
β
i + α3

(
pj + y

n− 1

)γ
− α2β(pi − c)pβ−1i = 0, (15)

α1 − α2p
β
j + α3

(
pi + y

n− 1

)γ
− α2β(pj − c)pβ−1j = 0. (16)

Subtracting (15) from (16) yields

α2

(
pβi − p

β
j

)
+ α3

[(
pi + y

n− 1

)γ
−
(
pj + y

n− 1

)γ]
+ α2β

[
(pi − c)pβ−1i − (pj − c)pβ−1j

]
= 0.

20We assume in this formula that demands are positive in a Nash equilibrium. Later we will see that this is indeed the

case.
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The �rst two terms are positive as pi > pj and all parameters are positive. We will now show that

the last term is also positive. Let g(x) = (x − c)xβ−1. This function is increasing if x ≥ c : g′(x) =

βxβ−1 − c(β − 1)xβ−2 > 0 for x > c(1 − 1
β ).21 This proves that the last term is also positive as pi > pj .

This, however, leads to a contradiction as positive numbers cannot add up to zero. So we must have

pi = pj : �rms charge the same price in a Nash equilibrium. Let p denote the corresponding price. Then

(14) gives

f(p) ≡ α1 − α2p
β + α3p

γ − α2β(p− c)pβ−1 = 0. (17)

We will now show that there is a unique solution to this equation and the corresponding price is larger

than the marginal cost. According to Assumption 2.1, f(c) = α1 − α2c
β + α3c

γ > 0. Note that f(p)

becomes negative for high values of p :

f(p) = α1 − pγ
[
α2p

β−γ − α3 + α2β

(
1− c

p

)
pβ−γ

]
,

from which it is easy to see that lim
p→+∞

f(p) = −∞. The derivative of f(p) is f ′(p) = −α2βp
β−1+α3γp

γ−1−

α2βp
β−1

[
1 + (β − 1)

(
1− c

p

)]
. Assumption 2.1 ensures that the sum of the �rst two terms is negative.

The last term is also negative when p > c. Thus, f(p) is strictly decreasing in p for p > c. Since f(p) is

continuous, this proves that there is a unique solution to f(p) = 0. Let pN denote the symmetric Nash

equilibrium price. It follows easily from the proof that pN > c and the demands are positive in the Nash

equilibrium.

We will show that the second order condition is satis�ed. Di�erentiating (14) with respect to pi yields

−2α2βp
β−1
i − α2β(β − 1)(pi − c)pβ−2i = −α2βp

β−1
i

(
2 + (β − 1)

pi − c
pi

)
This is negative for p = pN since the term in brackets is positive: p

N−c
pN
∈ (0, 1) as pN > c and β− 1 > −1,

so (β − 1)p
N−c
pN

> −1. �

The proof of Proposition 3.1

First we derive the coe�cients of the perceived demand functions in an SSE in terms of the SSE prices

and then we study which prices may constitute an SSE.

From (9) we get a∗i = Di(p
∗) + b∗i p

∗
i . Combining this expression with (8) yields

b∗i =
Di(p

∗)

p∗i − c
. (18)

Using (18) we can express a∗i as

a∗i = Di(p
∗)

(
1 +

p∗i
p∗i − c

)
. (19)

21We will see later that the condition x ≥ c holds for the Nash equilibrium price.
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The above described values constitute an SSE only if the inverse demand functions are sensible. That

is, the following conditions need to be satis�ed for all �rms:

a∗i > 0, (20)

b∗i > 0, (21)

PPi (0) =
a∗i
b∗i
> c, (22)

Pi(0, p̄
∗
−i) =

[
1

α2

(
α1 + α3(p̄

∗
−i)

γ
)] 1

β

> c, (23)

p∗i > c. (24)

Conditions (20) and (21) ensure that the perceived demand functions are downward-sloping with a positive

intercept. Conditions (22) and (23) require that the perceived and the actual inverse demands are larger

than the marginal cost at qi = 0. Condition (24) speci�es that the SSE prices should be larger than the

marginal cost. We will show that some of these constraints are redundant.

Conditions (20) and (21) hold true if and only if Di(p
∗) > 0 and p∗i > c. Combining (18) and (19)

yields
a∗i
b∗i

= p∗i − c+ p∗i = 2p∗i − c.

This shows that (22) is equivalent to (24). We can express Di(p
∗) > 0 as[

1

α2

(
α1 + α3(p̄

∗
−i)

γ
)] 1

β

> p∗i .

Combining this with p∗i > c shows that (23) is satis�ed. Thus, the set of SSE prices is given by p∗i > c and

Di(p
∗) > 0, or equivalently c < p∗i <

[
1
α2

(
α1 + α3(p̄

∗
−i)

γ
)] 1

β
.

This set is nonempty: the Nash equilibrium price, for example, satis�es the above condition. The

maximal SSE price of �rm i increases in the price of other �rms. Thus, the upper bound of the SSE prices

is given by the price p̂ for which the demand is 0 if every �rm charges this price: α1 − α2p̂
β + α3p̂

γ = 0.

The existence and uniqueness of this price can be shown in the same way as for the Nash equilibrium

price. �

The proof of Propositions 3.2 and 4.2

Let us consider a heterogeneous setting in which the �rst nL �rms apply LS learning and the remaining

n− nL �rms use gradient learning. The proof of Proposition 3.2 follows from this general case by setting

nL = 0.
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In the proof we will apply a lemma about the eigenvalues of a matrix that has a special structure.

First we will prove this lemma and then we prove Propositions 3.2 and 4.2.

Lemma 6.1 Consider an n × n matrix with diagonal entries d ∈ R and o�-diagonal entries o ∈ R. In

case of n = 1 the matrix has one eigenvalue: µ = d. If n > 1, then there are two distinct eigenvalues:

µ1 = d+ (n− 1)o (with multiplicity 1), and µ2 = d− o (with multiplicity n− 1).

The proof of Lemma 6.1

The case n = 1 is trivial so we focus on n > 1. Let A denote the matrix in question. Due to its special

structure, A can be expressed as A = (d − o)In + o1n, where In is the n−dimensional identity matrix

and 1n is the n-dimensional matrix of ones.

First note that if λ is an eigenvalue of o1n with corresponding eigenvector x, then x is an eigenvector

of A for the eigenvalue d − o + λ : if o1nx = λx, then Ax = ((d − o)In + o1n)x = (d − o)x + λx =

(d − o + λ)x.

It is easy to see that o1n has two distinct eigenvalues: o · n with multiplicity 1 and 0 with multiplicity

n − 1. Thus, A has two distinct eigenvalues: µ1 = d − o + o · n = d + (n − 1)o with multiplicity 1 and

µ2 = d− o with multiplicity n− 1. �

Now the dynamical properties of the heterogeneous oligopoly can be studied in the following way.

Suppose that LS prices have settled down at some level and let p∗i denote the price of LS learner i

(i = 1, . . . , nL). Since LS prices have settled down, the law of motion of the prices set by LS learners

can be approximated by pi,t+1 = pi,t for i = 1, . . . , nL as price changes become smaller as the number

of observations increases. The law of motion of the price set by gradient learners is given by pj,t+1 =

pj,t + λ
∂πj(pt)
∂pj,t

for j = nL + 1, . . . , n. Then the Jacobian (evaluated at the steady state) is of the following

form:

J =

 I 0

B A

 ,

where I is the nL×nL identity matrix, 0 is an nL× (n−nL) matrix of zeros, B is an (n−nL)×nL matrix

with all entries equal to

o = λ
∂2πj(p)

∂pi∂pj
= λα3γ

1

n− 1


nL∑
s=1

p∗s + (n− nL − 1)pG

n− 1


γ−1

,

and A is an (n− nL)× (n− nL) matrix with diagonal entries

d = 1 + λ
∂2πj(p)

∂p2j
= 1− α2βλp

β−1
G

(
2 + (β − 1)

pG − c
pG

)
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and o�-diagonal entries equal to o.

Due to its special structure, the eigenvalues of J are given by the eigenvalues of I and the eigenvalues

of A. The stability properties of gradient learning are determined fully by the eigenvalues of A. Applying

Lemma 6.1, the eigenvalues that determine the stability of gradient learning are µ1 = d + (n − nL − 1)o

with multiplicity 1 and µ2 = d− o with multiplicity n−nL− 1. If n−nL = 1, then the unique eigenvalue

is µ = d.

When n− nL = 1, the stability condition becomes

λα2βp
β−1
G

(
2 + (β − 1)

pG − c
pG

)
< 2.

The primary bifurcation is a period-doubling bifurcation: the eigenvalue becomes −1. When n− nL > 1,

the stability conditions −1 < µi < 1 simplify to 0 < λM1 < 2 and 0 < λM2 < 2 where

M1 = α2βp
β−1
G

[
2 + (β − 1)

pG − c
pG

]
− α3γ

(
nLp̄

∗ + (n− nL − 1)pG
n− 1

)γ−1 n− nL − 1

n− 1
,

M2 = α2βp
β−1
G

[
2 + (β − 1)

pG − c
pG

]
+ α3γ

(
nLp̄

∗ + (n− nL − 1)pG
n− 1

)γ−1 1

n− 1
,

and p̄∗ = 1
nL

nL∑
s=1

p∗s is the average LS price.

By setting nL = 0 it is easy to see that the above expressions simplify to

M1 = α2βp
β−1
N

[
2 + (β − 1)

pN − c
pN

]
− α3γp

γ−1
N ,

M2 = α2βp
β−1
N

[
2 + (β − 1)

pN − c
pN

]
+ α3γp

γ−1
N

1

n− 1

for the case of a homogeneous gradient-learning oligopoly, where pN is the symmetric Nash equilibrium

price. Since α3 > 0, M2 > M1. It follows from Assumption 2.1 that α2βp
β−1 > α3γp

γ−1 for all p ≥ c. This

ensures that M1 is always positive:

M1 = α2βp
β−1
N

[
2 + (β − 1)

pN − c
pN

]
− α3γp

γ−1
N > α2βp

β−1
N

[
1 + (β − 1)

pN − c
pN

]
> 0

since 1 + (β − 1)pN−cpN
> 0. Thus, the relevant stability condition in the homogeneous case is λM2 < 2.

At the bifurcation value of λ, n− 1 eigenvalues become −1 while the remaining eigenvalue is positive and

smaller than one. �
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