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Abstract

Non point sources of pollution such as agriculture produce diffuse emissions which are un-

measurable, arise from unobservable actions and cause stochastic pollution of air and waterways.

Despite the significant damage they cause, regulation of these sources has proven far from straight-

forward in both theory and practice. To ensure tractability, theoretical treatments remain either

static or focus on determining the optimal level of pollution. In contrast, we specify a rich model

of firm incentives in a dynamic setting. Specifically, using the continuous time methods pioneered

by Sannikov (2008) we treat (multiple) firms as having limited liability and outside options. We

model a regulator who must design an incentive compatible contract to implement abatement and

show that the solution is a simple incentive mechanism. The regulator collects a constant tax and

links a firms’ promised payoff to the flow of pollution. A firm is paid a rebate once this promised

payoff exceeds their social product. We show that in this contract the regulator can balance its

expected budget and the firm receives its social product. We then contrast the contract to a tax

on the stock of pollution.

Introduction

Emissions from non point sources pollute air and waterways yet they largely remain unregulated.

Non point sources produce diffuse emissions, emissions that cannot be attributed to a source and
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result in random observed pollution levels. They arise in a range of sectors including transport,

agriculture, mining and forestry and have significant impacts on air and water quality.

The failure to regulate non point sources is due neither to a lack of policy nor academic focus

on the problem. The impact of non point source emissions is well recognized. Perhaps the most

important impact of diffuse emissions is poor water quality. Diffuse emissions caused by runoff

and/or leaching (Fisher-Vanden and Olmstead, 2013) are responsible for polluting waterways.

Runoff, for example, transports nutrients (such as phosphorus and nitrogen) and sediments to

receiving waterways. These deposits are the primary cause of waterway eutrophication resulting in

harmful algal blooms and hypoxia (oxygen depletion) which can destroy aquatic life and threatens

ecosystems. Globally, the World Resources Institute suggests that 762 coastal areas are known

to have been impacted by eutrophication and/or hypoxia (WRI, 2011). In the United States,

pollution resulting from diffuse emissions has been named the greatest threat to the health of

rivers and streams (EPA, 2009). Seasonal hypoxia has affected Puget Sound, the Gulf of Mexico

and Chesapeake Bay. Despite this, the relevant legislative tool in the United States, the Federal

Water Pollution Control Act (the Clean Water Act), does not provide for the regulation of diffuse

emissions or non point sources.

Alongside significant policy interest is an extensive academic literature devoted to studying

the regulation of non point sources (see Shortle and Horan (2002), Xepapadeas (2011) and Fisher-

Vanden and Olmstead (2013) for surveys). Unlike the bulk of this literature we adopt the frame-

work of a principal agent model to characterise the regulation of non point sources as a problem

of dynamic moral hazard. In this model the moral hazard problem arises because pollution is

uncertain and a polluter’s actions are unobservable. We model the accumulation of pollution as a

brownian motion whose drift is affected by the actions of polluting firms (the agents). The pol-

luters are risk neutral but suffer from limited liability. In our principal agent model the regulator

must design the optimal set of incentives to induce abatement and respect three constraints: the

participation constraint, the incentive compatibility constraint and the limited liability constraint.

The principal agent approach to studying environmental problems is not in itself new. Cham-

bers and Quiggin (1996) for example adopt a principal agent framework to study non point source

pollution and Laffont (1995) to study environmental risk. Neither considers the dynamics of the

principal agent relationship. Xepapadeas (1992) and Athanassoglou (2010), who following Segerson

(1988) study taxes on the observed stock of pollution (ambient taxes), both model diffuse emissions
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as a brownian motion in a dynamic environment. They do not however consider an environment

with a limited liability or an individual rationality constraint.

Despite the scale of the problem and the list of well studied instruments, regulation of non point

sources is sparse. Ambient taxes for example have been adopted only in a handful of instances.1

One potential explanation is that ambient taxes can result in large transfers to and from regulated

firms hence would expose firms to considerable risk if pollution is volatile (Karp, 2005). We

specify a model where the firm has limited liability and so volatility is costly. We also explicitly

account for a firm’s ability to exercise their outside option. Our model is thus appropriate for

studying regulation in environments where firms face credit constraints and have the option to

cease operations and move elsewhere to avoid regulation.

In Section 1 we outline our model of a regulator (the principal) who must design an incentive

scheme (a contract) to induce polluting firms to undertake abatement. As indicated, the regulator

cannot observe the firms’ abatement actions, they observe only the ambient stock of pollution

(or level of water quality) from which they suffer damage. We consider the case for which it is

optimal for the regulator to keep the stock of pollution constant. Importantly, the regulator and

the firms contract over an infinite horizon. This dynamic setting is an important feature of the

policy environment, mimicking the ongoing interactions between regulated firms and regulatory

agencies. The dynamic setting is also important to the structure of the optimal contract: it enables

the regulator to motivate the firm with both short and long run incentives.

The firms in our model can be thought of as mines, farms and forestry operations whose runoff

affects the water quality of a local river either by increasing nutrient or sediment loads. By its

nature this runoff is diffuse, entering the river at many unknown points, and neither the volume of

runoff nor its content can be measured at its source. Firms can undertake costly abatement actions,

for example reduce fertiliser, use less intensive machinery or construct riparian buffers. It is either

too costly to verify these actions (for example inspecting every riparian zone on a property), or

they are unverifiable (for example assessing the volume of fertiliser applied to a crop).

The volatility of pollution and hence observed water quality arises due to random weather

events. To provide some intuition for this volatility consider the following example: a farmer

always applies the same quantity of fertiliser to a crop. If there is no rain then the regulator

observes no change in water quality; however if it does rain then a change in water quality (for

1Karp (2005) outlines such a handful of examples where ambient-type schemes have been implemented.
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example an increase in nitrogen levels) is detected. In this example, the same action results in a

different measured level of ambient pollution depending on a random weather event. The regulator

is unable to distinguish whether the farmer used excessive fertiliser or whether rain affected the

rate at which the fertiliser was delivered to the stream. Similarly, the same excavation practices

might result in minimal sediment run off from a mine without rain, however strong rain causes

significant erosion and sedimentation of a near-by stream.

In Section 2 we derive the optimal regulatory contract in a setting in which firms have limited

liability. We show that this contract combines a constant tax with a dynamic rating of firm

performance and a rebate. The dynamic rating ties each firm’s payoff to the drift of pollution.

Increases in the ambient level of pollution cause the rating to fall. Once the rating exceeds their

performance threshold, the firm receives a rebate. Below this threshold a firm pays a constant tax.

We provide comparative statics for the regulator’s value and demonstrate conditions under which

it is optimal to hold the pollution stock constant. In Section 3 we show that when the regulator is

forced to balance its expected budget (i.e. be revenue neutral), each firm’s performance threshold

is equivalent to the social value of a its production (i.e. profits minus the cost of abatement).

Under this contract the total expected value of a firm is also equal to the social value of their

production. We then show how the tax rate varies with parameters of the model.

In Section 4 we compare the contract to a benchmark setting in which firms do not have

limited liability. In this benchmark setting a firm’s current (i.e. not their promised payoff) is tied

to the flow of pollution. We then contrast our two contracts with an ambient tax. Rather than

incentivising the firm through a tax on the stock of pollution as in an ambient tax, both contracts

tax the flow of pollution.

To date the application of dynamic contracting models has largely been in corporate finance

and has focussed on a single agent (see for example Clementi and Hopenhayn (2006), Albuquerque

and Hopenhayn (2004), Biais et al. (2010)). Our paper studies dynamic contracting in a novel

setting. To do so we draw on the approach outlined in DeMarzo and Sannikov (2006) and San-

nikov (2008) who demonstrate the tractability of models of dynamic moral hazard in continuous

time. Our setting differs in a few key respects to those studied in the dynamic moral hazard liter-

ature. Firstly, we focus on a setting with multiple agents who may enter and exit over an infinite

horizon. Secondly, in our model the limited liability constraint takes a different form. We allow

the instantaneous payoff of a firm to be negative but bounded from below. Finally we constrain
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the principal to ensure that they guarantee the firm their expected social product. Our model

also generates several new insights. Unlike existing models where the performance threshold must

be solved computationally, we find a closed form solution by imposing budget balance. We show

that doing so determines the endogenous tax rate of the firm. The paper is structured as follows.

Section 1 outlines the model. Section 2 derives the optimal contract. Section 3 explores the notion

of budget balance and computes the tax rate of the firm. Section 4 derives the optimal contract

without limited liability and finally Section 5 concludes.

1 The model

In this section we introduce a principal agent model of non point source regulation. The key

characteristics of the non point problem are the randomness of the level of pollution and the

hidden actions of polluters. Most environmental regulation occurs in a repeated setting and hence

it is appropriate to model the interaction between regulator and firms as a dynamic one. Dynamic

contracts can differ significantly to those in static settings, yet can be intractable. Continuous time

methods provide a convenient and tractable machinery (DeMarzo and Sannikov, 2006; Sannikov,

2008). We thus formulate our model as a dynamic continuous time agency problem.

Consider an environmental regulator (the principal) and a group of regulated firms (the agents).

All are risk neutral however firms have limited liability. The firms can be thought of as mines,

farms or forestry operations. The activities of firm i generate a profit flow πi and affect the water

quality of a local river either by increasing nutrient or sediment loads. Each firm can undertake a

costly abatement action, for example reduce fertiliser use, adopt less intensive tillage practices or

construct riparian buffers. In a deterministic world abatement could eliminate pollution. However

actual pollution is stochastic and hence firms do not have the ability to completely control it.

We assume that firms can either pollute or abate. If a firm abates they produce zero net

emissions. Hence we model firm i at time t as choosing an abatement action ait ∈ {0, 1}. The flow

cost of abatement (ait = 1) is given by ci. We assume that πi > ci so that it is still profitable for

the firm to produce whilst abating.

The drift of pollution is a function of each firm’s abatement choice. We allow firms to enter

and exit. Let Nt be the set of firms that have entered by time t, and Nt by the number of firms

that have entered by t. Define Mt ⊆ Nt as the set of firms not polluting at time t and let Mt

5



PRELIMINARY DRAFT: Please do not circulate or cite without the authors’ permission.

be the number of firms not polluting at t. Firms who have entered are those who are active and

those who have exited. Firms not polluting at time t are firms who have exited, and firms who

are abating. We specify the evolution of pollution as:

dYt = µt + σdZt (1)

where µt is the drift of pollution, dZt is a standard brownian motion (a shock common to all firms)

and σ is the volatility of pollution. The drift µt of pollution is given by:

µt = [p(Nt)− p(Mt)] (2)

where p(.) is a function such that p(0) = 0. Then if Nt firms are not polluting at time t, the drift

of pollution µt = 0. If only firm i pollutes then the drift of pollution µt = p(Nt)− p(N−i) where

Mt = N−i = Nt\i is the set of all firms except i. Define Ai = p(Nt) − p(N−i). Thus µt = Ai if

only firm i pollutes.

The regulator observes dYt, but the abatement choices of firms are hidden by the distortion

created by the brownian motion. The higher the level of volatility σ, the less information the

regulator can deduce from the observed flow dYt. The distortion represents random weather

events such as precipitation that affect the flow of pollution measured by the regulator. This flow

is independent of the stock of pollution Yt. We interpret the shock to pollution as arising from

random weather events which are independent of the stock of pollution.2

The regulator motivates each firm to abate by the transfer dIit . The transfer can either be from

the regulator to a firm (dIit > 0) or vice versa from the firm to the regulator (dIit < 0). The next

section focuses on determining the form of dIit . Given this transfer, the payoff to the firm from

their abatement choice ait evolves according to:

dΠi
t(a

i
t) = (πi − ciait)dt+ dIit (3)

If the firm chooses to abate then the flow of their payoff is (πi−ci)dt+dIit . In practice firms typically

2Xepapadeas (1992) and Athanassoglou (2010) also formulate non point source pollution as a brownian motion however
in their models the volatility of pollution is a function of the current stock.
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have limited liability; that is, their instantaneous payoff must satisfy the constraint dΠi
t ≥ −lidt

where lidt represents some exogenous credit limit of the firm. This places a constraint on the

transfer such that dIit ≥ −(li + (πi − ci))dt. We also assume that there is a policy constraint on

the regulator’s problem such that dIit ≥ −τ idt. This represents a constraint on the amount that a

regulator can take from a firm in any instant. Thus τ i can be interpreted as an exogenously given

maximum fine or license fee that the regulator can levy. We assume that −τ i ≥ −(li + (πi − ci))

so that the credit limit constraint is not binding. The firm’s total expected payoff at time t is

the discounted expected value of all future instantaneous payoffs dΠi
t. Let W

i
0 be the value of this

expected future payoff for firm i at time 0. Then

W i
0 = E0

[∫ T i

0
exp−γis dΠi

s + exp−γiT i
Ri

]
(4)

where the expectation is taken at t = 0 and firm i discounts at rate γi. The firm exits at

endogenously chosen time T i when they exercise their outside option Ri (for example transferring

business to another state).

At time t = 0, W i
0 is firm i’s continuation value, its value conditional upon the contract

continuing at time t = 0. Let W i
t be i’s continuation value, or total expected discounted payoff

from time t, conditional on not having exited (i.e. not exercised their outside option) prior to t,

then:

W i
t = Et

[
expγ

it

∫ T i

t
exp−γis dΠi

s(a
i
s) + exp−γi(T i−t)Ri

]
(5)

The firm’s continuation value depends on its abatement action ait.

We focus on the case where it is optimal to induce all (active) firms to abate at each point in

time i.e. ait = 1 for all i and t < T i. In turn, this keeps the stock of pollution constant at the initial

level Y0. In our simplified model, the regulator must design a contract to ensure that active firms

always abate.3 This contract maximises the regulator’s value which is the discounted expected

cost of transfers dIit . These transfers must in turn satisfy the policy constraint dIit ≥ −τ idt, which

is a legislated maximum fee the regulator can impose on firm i.

3Later we derive the conditions under which it is optimal to design the contract to always implement abatement.
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For now we take τ i as exogenous, we later go on to determine τ i by imposing a budget balance

condition on the regulator. This budget balance condition will stipulate that the total expected

payoff to the regulator (or the present value of the expected net transfers to the regulator from

the firm) must be zero. This is a convenient simplification of the true social planner’s problem.

The social planner would choose the path of abatement and a set of transfers that maximise social

welfare, in other words to balance the damage of pollution with the cost of implementing abatement

at any point. We simplify the problem in two ways: first, by focusing on the case where abatement

is always optimal. Second, by re-writing the objective function as a constrained cost minimisation

problem on the part of the regulator. Our simplified approach allows us to focus on the structure

of the dynamic incentives rather than on determining the optimal path of abatement.

The total expected value to the regulator at time t = 0 is given by:

b0 = E0

[∫ T i

0
· · ·

∫ TN

0
− exp−δs

N∑
i=1

dIsi

]
(6)

where the regulator discounts at rate δ < γi ∀ i. The regulator is thus more patient than the

most patient firm, reflecting the fact that the regulator cares more about future generations than

does any firm. The optimal contract maximises the regulator’s value b0 subject to the constraints

dIi ≥ −τ idt and b0 = 0.

2 The contract

The optimal contract specifies a dynamic transfer dIit and recommends the abatement action ait = 1

for all t and i. Given the repeated setting, the optimal contract could tie each firm’s payoff to the

entire history of pollution at time t. This makes the regulator’s problem very complex. However

Spear and Srivastava (1987) show in a single agent, discrete time setting that the regulator’s

problem can be reduced to a static variational problem with the continuation value of the firm

as a state variable. If the continuation value of a single firm summarises all relevant information

on the entire history of their actions, it must do so for each firm in a multi-agent setting. The

continuation values W i
t are therefore state variables of the regulator’s problem.

Here, following the approach of DeMarzo and Sannikov (2006) and Sannikov (2008), the state

variables W i
t reduce the problem to one of optimal stochastic control. In other words, W i

t sum-
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marises all relevant information on a firms’ actions up to time t and serve as a dynamic rating

of past performance. The continuation value W i
t is firm i’s expected future payoff, it can also be

interpreted as the future value that the firm is promised by the regulator. At time t the firm has

two types of payoffs: its instantaneous payoff dΠi
t and its promised payoff W i

t . The regulator can

use these payoffs as imperfect substitutes to provide each firm with incentives to abate.

The regulator’s value function is the solution to the Hamilton-Jacobi-Bellman (HJB) equation

of the stochastic control problem. In this problem the HJB has state variables W i
t . To solve the

HJB equation we first need to specify the evolution of W i
t .

2.1 The evolution of the firm’s value

To guarantee that the firm abates, the regulator must ensure that the total benefit that the firm

receives from abating is greater than the total benefit they receive from polluting. But the regulator

cannot observe a firm’s chosen action, it observes only the noisy signal dYt. The firm’s total benefit

includes its current payoff and its future payoff. For incentive compatibility, one or both of these

payoffs must be linked to the realisation of pollution. The firm’s current payoff is constrained by

limited liability, but shocks to pollution arise from a brownian motion with unbounded variability.

In the optimal contract therefore, the regulator provides incentives to firm i by tying the evolution

of its promised value (i.e. dW i
t ) to the flow of pollution. Lemma 1 formalises this notion.

Lemma 1. At time t < T i there is a sensitivity βi
t of firm i’s continuation value toward their

action via the flow of pollution such that:

dW i
t = γiW i

t dt− (πi − λiAi)dt− dIit + βi
tdYt (7)

where

βi
t ≤ −λi (8)

W i
t follows this process as long as t < T i where T i is the first time at which W i

t < Ri.

The derivation of (7) uses the martingale methods introduced in the principal agent literature

by Sannikov (2008) and DeMarzo and Sannikov (2006) and is provided in the appendix. The

process dW i
t can be interpreted as the regulator’s ‘promise keeping constraint’. Recall that at

time t = 0 the value W i
0 equals the total expected value to firm i. This is the total value that
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the regulator promises to firm i via the terms of the contract; it must satisfy the firm’s individual

rationality constraint. That is, W i
0 ≥ Ri. In expectation if the firm accepts the contract and

abates then the regulator must deliver this value to the firm. To keep the firm indifferent between

payments now and in the future, the firm’s promised value grows over time at their discount rate

γi. Value received by a firm at time t (i.e. (πi − ci)dt+ dIt) constitutes part of its promised value

and reduces the remaining amount that the regulator must guarantee to the firm. The firm exits

at T i, the first time at which W i
T < Ri. That is, the firm exits at time T i when their promised

future value is less than their outside option Ri.

To ensure the firm abates, the promised value is also linked to the flow of pollution dYt.

The parameter βi
t governs how sensitive firm i’s promised value is to the signal dYt. In other

words, it governs how firm i’s future benefits change with the observed flow of pollution. The

parameter λi = ci

Ai is the unit cost of abatement, the total cost divided by the level of abatement.

To demonstrate that βi
t ≤ −λi we focus on the firm’s incentives to abate. We look for a Nash

equilibrium amongst the firms, that is, we consider the firm’s incentives to abate conditional on all

other active firms choosing to abate. For incentive compatibility it is sufficient to derive conditions

under which firm i chooses ait = 1 at any arbitrary moment in time.

At time t the firm must balance its payoff from deviating today with the reduction in its

payoff tomorrow. The firm wishes to maximise the expected change in W i
t plus their current

payoff (Sannikov, 2008). Under the terms of the contract if the firm chooses abatement their

continuation value will evolve according to dW i
t = γiW i

t dt − (πi − ci)dt − dIit + βi
tσdZt. If they

instead choose not to abate they gain the avoided cost of abatement ci but their continuation value

will evolve differently. The firm’s failure to abate affects the drift of pollution but not the volatility.

Hence their promised value will evolve as dW i
t = γiW i

t dt − (πi − ci)dt − dIit + βi
t(A

idt + σdZt).
4

The regulator must ensure that the change to the firm’s payoff from deviating (not abating at time

t) is negative, that is:

βi
tA

idt+ cidt ≤ 0

The first term (βi
tA

idt) is the present value change in firm i’s promised value from not abating.

The second term is the immediate gain to the firm from not abating: the total cost of abatement

4Note that the regulator cannot observe the deviation and hence adjusts the promised value for the cost of abatement
even if the firm shirks.
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cidt. Re-arranging:

βi
t ≤ −λi

where λi = ci

Ai , the unit cost of abatement. Hence for a positive pollution flow dYt the firm’s

promised value must fall by at least λdYt.

2.2 The incentive payments

Now that we know the form of dW i
t we can proceed to characterise the HJB equation of the

regulator’s problem (the regulator’s value function) and find the optimal contract. Define Wt as

the set of continuation payoffs for all Nt firms at time t. We wish to characterise the function

b(Wt) which is the highest expected payoff to the regulator from the promised payoffs Wt and the

stock of pollution Yt. This will allow us to specify the optimal contract and incentive payments.

Proposition 1 outlines their form.

Proposition 1. If the regulator always implements the abatement action then the Hamilton-Jacobi-

Bellman equation b(W) is separable in W 1, W 2 ... WN and is given by:

b(W) =
∑
i

f i(W i) (9)

where

δf i(W i) =



τ i + f i
W i(W

i)
(
γiW i − (πi − λiAi) + τ i

)
+ 1

2

(
σλi

)2
f i
W iW i(W

i)

for Ri ≤ W i ≤ Ŵ i

f i(Ŵ i)− (W i − Ŵ i)

for W i > Ŵ i

(10)

and the incentive payment to the firm takes the form:

dIit =


−τ idt W i

t < Ŵ i

(W i
t − Ŵ i)dt W i

t ≥ Ŵ i

(11)
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where the threshold Ŵ i is the lowest value of W i at which f i′(W i) = −1.

Proof. For the purposes of the proof we assert concavity of the function f(.).5 We first argue that

the HJB is separable in W i and W j . Note that under the optimal action the evolution of the

continuation value dW i
t is correlated with dW j

t through the pollution shock σdZt but W i
t does

not depend directly on W j
t . The continuation values would be linked for example if the incentives

or recommended action for firm i depended on the actions of firm j. However the recommended

action for firm i is independent of the actions of firm j and independent of whether or not firm j

is active.6 The regulator therefore cannot gain by linking the payoffs of the firms and will choose

to adjust dIi and dW i independently of dIj and dW j . But then the regulator’s value function is

separable in W i
t and W j

t , and we can write:

b(Wt) = −eδt
∑
i

∫ T i

t
e−δsdIis

=
∑
i

f i(W i)

With separability we can focus on δf i(W i) Using Ito’s Lemma (see the appendix for details)

we can write:

δf i(W i
t )dt = −dIit + f i

W i(W
i)(γiW i

t dt− (πi − λiAi)dt− dIit) +
1

2
(σβi)2f i

W iW i(W
i
t )dt (12)

Now note that the regulator can always choose to increase the firm’s payoff by amount dIit today

and reduce the firm’s continuation value by an amount that keeps the firm exactly indifferent

(DeMarzo and Sannikov, 2006). Hence for the function f i to be part of the value function it must

be that f i(W i
t −dIit)dt−dIit ≤ f i(W i

t )dt. That is, the actual value to the regulator must be greater

than the value of shifting payments from now to the future. This implies that:

f i
W i(W

i
t ) ≥ −1 (13)

5We prove concavity in appendix C
6In the definition of b this means that the expected stopping time E(T j) and the incentives dIjt has no impact on the

recommended action or incentive compatibility constraint of firm i for any t.
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The regulator can also substitute an amount dIit < 0 for an amount dW i
t > 0. If the regulator

was always able to make this substitution then f i(W i
t +dIit)dt+dIit ≥ f i(W i

t )dt and f i′(W i) = −1

everywhere. If f i
W i(W

i
t ) > −1 anywhere then the regulator is better off increasing W i and taking

an amount dIi now. But the regulator must set dIi ≥ −τ i. Then if dIi > −τ i it must be that

f i
W i(W

i) = −1. Conversely, if dIi = −τ i then f i
W i(W

i
t ) > −1.

Let Ŵ i be the lowest value of W i such that f i
W i(Ŵ i) = −1. Then, with f i concave, this

value defines a threshold in W i. For W i
t < Ŵ i, f i

W i(W
i
t )dt > −1 and dIi = −τ i. Above Ŵ i

the regulator is better off rewarding the firm with a direct payment. Then it is optimal for the

regulator to choose dynamic incentives for the firm dIi such that:

dIit =


−τ idt W i

t < Ŵ i

(W i
t − Ŵ i)dt W i

t ≥ Ŵ i

Finally it remains to show that βi = −λi. With f i strictly concave in W i, f i
W iW i(W

i) < 0

and the regulator will seek to minimise the magnitude of βi subject to the incentive compatibility

constraint βi
t ≤ −λi. Hence βi = −λi and (12) becomes

δf i(W i) = τ i + f i
W i(W

i)(γiW i − (πi − ci) + τ i) +
1

2
(λiσ)2f i

W iW i(W
i) (14)

Separability of the HJB W relies on the assumption that the recommended actions of active

firms are independent of the total number of active or exited firms. Without this assumption, the

termination time T i may affect firm i′’s recommended action and separability may fail. The proof

also relies on an assumption of concavity which we prove in appendix C.

The HJB is thus a second order ordinary differential equation. To pin down the solution to

f i(W i) and the boundary Ŵ i we require the following three conditions: f i(Ri) = 0 (initial value

condition), f i
W i(Ŵ ) = −1(the smooth pasting condition) and f i

W iW i(Ŵ ) = 0 (the supercontact

condition). The initial value condition says that at the outside option of firm i, the regulator’s

value f i(.) is zero. The smooth pasting and supercontact conditions impose continuity at the

threshold value Ŵ i.

Lemma 1 and Proposition 1 outline the structure of the optimal regulatory contract and the

13
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dynamic incentives that induce each firm to abate. The regulator observes W and Y , and imple-

ments transfers according to the Nt contracts. These contracts charge firm i a constant amount

τ i and provide a performance payment dIi > 0 once i’s promised value exceeds a threshold Ŵ i.

We can thus interpret τ i as a heterogeneous lump sum tax or a license fee. Once the continuation

value of the firm exceeds Ŵ i then the regulator pays them an amount dIi to exactly bring them

back to the threshold value (i.e. W i − Ŵ i). That is, the size of the direct payment brings firm i

back to the point where the regulator is once again indifferent between providing short and long

run incentives. Hence the slope of the HJB in the region W i > Ŵ i is exactly −1. For W i < Ŵ i

the regulator motivates the firm by allowing W i
t to increase. At the threshold Ŵ i this changes,

the regulator is exactly indifferent between providing incentives via a direct payment, or via an

increase in the firm’s promised value. Below the threshold if firm i abates, their promised value

has drift (γiW i
t − (πi − ci) + τ i)dt and volatility −λiσdZt.

The regulator’s value from the contract f i(W i) is concave in the continuation value of the firm.

As W i approaches Ri the risk of the firm exiting is higher and this reduces the regulator’s expected

value. Once the firm exits, the regulator no longer collects τ i. As W i approaches Ŵ i the likelihood

that the firm will receive an incentive payment increases, this also reduces the regulator’s expected

future tax receipts. To minimise the probability of exit, the regulator ‘back loads’ the firm’s

performance payments. Below the threshold Ŵ i the optimal contract allows firm i’s promised

value W i
t to grow as a reward for abatement. As W i

t grows the probability that i exits decreases.

This is valuable to the regulator as it only collects net transfers when the firm operates. We now

go on to explore how this stock, or the regulator’s value, varies with the parameters of the model.

2.3 Comparative statics

We wish to understand how the regulator’s value f i(W i) changes with the parameters of the model.

Unlike h(Y ) we have no closed form solution for f i(W i). The value f i(W i) represents the expected

future accumulation of tax receipts from the firm. Following DeMarzo and Sannikov (2006) (see

their Lemmas 4 and 6), using the envelope theorem it is simple to derive an expression for the

change in the regulator’s value as a result of a change in one of the parameters. This allows us to

derive Lemma 2.

Lemma 2. The regulator’s value is weakly increasing in the maximum transfer τ i, is decreasing

in the volatility of pollution σ. It is also decreasing in the outside option of the firm and weakly

14
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decreasing in the discount rate of the firm.

Lemma 2 is proven in appendix D. The regulator’s value f i(W i) is thus increasing in the

payments τ i and decreasing in the volatility of pollution (consistent with the concavity of the

regulator’s value), the firm’s outside option, and in the discount rate of the firm. The intuition for

these results is fairly clear. Holding all else constant, an increase in the parameter τ i implies greater

transfers to the regulator. The volatility of pollution makes the moral hazard problem harder to

overcome. A higher outside option implies that the firm is more likely to exit inefficiently. Finally,

the more impatient the firm the less ability the regulator has to defer payments. This means that

incentives must be brought forward into the present which is costly to the regulator. We are not

able to sign the comparative statics with respect to the firm’s profits, the unit cost of abatement

λi or the abatement level Ai.

2.4 Optimality of abatement

Thus far we have characterised the contract under the assumption that all active firms abate.

When a firm does not abate (ai = 0) the stock of pollution evolves according to dY = Ai + σdZ

where Ai is the expected emission level of firm i given no other firm pollutes. If the regulator

allowed the firm to cease abatement for a period then in that period it no longer needs to provide

the firm with incentives or a subsidy to cover the cost of abatement. Hence if the regulator allowed

the firm to emit then the evolution of the firm’s continuation value could be independent of the

stock of pollution (i.e. instead of providing incentives to the firm by setting βi = λi the regulator

sets βi = 0). This would also reduce the volatility of the regulator’s payoff, which is valuable to

them (their payoff function is concave in W i as shown in appendix C). Hence two processes for

the firm’s continuation value are possible, depending on whether the the firm is allowed to cease

abatement. These are:

dW i = γiW i − (πi − λiAi)− dIi + λiσdZ, βi = λi (15)

dW i = γiW i − (πi − λiAi)− dIi, βi = 0 (16)

Note that W i follows (16) only when the regulator allows the firm to cease abatement. If the

regulator expects the firm to abate but they fail to do so then the firm’s continuation value will

15



PRELIMINARY DRAFT: Please do not circulate or cite without the authors’ permission.

move in line with the stock of pollution. The following proposition summarises the conditions for

optimality of abatement when the (flow) damage from pollution at time t is equal to Yt, the stock

of pollution at time t:

Lemma 3. If:

p(Nt)

δ
≥ −

∑
i

bW i(W)λiAi − 1

2
(σλi)2bW iW i(W) (17)

then abatement by firm i is optimal.

Proof is in the appendix. To see the intuition behind this constraint first note that the left-hand

side of 17 represents the social cost of pollution, the right hand side is the cost of abatement and

the cost of providing incentives such that firms abate. Lemma 3 thus suggests that abatement is

optimal ∀(W, Y ) if the costs of pollution are greater than the costs of abatement plus the costs of

providing the firm with incentives. Second, note that bW i(W) ≥ −1 hence

−
∑
i

bW i(W)λiAi − 1

2
(σλi)2bW iW i(W) ≤ λiAi − 1

2
(σλi)2bW iW i(W)

The term 1
2(λ

iσ)2bW iW i(W) thus represents the costs to the regulator of providing both in-

centives and insurance to the firms; it is increasing in the cost of abatement and the volatility of

pollution.

In a first best world pollution is optimal if p(N)
δ ≥ λiAi. As δ < 1 abatement may be optimal

even if Ai < λiAi. This is because the regulator suffers damage from the stock of pollution not the

flow. As bWW (W) < 0 abatement is optimal less often in the presence of moral hazard. Moreover,

this constraint may bind as the volatility of pollution (σ) increases or as the required incentives

(λi, which is also the unit cost of abatement) increase.

3 Budget balance and the tax rate τ

3.1 The performance threshold

The performance threshold represents the point at which the regulator switches between providing

the firm with short run and long run incentives. In other words, in the region below Ŵ i the
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regulator motivates the firm by making promises about future payoffs; the firm continues to pay

tax τ i which is collected by the regulator. Once the firm’s value exceeds Ŵ i the regulator returns

a portion of these tax receipts as an incentive payment. The threshold Ŵ i represents the point at

which the regulator is indifferent between providing short run and long run incentives. In essence,

for W i ≤ Ŵ i it is cheaper to reward firm i via the promise of future payments than to give a one

off tax cut or subsidy in the present. Above Ŵ i it is cheaper to reward the firm via a payment.

We now proceed to derive the value of Ŵ i. We assume that the regulator must on average

balance their budget. Define expected budget balance as
∑

i f
i(W i

0) = 0 where W i
0 is the initial

value of firm i. If this value is below the firm’s reservation value then the firm immediately

quits. With an initial value above the firm’s reservation level the firm accepts the contract and

produces. We assume a firm’s starting value is equal to their average expected profits minus

the cost of abatement, which we refer to as the social value of the firm’s production. That is,

γiW i
0 = πi − λiAi. This allows us to specify the threshold Ŵ i which we do in the following

proposition:

Proposition 2. If the regulator balances its budget and the firms have initial value W0 equal

to their average social value of their production, then each firm’s reflecting boundary Ŵ i is also

defined by the social value of the firm’s production i.e. W i
0 = Ŵ i = πi−λiAi

γi . Moreover budget

balance determines the transfer τ i.

Proof. It can be shown that

∑
i

δf i(W i) + γiW i − (πi − λiAi) ≤ 0 (18)

with equality at the threshold value Ŵ i. Substituting the budget balance condition (
∑

i f
i(W i

0) =

0) and the firm’s starting values (γiW i
0 = πi − λiAi) into the left hand side of (18):

δ
∑
i

f i(W i
0) + γiW i

0 − (πi − λiAi) = 0

Hence it must be that Ŵ i = W i
0. To see this note that the left hand side of (18) is increasing in

W i because f i′ ≥ −1 and γi > δi. Hence Ŵ i = W i
0 is only value of W i that satisfies (18) with

equality.
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If the regulator does not budget balance its budget there are unknowns (f i
W i(.), f

i
W iW i(.) and

Ŵ i) which are solved from the conditions f i(R) = L, f i
W i(Ŵ i) = −1 and f i

W iW i(Ŵ i) = 0. With

budget balance if τ i is given, then we have an over-identified system. With budget balance we

have the three unknowns: f i
W i(.), f

i
W iW i(.) and τ i for which we have three conditions: f i(R) = L,

f i
W i(Ŵ i) = −1 and f i

W iW i(Ŵ i) = 0 where Ŵ i for i = 1..N are known.

The threshold represents the point at which the regulator decides to motivate firms with a

short run payment. Below this threshold the firms pay a tax, above the threshold they receive

a tax rebate. Firms’ actions, along with the volatility of pollution, affect their rating W i and

hence their promised value. When a firm’s rating exceeds its social value the firm is paid out.

Under the abatement action, a firm’s promised value will move randomly around its social value

and the regulator, in expectation, does not collect any net tax. A firm enters with promised value

equal to their social value and in expectation each entering firm will receive the social value of their

production. If a firm does not abate, in expectation their promised value will fall below their social

value, they will pay higher net taxes and the regulator’s value will have positive expectation.7

As we have an analytical solution for each boundary Ŵ i we are able to explicitly study com-

parative statics with respect to a firm’s threshold. Higher profits will increase the boundary value

by a factor of 1
γi whilst increases in either the cost of abatement λi or the level of abatement (Ai)

reduces firm i’s threshold by the same magnitude. The volatility of pollution and the discount

rate of the regulator have no effect on the threshold. The volatility of pollution affects the firm’s

payoffs via the process dW i, the threshold determines the optimal mix of short run versus long

run incentives. The threshold decreases with a more impatient firm because it is more costly to

postpone payment to an impatient firm. The optimal balance of long run and short run incentives

must therefore change.

3.2 The firms’ outside option

In the optimal contract the dynamics of the incentives are important. The regulator uses future

promises to the firms to reward abatement and punish pollution. This means that the firms’

continuation values evolve with shocks to pollution, and introduces the risk that a firm exits if,

7In the model without limited liability budget balance is similarly achieved if W i
0 = πi−λiAi

γi .
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after a series of positive shocks to pollution, their future promised value does not exceed their

outside option. The contract is designed to minimise this possibility. The firm’s exit is inefficient

as the firm’s profit net of the cost of abatement is positive. But the threat of exit is important

to a firm’s incentives to abate in the vicinity of the outside option. If the firms shirk the lowest

instantaneous payoff that they can receive is πi − τ i. If they receive this payoff forever then their

continuation value W i = πi−τ i

γi . To ensure that the pollution stock remains constant, the regulator

must be able to force a firm to exit or abate. That is, every firm must always prefer to exit

or abate. But the regulator cannot push the promised payoff W i below πi−τ i

γi . To preserve the

firms incentives this means that Ri ≥ πi−τ i

γi . This in turn implies lower bounds on τ , which are

summarised in the following lemma.

Lemma 4. The tax rate τ i must satisfy two constraints: τ i > πi − γiRi and τ i > λiAi.

Proof. We first show that if Ri ≤ πi−τ i

γi then the firm will not exit. This occurs if W i
t ≥ Ri. Hence

if the firm does not exit but abates then:

Et

[
expγ

it

∫ T i

t
exp−γis dΠi

s + exp−γi(T i−t)Ri

]
≥ Ri

Et

[
expγ

it

∫ T i

t
exp−γis πids− dIs + exp−γi(T i−t)Ri

]
≥ Ri

Et

[
(1− exp−γi(T i−t))

πi

γi
+ expγ

it

∫ T i

t
exp−γis dIis

]
≥ Et

[
(1− exp−γi(T i−t))

]
Ri

πi

γi
+ Et

[
expγ

it

(1− exp−γ(T i−t))

∫ T i

t
exp−γis dIis

]
≥ Ri

Now if: Ri >
πi − τ i

γi

then: Ri >
πi

γi
+ Et

[
expγ

it

(1− exp−γi(T i−t))

∫ T i

t
exp−γis dIis

]

for some realised paths of dIis.

Now Ri > πi−τ i

γi implies that τ i > πi − γiRi. For the remainder of the lemma, note that to satisfy

the firm’s IR constraint, it must be that W i
0 ≥ Ri, under budget balance W i

0 = πi−λiAi

γi , which

gives the result that τ i > λiAi.

Lemma 4 places constraints on the value of the parameter τ i. Specifically, it must be greater

than the total cost of firm i’s abatement, and it must be greater than the difference between the
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firm’s profit flow πi and the average value of the outside option γiRi. We interpret πi−γiRi as the

marginal (private) benefit of operating. Absent the costs of abatement, it is the additional benefit

flow that firm i receives from producing versus taking its outside option. To ensure that the firm

will exit after some histories, and preserve its incentives around the outside option, the regulator

must ensure that the flow from polluting forever is lower than the average value of the outside

option. Without bearing the costs of abatement it must be the case that πi > γiRi otherwise the

firm would not be in business. The tax levied by the regulator must ensure that sometimes the

firm prefers to exit over shirking, so the amount that the regulator takes away must be greater

than marginal benefit the firm receives from producing.

3.3 Numerical comparative statics for τ

As with the HJB, the tax rate has no closed-form solution. Our HJB now becomes a boundary

value problem with unknown parameters τ i. To explore how the tax rate varies with parameters

of the model we numerically solve the regulator’s HJB equation and the unknown parameters τ i.

Figures 1 and 2 show computed tax rates for specified parameter values. Each panel displays how

the tax parameter τ i as we vary a single parameter of the model and hold all other parameters

constant. Panels (a) and (b) show how the tax rate varies with the firm’s discount rate γ and the

firm’s profits π. Panels (c) and (d) show how the tax rate varies with the firm’s outside option

and the cost of abatement (R and λ respectively).

Panel (a) of 1 shows that the tax rate increases as the firm becomes more impatient (i.e. γ → 1)

and decreases as the firm earns greater profit. Note that γi changes the drift of W i as well as the

threshold Ŵ i. A more impatient firm has a lower threshold Ŵ i and its promised value W i grows

at a faster rate. All other things equal, the regulator must collect greater revenue from the firm in

order to be able to compensate an impatient firm more often and still maintain budget balance.

Panel (b) shows that the tax rate decreases with the firm’s profits. The firm’s profits slow the

growth of W i and increase the threshold Ŵ i, hence they have the opposite effect to increases in

impatience.

Figure 1 also demonstrates that the tax rate is an increasing function of the firm’s outside

option (Panel (c)) and the unit cost of abatement (Panel (d)). Increases in the firm’s outside

option make exiting more attractive to the firm. By taxing the firm more in the present, and

increasing what is owed to the firm in the future, the regulator can reduce the probability that the
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Figure 1: Computed tax rates: firm characteristics
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(d) Unit cost of abatement

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

1

2

3

4

5

6

7

8

9

10

Unit cost of abatement

T
ax

 

 
Tax rate
Abatement cost
Net benefit of operation

Notes: Figures show computed tax rates for a range of parameter values. Baseline
values for all calculations are γ = 0.07, π = 10, λ = 1, A = 1, σ2 = 4, δ = 0.04, R =
125.5714.

firm exits. Thus the regulator chooses to increase future promises i.e. increase W i away from Ri

by taking more away from the firm today.

Like γ and π the unit cost of abatement affects the threshold as well as the drift. Intuitively,

increases in the cost of abatement lower the performance threshold. As the unit cost of abatement

increases, the incentive of the firm to shirk is also greater. The regulator must provide a stronger

incentive to abate, which is represented by a greater volatility of the firm’s promised value. Greater

volatility also means a higher change of larger payouts as the firm’s promised value is more likely

to exceed the performance threshold by a greater amount.

Figure 2 shows how the tax rate varies with the level of abatement A (panel (a)), the volatility

of pollution σ (panel (b)) and the regulator’s discount rate δ (panel (c)). The tax rate is increasing

in the volatility of pollution and the level of abatement. The volatility of pollution affects the drift

of the firm’s promised value and not the performance threshold. An increase in volatility increases
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Figure 2: Computed tax rates: pollution and regulator characteristics
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(b) Volatility of pollution
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(c) Regulator’s discount rate

0.04 0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 0.05
0

1

2

3

4

5

6

7

8

9

10

Discount rate of the regulator

T
ax

 

 
Tax rate
Abatement cost
Net benefit of operation

Notes: Figures show computed tax rates for a range of parameter values. Baseline
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the probability of large payouts from a positive shock to pollution. Thus all else equal the regulator

most collect a greater tax to ensure it meets budget balance. The tax rate also increases with the

impatience of the regulator. The patience of the regulator does not affect the promised value of

the firm or its performance threshold. A more impatient regulator has higher costs of providing

rewards in the present. All else equal, a more impatient regulator would prefer to delay paying

the firm. However it cannot as the evolution of W and the threshold value are fixed with respect

to δ. Hence the tax rate τ must increase to compensate the more impatient regulator.
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4 Comparing the contract

In this section we consider the design of the contract when the firm does not have limited liability

and the regulator faces no constraints on what it can take from the firm in any instant.8 This

provides a benchmark to which we can compare the features of our contract.

Proposition 3. If there are no constraints on the instantaneous transfer between the regulator

and a firm, the regulator’s value function δb(W) = 0. A firm’s promised value is constant. The

regulator can ensure a firm abates by implementing dynamic transfers dIi = −λiAi − λiσdZt. The

instantaneous payoff of the firm is dΠi = πi − λiAi − λiσdZt

Proof. We begin by specifying the form of dW i and the incentives dIi. In this model, Lemma 1

still holds:

dW i
t = (γiW i

t − (πi − λiAi)dt− dIit + βi
tdYt (19)

βi
t ≤ −λi (20)

Following the logic of the proof for Proposition 1 the principal’s value function f i(.) must have

slope = −1 for all W i. If f i
W i(.) > −1 then the regulator is better off allowing W i to grow by

taking away an amount dIi from the firm. Without a limited liability constraint the regulator is

always able to implement this transfer. At the solution then the regulator must always be exactly

indifferent between providing the firm with current or future payoffs. Hence f i
W i(.) = −1 and that

f i
W iW i(.) = 0. Imposing this in (12):

δf i(W i
t )dt = (πi − λiAi)dt− γiW i

t dt (21)

But then f i
W i(W ) = −γi

δ < −1 and the regulator is better off providing an immediate transfer.

To ensure that f i
W i(.) = −1 it must be that dW i = 0. That is, the firm’s continuation value is

8If we remove the policy constraint on the regulator and maintain limited liability of the firm it can be shown that

the regulator sets dIt = −(li + (πi − ci))dt for W i
t < Ŵ i where lidt represents the firm’s exogenously given credit limit.
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constant. Imposing this in (19) and assuming that the starting value W i
0 = πi−λiAi

γi :

dIit = βi
tdYt (22)

Then the regulator is indifferent to βi subject to the incentive compatibility condition βi ≤ −λi.

We have shown that in an environment without limited liability, the optimal contract is a

tax on the flow of pollution. Without limited liability, the firm can costlessly absorb unbounded

variation in its instantaneous payoff. Hence there is no need in this environment to utilise future

promises to reward the firm. Incentives are provided purely via instantaneous taxes and subsidies

of amount βidYt ≤ −λidYt. As long as the regulator offers the firm W i
0 > Ri the firm accepts the

contract. The incentives for the firm to abate are purely provided in the short run. As dW i = 0

the firm’s continuation value remains at W i
t = W i

0 for all t. Without limited liability the future

expected payoff does not change and hence the firm does not exit. Thus with no cost to volatility,

the dynamics of the contractual relationship are not as important as in the limited liability case.

Both the limited liability and the benchmark model tie the firm’s payoff to the pollution shock

σdZt. Tying the firm’s payoff to pollution is necessary to provide the firm with incentives to abate.

However doing so introduces volatility into the payoff of the firm. In the benchmark model this

volatility is costless. In the limited liability model that is not the case. The contract with limited

liability ties the firm’s continuation value to the flow of pollution. This means that the firm is

less exposed to the volatility of pollution in the present. The shock to pollution is absorbed into

the firm’s promised value; it only affects the firm’s instantaneous payoff around the performance

threshold and around the outside option. The contract that is constrained to satisfy limited liability

motivates the firm with long run incentives, however to do so it must introduce the possibility that

the firm will exit. There is no such risk in the benchmark no limited liability model.

The benchmark contract is similar to an ambient tax however with an important difference.

In the standard ambient tax model the tax paid by a firm is a function of the current stock and

not the shock to pollution as in our benchmark contract. In the benchmark model studied here

the individual rationality constraint must be satisfied. However as long as W i
0 > Ri there is no

risk of the firm’s exit because the firm’s future payoff is fixed at W i
0 > Ri. Neither Xepapadeas

(1992) nor Athanassoglou (2010), who consider ambient taxes in a dynamic setting, consider the
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possibility that the firm has an outside option and hence do not allow for the the possibility of

firm exit. However in these models, following a large shock that drags the stock of pollution away

from the target level, firms may expect to continue to pay large amounts for some time even whilst

they abate. With a large-enough outside option a firm may thus be better off exiting following a

large shock. Tying the firm’s payoff to the pollution shock and not the current stock of pollution

avoids this issue. Hence neither our benchmark nor the limited liability setting result in a contract

that takes the form of an ambient tax.

5 Conclusion

Non point source pollution is difficult to model and to regulate, yet it causes significant environ-

mental damage. This type of pollution is characterised by hidden actions and random observed

levels of pollution. Proposed solutions to the regulatory problem include input taxes and taxes

on the stock of pollution. Neither have been widely implemented in practice. In contrast to the

literature, we specify a rich model of firm incentives in a dynamic setting. We solve for the optimal

contract with a regulator and multiple firms who suffer from limited liability and who each have

outside options. The flow of pollution follows a brownian motion whose drift is affected by the

actions of all firms. We find the contract for the case in which it is optimal for the regulator to

keep pollution stock constant, and where the regulator must achieve expected budget balance. In

this contract, each firm is initially promised the expected social value of their production. The

regulator motivates the firm to abate by tying the firm’s promised value to the realisation of pollu-

tion. Increases in the pollution stock cause the promised value to fall, whilst decreases in the stock

cause the promised value to rise. If the firm abates, their promised value grows over time at their

discount rate. Whilst the firm’s promised value is below their social value they pay a constant tax.

Once their promised value exceeds their social value, they are rewarded with a bonus payment.

On average, if the firm abates, the regulator will achieve budget balance. We explore how the

constant tax varies with the parameters of the model, and demonstrate how the contract differs

when we relax the limited liability constraint.
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A Lemma 1: evolution of the firm’s value

Proof. Define firm i’s promised value W i
t (a) as the total expected payoff the firm receives from

choosing abatement from time t after some history of reports and technology choice (ais, 0 ≤ s ≤ t),

given that all other firms follow the recommended action from time t.

W i
t (a) = Et

 T i∫
t

exp−γi(s−t) dΠi
s(a) + exp−γi(T i−t)Ri


Consider the case where for 0 ≤ s ≤ t the firm follows the recommended action and abates

(i.e. ais = 1∀0 ≤ s ≤ t). It is sufficient to show that the proposition (i.e. (7)) holds for this case

(DeMarzo and Sannikov, 2006). Define

V i
t (a) =

 t∫
0

exp−γis dΠi
s(a) + exp−γitWt(a)


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where V i
t is the total past and future expected payoff to the firm from action choice ais = 1 ∀ s.

Then V i
t = Et[V

i
t+s]; the total past and future expected payoff from choosing the abatement action,

where the expectation is taken over information available at time t, is constant over time. In other

words V i
t is a martingale. By the martingale representation theorem there is a process βi

t such that

dV i
t = exp−γit βi

t(a)dYt. Differentiating V i
t with respect to t, and using the martingale property:

dV i
t = exp−γit dΠi

t(a)− γi exp−γitW i
t (a)dt+ exp−γit dW i

t (a)

exp−γit βi
t(a)dYt = exp−γit dΠi

t(a)− γi exp−γitW i
t (a)dt+ exp−γit dW i

t (a)

dWt(a)
i = γiW i

t (a)dt− dΠi
t(a) + βi

t(a)dYt

Now substituting for dYt from (1) and dΠi
t from (3):

dW i
t (a) = γiW i

t (a)dt− (πi − ci)dt− dIit + βi
tσdZt (23)

B Using Ito’s Lemma to derive f i(W i)

Following DeMarzo and Sannikov (2006) define:

Gt ≡
∫ t

0
exp−δs(−

∑
i

dIis) + exp−δt b(Wt) (24)

where Gt is the total payoff to the regulator up to time t and from t. Differentiating Gt with

respect to time and applying Ito’s Lemma:

eδtdGt = −
∑
i

dIt − λAdt− δb(Wt)dt+

∑
i

biW (Wt)dW
i
t +

1

2

∑
i

(σβi)2bW iW i(Wt)dt+
∑
i̸=j

bW iW j (Wt)dW
idW j

The martingale approach then proceeds by recognising that under the optimal policy Gt is

a martingale and hence dGt has expectation zero. Substituting for (7) and assuming that the

regulator implements abatement we can take expectations and solve for δb(Wt)dt:
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Gt is a martingale hence

δb(Wt)dt = −
∑
i

dIit +
∑
i

biW (Wt)dW
i
t+

1

2

∑
i

(σβi)2bW iW i(Wt)dt+
∑
i ̸=j

bW iW j (Wt)dW
idW j

Imposing separability i.e. bW iW j = 0 and evaluating each f under the optimal action, gives us

the following:

δf i(W i
t )dt = −dIit + f i

W i(W
i
t )(γ

iW i
t dt− (πi − ci)dt− dIit) +

1

2
(σβi)2f i

W iW i(W
i
t ) (25)

C Concavity of the function f i(W i)

Proposition 4. The function f i is strictly concave for W i < Ŵ i

Proof. We first show that

δf i(W i) + γiW i < πi − ci (26)

holds. Condition (26) states that the average expected profits of the firm and the payoff to the

regulator cannot exceed the social value of the firm’s production. To verify this intuitive condition

we use the fact that f i′(W i) > −1,W i < Ŵ i and that for W i > Ŵ i, f ′i(W i) = −1 and hence

f i′′(W i) = 0. Substituting this into the regulator’s HJB equation, it must be that:

δf i(Ŵ i) + γiŴ = πi − ci (27)

That is, the boundary of the firm’s continuation value is the point at which the social value of

production (profits minus abatement costs) is equal to the expected discounted value that the

regulator and the firm derive from the regulated transfers.

We wish to evaluate δf i(W i) + γiW i for W i < Ŵ i. From the definition of a derivative, for

small ∆ we have that f(Ŵ i − ∆) ≈ f i(Ŵ i) − ∆f i′(Ŵ i − ∆). Now f i′(Ŵ i − ∆) > −1 hence
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f i(Ŵ i −∆) < f i(Ŵ i) + ∆. Then it must be the case that:

δf i(Ŵ i −∆) + γi(Ŵ i −∆) < δ(f i(Ŵ i) + ∆) + γi(Ŵ i −∆)

δf i(Ŵ i −∆) + γi(Ŵ i −∆) < δf i(Ŵ i) + γiŴ i +∆(δ − γi)

δf i(Ŵ i −∆) + γi(Ŵ i −∆) < δf i(Ŵ i) + γiŴ i

δif i(Ŵ i −∆) + γi(Ŵ i −∆) < πi − ci

where the second last inequality comes from the fact that γi > δ and the last uses (27). Hence

δf i(W i) + γiW i < πi − ci for W i < Ŵ i.

This allows us to prove that f i′′(W i) < 0 for W i < Ŵ i. From (14):

f i′′(W i) =
2

(σβi)2

[
δf i(W i)− τ i − f i′(W i)(γiW i − (πi − ci) + τ i))

]
(28)

by (13) :

f i′′(W i) ≤ 2

(σβi)2
[
δf i(W i)− τ i + γiW i − (πi − ci) + τ i)

]
by (26) :

δf i(W i)− (πi − ci) + γiW i < 0

hence f i′′(W i) < 0. Hence for W i < Ŵ i the function f i is concave.
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D Lemma 2 : comparative statics

Proof.

∂f i(W i)

∂τ i
= E

 T i∫
0

e−δt(1 + f i′(W i
t ))dt

 > 0 (29)

∂f i(W i)

∂σ
= E

 T i∫
0

e−δt(σλi2f ′′(W i
t ))dt

 < 0 (30)

∂f i(W i)

∂Ri
= −f i′(Ri)e−δT i

< 0 (31)

∂f i(W i)

∂Ai
= E

 T i∫
0

e−δtf i′(W i
t )λ

idt

 (32)

∂f i(W i)

∂λi
= E

 T i∫
0

e−δtf i′(W i
t )A

i + σ2λf i′′(W i
t )dt

 (33)

∂f i(W i)

∂πi
= E

 T i∫
0

−e−δtf i′(W i
t )dt

 (34)

The signs of (29)-(31) follow. For the sign of ∂f i(W i)
∂γi we repeat the argument of DeMarzo and

Sannikov (2006). Suppose that the firm’s true discount rate was γi
′
< γi but they were offered the

contract designed for a firm with discount rate γi. Then the firm is better off as their continuation

value grows at a higher rate than under the contract with their true time preference whilst the

regulator has the same value as under γi. However the contract is not optimal for the firm with

discount rate γi, the regulator can reduce the value to the firm whilst preserving their participation

and their incentives. Hence it must be that the value to the regulator increases as the discount

rate of the firm decreases. The result follows.

E Lemma 3: Optimality of abatement

Proof. For abatement to be optimal ∀W we need to ensure that the damage caused by pollution

exceeds the costs of implementing abatement ∀W. Let B(W, Y ) be the value from delivering W

to firms at pollution stock Y . We assume that the damage of pollution at time t is equal to the

stock of pollution Yt. Then the value of the contract under abatement is b(W)− Y
δ .
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Let b̂(W, Y ) be the value from allowing firms to pollute at (W, Y ). Then B(W, Y ) =

max
{
b(W)− Y

δ , b̂(W, Y )
}

. To construct b̂(W, Y ) we redefine Gt in (24) assuming that the

regulator wishes to implement pollution and accounting for the damage of pollution.

b̂(Wt, Yt) = −Et

[
eδt

∫ ∞

t
e−δsYsds+ eδt

∫ T i

t
· · ·

∫ TN

t

∑
i

e−δsdIis

]

If pollution is the optimal policy Gt is a martingale and hence we can solve for b̂(W, Y )dt. Note

that if all firms always pollute then the value function is once again separable in all state variables

and firms never exit (i.e. Mt = ∅). Using the martingale approach and imposing separability:

δb̂(Wt, Yt)dt = −Ytdt+ b̂Y (Wt, Yt)dYt + σ2b̂Y Y (Wt, Yt)dt

−
∑
i

dIt +
∑
i

b̂iW (Wt, Yt)dW
i
t +

1

2

∑
i

(σβi)2b̂W iW i(Wt, Yt)dt

Then B(W, Y ) = max
{
b(W)− Y

δ , b̂(W, Y )
}
. So for abatement to be optimal ∀(W, Y ) i.e.

B = b with βi = 0 ∀ i

δB(Wt, Yt)dt ≥ −Ytdt+BY (Wt, Yt)p(Nt)dt+ σ2BY Y (Wt, Yt)dt

−
∑
i

dIt +
∑
i

Bi
W (Wt, Yt)

(
γiW i − πi − dIi

)
dt

(35)

δB(Wt, Yt)dt ≥ −Ytdt−
p(Nt)

δ
dt+ σ2BY Y (Wt, Yt)dt

−
∑
i

dIt +
∑
i

Bi
W (Wt, Yt)

(
γiW i − πi − dIi

)
dt

(36)

as BY = −1
δ , BY Y = 0. If this is the case then B(W, Yt) = b(W) − Y

δ , but then we can re-write
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the condition as:

δb(Wt)dt ≥ −p(Nt)

δ
dt+

∑
i

τ idt+
∑
i

bW i(Wt, Yt)(γ
iW i

t − πi + τ i)dt (37)

as dIi = −τ i. Both sides are now proportional to dt and hence we have that abatement is always

optimal if and only if

δb(W) ≥ −p(Nt)

δ
+

∑
i

τ i +
∑
i

bW i(W)(γiW i − πi + τ i) (38)

If this condition holds ∀W then abatement is always optimal.9 Substituting into (38) for δb(W)

and re-arranging gives:

p(Nt)

δ
≥ −

∑
i

bW i(W)λiAi − 1

2
(σλi)2bW iW i(W) (39)

9This is the equivalent of equation (23) in DeMarzo and Sannikov
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