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Abstract

We consider repeated games with mediation and side-payments. We

show that any punishment scheme can be divided into a public part and a

private part. While private punishment can be reduced by linking, public

punishment must be carried out in equilibrium. The total average equilibri-

um payoff is bounded from above by the payoff from enforcing the correlated

action profile with the highest total stage-game payoff net of public punish-

ment. The bound is tight. For any ε there exists an equilibrium with total

average payoff ε close to the upper bound when the players are sufficiently

patient. Our results extend the insights of Abreu, Milgrom, and Pearce

(1991) and incorporate a number of existing results in the literature.

1 Introduction

In recent years the theory of repeated games has made substantial progress in un-

derstanding how disperse, noisy information can be utilized to enforce cooperative

behavior in long-run relationships. An important insight that has emerged from
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this literature is that optimal incentives are often non-linear. In particular, when

monitoring is non-public, linking payoff decisions across periods may reduce the

cost of imperfect monitoring.

The idea is first introduced by Abreu, Milgrom, and Pearce (1991). They

consider a two-person partnership game. To induce cooperation both players must

be punished at a cost when a bad signal occurs. Abreu, Milgrom, and Pearce

(1991) show that if the signals are publicly observed immediately at the end of

each period, the costly punishment must be carried out immediately when a bad

signal occurs. However, if the signals are observed with a lag, the players can delay

the punishment and use the same punishment to induce cooperation in multiple

periods. Intuitively, not observing the signals immediately reduce the number of

incentive compatibility constraints that an equilibrium must satisfy.

In Abreu, Milgrom, and Pearce (1991) the timing of information is exogenous.

Subsequent research has shown that in games of private monitoring a similar result

may be obtained when players delay revealing their private signals endogenously.

The key issue is to ensure that players have the right incentives to report and do

not learn “too much” from their own private signals. In this paper we introduce

a new approach that unify many of the existing results. Our approach is closely

related to the original insights of Abreu, Milgrom, and Pearce (1991). We show

that any punishment scheme can be divided into a public part and a private part.

Only the private part can reduced through a linking mechanism. The public part

must be carried out in equilibrium.

In our model the players can employ a mediator to implement a correlated

stage-game outcome, and they can exchange side-payments at the end of each

period. The value of mediation has been demonstrated by Rahman (2014). He

shows that in a repeated game with public monitoring the players may use a

correlated strategy to achieve approximate efficiency as the discount factor goes to

one even when the public information arrives continuously. Without a mediator

the players may still correlate their actions through private signals in the past

(Kandori and Obara, 2006), but this sort of private-strategy equilibrium is hard

to analyze. While uncommon in repeated games, side-payments are natural in
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many economic problems. Allowing side-payments allow us to avoid the difficulty

of enforcing an outcome with rewards (rather than punishments). This enables

us establish a tight bound on the equilibrium efficiency loss. Existing results,

by contrast, only identify conditions under which the efficiency loss can be made

arbitrarily small.

A key question of our analysis is what is public when information are private?

In our model in each period each player receives a private recommendation from a

mediator before choosing an action, and observes a private signal after the actions

are chosen. The mediator makes recommendations according to a correlated action

profile. The correlated action profile and the signal distribution jointly induce a

distribution over actions and signals. At the end of each period, the players form

beliefs over actions and signals on the basis of the recommendation and signal that

he receives.

A set of action-signal profiles is self-evident if given the realization of any

member of the set it is common belief among players that the realized action-

signal profile is contained in the set.1 The set of action-signals profiles can be

partitioned into self-evident sets. We argue that self-evident sets are public as the

players beliefs would not the change if, before observing their private signals, they

were first publicly informed of the self-evident set that contains the realized action-

signal profile. We show that of any punishment schemes the part that depends on

these “public” signals must be carried out in equilibrium. Thus, an upper bound

of the total average equilibrium payoff that can be achieved by enforcing the

correlated action profile that has the highest total stage-game payoff net of public

punishment. Since non-public punishment can be eliminated through linking, for

any ε there exists an equilibrium with total average payoff arbitrarily ε close to

the upper bound when the players are sufficiently patient.

An immediate corollary of the last result is that approximate efficiency can be

attained when an efficient pure-action profile can be enforced without public pun-

1Given the realization of a specific signal profile, a set of signal profiles is common belief among

the players if every player believes that the realized profile belongs to the set with probability

one, and every players believes with probability one every player believes the the realized profile

belongs to the set with probability one, and so forth.
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ishment. Previous results on approximate efficiency are based on two approaches.

One relies on linking. Compte (1998) assumes the players’ private signals are

independent. Obara (2009), Zheng (2008) and Chan and Zhang (forthcoming)

consider correlated signals with full support. Another approach is to ensure that

a non-deviator can always be identified and rewarded to keep the total punishmen-

t zero (Fudenberg, Levine, and Maskin, 1994, Kandori and Matsushima, 1998).

Our result incorporates both approaches. When the signal distribution has full

support, there is only one self-evident set that contains all signal profiles. In this

case any enforceable action profile can be enforced without public punishment.

Alternatively, when every signal profile is self-evident, no public punishment is

possible only when a non-deviator can be identified. In generally, our result says

that an efficient outcome can be enforced with no public punishment if any unilat-

eral deviation that cannot be deterred using the signals within a self-evident set

must lead to a distribution of self-evident sets that cannot be caused by another

player.

2 Model

We consider a mediated repeated game with communication and side-payments

that we denote by Γ∞(G,B, χ). Time periods are denoted by t = 0, 1, 2, . . . . The

players are denoted by i = 1, 2, . . . , n. Let N = {1, 2, . . . , n}.
The events in period 0 unfold as follows. Nature draws β = (β1, . . . , βn)

from a countable set B = B1 × · · · × Bn according to a distribution χ. Each

player i observes βi and sends a public message mi ∈Mi to the other players. We

assume that Mi is sufficiently rich that player i can convey any private information

during the the repeated game. Each player i then simultaneously makes a publicly

observable side-payment τij to each player j.2 Finally, the players observe ζ, the

outcome of a public randomization device that is uniformly distributed between 0

and 1.

2We include τii, player i’s payment to himself, to simplify notation. Throughout, we set τii

to zero.
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In each period t = 1, 2, . . . , the players play the following stage game G. Let

A = A1 × ... × An denote a finite set of action profile. First, a mediator first

picks a distribution η ∈ ∆(A), draws ã = (ã1, ..., ãn) ∈ A according to η, and

then privately informs each player i ∈ N of ãi. After observing ã1, each player

i ∈ N simultaneously chooses a private action ai from Ai. Nature then draws

y = (y1, . . . , yn) from a finite set Y = Y1 × · · · × Yn according to a distribution

p(y|a). Each player i privately observes yi and sends a public message mi ∈ Mi

to the other players. The mediator publicly reports κ ∈ (A ∪ {∅}). Each player i

then simultaneously makes a publicly observable side-payment τij to each player

j. Finally, the players observe the outcome of a public randomization device φ.

Let a−i and y−i denote a minus ai and y minus yi, respectively.3 The marginal

probabilities of y−i, yi and (yi, yj) are denoted respectively by p−i(y−i|a), pi (yi|a)

and pij(yi, yj|a), and the marginal probabilities of y−i and yj, conditional on a

and yi, are denoted respectively by p−i(y−i|a, yi) and pj (yj|a, yi). To simplify

exposition, we assume that the support of p is independent of a and use Y ∗ to

denote the common support. Beyond common support we do not impose any

other restrictions on p.

Player i’s stage-game payoff, denoted by ri (ai, yi), depends only on his own

action and signal. The actions of the other players affect player i’s payoff through

their effects on p. Player i’s expected stage-game payoff conditional on a is

gi(a) ≡
∑
yi∈Yi

ri(ai, yi)pi(yi|a).

To save notation for any η ∈ ∆(A) we let

gi(η) ≡
∑
a∈A

g(a)η(a).

The mediator is indifferent over all outcomes.

For each variable x, we use xt to denote the period-t value of x, and xt to denote

the history of x up to period t. For example, mt = (m0,m1, . . . ,mt) is the history

3For any variable xi we use x to denote (x1, x2, . . . , xn) and x−i to denote x with the i-th

element xi deleted.
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of players’ message-report profiles up to period t. We use xi,t to denote period-t

value of xi. Because it will usually be clear from the context that whether, say,

a1, refers to the action of player 1 or the action profile chosen in period 1, we do

not introduce extra notations to distinguish the two. We will state the meaning

explicitly when confusion may arise.

A history of the game is an infinite sequence

h∞ ≡ (β,m0, τ0, ζ0, ã1, a1, y1,m1, κ1, τ1, ζ1, . . . , ãt, at, yt,mt, κt, τt, ζt, . . . ) .

The players discount future payoffs by a common discount factor δ < 1. Given a

history h∞, player i’s average repeated-game payoff is

ui,0 (h∞) ≡ (1− δ)

(
n∑
j=1

(τji,0 − τij,0) +
∞∑
t=1

δt
(
ri(ai,t, yi,t) +

n∑
j=1

(τji,t − τij,t)
))

.

Similarly, for each s ≥ 1, player i’s average payoff from the beginning of period s

onward, given h∞, is

ui,s (h∞) ≡ (1− δ)
∞∑
t=s

δt
(
ri(ai,t, yi,t) +

n∑
j=1

(τji,t − τij,t)
)
.

At the beginning of each period t, both the mediator and all players have ob-

served a public history hpubt that consists of the signal reports of the players, public

message of the mediator, side-payments, and outcomes of the public randomiza-

tion device in the previous t periods. Let Hpub
t denote the set of period-t public

histories, and let

Hpub+
t ≡ Hpub

t ×M1 × · · · ×Mn

denote the set of period-t public histories that includes the players’ reports in

period t. A strategy of the mediator is a function σm = (σm1, σm2) where σm1 is

a selection strategy that maps each history in ∪t≥1Hpub
t into a distribution η in

∆(A), and σm2 is a reporting strategy that maps each history in each history in

∪t≥1Hpub+
t into a report κ ∈ (A ∪ {∅}).

In addition to the public history, player i has observed a private history hprii,t

that consists of his observation of the correlating device βi in period 0, the private
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recommendation from the mediator, and his actions and signals in the previous

(t− 1) periods. We use hi,t =
(
hpubt , hprii,t

)
to denote the history, both public and

private, that player i observes at the beginning of period t. Let H0
i,t denote the

set of histories hi,t for player i at the beginning of period t ≥ 1, and

H1
i,t ≡ H0

i,t × Ai

the set of histories hi,t for player i after he receives the private recommendation

from the mediator in period t ≥ 1. Let

H2
i,t ≡

{
Bi, if t = 0;

H1
i,t × Ai × Yi, if t ≥ 1.

denote the set of possible histories for player i in the middle of period t after

observing βi (if t = 0) or after choosing ai,t and observing yi,t (if t ≥ 1), and let

H3
i,t ≡ H2

i,t ×M1 × · · · ×Mn × (A ∪ {∅})

denote the set of possible histories for player i in the middle of period t after

observing the message profile mt and mediator’s report κt. Let

Hi,t = H1
i,t ∪H2

i,t ∪H3
i,t

denote the set of possible histories for player i during period t after which he needs

to make a decision. A generic element of Hi,t will be denoted by ϕi,t.

A pure strategy σi = (αi, ρi, bi) for player i consists of three components: an

action strategy αi that maps each history in ∪t≥1H1
i,t into an action in Ai, a

reporting strategy ρi that maps each history in ∪t≥0H2
i,t into a message in Mi, and

a transfer strategy bi = (bi1, bi2, . . . , bin) that maps each history in ∪t≥0H3
i,t into an

n-vector of nonnegative real numbers. Let Σi denote the set of all pure strategies

σi for player i and let σ = (σ1, . . . , σn) denote a strategy profile.

A system of beliefs µ specifies, for each i ∈ N and each t ≥ 0, a probability

distribution µϕi,t
(·) of

(
β−i, ã

t
−i, a

t−1
−i , y

t−1
−i
)

for each ϕi,t ∈ H1
i,t, and a probability

distribution µϕi,t
(·) of

(
β−i, ã

t
−i, a

t
−i, y

t
−i
)

for each ϕi,t ∈ H2
i,t ∪H3

i,t. An assessment
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(σ, µ) consists of a strategy profile and a system of beliefs. Given any assessment

(σ, µ) and any history ϕi,t ∈ Hi,t, we use

vi,t (σ, µ, ϕi,t) ≡ E [ui,t (h∞)|σ, µ, ϕi,t]

to denote the expected value of player i’s payoff from period t onward, where the

expectation is taken over the distribution of histories h∞ induced by σ, conditional

on ϕi,t and the belief µϕi,t
(·). Write vi (σ, µ) for vi,0 (σ, µ, ϕi,0).

An assessment (σm, σ, µ) is a perfect Bayesian equilibrium if the following two

conditions hold.

• For all i ∈ N , t ≥ 0, and ϕi,t ∈ Hi,t such that Pr (ϕi,t|σ) > 0, the belief

µϕi,t
(·) is derived from (σm, σ) using Bayes’ rule.

• For all i ∈ N , t ≥ 0, ϕi,t ∈ Hi,t, and σ′i ∈ Σi,

vi,t (σ, µ, ϕi,t) ≥ vi,t (σ′i, σ−i, µ, ϕi,t) . (1)

Note that for ϕi,t ∈ H2
i,t ∪H3

i,t, (1) is equivalent to

E

[
(1− δ)δt

n∑
j=1

(τji,t − τij,t) + ui,t+1 (h∞)

∣∣∣∣∣σ, µ, ϕi,t
]

≥ E

[
(1− δ)δt

n∑
j=1

(τji,t − τij,t) + ui,t+1 (h∞)

∣∣∣∣∣σ′i, σ−i, µ, ϕi,t
]
.

Hence the second condition implies sequential rationality.

3 Public Punishment

Let G0 denote the stage game G without the last two steps (i.e., making side-

payments and observing the outcome of the public randomization device). Suppose

an mechanism designer tries to induce the players to choose a correlated strategy

η ∈ ∆(A) through a transfer scheme. At the end of G0, each player i is paid, in

additional to his stage-game payoff, a transfer that depends on the players’ signal
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report and the mediator’s recommendation. Formally, let wi : A× Y → < denote

player i’s transfer. We call a transfer scheme, w = (w1, ..., wn), a punishment

scheme if
∑

iwi (ã, y) ≤ 0 for all (ã, y) ∈ A× Y .

A pure strategy for player i in this extended game consists of an action strategy

αi that maps each private recommendation into an action, and a reporting strategy

ρi that maps each yi into a message in Yi. Let Ψi the set of reporting strategies.

We say that a punishment scheme w = (w1, ..., wn) enforces η if it is a Nash

equilibrium for the players to follow the recommendations and report their signal

truthfully when the mediator selects ã according to η.

Definition 1. A transfer function profile w = (w1, . . . , wn) enforces η if, for each

player i and each ãi ∈ supp (ηi), a
′
i ∈ Ai and ρ′i ∈ Ψi,∑

ã−i

(gi (ã) + Ey [wi (ã, y) |ã]) η−i (ã−i|ãi)

≥
∑
ã−i

(gi (a
′
i, ã−i) + Ey [wi (ã, ρi (yi) , y−i) |a′i, ã−i]) η−i (ã−i|ãi) . (2)

The enforcement is strict if strict inequality holds in (??) for all a′i 6= ai.

Let W (η) denote the set of punishment schemes that strictly enforces η. For

any w ∈ W (η) let

L(w, η) =
n∑
i=1

∑
(a,y)∈A×Y

wi(a, y)µ(a, y)

denote the total expected transfer.

To introduce the concept of public punishment, we need to first define what is

“public.” Fix the mediator strategy η and assume the players follow the recom-

mendations of the mediator. Let

µ (ã, y) ≡ p (y|ã) η (ã)

be the distribution of (ã, y) induced by η and p, and

(A× Y ) (η) ≡ {(ã, y) | µ (ã, y) > 0}
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the set of (ã, y) that is possible under η. Let (Ai × Yi) (η) denote the projection

of (A× Y ) (η) on Ai × Yi. For any i ∈ N , let Pi denote a partitional information

function of (A× Y ) (η) such that for each (ã′i, y
′
i) ∈ (Ai × Yi) (η)

Pi (ã
′
i, y
′
i) = {(ã′i, ã−i, y′i, y−i) ∈ (A× Y ) (η)}

denote the set of recommendation and signal profiles that player i believes is

possible conditional on (ã′i, y
′
i).

Let P denote the meet (i.e., the least common coarsening) of {Pi}ni=1. P has

two important properties. First, for any ω ∈ P, i ∈ N and (ã′i, y
′
i) ∈ (Ai × Yi) (η),

µ (.| (ã′i, y′i) , ω) = µ (.| (ã′i, y′i)). Second, for any ω ∈ P , and x ⊂ ω, there exists

i ∈ N and (ã′i, y
′
i) ∈ (Ai × Yi) (η) such that µ (x| (ã′i, y′i)) > 0 and µ (.| (ã′i, y′i) , x) 6=

µ (.| (ã′i, y′i)). In the terminology of interactive epistemology, any element of P

is self-evident and any proper subset of any element of P is not (Osborne and

Rubinstein Ch.5).4 We call ω a “public signal” because each player i “observes”

ω in the sense he can always infer from (ãi, yi) which ω ∈ P contains (ã, y), and

each player knows that the other players also observe ω, and so on.

For any w ∈ W (η) we call

Lpub(w, η) = L(w, η)−max
ω∈P

∑
i

∑
ã,y

wi (ã, y)µ (ã, y|ω)

the total public transfer. We are interested in the minimum amount of public

punishment (i.e., the absolute value of the total public transfer) needed to strictly

enforce η. Let

Q (η) ≡ conv {µ (·|η, ω) | ω ∈ P}

denote the set of distributions that have the same conditional distributions as µ,

and let si : Ai → ∆ (Ai ×Ψi) denote a mixed strategy in G0 where si (ãi, ai, ρi)

is the probability of choosing (ai, ρi) after receiving the recommendation ãi. The

4A subset E of of (A× Y ) (η) is an event. Player i “knows” an event when he observes (ãi, yi)

if Pi (ãi, yi) ⊆ E. An event E is a common belief at (ã, y) if every player i knows E, knows

every player j 6= i knows E, and so on when the mediator recommends ã and the signal profile

y occurs. An event E is self-evident if it is common belief at any (ã, y) ∈ E.
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distribution of (ã, y) induced by
(
si, α

∗
−i
)

is πsi . For each (ã, y) ∈ A× Y ,

πsi (ã, y) = η (ã)
∑
ai,ρi

si (ãi, ai, ρi)
∑

y′i∈ρ
−1
i (yi)

p (y−i, y
′
i|ã−i, ai) .

Since P is a partition, for any πsi ∈ Q(η) there is a unique ν̃ : P → [0, 1] such

that
∑

ω∈P ν̃(ω) = 1 and

πsi(·) =
∑
ω∈P

ν̃(ω)µ (· |ω) .

Let

γ(si) ≡ min
ω∈P

(
µ (ω)

ν̃(ω)− µ (ω)

)
.

The following proposition establishes the minimum public punishment needed to

enforce η.

Proposition 1. For any strictly enforceable η, L∗ (η) ≡ supw∈W ∗(η) L (w, η) is

equal to

inf
(s1,...,sn)

γ(s1)

[
n∑
i=1

∑
ã∈A

η (ã)
∑
ai,ρi

si (ãi, ai, ρi) (gi (ã)− gi (ã−i, ai))

]
(3)

s.t.πs1 = · · · = πsn ∈ Q(η). (4)

To illustrate Proposition 1, consider a Noisy Prisoners’ Dilemma game. Each

player chooses C or D and then observes a public signal that is either H or L. The

stage-game payoffs and signal distribution are given in Figure 1. It is assumed

that p > q and h, d > 0.

Actions Public Signal Dist.

C D

C 1, 1 −h, 1 + d

D 1 + d,−h 0, 0

H L

CC p 1− p
CD q 1− q

When η (CC) = 1. the information structure is

P1 (C,H) = {H} , P1 (C,L) = {L} ;

P2 (C,H) = {H} , P2 (C,L) = {L} ;

P = {H} , {L} .

11



In this case each element of P is a singleton. Q (CC) is therefore any distribution

over H and L. To ensure that player i prefers C to D, wi must satisfy the incentive-

compatibility constraint that

(wi (H)− wi (L)) ≥ d

(p− q)
. (5)

Since the game is symmetric, public punishment requires that

wi (H) , wi (L) ≤ 0. (6)

Maximizing the total expected transfer∑
i=1,2

(pwi (H) + (1− p)wi (L))

subject to (5) and (6) yields wi (H) = 0 and wi (L) = −d/ (p− q) for i =

1, 2. The maximum total expected transfer is 2d (1− p) / (p− q). The factor

(1− p) / (p− q) measures the efficacy of the transfer scheme. This factor is s-

maller if the deviation leads to a larger change in probability distribution (i.e., a

bigger p − q) or if the “bad” signal L is unlikely to occur when the players do

not deviate. Since each player can unilaterally deviate to D and gain d, the total

deviation gain that the scheme needs to deter is 2d. The total expected transfer

is the product of the total deviation gain and the efficacy of the transfer scheme.

In general there are multiple ways to deviate. Proposition 1 says that we only

need to worry about a deviating strategy si if πsi ∈ Q (η) and there exists sj such

that πsj = πsi for each j 6= i. If a deviation πsi /∈ Q (η), then si can be deterred

by using private signals within some ω ∈ P . If there is no sj such that πsj = πsi ,

then player j cannot cause πsi , and we can punish player i and reward player j

when πsi “occurs” to keep the total punishment zero.

For any s1, ..., sn that satisfy (4), the minimum total punishment needed to

deter each player i from choosing si is

γ(s1)

[
n∑
i=1

∑
ã∈A

η (ã)
∑
ai,ρi

si (ãi, ai, ρi) (gi (ã)− gi (ã−i, ai))

]
.
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The term inside the square bracket is the total deviation gains, and γ(s1) is the

efficacy of the best statistical test (i.e., the counterpart of (1− p) / (p− q)). Propo-

sition 1 says that the total public punishment needed to enforce a distribution is

the public punishment needed to deter the “worst” deviation.

4 Maximum Equilibrium Payoff

Proposition 2. For any δ ∈ (0, 1), the total average payoff of any perfect action-

public equilibrium of Γ∞ (B,χ,G, δ) in which the action strategies are pure is less

than

S∗ ≡ sup
η

(∑
ã

n∑
i=1

gi (ã) η (ã) + L∗(η)

)
.

Furthermore, any ε > 0, there exists δ̄ < 1 such that for each δ > δ̄, there is a

perfect action-public equilibrium of Γ∞ (B,χ,G, δ) with total average equilibrium

payoff greater than S∗ − ε.

Part 1 of Proposition 2 provides an upper bound to the total average equilib-

rium payoff. Part 2 of Theorem 2 shows that the bound is tight when the players

are sufficiently patient.

Necessity. Part 1 generalizes the inefficiency result of Abreu, Milgrom, and

Pearce (1991). We illustrate the main idea with a simple case. Fix δ. Assume

that all signals are public and there is an equilibrium that involves only pure-

action profiles and attains maximum total equilibrium payoff. Since both signals

and actions are public. Let vmax be the maximum total equilibrium payoff and

σ an equilibrium that attains vmax. Suppose a is chosen in the first period in σ.

Since the equilibrium action is pure and all signals are public, there is no private

information on the equilibrium path, and the continuation strategies depend only

on the public signal y. Let vi (y, σ) denote player i’s equilibrium continuation
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payoffs after y, and write wi (y) for (vi (y, σ)− vmax) δ/ (1− δ). By definition,

vmax =
∑
i

(
(1− δ) gi (a) + δ

∑
y

vi (y, σ) p (y|a)

)
, (7)

=
∑
i

(
(1− δ) gi (a) + δvmax + (1− δ)

∑
y

wi (y, σ) p (y|a)

)
(8)

Subtract δvmax from both sides, and divide both sides by (1− δ). We obtain

vmax =

(∑
i

gi (a) +
∑
y

wi (y) p (y|a)

)
. (9)

Since it is optimal for each player i to choose ai in the first period, w = (w1, ..., wn)

enforces a. Moreover, as the continuation game following any y is itself a repeated

game, for any y

∑
i

wi (y) =
δ

1− δ

(∑
i

vi (y, σ)− vmax

)
≤ 0.

It follows that w is a public-punishment scheme and, hence,

vmax ≤
∑
i

(1− δ) gi (a) + L (a,G) ≤ S∗. (10)

When signals are private or equilibrium action profile is correlated, the con-

tinuation game after the players observe their first period signals is not itself a

repeated game as each player i has private information about (ãi, yi). The total

continuation payoff conditional on (ã, y) is, therefore, not bounded by the maxi-

mum equilibrium payoff. To apply the recursive argument, we consider a modified

game where in each period the players observe publicly ω ∈ P before learning

their private signals. Since ω is self-evident, the modified game will have the same

set of equilibria as the original game. Furthermore, since the continuation game

following each ω is itself a mediated repeated game, the total continuation payoff

conditional on ω is bounded by the upper bound of the original game.

We prove part 2 of Theorem 2 by constructing a T -period mechanism that

strictly enforce η in a T -period repetition of G0 with expected total transfer ε

14



close to L (η). Intuitively, almost all non-public punishment can be eliminated

by linking when the players are sufficiently patient. With the mechanism, it is

straightforward to construct the required perfect action-public equilibrium along

the lines of Chan and Zhang (forthcoming).
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